2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 #include <scsi/scsi_cmnd.h>
60 #include "scu_completion_codes.h"
61 #include "scu_event_codes.h"
66 const char *req_state_name(enum sci_base_request_states state
)
68 static const char * const strings
[] = REQUEST_STATES
;
70 return strings
[state
];
74 static struct scu_sgl_element_pair
*to_sgl_element_pair(struct isci_request
*ireq
,
78 return &ireq
->tc
->sgl_pair_ab
;
80 return &ireq
->tc
->sgl_pair_cd
;
84 return &ireq
->sg_table
[idx
- 2];
87 static dma_addr_t
to_sgl_element_pair_dma(struct isci_host
*ihost
,
88 struct isci_request
*ireq
, u32 idx
)
93 offset
= (void *) &ireq
->tc
->sgl_pair_ab
-
94 (void *) &ihost
->task_context_table
[0];
95 return ihost
->tc_dma
+ offset
;
96 } else if (idx
== 1) {
97 offset
= (void *) &ireq
->tc
->sgl_pair_cd
-
98 (void *) &ihost
->task_context_table
[0];
99 return ihost
->tc_dma
+ offset
;
102 return sci_io_request_get_dma_addr(ireq
, &ireq
->sg_table
[idx
- 2]);
105 static void init_sgl_element(struct scu_sgl_element
*e
, struct scatterlist
*sg
)
107 e
->length
= sg_dma_len(sg
);
108 e
->address_upper
= upper_32_bits(sg_dma_address(sg
));
109 e
->address_lower
= lower_32_bits(sg_dma_address(sg
));
110 e
->address_modifier
= 0;
113 static void sci_request_build_sgl(struct isci_request
*ireq
)
115 struct isci_host
*ihost
= ireq
->isci_host
;
116 struct sas_task
*task
= isci_request_access_task(ireq
);
117 struct scatterlist
*sg
= NULL
;
120 struct scu_sgl_element_pair
*scu_sg
= NULL
;
121 struct scu_sgl_element_pair
*prev_sg
= NULL
;
123 if (task
->num_scatter
> 0) {
127 scu_sg
= to_sgl_element_pair(ireq
, sg_idx
);
128 init_sgl_element(&scu_sg
->A
, sg
);
131 init_sgl_element(&scu_sg
->B
, sg
);
134 memset(&scu_sg
->B
, 0, sizeof(scu_sg
->B
));
137 dma_addr
= to_sgl_element_pair_dma(ihost
,
141 prev_sg
->next_pair_upper
=
142 upper_32_bits(dma_addr
);
143 prev_sg
->next_pair_lower
=
144 lower_32_bits(dma_addr
);
150 } else { /* handle when no sg */
151 scu_sg
= to_sgl_element_pair(ireq
, sg_idx
);
153 dma_addr
= dma_map_single(&ihost
->pdev
->dev
,
155 task
->total_xfer_len
,
158 ireq
->zero_scatter_daddr
= dma_addr
;
160 scu_sg
->A
.length
= task
->total_xfer_len
;
161 scu_sg
->A
.address_upper
= upper_32_bits(dma_addr
);
162 scu_sg
->A
.address_lower
= lower_32_bits(dma_addr
);
166 scu_sg
->next_pair_upper
= 0;
167 scu_sg
->next_pair_lower
= 0;
171 static void sci_io_request_build_ssp_command_iu(struct isci_request
*ireq
)
173 struct ssp_cmd_iu
*cmd_iu
;
174 struct sas_task
*task
= isci_request_access_task(ireq
);
176 cmd_iu
= &ireq
->ssp
.cmd
;
178 memcpy(cmd_iu
->LUN
, task
->ssp_task
.LUN
, 8);
179 cmd_iu
->add_cdb_len
= 0;
182 cmd_iu
->en_fburst
= 0; /* unsupported */
183 cmd_iu
->task_prio
= 0;
184 cmd_iu
->task_attr
= task
->ssp_task
.task_attr
;
187 sci_swab32_cpy(&cmd_iu
->cdb
, task
->ssp_task
.cmd
->cmnd
,
188 (task
->ssp_task
.cmd
->cmd_len
+3) / sizeof(u32
));
191 static void sci_task_request_build_ssp_task_iu(struct isci_request
*ireq
)
193 struct ssp_task_iu
*task_iu
;
194 struct sas_task
*task
= isci_request_access_task(ireq
);
195 struct isci_tmf
*isci_tmf
= isci_request_access_tmf(ireq
);
197 task_iu
= &ireq
->ssp
.tmf
;
199 memset(task_iu
, 0, sizeof(struct ssp_task_iu
));
201 memcpy(task_iu
->LUN
, task
->ssp_task
.LUN
, 8);
203 task_iu
->task_func
= isci_tmf
->tmf_code
;
205 (test_bit(IREQ_TMF
, &ireq
->flags
)) ?
207 SCI_CONTROLLER_INVALID_IO_TAG
;
211 * This method is will fill in the SCU Task Context for any type of SSP request.
213 static void scu_ssp_request_construct_task_context(
214 struct isci_request
*ireq
,
215 struct scu_task_context
*task_context
)
218 struct isci_remote_device
*idev
;
219 struct isci_port
*iport
;
221 idev
= ireq
->target_device
;
222 iport
= idev
->owning_port
;
224 /* Fill in the TC with its required data */
225 task_context
->abort
= 0;
226 task_context
->priority
= 0;
227 task_context
->initiator_request
= 1;
228 task_context
->connection_rate
= idev
->connection_rate
;
229 task_context
->protocol_engine_index
= ISCI_PEG
;
230 task_context
->logical_port_index
= iport
->physical_port_index
;
231 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_SSP
;
232 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
233 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
235 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
236 task_context
->command_code
= 0;
238 task_context
->link_layer_control
= 0;
239 task_context
->do_not_dma_ssp_good_response
= 1;
240 task_context
->strict_ordering
= 0;
241 task_context
->control_frame
= 0;
242 task_context
->timeout_enable
= 0;
243 task_context
->block_guard_enable
= 0;
245 task_context
->address_modifier
= 0;
247 /* task_context->type.ssp.tag = ireq->io_tag; */
248 task_context
->task_phase
= 0x01;
250 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
251 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
252 (iport
->physical_port_index
<<
253 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
254 ISCI_TAG_TCI(ireq
->io_tag
));
257 * Copy the physical address for the command buffer to the
260 dma_addr
= sci_io_request_get_dma_addr(ireq
, &ireq
->ssp
.cmd
);
262 task_context
->command_iu_upper
= upper_32_bits(dma_addr
);
263 task_context
->command_iu_lower
= lower_32_bits(dma_addr
);
266 * Copy the physical address for the response buffer to the
269 dma_addr
= sci_io_request_get_dma_addr(ireq
, &ireq
->ssp
.rsp
);
271 task_context
->response_iu_upper
= upper_32_bits(dma_addr
);
272 task_context
->response_iu_lower
= lower_32_bits(dma_addr
);
275 static u8
scu_bg_blk_size(struct scsi_device
*sdp
)
277 switch (sdp
->sector_size
) {
289 static u32
scu_dif_bytes(u32 len
, u32 sector_size
)
291 return (len
>> ilog2(sector_size
)) * 8;
294 static void scu_ssp_ireq_dif_insert(struct isci_request
*ireq
, u8 type
, u8 op
)
296 struct scu_task_context
*tc
= ireq
->tc
;
297 struct scsi_cmnd
*scmd
= ireq
->ttype_ptr
.io_task_ptr
->uldd_task
;
298 u8 blk_sz
= scu_bg_blk_size(scmd
->device
);
300 tc
->block_guard_enable
= 1;
303 /* DIF write insert */
304 tc
->blk_prot_func
= 0x2;
306 tc
->transfer_length_bytes
+= scu_dif_bytes(tc
->transfer_length_bytes
,
307 scmd
->device
->sector_size
);
309 /* always init to 0, used by hw */
310 tc
->interm_crc_val
= 0;
312 tc
->init_crc_seed
= 0;
313 tc
->app_tag_verify
= 0;
315 tc
->ref_tag_seed_verify
= 0;
317 /* always init to same as bg_blk_sz */
318 tc
->UD_bytes_immed_val
= scmd
->device
->sector_size
;
320 tc
->reserved_DC_0
= 0;
322 /* always init to 8 */
323 tc
->DIF_bytes_immed_val
= 8;
325 tc
->reserved_DC_1
= 0;
326 tc
->bgc_blk_sz
= scmd
->device
->sector_size
;
327 tc
->reserved_E0_0
= 0;
328 tc
->app_tag_gen_mask
= 0;
330 /** setup block guard control **/
333 /* DIF write insert */
334 tc
->bgctl_f
.op
= 0x2;
336 tc
->app_tag_verify_mask
= 0;
338 /* must init to 0 for hw */
339 tc
->blk_guard_err
= 0;
341 tc
->reserved_E8_0
= 0;
343 if ((type
& SCSI_PROT_DIF_TYPE1
) || (type
& SCSI_PROT_DIF_TYPE2
))
344 tc
->ref_tag_seed_gen
= scsi_prot_ref_tag(scmd
);
345 else if (type
& SCSI_PROT_DIF_TYPE3
)
346 tc
->ref_tag_seed_gen
= 0;
349 static void scu_ssp_ireq_dif_strip(struct isci_request
*ireq
, u8 type
, u8 op
)
351 struct scu_task_context
*tc
= ireq
->tc
;
352 struct scsi_cmnd
*scmd
= ireq
->ttype_ptr
.io_task_ptr
->uldd_task
;
353 u8 blk_sz
= scu_bg_blk_size(scmd
->device
);
355 tc
->block_guard_enable
= 1;
359 tc
->blk_prot_func
= 0x1;
361 tc
->transfer_length_bytes
+= scu_dif_bytes(tc
->transfer_length_bytes
,
362 scmd
->device
->sector_size
);
364 /* always init to 0, used by hw */
365 tc
->interm_crc_val
= 0;
367 tc
->init_crc_seed
= 0;
368 tc
->app_tag_verify
= 0;
371 if ((type
& SCSI_PROT_DIF_TYPE1
) || (type
& SCSI_PROT_DIF_TYPE2
))
372 tc
->ref_tag_seed_verify
= scsi_prot_ref_tag(scmd
);
373 else if (type
& SCSI_PROT_DIF_TYPE3
)
374 tc
->ref_tag_seed_verify
= 0;
376 /* always init to same as bg_blk_sz */
377 tc
->UD_bytes_immed_val
= scmd
->device
->sector_size
;
379 tc
->reserved_DC_0
= 0;
381 /* always init to 8 */
382 tc
->DIF_bytes_immed_val
= 8;
384 tc
->reserved_DC_1
= 0;
385 tc
->bgc_blk_sz
= scmd
->device
->sector_size
;
386 tc
->reserved_E0_0
= 0;
387 tc
->app_tag_gen_mask
= 0;
389 /** setup block guard control **/
393 tc
->bgctl_f
.crc_verify
= 1;
394 tc
->bgctl_f
.op
= 0x1;
395 if ((type
& SCSI_PROT_DIF_TYPE1
) || (type
& SCSI_PROT_DIF_TYPE2
)) {
396 tc
->bgctl_f
.ref_tag_chk
= 1;
397 tc
->bgctl_f
.app_f_detect
= 1;
398 } else if (type
& SCSI_PROT_DIF_TYPE3
)
399 tc
->bgctl_f
.app_ref_f_detect
= 1;
401 tc
->app_tag_verify_mask
= 0;
403 /* must init to 0 for hw */
404 tc
->blk_guard_err
= 0;
406 tc
->reserved_E8_0
= 0;
407 tc
->ref_tag_seed_gen
= 0;
411 * This method is will fill in the SCU Task Context for a SSP IO request.
413 static void scu_ssp_io_request_construct_task_context(struct isci_request
*ireq
,
414 enum dma_data_direction dir
,
417 struct scu_task_context
*task_context
= ireq
->tc
;
418 struct sas_task
*sas_task
= ireq
->ttype_ptr
.io_task_ptr
;
419 struct scsi_cmnd
*scmd
= sas_task
->uldd_task
;
420 u8 prot_type
= scsi_get_prot_type(scmd
);
421 u8 prot_op
= scsi_get_prot_op(scmd
);
423 scu_ssp_request_construct_task_context(ireq
, task_context
);
425 task_context
->ssp_command_iu_length
=
426 sizeof(struct ssp_cmd_iu
) / sizeof(u32
);
427 task_context
->type
.ssp
.frame_type
= SSP_COMMAND
;
430 case DMA_FROM_DEVICE
:
433 task_context
->task_type
= SCU_TASK_TYPE_IOREAD
;
436 task_context
->task_type
= SCU_TASK_TYPE_IOWRITE
;
440 task_context
->transfer_length_bytes
= len
;
442 if (task_context
->transfer_length_bytes
> 0)
443 sci_request_build_sgl(ireq
);
445 if (prot_type
!= SCSI_PROT_DIF_TYPE0
) {
446 if (prot_op
== SCSI_PROT_READ_STRIP
)
447 scu_ssp_ireq_dif_strip(ireq
, prot_type
, prot_op
);
448 else if (prot_op
== SCSI_PROT_WRITE_INSERT
)
449 scu_ssp_ireq_dif_insert(ireq
, prot_type
, prot_op
);
454 * scu_ssp_task_request_construct_task_context() - This method will fill in
455 * the SCU Task Context for a SSP Task request. The following important
456 * settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH. This
457 * ensures that the task request is issued ahead of other task destined
458 * for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD. This
459 * simply indicates that a normal request type (i.e. non-raw frame) is
460 * being utilized to perform task management. -#control_frame == 1. This
461 * ensures that the proper endianness is set so that the bytes are
462 * transmitted in the right order for a task frame.
463 * @ireq: This parameter specifies the task request object being constructed.
465 static void scu_ssp_task_request_construct_task_context(struct isci_request
*ireq
)
467 struct scu_task_context
*task_context
= ireq
->tc
;
469 scu_ssp_request_construct_task_context(ireq
, task_context
);
471 task_context
->control_frame
= 1;
472 task_context
->priority
= SCU_TASK_PRIORITY_HIGH
;
473 task_context
->task_type
= SCU_TASK_TYPE_RAW_FRAME
;
474 task_context
->transfer_length_bytes
= 0;
475 task_context
->type
.ssp
.frame_type
= SSP_TASK
;
476 task_context
->ssp_command_iu_length
=
477 sizeof(struct ssp_task_iu
) / sizeof(u32
);
481 * scu_sata_request_construct_task_context()
482 * This method is will fill in the SCU Task Context for any type of SATA
483 * request. This is called from the various SATA constructors.
484 * @ireq: The general IO request object which is to be used in
485 * constructing the SCU task context.
486 * @task_context: The buffer pointer for the SCU task context which is being
489 * The general io request construction is complete. The buffer assignment for
490 * the command buffer is complete. none Revisit task context construction to
491 * determine what is common for SSP/SMP/STP task context structures.
493 static void scu_sata_request_construct_task_context(
494 struct isci_request
*ireq
,
495 struct scu_task_context
*task_context
)
498 struct isci_remote_device
*idev
;
499 struct isci_port
*iport
;
501 idev
= ireq
->target_device
;
502 iport
= idev
->owning_port
;
504 /* Fill in the TC with its required data */
505 task_context
->abort
= 0;
506 task_context
->priority
= SCU_TASK_PRIORITY_NORMAL
;
507 task_context
->initiator_request
= 1;
508 task_context
->connection_rate
= idev
->connection_rate
;
509 task_context
->protocol_engine_index
= ISCI_PEG
;
510 task_context
->logical_port_index
= iport
->physical_port_index
;
511 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_STP
;
512 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
513 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
515 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
516 task_context
->command_code
= 0;
518 task_context
->link_layer_control
= 0;
519 task_context
->do_not_dma_ssp_good_response
= 1;
520 task_context
->strict_ordering
= 0;
521 task_context
->control_frame
= 0;
522 task_context
->timeout_enable
= 0;
523 task_context
->block_guard_enable
= 0;
525 task_context
->address_modifier
= 0;
526 task_context
->task_phase
= 0x01;
528 task_context
->ssp_command_iu_length
=
529 (sizeof(struct host_to_dev_fis
) - sizeof(u32
)) / sizeof(u32
);
531 /* Set the first word of the H2D REG FIS */
532 task_context
->type
.words
[0] = *(u32
*)&ireq
->stp
.cmd
;
534 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
535 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
536 (iport
->physical_port_index
<<
537 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
538 ISCI_TAG_TCI(ireq
->io_tag
));
540 * Copy the physical address for the command buffer to the SCU Task
541 * Context. We must offset the command buffer by 4 bytes because the
542 * first 4 bytes are transfered in the body of the TC.
544 dma_addr
= sci_io_request_get_dma_addr(ireq
,
545 ((char *) &ireq
->stp
.cmd
) +
548 task_context
->command_iu_upper
= upper_32_bits(dma_addr
);
549 task_context
->command_iu_lower
= lower_32_bits(dma_addr
);
551 /* SATA Requests do not have a response buffer */
552 task_context
->response_iu_upper
= 0;
553 task_context
->response_iu_lower
= 0;
556 static void scu_stp_raw_request_construct_task_context(struct isci_request
*ireq
)
558 struct scu_task_context
*task_context
= ireq
->tc
;
560 scu_sata_request_construct_task_context(ireq
, task_context
);
562 task_context
->control_frame
= 0;
563 task_context
->priority
= SCU_TASK_PRIORITY_NORMAL
;
564 task_context
->task_type
= SCU_TASK_TYPE_SATA_RAW_FRAME
;
565 task_context
->type
.stp
.fis_type
= FIS_REGH2D
;
566 task_context
->transfer_length_bytes
= sizeof(struct host_to_dev_fis
) - sizeof(u32
);
569 static enum sci_status
sci_stp_pio_request_construct(struct isci_request
*ireq
,
572 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
574 scu_stp_raw_request_construct_task_context(ireq
);
577 stp_req
->sgl
.offset
= 0;
578 stp_req
->sgl
.set
= SCU_SGL_ELEMENT_PAIR_A
;
581 sci_request_build_sgl(ireq
);
582 stp_req
->sgl
.index
= 0;
584 /* The user does not want the data copied to the SGL buffer location */
585 stp_req
->sgl
.index
= -1;
592 * sci_stp_optimized_request_construct()
593 * @ireq: This parameter specifies the request to be constructed as an
595 * @optimized_task_type: This parameter specifies whether the request is to be
596 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597 * value of 1 indicates NCQ.
599 * This method will perform request construction common to all types of STP
600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601 * returns an indication as to whether the construction was successful.
603 static void sci_stp_optimized_request_construct(struct isci_request
*ireq
,
604 u8 optimized_task_type
,
606 enum dma_data_direction dir
)
608 struct scu_task_context
*task_context
= ireq
->tc
;
610 /* Build the STP task context structure */
611 scu_sata_request_construct_task_context(ireq
, task_context
);
613 /* Copy over the SGL elements */
614 sci_request_build_sgl(ireq
);
616 /* Copy over the number of bytes to be transfered */
617 task_context
->transfer_length_bytes
= len
;
619 if (dir
== DMA_TO_DEVICE
) {
621 * The difference between the DMA IN and DMA OUT request task type
622 * values are consistent with the difference between FPDMA READ
623 * and FPDMA WRITE values. Add the supplied task type parameter
624 * to this difference to set the task type properly for this
625 * DATA OUT (WRITE) case. */
626 task_context
->task_type
= optimized_task_type
+ (SCU_TASK_TYPE_DMA_OUT
627 - SCU_TASK_TYPE_DMA_IN
);
630 * For the DATA IN (READ) case, simply save the supplied
631 * optimized task type. */
632 task_context
->task_type
= optimized_task_type
;
636 static void sci_atapi_construct(struct isci_request
*ireq
)
638 struct host_to_dev_fis
*h2d_fis
= &ireq
->stp
.cmd
;
639 struct sas_task
*task
;
641 /* To simplify the implementation we take advantage of the
642 * silicon's partial acceleration of atapi protocol (dma data
643 * transfers), so we promote all commands to dma protocol. This
644 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
646 h2d_fis
->features
|= ATAPI_PKT_DMA
;
648 scu_stp_raw_request_construct_task_context(ireq
);
650 task
= isci_request_access_task(ireq
);
651 if (task
->data_dir
== DMA_NONE
)
652 task
->total_xfer_len
= 0;
654 /* clear the response so we can detect arrivial of an
655 * unsolicited h2d fis
657 ireq
->stp
.rsp
.fis_type
= 0;
660 static enum sci_status
661 sci_io_request_construct_sata(struct isci_request
*ireq
,
663 enum dma_data_direction dir
,
666 enum sci_status status
= SCI_SUCCESS
;
667 struct sas_task
*task
= isci_request_access_task(ireq
);
668 struct domain_device
*dev
= ireq
->target_device
->domain_dev
;
670 /* check for management protocols */
671 if (test_bit(IREQ_TMF
, &ireq
->flags
)) {
672 struct isci_tmf
*tmf
= isci_request_access_tmf(ireq
);
674 dev_err(&ireq
->owning_controller
->pdev
->dev
,
675 "%s: Request 0x%p received un-handled SAT "
676 "management protocol 0x%x.\n",
677 __func__
, ireq
, tmf
->tmf_code
);
682 if (!sas_protocol_ata(task
->task_proto
)) {
683 dev_err(&ireq
->owning_controller
->pdev
->dev
,
684 "%s: Non-ATA protocol in SATA path: 0x%x\n",
692 if (dev
->sata_dev
.class == ATA_DEV_ATAPI
&&
693 task
->ata_task
.fis
.command
== ATA_CMD_PACKET
) {
694 sci_atapi_construct(ireq
);
699 if (task
->data_dir
== DMA_NONE
) {
700 scu_stp_raw_request_construct_task_context(ireq
);
705 if (task
->ata_task
.use_ncq
) {
706 sci_stp_optimized_request_construct(ireq
,
707 SCU_TASK_TYPE_FPDMAQ_READ
,
713 if (task
->ata_task
.dma_xfer
) {
714 sci_stp_optimized_request_construct(ireq
,
715 SCU_TASK_TYPE_DMA_IN
,
719 return sci_stp_pio_request_construct(ireq
, copy
);
724 static enum sci_status
sci_io_request_construct_basic_ssp(struct isci_request
*ireq
)
726 struct sas_task
*task
= isci_request_access_task(ireq
);
728 ireq
->protocol
= SAS_PROTOCOL_SSP
;
730 scu_ssp_io_request_construct_task_context(ireq
,
732 task
->total_xfer_len
);
734 sci_io_request_build_ssp_command_iu(ireq
);
736 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
741 void sci_task_request_construct_ssp(struct isci_request
*ireq
)
743 /* Construct the SSP Task SCU Task Context */
744 scu_ssp_task_request_construct_task_context(ireq
);
746 /* Fill in the SSP Task IU */
747 sci_task_request_build_ssp_task_iu(ireq
);
749 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
752 static enum sci_status
sci_io_request_construct_basic_sata(struct isci_request
*ireq
)
754 enum sci_status status
;
756 struct sas_task
*task
= isci_request_access_task(ireq
);
758 ireq
->protocol
= SAS_PROTOCOL_STP
;
760 copy
= (task
->data_dir
== DMA_NONE
) ? false : true;
762 status
= sci_io_request_construct_sata(ireq
,
763 task
->total_xfer_len
,
767 if (status
== SCI_SUCCESS
)
768 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
773 #define SCU_TASK_CONTEXT_SRAM 0x200000
775 * sci_req_tx_bytes - bytes transferred when reply underruns request
776 * @ireq: request that was terminated early
778 static u32
sci_req_tx_bytes(struct isci_request
*ireq
)
780 struct isci_host
*ihost
= ireq
->owning_controller
;
783 if (readl(&ihost
->smu_registers
->address_modifier
) == 0) {
784 void __iomem
*scu_reg_base
= ihost
->scu_registers
;
786 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
787 * BAR1 is the scu_registers
788 * 0x20002C = 0x200000 + 0x2c
789 * = start of task context SRAM + offset of (type.ssp.data_offset)
790 * TCi is the io_tag of struct sci_request
792 ret_val
= readl(scu_reg_base
+
793 (SCU_TASK_CONTEXT_SRAM
+ offsetof(struct scu_task_context
, type
.ssp
.data_offset
)) +
794 ((sizeof(struct scu_task_context
)) * ISCI_TAG_TCI(ireq
->io_tag
)));
800 enum sci_status
sci_request_start(struct isci_request
*ireq
)
802 enum sci_base_request_states state
;
803 struct scu_task_context
*tc
= ireq
->tc
;
804 struct isci_host
*ihost
= ireq
->owning_controller
;
806 state
= ireq
->sm
.current_state_id
;
807 if (state
!= SCI_REQ_CONSTRUCTED
) {
808 dev_warn(&ihost
->pdev
->dev
,
809 "%s: SCIC IO Request requested to start while in wrong "
810 "state %d\n", __func__
, state
);
811 return SCI_FAILURE_INVALID_STATE
;
814 tc
->task_index
= ISCI_TAG_TCI(ireq
->io_tag
);
816 switch (tc
->protocol_type
) {
817 case SCU_TASK_CONTEXT_PROTOCOL_SMP
:
818 case SCU_TASK_CONTEXT_PROTOCOL_SSP
:
820 tc
->type
.ssp
.tag
= ireq
->io_tag
;
821 tc
->type
.ssp
.target_port_transfer_tag
= 0xFFFF;
824 case SCU_TASK_CONTEXT_PROTOCOL_STP
:
826 * tc->type.stp.ncq_tag = ireq->ncq_tag;
830 case SCU_TASK_CONTEXT_PROTOCOL_NONE
:
831 /* / @todo When do we set no protocol type? */
835 /* This should never happen since we build the IO
840 /* Add to the post_context the io tag value */
841 ireq
->post_context
|= ISCI_TAG_TCI(ireq
->io_tag
);
843 /* Everything is good go ahead and change state */
844 sci_change_state(&ireq
->sm
, SCI_REQ_STARTED
);
850 sci_io_request_terminate(struct isci_request
*ireq
)
852 enum sci_base_request_states state
;
854 state
= ireq
->sm
.current_state_id
;
857 case SCI_REQ_CONSTRUCTED
:
858 /* Set to make sure no HW terminate posting is done: */
859 set_bit(IREQ_TC_ABORT_POSTED
, &ireq
->flags
);
860 ireq
->scu_status
= SCU_TASK_DONE_TASK_ABORT
;
861 ireq
->sci_status
= SCI_FAILURE_IO_TERMINATED
;
862 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
864 case SCI_REQ_STARTED
:
865 case SCI_REQ_TASK_WAIT_TC_COMP
:
866 case SCI_REQ_SMP_WAIT_RESP
:
867 case SCI_REQ_SMP_WAIT_TC_COMP
:
868 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
869 case SCI_REQ_STP_UDMA_WAIT_D2H
:
870 case SCI_REQ_STP_NON_DATA_WAIT_H2D
:
871 case SCI_REQ_STP_NON_DATA_WAIT_D2H
:
872 case SCI_REQ_STP_PIO_WAIT_H2D
:
873 case SCI_REQ_STP_PIO_WAIT_FRAME
:
874 case SCI_REQ_STP_PIO_DATA_IN
:
875 case SCI_REQ_STP_PIO_DATA_OUT
:
876 case SCI_REQ_ATAPI_WAIT_H2D
:
877 case SCI_REQ_ATAPI_WAIT_PIO_SETUP
:
878 case SCI_REQ_ATAPI_WAIT_D2H
:
879 case SCI_REQ_ATAPI_WAIT_TC_COMP
:
880 /* Fall through and change state to ABORTING... */
881 case SCI_REQ_TASK_WAIT_TC_RESP
:
882 /* The task frame was already confirmed to have been
883 * sent by the SCU HW. Since the state machine is
884 * now only waiting for the task response itself,
885 * abort the request and complete it immediately
886 * and don't wait for the task response.
888 sci_change_state(&ireq
->sm
, SCI_REQ_ABORTING
);
889 fallthrough
; /* and handle like ABORTING */
890 case SCI_REQ_ABORTING
:
891 if (!isci_remote_device_is_safe_to_abort(ireq
->target_device
))
892 set_bit(IREQ_PENDING_ABORT
, &ireq
->flags
);
894 clear_bit(IREQ_PENDING_ABORT
, &ireq
->flags
);
895 /* If the request is only waiting on the remote device
896 * suspension, return SUCCESS so the caller will wait too.
899 case SCI_REQ_COMPLETED
:
901 dev_warn(&ireq
->owning_controller
->pdev
->dev
,
902 "%s: SCIC IO Request requested to abort while in wrong "
903 "state %d\n", __func__
, ireq
->sm
.current_state_id
);
907 return SCI_FAILURE_INVALID_STATE
;
910 enum sci_status
sci_request_complete(struct isci_request
*ireq
)
912 enum sci_base_request_states state
;
913 struct isci_host
*ihost
= ireq
->owning_controller
;
915 state
= ireq
->sm
.current_state_id
;
916 if (WARN_ONCE(state
!= SCI_REQ_COMPLETED
,
917 "isci: request completion from wrong state (%s)\n",
918 req_state_name(state
)))
919 return SCI_FAILURE_INVALID_STATE
;
921 if (ireq
->saved_rx_frame_index
!= SCU_INVALID_FRAME_INDEX
)
922 sci_controller_release_frame(ihost
,
923 ireq
->saved_rx_frame_index
);
925 /* XXX can we just stop the machine and remove the 'final' state? */
926 sci_change_state(&ireq
->sm
, SCI_REQ_FINAL
);
930 enum sci_status
sci_io_request_event_handler(struct isci_request
*ireq
,
933 enum sci_base_request_states state
;
934 struct isci_host
*ihost
= ireq
->owning_controller
;
936 state
= ireq
->sm
.current_state_id
;
938 if (state
!= SCI_REQ_STP_PIO_DATA_IN
) {
939 dev_warn(&ihost
->pdev
->dev
, "%s: (%x) in wrong state %s\n",
940 __func__
, event_code
, req_state_name(state
));
942 return SCI_FAILURE_INVALID_STATE
;
945 switch (scu_get_event_specifier(event_code
)) {
946 case SCU_TASK_DONE_CRC_ERR
<< SCU_EVENT_SPECIFIC_CODE_SHIFT
:
947 /* We are waiting for data and the SCU has R_ERR the data frame.
948 * Go back to waiting for the D2H Register FIS
950 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
953 dev_err(&ihost
->pdev
->dev
,
954 "%s: pio request unexpected event %#x\n",
955 __func__
, event_code
);
957 /* TODO Should we fail the PIO request when we get an
965 * This function copies response data for requests returning response data
966 * instead of sense data.
967 * @sci_req: This parameter specifies the request object for which to copy
970 static void sci_io_request_copy_response(struct isci_request
*ireq
)
974 struct ssp_response_iu
*ssp_response
;
975 struct isci_tmf
*isci_tmf
= isci_request_access_tmf(ireq
);
977 ssp_response
= &ireq
->ssp
.rsp
;
979 resp_buf
= &isci_tmf
->resp
.resp_iu
;
982 SSP_RESP_IU_MAX_SIZE
,
983 be32_to_cpu(ssp_response
->response_data_len
));
985 memcpy(resp_buf
, ssp_response
->resp_data
, len
);
988 static enum sci_status
989 request_started_state_tc_event(struct isci_request
*ireq
,
992 struct ssp_response_iu
*resp_iu
;
995 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
996 * to determine SDMA status
998 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
999 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1000 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1001 ireq
->sci_status
= SCI_SUCCESS
;
1003 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP
): {
1004 /* There are times when the SCU hardware will return an early
1005 * response because the io request specified more data than is
1006 * returned by the target device (mode pages, inquiry data,
1007 * etc.). We must check the response stats to see if this is
1008 * truly a failed request or a good request that just got
1011 struct ssp_response_iu
*resp
= &ireq
->ssp
.rsp
;
1012 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
1014 sci_swab32_cpy(&ireq
->ssp
.rsp
,
1018 if (resp
->status
== 0) {
1019 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1020 ireq
->sci_status
= SCI_SUCCESS_IO_DONE_EARLY
;
1022 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1023 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1027 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE
): {
1028 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
1030 sci_swab32_cpy(&ireq
->ssp
.rsp
,
1034 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1035 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1039 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR
):
1040 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1041 * guaranteed to be received before this completion status is
1044 resp_iu
= &ireq
->ssp
.rsp
;
1045 datapres
= resp_iu
->datapres
;
1047 if (datapres
== SAS_DATAPRES_RESPONSE_DATA
||
1048 datapres
== SAS_DATAPRES_SENSE_DATA
) {
1049 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1050 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1052 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1053 ireq
->sci_status
= SCI_SUCCESS
;
1056 /* only stp device gets suspended. */
1057 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO
):
1058 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR
):
1059 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR
):
1060 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR
):
1061 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR
):
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN
):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR
):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP
):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS
):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR
):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR
):
1068 if (ireq
->protocol
== SAS_PROTOCOL_STP
) {
1069 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1070 SCU_COMPLETION_TL_STATUS_SHIFT
;
1071 ireq
->sci_status
= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
;
1073 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1074 SCU_COMPLETION_TL_STATUS_SHIFT
;
1075 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1079 /* both stp/ssp device gets suspended */
1080 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR
):
1081 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
):
1082 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
):
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
):
1084 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
):
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION
):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
):
1090 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1091 SCU_COMPLETION_TL_STATUS_SHIFT
;
1092 ireq
->sci_status
= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
;
1095 /* neither ssp nor stp gets suspended. */
1096 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR
):
1097 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR
):
1098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR
):
1099 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR
):
1100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR
):
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA
):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR
):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR
):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR
):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR
):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA
):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL
):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV
):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV
):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND
):
1112 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1113 SCU_COMPLETION_TL_STATUS_SHIFT
;
1114 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1119 * TODO: This is probably wrong for ACK/NAK timeout conditions
1122 /* In all cases we will treat this as the completion of the IO req. */
1123 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1127 static enum sci_status
1128 request_aborting_state_tc_event(struct isci_request
*ireq
,
1129 u32 completion_code
)
1131 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1132 case (SCU_TASK_DONE_GOOD
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
1133 case (SCU_TASK_DONE_TASK_ABORT
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
1134 ireq
->scu_status
= SCU_TASK_DONE_TASK_ABORT
;
1135 ireq
->sci_status
= SCI_FAILURE_IO_TERMINATED
;
1136 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1140 /* Unless we get some strange error wait for the task abort to complete
1141 * TODO: Should there be a state change for this completion?
1149 static enum sci_status
ssp_task_request_await_tc_event(struct isci_request
*ireq
,
1150 u32 completion_code
)
1152 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1153 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1154 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1155 ireq
->sci_status
= SCI_SUCCESS
;
1156 sci_change_state(&ireq
->sm
, SCI_REQ_TASK_WAIT_TC_RESP
);
1158 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO
):
1159 /* Currently, the decision is to simply allow the task request
1160 * to timeout if the task IU wasn't received successfully.
1161 * There is a potential for receiving multiple task responses if
1162 * we decide to send the task IU again.
1164 dev_warn(&ireq
->owning_controller
->pdev
->dev
,
1165 "%s: TaskRequest:0x%p CompletionCode:%x - "
1166 "ACK/NAK timeout\n", __func__
, ireq
,
1169 sci_change_state(&ireq
->sm
, SCI_REQ_TASK_WAIT_TC_RESP
);
1173 * All other completion status cause the IO to be complete.
1174 * If a NAK was received, then it is up to the user to retry
1177 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1178 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1179 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1186 static enum sci_status
1187 smp_request_await_response_tc_event(struct isci_request
*ireq
,
1188 u32 completion_code
)
1190 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1191 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1192 /* In the AWAIT RESPONSE state, any TC completion is
1193 * unexpected. but if the TC has success status, we
1194 * complete the IO anyway.
1196 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1197 ireq
->sci_status
= SCI_SUCCESS
;
1198 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1200 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR
):
1201 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR
):
1202 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR
):
1203 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR
):
1204 /* These status has been seen in a specific LSI
1205 * expander, which sometimes is not able to send smp
1206 * response within 2 ms. This causes our hardware break
1207 * the connection and set TC completion with one of
1208 * these SMP_XXX_XX_ERR status. For these type of error,
1209 * we ask ihost user to retry the request.
1211 ireq
->scu_status
= SCU_TASK_DONE_SMP_RESP_TO_ERR
;
1212 ireq
->sci_status
= SCI_FAILURE_RETRY_REQUIRED
;
1213 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1216 /* All other completion status cause the IO to be complete. If a NAK
1217 * was received, then it is up to the user to retry the request
1219 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1220 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1221 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1228 static enum sci_status
1229 smp_request_await_tc_event(struct isci_request
*ireq
,
1230 u32 completion_code
)
1232 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1233 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1234 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1235 ireq
->sci_status
= SCI_SUCCESS
;
1236 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1239 /* All other completion status cause the IO to be
1240 * complete. If a NAK was received, then it is up to
1241 * the user to retry the request.
1243 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1244 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1245 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1252 static struct scu_sgl_element
*pio_sgl_next(struct isci_stp_request
*stp_req
)
1254 struct scu_sgl_element
*sgl
;
1255 struct scu_sgl_element_pair
*sgl_pair
;
1256 struct isci_request
*ireq
= to_ireq(stp_req
);
1257 struct isci_stp_pio_sgl
*pio_sgl
= &stp_req
->sgl
;
1259 sgl_pair
= to_sgl_element_pair(ireq
, pio_sgl
->index
);
1262 else if (pio_sgl
->set
== SCU_SGL_ELEMENT_PAIR_A
) {
1263 if (sgl_pair
->B
.address_lower
== 0 &&
1264 sgl_pair
->B
.address_upper
== 0) {
1267 pio_sgl
->set
= SCU_SGL_ELEMENT_PAIR_B
;
1271 if (sgl_pair
->next_pair_lower
== 0 &&
1272 sgl_pair
->next_pair_upper
== 0) {
1276 pio_sgl
->set
= SCU_SGL_ELEMENT_PAIR_A
;
1277 sgl_pair
= to_sgl_element_pair(ireq
, pio_sgl
->index
);
1285 static enum sci_status
1286 stp_request_non_data_await_h2d_tc_event(struct isci_request
*ireq
,
1287 u32 completion_code
)
1289 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1290 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1291 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1292 ireq
->sci_status
= SCI_SUCCESS
;
1293 sci_change_state(&ireq
->sm
, SCI_REQ_STP_NON_DATA_WAIT_D2H
);
1297 /* All other completion status cause the IO to be
1298 * complete. If a NAK was received, then it is up to
1299 * the user to retry the request.
1301 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1302 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1303 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1310 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1312 /* transmit DATA_FIS from (current sgl + offset) for input
1313 * parameter length. current sgl and offset is alreay stored in the IO request
1315 static enum sci_status
sci_stp_request_pio_data_out_trasmit_data_frame(
1316 struct isci_request
*ireq
,
1319 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1320 struct scu_task_context
*task_context
= ireq
->tc
;
1321 struct scu_sgl_element_pair
*sgl_pair
;
1322 struct scu_sgl_element
*current_sgl
;
1324 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1325 * for the data from current_sgl+offset for the input length
1327 sgl_pair
= to_sgl_element_pair(ireq
, stp_req
->sgl
.index
);
1328 if (stp_req
->sgl
.set
== SCU_SGL_ELEMENT_PAIR_A
)
1329 current_sgl
= &sgl_pair
->A
;
1331 current_sgl
= &sgl_pair
->B
;
1334 task_context
->command_iu_upper
= current_sgl
->address_upper
;
1335 task_context
->command_iu_lower
= current_sgl
->address_lower
;
1336 task_context
->transfer_length_bytes
= length
;
1337 task_context
->type
.stp
.fis_type
= FIS_DATA
;
1339 /* send the new TC out. */
1340 return sci_controller_continue_io(ireq
);
1343 static enum sci_status
sci_stp_request_pio_data_out_transmit_data(struct isci_request
*ireq
)
1345 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1346 struct scu_sgl_element_pair
*sgl_pair
;
1347 enum sci_status status
= SCI_SUCCESS
;
1348 struct scu_sgl_element
*sgl
;
1352 offset
= stp_req
->sgl
.offset
;
1353 sgl_pair
= to_sgl_element_pair(ireq
, stp_req
->sgl
.index
);
1354 if (WARN_ONCE(!sgl_pair
, "%s: null sgl element", __func__
))
1357 if (stp_req
->sgl
.set
== SCU_SGL_ELEMENT_PAIR_A
) {
1359 len
= sgl_pair
->A
.length
- offset
;
1362 len
= sgl_pair
->B
.length
- offset
;
1365 if (stp_req
->pio_len
== 0)
1368 if (stp_req
->pio_len
>= len
) {
1369 status
= sci_stp_request_pio_data_out_trasmit_data_frame(ireq
, len
);
1370 if (status
!= SCI_SUCCESS
)
1372 stp_req
->pio_len
-= len
;
1374 /* update the current sgl, offset and save for future */
1375 sgl
= pio_sgl_next(stp_req
);
1377 } else if (stp_req
->pio_len
< len
) {
1378 sci_stp_request_pio_data_out_trasmit_data_frame(ireq
, stp_req
->pio_len
);
1380 /* Sgl offset will be adjusted and saved for future */
1381 offset
+= stp_req
->pio_len
;
1382 sgl
->address_lower
+= stp_req
->pio_len
;
1383 stp_req
->pio_len
= 0;
1386 stp_req
->sgl
.offset
= offset
;
1392 * sci_stp_request_pio_data_in_copy_data_buffer()
1393 * @stp_req: The request that is used for the SGL processing.
1394 * @data_buf: The buffer of data to be copied.
1395 * @len: The length of the data transfer.
1397 * Copy the data from the buffer for the length specified to the IO request SGL
1398 * specified data region. enum sci_status
1400 static enum sci_status
1401 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request
*stp_req
,
1402 u8
*data_buf
, u32 len
)
1404 struct isci_request
*ireq
;
1407 struct sas_task
*task
;
1408 struct scatterlist
*sg
;
1410 int total_len
= len
;
1412 ireq
= to_ireq(stp_req
);
1413 task
= isci_request_access_task(ireq
);
1414 src_addr
= data_buf
;
1416 if (task
->num_scatter
> 0) {
1419 while (total_len
> 0) {
1420 struct page
*page
= sg_page(sg
);
1422 copy_len
= min_t(int, total_len
, sg_dma_len(sg
));
1423 kaddr
= kmap_atomic(page
);
1424 memcpy(kaddr
+ sg
->offset
, src_addr
, copy_len
);
1425 kunmap_atomic(kaddr
);
1426 total_len
-= copy_len
;
1427 src_addr
+= copy_len
;
1431 BUG_ON(task
->total_xfer_len
< total_len
);
1432 memcpy(task
->scatter
, src_addr
, total_len
);
1439 * sci_stp_request_pio_data_in_copy_data()
1440 * @stp_req: The PIO DATA IN request that is to receive the data.
1441 * @data_buffer: The buffer to copy from.
1443 * Copy the data buffer to the io request data region. enum sci_status
1445 static enum sci_status
sci_stp_request_pio_data_in_copy_data(
1446 struct isci_stp_request
*stp_req
,
1449 enum sci_status status
;
1452 * If there is less than 1K remaining in the transfer request
1453 * copy just the data for the transfer */
1454 if (stp_req
->pio_len
< SCU_MAX_FRAME_BUFFER_SIZE
) {
1455 status
= sci_stp_request_pio_data_in_copy_data_buffer(
1456 stp_req
, data_buffer
, stp_req
->pio_len
);
1458 if (status
== SCI_SUCCESS
)
1459 stp_req
->pio_len
= 0;
1461 /* We are transfering the whole frame so copy */
1462 status
= sci_stp_request_pio_data_in_copy_data_buffer(
1463 stp_req
, data_buffer
, SCU_MAX_FRAME_BUFFER_SIZE
);
1465 if (status
== SCI_SUCCESS
)
1466 stp_req
->pio_len
-= SCU_MAX_FRAME_BUFFER_SIZE
;
1472 static enum sci_status
1473 stp_request_pio_await_h2d_completion_tc_event(struct isci_request
*ireq
,
1474 u32 completion_code
)
1476 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1477 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1478 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1479 ireq
->sci_status
= SCI_SUCCESS
;
1480 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1484 /* All other completion status cause the IO to be
1485 * complete. If a NAK was received, then it is up to
1486 * the user to retry the request.
1488 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1489 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1490 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1497 static enum sci_status
1498 pio_data_out_tx_done_tc_event(struct isci_request
*ireq
,
1499 u32 completion_code
)
1501 enum sci_status status
= SCI_SUCCESS
;
1502 bool all_frames_transferred
= false;
1503 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1505 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1506 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1508 if (stp_req
->pio_len
!= 0) {
1509 status
= sci_stp_request_pio_data_out_transmit_data(ireq
);
1510 if (status
== SCI_SUCCESS
) {
1511 if (stp_req
->pio_len
== 0)
1512 all_frames_transferred
= true;
1514 } else if (stp_req
->pio_len
== 0) {
1516 * this will happen if the all data is written at the
1517 * first time after the pio setup fis is received
1519 all_frames_transferred
= true;
1522 /* all data transferred. */
1523 if (all_frames_transferred
) {
1525 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1526 * and wait for PIO_SETUP fis / or D2H REg fis. */
1527 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1533 * All other completion status cause the IO to be complete.
1534 * If a NAK was received, then it is up to the user to retry
1537 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1538 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1539 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1546 static enum sci_status
sci_stp_request_udma_general_frame_handler(struct isci_request
*ireq
,
1549 struct isci_host
*ihost
= ireq
->owning_controller
;
1550 struct dev_to_host_fis
*frame_header
;
1551 enum sci_status status
;
1554 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1556 (void **)&frame_header
);
1558 if ((status
== SCI_SUCCESS
) &&
1559 (frame_header
->fis_type
== FIS_REGD2H
)) {
1560 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1562 (void **)&frame_buffer
);
1564 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1569 sci_controller_release_frame(ihost
, frame_index
);
1574 static enum sci_status
process_unsolicited_fis(struct isci_request
*ireq
,
1577 struct isci_host
*ihost
= ireq
->owning_controller
;
1578 enum sci_status status
;
1579 struct dev_to_host_fis
*frame_header
;
1582 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1584 (void **)&frame_header
);
1586 if (status
!= SCI_SUCCESS
)
1589 if (frame_header
->fis_type
!= FIS_REGD2H
) {
1590 dev_err(&ireq
->isci_host
->pdev
->dev
,
1591 "%s ERROR: invalid fis type 0x%X\n",
1592 __func__
, frame_header
->fis_type
);
1596 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1598 (void **)&frame_buffer
);
1600 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1601 (u32
*)frame_header
,
1604 /* Frame has been decoded return it to the controller */
1605 sci_controller_release_frame(ihost
, frame_index
);
1610 static enum sci_status
atapi_d2h_reg_frame_handler(struct isci_request
*ireq
,
1613 struct sas_task
*task
= isci_request_access_task(ireq
);
1614 enum sci_status status
;
1616 status
= process_unsolicited_fis(ireq
, frame_index
);
1618 if (status
== SCI_SUCCESS
) {
1619 if (ireq
->stp
.rsp
.status
& ATA_ERR
)
1620 status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1622 status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1625 if (status
!= SCI_SUCCESS
) {
1626 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1627 ireq
->sci_status
= status
;
1629 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1630 ireq
->sci_status
= SCI_SUCCESS
;
1633 /* the d2h ufi is the end of non-data commands */
1634 if (task
->data_dir
== DMA_NONE
)
1635 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1640 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request
*ireq
)
1642 struct ata_device
*dev
= sas_to_ata_dev(ireq
->target_device
->domain_dev
);
1643 void *atapi_cdb
= ireq
->ttype_ptr
.io_task_ptr
->ata_task
.atapi_packet
;
1644 struct scu_task_context
*task_context
= ireq
->tc
;
1646 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1647 * type. The TC for previous Packet fis was already there, we only need to
1648 * change the H2D fis content.
1650 memset(&ireq
->stp
.cmd
, 0, sizeof(struct host_to_dev_fis
));
1651 memcpy(((u8
*)&ireq
->stp
.cmd
+ sizeof(u32
)), atapi_cdb
, ATAPI_CDB_LEN
);
1652 memset(&(task_context
->type
.stp
), 0, sizeof(struct stp_task_context
));
1653 task_context
->type
.stp
.fis_type
= FIS_DATA
;
1654 task_context
->transfer_length_bytes
= dev
->cdb_len
;
1657 static void scu_atapi_construct_task_context(struct isci_request
*ireq
)
1659 struct ata_device
*dev
= sas_to_ata_dev(ireq
->target_device
->domain_dev
);
1660 struct sas_task
*task
= isci_request_access_task(ireq
);
1661 struct scu_task_context
*task_context
= ireq
->tc
;
1662 int cdb_len
= dev
->cdb_len
;
1664 /* reference: SSTL 1.13.4.2
1665 * task_type, sata_direction
1667 if (task
->data_dir
== DMA_TO_DEVICE
) {
1668 task_context
->task_type
= SCU_TASK_TYPE_PACKET_DMA_OUT
;
1669 task_context
->sata_direction
= 0;
1671 /* todo: for NO_DATA command, we need to send out raw frame. */
1672 task_context
->task_type
= SCU_TASK_TYPE_PACKET_DMA_IN
;
1673 task_context
->sata_direction
= 1;
1676 memset(&task_context
->type
.stp
, 0, sizeof(task_context
->type
.stp
));
1677 task_context
->type
.stp
.fis_type
= FIS_DATA
;
1679 memset(&ireq
->stp
.cmd
, 0, sizeof(ireq
->stp
.cmd
));
1680 memcpy(&ireq
->stp
.cmd
.lbal
, task
->ata_task
.atapi_packet
, cdb_len
);
1681 task_context
->ssp_command_iu_length
= cdb_len
/ sizeof(u32
);
1683 /* task phase is set to TX_CMD */
1684 task_context
->task_phase
= 0x1;
1687 task_context
->stp_retry_count
= 0;
1689 /* data transfer size. */
1690 task_context
->transfer_length_bytes
= task
->total_xfer_len
;
1693 sci_request_build_sgl(ireq
);
1697 sci_io_request_frame_handler(struct isci_request
*ireq
,
1700 struct isci_host
*ihost
= ireq
->owning_controller
;
1701 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1702 enum sci_base_request_states state
;
1703 enum sci_status status
;
1706 state
= ireq
->sm
.current_state_id
;
1708 case SCI_REQ_STARTED
: {
1709 struct ssp_frame_hdr ssp_hdr
;
1712 sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1716 word_cnt
= sizeof(struct ssp_frame_hdr
) / sizeof(u32
);
1717 sci_swab32_cpy(&ssp_hdr
, frame_header
, word_cnt
);
1719 if (ssp_hdr
.frame_type
== SSP_RESPONSE
) {
1720 struct ssp_response_iu
*resp_iu
;
1721 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
1723 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1727 sci_swab32_cpy(&ireq
->ssp
.rsp
, resp_iu
, word_cnt
);
1729 resp_iu
= &ireq
->ssp
.rsp
;
1731 if (resp_iu
->datapres
== SAS_DATAPRES_RESPONSE_DATA
||
1732 resp_iu
->datapres
== SAS_DATAPRES_SENSE_DATA
) {
1733 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1734 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1736 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1737 ireq
->sci_status
= SCI_SUCCESS
;
1740 /* not a response frame, why did it get forwarded? */
1741 dev_err(&ihost
->pdev
->dev
,
1742 "%s: SCIC IO Request 0x%p received unexpected "
1743 "frame %d type 0x%02x\n", __func__
, ireq
,
1744 frame_index
, ssp_hdr
.frame_type
);
1748 * In any case we are done with this frame buffer return it to
1751 sci_controller_release_frame(ihost
, frame_index
);
1756 case SCI_REQ_TASK_WAIT_TC_RESP
:
1757 sci_io_request_copy_response(ireq
);
1758 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1759 sci_controller_release_frame(ihost
, frame_index
);
1762 case SCI_REQ_SMP_WAIT_RESP
: {
1763 struct sas_task
*task
= isci_request_access_task(ireq
);
1764 struct scatterlist
*sg
= &task
->smp_task
.smp_resp
;
1765 void *frame_header
, *kaddr
;
1768 sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1771 kaddr
= kmap_atomic(sg_page(sg
));
1772 rsp
= kaddr
+ sg
->offset
;
1773 sci_swab32_cpy(rsp
, frame_header
, 1);
1775 if (rsp
[0] == SMP_RESPONSE
) {
1778 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1782 word_cnt
= (sg
->length
/4)-1;
1784 word_cnt
= min_t(unsigned int, word_cnt
,
1785 SCU_UNSOLICITED_FRAME_BUFFER_SIZE
/4);
1786 sci_swab32_cpy(rsp
+ 4, smp_resp
, word_cnt
);
1788 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1789 ireq
->sci_status
= SCI_SUCCESS
;
1790 sci_change_state(&ireq
->sm
, SCI_REQ_SMP_WAIT_TC_COMP
);
1793 * This was not a response frame why did it get
1796 dev_err(&ihost
->pdev
->dev
,
1797 "%s: SCIC SMP Request 0x%p received unexpected "
1798 "frame %d type 0x%02x\n",
1804 ireq
->scu_status
= SCU_TASK_DONE_SMP_FRM_TYPE_ERR
;
1805 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1806 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1808 kunmap_atomic(kaddr
);
1810 sci_controller_release_frame(ihost
, frame_index
);
1815 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
1816 return sci_stp_request_udma_general_frame_handler(ireq
,
1819 case SCI_REQ_STP_UDMA_WAIT_D2H
:
1820 /* Use the general frame handler to copy the resposne data */
1821 status
= sci_stp_request_udma_general_frame_handler(ireq
, frame_index
);
1823 if (status
!= SCI_SUCCESS
)
1826 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1827 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1828 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1831 case SCI_REQ_STP_NON_DATA_WAIT_D2H
: {
1832 struct dev_to_host_fis
*frame_header
;
1835 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1837 (void **)&frame_header
);
1839 if (status
!= SCI_SUCCESS
) {
1840 dev_err(&ihost
->pdev
->dev
,
1841 "%s: SCIC IO Request 0x%p could not get frame "
1842 "header for frame index %d, status %x\n",
1851 switch (frame_header
->fis_type
) {
1853 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1855 (void **)&frame_buffer
);
1857 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1861 /* The command has completed with error */
1862 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1863 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1867 dev_warn(&ihost
->pdev
->dev
,
1868 "%s: IO Request:0x%p Frame Id:%d protocol "
1869 "violation occurred\n", __func__
, stp_req
,
1872 ireq
->scu_status
= SCU_TASK_DONE_UNEXP_FIS
;
1873 ireq
->sci_status
= SCI_FAILURE_PROTOCOL_VIOLATION
;
1877 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1879 /* Frame has been decoded return it to the controller */
1880 sci_controller_release_frame(ihost
, frame_index
);
1885 case SCI_REQ_STP_PIO_WAIT_FRAME
: {
1886 struct sas_task
*task
= isci_request_access_task(ireq
);
1887 struct dev_to_host_fis
*frame_header
;
1890 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1892 (void **)&frame_header
);
1894 if (status
!= SCI_SUCCESS
) {
1895 dev_err(&ihost
->pdev
->dev
,
1896 "%s: SCIC IO Request 0x%p could not get frame "
1897 "header for frame index %d, status %x\n",
1898 __func__
, stp_req
, frame_index
, status
);
1902 switch (frame_header
->fis_type
) {
1904 /* Get from the frame buffer the PIO Setup Data */
1905 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1907 (void **)&frame_buffer
);
1909 /* Get the data from the PIO Setup The SCU Hardware
1910 * returns first word in the frame_header and the rest
1911 * of the data is in the frame buffer so we need to
1915 /* transfer_count: first 16bits in the 4th dword */
1916 stp_req
->pio_len
= frame_buffer
[3] & 0xffff;
1918 /* status: 4th byte in the 3rd dword */
1919 stp_req
->status
= (frame_buffer
[2] >> 24) & 0xff;
1921 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1925 ireq
->stp
.rsp
.status
= stp_req
->status
;
1927 /* The next state is dependent on whether the
1928 * request was PIO Data-in or Data out
1930 if (task
->data_dir
== DMA_FROM_DEVICE
) {
1931 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_DATA_IN
);
1932 } else if (task
->data_dir
== DMA_TO_DEVICE
) {
1934 status
= sci_stp_request_pio_data_out_transmit_data(ireq
);
1935 if (status
!= SCI_SUCCESS
)
1937 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_DATA_OUT
);
1941 case FIS_SETDEVBITS
:
1942 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1946 if (frame_header
->status
& ATA_BUSY
) {
1948 * Now why is the drive sending a D2H Register
1949 * FIS when it is still busy? Do nothing since
1950 * we are still in the right state.
1952 dev_dbg(&ihost
->pdev
->dev
,
1953 "%s: SCIC PIO Request 0x%p received "
1954 "D2H Register FIS with BSY status "
1958 frame_header
->status
);
1962 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1964 (void **)&frame_buffer
);
1966 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1970 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1971 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1972 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1976 /* FIXME: what do we do here? */
1980 /* Frame is decoded return it to the controller */
1981 sci_controller_release_frame(ihost
, frame_index
);
1986 case SCI_REQ_STP_PIO_DATA_IN
: {
1987 struct dev_to_host_fis
*frame_header
;
1988 struct sata_fis_data
*frame_buffer
;
1990 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1992 (void **)&frame_header
);
1994 if (status
!= SCI_SUCCESS
) {
1995 dev_err(&ihost
->pdev
->dev
,
1996 "%s: SCIC IO Request 0x%p could not get frame "
1997 "header for frame index %d, status %x\n",
2005 if (frame_header
->fis_type
!= FIS_DATA
) {
2006 dev_err(&ihost
->pdev
->dev
,
2007 "%s: SCIC PIO Request 0x%p received frame %d "
2008 "with fis type 0x%02x when expecting a data "
2013 frame_header
->fis_type
);
2015 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2016 ireq
->sci_status
= SCI_FAILURE_IO_REQUIRES_SCSI_ABORT
;
2017 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2019 /* Frame is decoded return it to the controller */
2020 sci_controller_release_frame(ihost
, frame_index
);
2024 if (stp_req
->sgl
.index
< 0) {
2025 ireq
->saved_rx_frame_index
= frame_index
;
2026 stp_req
->pio_len
= 0;
2028 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
2030 (void **)&frame_buffer
);
2032 status
= sci_stp_request_pio_data_in_copy_data(stp_req
,
2033 (u8
*)frame_buffer
);
2035 /* Frame is decoded return it to the controller */
2036 sci_controller_release_frame(ihost
, frame_index
);
2039 /* Check for the end of the transfer, are there more
2040 * bytes remaining for this data transfer
2042 if (status
!= SCI_SUCCESS
|| stp_req
->pio_len
!= 0)
2045 if ((stp_req
->status
& ATA_BUSY
) == 0) {
2046 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
2047 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
2048 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2050 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
2055 case SCI_REQ_ATAPI_WAIT_PIO_SETUP
: {
2056 struct sas_task
*task
= isci_request_access_task(ireq
);
2058 sci_controller_release_frame(ihost
, frame_index
);
2059 ireq
->target_device
->working_request
= ireq
;
2060 if (task
->data_dir
== DMA_NONE
) {
2061 sci_change_state(&ireq
->sm
, SCI_REQ_ATAPI_WAIT_TC_COMP
);
2062 scu_atapi_reconstruct_raw_frame_task_context(ireq
);
2064 sci_change_state(&ireq
->sm
, SCI_REQ_ATAPI_WAIT_D2H
);
2065 scu_atapi_construct_task_context(ireq
);
2068 sci_controller_continue_io(ireq
);
2071 case SCI_REQ_ATAPI_WAIT_D2H
:
2072 return atapi_d2h_reg_frame_handler(ireq
, frame_index
);
2073 case SCI_REQ_ABORTING
:
2075 * TODO: Is it even possible to get an unsolicited frame in the
2078 sci_controller_release_frame(ihost
, frame_index
);
2082 dev_warn(&ihost
->pdev
->dev
,
2083 "%s: SCIC IO Request given unexpected frame %x while "
2089 sci_controller_release_frame(ihost
, frame_index
);
2090 return SCI_FAILURE_INVALID_STATE
;
2094 static enum sci_status
stp_request_udma_await_tc_event(struct isci_request
*ireq
,
2095 u32 completion_code
)
2097 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
2098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
2099 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2100 ireq
->sci_status
= SCI_SUCCESS
;
2101 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS
):
2104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR
):
2105 /* We must check ther response buffer to see if the D2H
2106 * Register FIS was received before we got the TC
2109 if (ireq
->stp
.rsp
.fis_type
== FIS_REGD2H
) {
2110 sci_remote_device_suspend(ireq
->target_device
,
2111 SCI_SW_SUSPEND_NORMAL
);
2113 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
2114 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
2115 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2117 /* If we have an error completion status for the
2118 * TC then we can expect a D2H register FIS from
2119 * the device so we must change state to wait
2122 sci_change_state(&ireq
->sm
, SCI_REQ_STP_UDMA_WAIT_D2H
);
2126 /* TODO Check to see if any of these completion status need to
2127 * wait for the device to host register fis.
2129 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2130 * - this comes only for B0
2133 /* All other completion status cause the IO to be complete. */
2134 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
2135 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
2136 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2143 static enum sci_status
atapi_raw_completion(struct isci_request
*ireq
, u32 completion_code
,
2144 enum sci_base_request_states next
)
2146 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
2147 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
2148 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2149 ireq
->sci_status
= SCI_SUCCESS
;
2150 sci_change_state(&ireq
->sm
, next
);
2153 /* All other completion status cause the IO to be complete.
2154 * If a NAK was received, then it is up to the user to retry
2157 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
2158 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
2160 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2167 static enum sci_status
atapi_data_tc_completion_handler(struct isci_request
*ireq
,
2168 u32 completion_code
)
2170 struct isci_remote_device
*idev
= ireq
->target_device
;
2171 struct dev_to_host_fis
*d2h
= &ireq
->stp
.rsp
;
2172 enum sci_status status
= SCI_SUCCESS
;
2174 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
2175 case (SCU_TASK_DONE_GOOD
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
2176 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2179 case (SCU_TASK_DONE_UNEXP_FIS
<< SCU_COMPLETION_TL_STATUS_SHIFT
): {
2180 u16 len
= sci_req_tx_bytes(ireq
);
2182 /* likely non-error data underrun, workaround missing
2183 * d2h frame from the controller
2185 if (d2h
->fis_type
!= FIS_REGD2H
) {
2186 d2h
->fis_type
= FIS_REGD2H
;
2187 d2h
->flags
= (1 << 6);
2191 d2h
->byte_count_low
= len
& 0xff;
2192 d2h
->byte_count_high
= len
>> 8;
2198 d2h
->sector_count
= 0x3;
2199 d2h
->sector_count_exp
= 0;
2205 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2206 ireq
->sci_status
= SCI_SUCCESS_IO_DONE_EARLY
;
2207 status
= ireq
->sci_status
;
2209 /* the hw will have suspended the rnc, so complete the
2210 * request upon pending resume
2212 sci_change_state(&idev
->sm
, SCI_STP_DEV_ATAPI_ERROR
);
2215 case (SCU_TASK_DONE_EXCESS_DATA
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
2216 /* In this case, there is no UF coming after.
2217 * compelte the IO now.
2219 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2220 ireq
->sci_status
= SCI_SUCCESS
;
2221 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2225 if (d2h
->fis_type
== FIS_REGD2H
) {
2226 /* UF received change the device state to ATAPI_ERROR */
2227 status
= ireq
->sci_status
;
2228 sci_change_state(&idev
->sm
, SCI_STP_DEV_ATAPI_ERROR
);
2230 /* If receiving any non-success TC status, no UF
2231 * received yet, then an UF for the status fis
2232 * is coming after (XXX: suspect this is
2233 * actually a protocol error or a bug like the
2234 * DONE_UNEXP_FIS case)
2236 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
2237 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
2239 sci_change_state(&ireq
->sm
, SCI_REQ_ATAPI_WAIT_D2H
);
2247 static int sci_request_smp_completion_status_is_tx_suspend(
2248 unsigned int completion_status
)
2250 switch (completion_status
) {
2251 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
:
2252 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
:
2253 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
:
2254 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
:
2255 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION
:
2256 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
:
2262 static int sci_request_smp_completion_status_is_tx_rx_suspend(
2263 unsigned int completion_status
)
2265 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2268 static int sci_request_ssp_completion_status_is_tx_suspend(
2269 unsigned int completion_status
)
2271 switch (completion_status
) {
2272 case SCU_TASK_DONE_TX_RAW_CMD_ERR
:
2273 case SCU_TASK_DONE_LF_ERR
:
2274 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
:
2275 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
:
2276 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
:
2277 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
:
2278 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION
:
2279 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
:
2280 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
:
2281 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
:
2282 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
:
2288 static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2289 unsigned int completion_status
)
2291 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2294 static int sci_request_stpsata_completion_status_is_tx_suspend(
2295 unsigned int completion_status
)
2297 switch (completion_status
) {
2298 case SCU_TASK_DONE_TX_RAW_CMD_ERR
:
2299 case SCU_TASK_DONE_LL_R_ERR
:
2300 case SCU_TASK_DONE_LL_PERR
:
2301 case SCU_TASK_DONE_REG_ERR
:
2302 case SCU_TASK_DONE_SDB_ERR
:
2303 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
:
2304 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
:
2305 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
:
2306 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
:
2307 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION
:
2308 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
:
2309 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
:
2310 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
:
2311 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
:
2318 static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2319 unsigned int completion_status
)
2321 switch (completion_status
) {
2322 case SCU_TASK_DONE_LF_ERR
:
2323 case SCU_TASK_DONE_LL_SY_TERM
:
2324 case SCU_TASK_DONE_LL_LF_TERM
:
2325 case SCU_TASK_DONE_BREAK_RCVD
:
2326 case SCU_TASK_DONE_INV_FIS_LEN
:
2327 case SCU_TASK_DONE_UNEXP_FIS
:
2328 case SCU_TASK_DONE_UNEXP_SDBFIS
:
2329 case SCU_TASK_DONE_MAX_PLD_ERR
:
2335 static void sci_request_handle_suspending_completions(
2336 struct isci_request
*ireq
,
2337 u32 completion_code
)
2342 switch (ireq
->protocol
) {
2343 case SAS_PROTOCOL_SMP
:
2344 is_tx
= sci_request_smp_completion_status_is_tx_suspend(
2346 is_tx_rx
= sci_request_smp_completion_status_is_tx_rx_suspend(
2349 case SAS_PROTOCOL_SSP
:
2350 is_tx
= sci_request_ssp_completion_status_is_tx_suspend(
2352 is_tx_rx
= sci_request_ssp_completion_status_is_tx_rx_suspend(
2355 case SAS_PROTOCOL_STP
:
2356 is_tx
= sci_request_stpsata_completion_status_is_tx_suspend(
2359 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2363 dev_warn(&ireq
->isci_host
->pdev
->dev
,
2364 "%s: request %p has no valid protocol\n",
2368 if (is_tx
|| is_tx_rx
) {
2369 BUG_ON(is_tx
&& is_tx_rx
);
2371 sci_remote_node_context_suspend(
2372 &ireq
->target_device
->rnc
,
2374 (is_tx_rx
) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2375 : SCU_EVENT_TL_RNC_SUSPEND_TX
);
2380 sci_io_request_tc_completion(struct isci_request
*ireq
,
2381 u32 completion_code
)
2383 enum sci_base_request_states state
;
2384 struct isci_host
*ihost
= ireq
->owning_controller
;
2386 state
= ireq
->sm
.current_state_id
;
2388 /* Decode those completions that signal upcoming suspension events. */
2389 sci_request_handle_suspending_completions(
2390 ireq
, SCU_GET_COMPLETION_TL_STATUS(completion_code
));
2393 case SCI_REQ_STARTED
:
2394 return request_started_state_tc_event(ireq
, completion_code
);
2396 case SCI_REQ_TASK_WAIT_TC_COMP
:
2397 return ssp_task_request_await_tc_event(ireq
,
2400 case SCI_REQ_SMP_WAIT_RESP
:
2401 return smp_request_await_response_tc_event(ireq
,
2404 case SCI_REQ_SMP_WAIT_TC_COMP
:
2405 return smp_request_await_tc_event(ireq
, completion_code
);
2407 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
2408 return stp_request_udma_await_tc_event(ireq
,
2411 case SCI_REQ_STP_NON_DATA_WAIT_H2D
:
2412 return stp_request_non_data_await_h2d_tc_event(ireq
,
2415 case SCI_REQ_STP_PIO_WAIT_H2D
:
2416 return stp_request_pio_await_h2d_completion_tc_event(ireq
,
2419 case SCI_REQ_STP_PIO_DATA_OUT
:
2420 return pio_data_out_tx_done_tc_event(ireq
, completion_code
);
2422 case SCI_REQ_ABORTING
:
2423 return request_aborting_state_tc_event(ireq
,
2426 case SCI_REQ_ATAPI_WAIT_H2D
:
2427 return atapi_raw_completion(ireq
, completion_code
,
2428 SCI_REQ_ATAPI_WAIT_PIO_SETUP
);
2430 case SCI_REQ_ATAPI_WAIT_TC_COMP
:
2431 return atapi_raw_completion(ireq
, completion_code
,
2432 SCI_REQ_ATAPI_WAIT_D2H
);
2434 case SCI_REQ_ATAPI_WAIT_D2H
:
2435 return atapi_data_tc_completion_handler(ireq
, completion_code
);
2438 dev_warn(&ihost
->pdev
->dev
, "%s: %x in wrong state %s\n",
2439 __func__
, completion_code
, req_state_name(state
));
2440 return SCI_FAILURE_INVALID_STATE
;
2445 * isci_request_process_response_iu() - This function sets the status and
2446 * response iu, in the task struct, from the request object for the upper
2448 * @task: This parameter is the task struct from the upper layer driver.
2449 * @resp_iu: This parameter points to the response iu of the completed request.
2450 * @dev: This parameter specifies the linux device struct.
2454 static void isci_request_process_response_iu(
2455 struct sas_task
*task
,
2456 struct ssp_response_iu
*resp_iu
,
2461 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2462 "resp_iu->response_data_len = %x, "
2463 "resp_iu->sense_data_len = %x\nresponse data: ",
2468 resp_iu
->response_data_len
,
2469 resp_iu
->sense_data_len
);
2471 task
->task_status
.stat
= resp_iu
->status
;
2473 /* libsas updates the task status fields based on the response iu. */
2474 sas_ssp_task_response(dev
, task
, resp_iu
);
2478 * isci_request_set_open_reject_status() - This function prepares the I/O
2479 * completion for OPEN_REJECT conditions.
2480 * @request: This parameter is the completed isci_request object.
2481 * @task: This parameter is the task struct from the upper layer driver.
2482 * @response_ptr: This parameter specifies the service response for the I/O.
2483 * @status_ptr: This parameter specifies the exec status for the I/O.
2484 * @open_rej_reason: This parameter specifies the encoded reason for the
2485 * abandon-class reject.
2489 static void isci_request_set_open_reject_status(
2490 struct isci_request
*request
,
2491 struct sas_task
*task
,
2492 enum service_response
*response_ptr
,
2493 enum exec_status
*status_ptr
,
2494 enum sas_open_rej_reason open_rej_reason
)
2496 /* Task in the target is done. */
2497 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2498 *response_ptr
= SAS_TASK_UNDELIVERED
;
2499 *status_ptr
= SAS_OPEN_REJECT
;
2500 task
->task_status
.open_rej_reason
= open_rej_reason
;
2504 * isci_request_handle_controller_specific_errors() - This function decodes
2505 * controller-specific I/O completion error conditions.
2506 * @idev: Remote device
2507 * @request: This parameter is the completed isci_request object.
2508 * @task: This parameter is the task struct from the upper layer driver.
2509 * @response_ptr: This parameter specifies the service response for the I/O.
2510 * @status_ptr: This parameter specifies the exec status for the I/O.
2514 static void isci_request_handle_controller_specific_errors(
2515 struct isci_remote_device
*idev
,
2516 struct isci_request
*request
,
2517 struct sas_task
*task
,
2518 enum service_response
*response_ptr
,
2519 enum exec_status
*status_ptr
)
2521 unsigned int cstatus
;
2523 cstatus
= request
->scu_status
;
2525 dev_dbg(&request
->isci_host
->pdev
->dev
,
2526 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2527 "- controller status = 0x%x\n",
2528 __func__
, request
, cstatus
);
2530 /* Decode the controller-specific errors; most
2531 * important is to recognize those conditions in which
2532 * the target may still have a task outstanding that
2535 * Note that there are SCU completion codes being
2536 * named in the decode below for which SCIC has already
2537 * done work to handle them in a way other than as
2538 * a controller-specific completion code; these are left
2539 * in the decode below for completeness sake.
2542 case SCU_TASK_DONE_DMASETUP_DIRERR
:
2543 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2544 case SCU_TASK_DONE_XFERCNT_ERR
:
2545 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2546 if (task
->task_proto
== SAS_PROTOCOL_SMP
) {
2547 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2548 *response_ptr
= SAS_TASK_COMPLETE
;
2550 /* See if the device has been/is being stopped. Note
2551 * that we ignore the quiesce state, since we are
2552 * concerned about the actual device state.
2555 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2557 *status_ptr
= SAS_ABORTED_TASK
;
2559 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2561 /* Task in the target is not done. */
2562 *response_ptr
= SAS_TASK_UNDELIVERED
;
2565 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2567 *status_ptr
= SAS_SAM_STAT_TASK_ABORTED
;
2569 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2574 case SCU_TASK_DONE_CRC_ERR
:
2575 case SCU_TASK_DONE_NAK_CMD_ERR
:
2576 case SCU_TASK_DONE_EXCESS_DATA
:
2577 case SCU_TASK_DONE_UNEXP_FIS
:
2578 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2579 case SCU_TASK_DONE_VIIT_ENTRY_NV
: /* TODO - conditions? */
2580 case SCU_TASK_DONE_IIT_ENTRY_NV
: /* TODO - conditions? */
2581 case SCU_TASK_DONE_RNCNV_OUTBOUND
: /* TODO - conditions? */
2582 /* These are conditions in which the target
2583 * has completed the task, so that no cleanup
2586 *response_ptr
= SAS_TASK_COMPLETE
;
2588 /* See if the device has been/is being stopped. Note
2589 * that we ignore the quiesce state, since we are
2590 * concerned about the actual device state.
2593 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2595 *status_ptr
= SAS_ABORTED_TASK
;
2597 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2601 /* Note that the only open reject completion codes seen here will be
2602 * abandon-class codes; all others are automatically retried in the SCU.
2604 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
:
2606 isci_request_set_open_reject_status(
2607 request
, task
, response_ptr
, status_ptr
,
2608 SAS_OREJ_WRONG_DEST
);
2611 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
:
2613 /* Note - the return of AB0 will change when
2614 * libsas implements detection of zone violations.
2616 isci_request_set_open_reject_status(
2617 request
, task
, response_ptr
, status_ptr
,
2621 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
:
2623 isci_request_set_open_reject_status(
2624 request
, task
, response_ptr
, status_ptr
,
2628 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
:
2630 isci_request_set_open_reject_status(
2631 request
, task
, response_ptr
, status_ptr
,
2635 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
:
2637 isci_request_set_open_reject_status(
2638 request
, task
, response_ptr
, status_ptr
,
2642 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION
:
2644 isci_request_set_open_reject_status(
2645 request
, task
, response_ptr
, status_ptr
,
2649 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
:
2651 isci_request_set_open_reject_status(
2652 request
, task
, response_ptr
, status_ptr
,
2653 SAS_OREJ_STP_NORES
);
2656 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
:
2658 isci_request_set_open_reject_status(
2659 request
, task
, response_ptr
, status_ptr
,
2663 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
:
2665 isci_request_set_open_reject_status(
2666 request
, task
, response_ptr
, status_ptr
,
2667 SAS_OREJ_CONN_RATE
);
2670 case SCU_TASK_DONE_LL_R_ERR
:
2671 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2672 case SCU_TASK_DONE_LL_PERR
:
2673 case SCU_TASK_DONE_LL_SY_TERM
:
2674 /* Also SCU_TASK_DONE_NAK_ERR:*/
2675 case SCU_TASK_DONE_LL_LF_TERM
:
2676 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2677 case SCU_TASK_DONE_LL_ABORT_ERR
:
2678 case SCU_TASK_DONE_SEQ_INV_TYPE
:
2679 /* Also SCU_TASK_DONE_UNEXP_XR: */
2680 case SCU_TASK_DONE_XR_IU_LEN_ERR
:
2681 case SCU_TASK_DONE_INV_FIS_LEN
:
2682 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2683 case SCU_TASK_DONE_SDMA_ERR
:
2684 case SCU_TASK_DONE_OFFSET_ERR
:
2685 case SCU_TASK_DONE_MAX_PLD_ERR
:
2686 case SCU_TASK_DONE_LF_ERR
:
2687 case SCU_TASK_DONE_SMP_RESP_TO_ERR
: /* Escalate to dev reset? */
2688 case SCU_TASK_DONE_SMP_LL_RX_ERR
:
2689 case SCU_TASK_DONE_UNEXP_DATA
:
2690 case SCU_TASK_DONE_UNEXP_SDBFIS
:
2691 case SCU_TASK_DONE_REG_ERR
:
2692 case SCU_TASK_DONE_SDB_ERR
:
2693 case SCU_TASK_DONE_TASK_ABORT
:
2695 /* Task in the target is not done. */
2696 *response_ptr
= SAS_TASK_UNDELIVERED
;
2697 *status_ptr
= SAS_SAM_STAT_TASK_ABORTED
;
2699 if (task
->task_proto
== SAS_PROTOCOL_SMP
)
2700 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2702 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2707 static void isci_process_stp_response(struct sas_task
*task
, struct dev_to_host_fis
*fis
)
2709 struct task_status_struct
*ts
= &task
->task_status
;
2710 struct ata_task_resp
*resp
= (void *)&ts
->buf
[0];
2712 resp
->frame_len
= sizeof(*fis
);
2713 memcpy(resp
->ending_fis
, fis
, sizeof(*fis
));
2714 ts
->buf_valid_size
= sizeof(*resp
);
2716 /* If an error is flagged let libata decode the fis */
2717 if (ac_err_mask(fis
->status
))
2718 ts
->stat
= SAS_PROTO_RESPONSE
;
2720 ts
->stat
= SAS_SAM_STAT_GOOD
;
2722 ts
->resp
= SAS_TASK_COMPLETE
;
2725 static void isci_request_io_request_complete(struct isci_host
*ihost
,
2726 struct isci_request
*request
,
2727 enum sci_io_status completion_status
)
2729 struct sas_task
*task
= isci_request_access_task(request
);
2730 struct ssp_response_iu
*resp_iu
;
2731 unsigned long task_flags
;
2732 struct isci_remote_device
*idev
= request
->target_device
;
2733 enum service_response response
= SAS_TASK_UNDELIVERED
;
2734 enum exec_status status
= SAS_ABORTED_TASK
;
2736 dev_dbg(&ihost
->pdev
->dev
,
2737 "%s: request = %p, task = %p, "
2738 "task->data_dir = %d completion_status = 0x%x\n",
2739 __func__
, request
, task
, task
->data_dir
, completion_status
);
2741 /* The request is done from an SCU HW perspective. */
2743 /* This is an active request being completed from the core. */
2744 switch (completion_status
) {
2746 case SCI_IO_FAILURE_RESPONSE_VALID
:
2747 dev_dbg(&ihost
->pdev
->dev
,
2748 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2749 __func__
, request
, task
);
2751 if (sas_protocol_ata(task
->task_proto
)) {
2752 isci_process_stp_response(task
, &request
->stp
.rsp
);
2753 } else if (SAS_PROTOCOL_SSP
== task
->task_proto
) {
2755 /* crack the iu response buffer. */
2756 resp_iu
= &request
->ssp
.rsp
;
2757 isci_request_process_response_iu(task
, resp_iu
,
2760 } else if (SAS_PROTOCOL_SMP
== task
->task_proto
) {
2762 dev_err(&ihost
->pdev
->dev
,
2763 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2764 "SAS_PROTOCOL_SMP protocol\n",
2768 dev_err(&ihost
->pdev
->dev
,
2769 "%s: unknown protocol\n", __func__
);
2771 /* use the task status set in the task struct by the
2772 * isci_request_process_response_iu call.
2774 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2775 response
= task
->task_status
.resp
;
2776 status
= task
->task_status
.stat
;
2779 case SCI_IO_SUCCESS
:
2780 case SCI_IO_SUCCESS_IO_DONE_EARLY
:
2782 response
= SAS_TASK_COMPLETE
;
2783 status
= SAS_SAM_STAT_GOOD
;
2784 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2786 if (completion_status
== SCI_IO_SUCCESS_IO_DONE_EARLY
) {
2788 /* This was an SSP / STP / SATA transfer.
2789 * There is a possibility that less data than
2790 * the maximum was transferred.
2792 u32 transferred_length
= sci_req_tx_bytes(request
);
2794 task
->task_status
.residual
2795 = task
->total_xfer_len
- transferred_length
;
2797 /* If there were residual bytes, call this an
2800 if (task
->task_status
.residual
!= 0)
2801 status
= SAS_DATA_UNDERRUN
;
2803 dev_dbg(&ihost
->pdev
->dev
,
2804 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2808 dev_dbg(&ihost
->pdev
->dev
, "%s: SCI_IO_SUCCESS\n",
2812 case SCI_IO_FAILURE_TERMINATED
:
2814 dev_dbg(&ihost
->pdev
->dev
,
2815 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2816 __func__
, request
, task
);
2818 /* The request was terminated explicitly. */
2819 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2820 response
= SAS_TASK_UNDELIVERED
;
2822 /* See if the device has been/is being stopped. Note
2823 * that we ignore the quiesce state, since we are
2824 * concerned about the actual device state.
2827 status
= SAS_DEVICE_UNKNOWN
;
2829 status
= SAS_ABORTED_TASK
;
2832 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
:
2834 isci_request_handle_controller_specific_errors(idev
, request
,
2839 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
:
2840 /* This is a special case, in that the I/O completion
2841 * is telling us that the device needs a reset.
2842 * In order for the device reset condition to be
2843 * noticed, the I/O has to be handled in the error
2844 * handler. Set the reset flag and cause the
2845 * SCSI error thread to be scheduled.
2847 spin_lock_irqsave(&task
->task_state_lock
, task_flags
);
2848 task
->task_state_flags
|= SAS_TASK_NEED_DEV_RESET
;
2849 spin_unlock_irqrestore(&task
->task_state_lock
, task_flags
);
2852 response
= SAS_TASK_UNDELIVERED
;
2853 status
= SAS_SAM_STAT_TASK_ABORTED
;
2855 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2858 case SCI_FAILURE_RETRY_REQUIRED
:
2860 /* Fail the I/O so it can be retried. */
2861 response
= SAS_TASK_UNDELIVERED
;
2863 status
= SAS_DEVICE_UNKNOWN
;
2865 status
= SAS_ABORTED_TASK
;
2867 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2872 /* Catch any otherwise unhandled error codes here. */
2873 dev_dbg(&ihost
->pdev
->dev
,
2874 "%s: invalid completion code: 0x%x - "
2875 "isci_request = %p\n",
2876 __func__
, completion_status
, request
);
2878 response
= SAS_TASK_UNDELIVERED
;
2880 /* See if the device has been/is being stopped. Note
2881 * that we ignore the quiesce state, since we are
2882 * concerned about the actual device state.
2885 status
= SAS_DEVICE_UNKNOWN
;
2887 status
= SAS_ABORTED_TASK
;
2889 if (SAS_PROTOCOL_SMP
== task
->task_proto
)
2890 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2892 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2896 switch (task
->task_proto
) {
2897 case SAS_PROTOCOL_SSP
:
2898 if (task
->data_dir
== DMA_NONE
)
2900 if (task
->num_scatter
== 0)
2901 /* 0 indicates a single dma address */
2902 dma_unmap_single(&ihost
->pdev
->dev
,
2903 request
->zero_scatter_daddr
,
2904 task
->total_xfer_len
, task
->data_dir
);
2905 else /* unmap the sgl dma addresses */
2906 dma_unmap_sg(&ihost
->pdev
->dev
, task
->scatter
,
2907 request
->num_sg_entries
, task
->data_dir
);
2909 case SAS_PROTOCOL_SMP
: {
2910 struct scatterlist
*sg
= &task
->smp_task
.smp_req
;
2911 struct smp_req
*smp_req
;
2914 dma_unmap_sg(&ihost
->pdev
->dev
, sg
, 1, DMA_TO_DEVICE
);
2916 /* need to swab it back in case the command buffer is re-used */
2917 kaddr
= kmap_atomic(sg_page(sg
));
2918 smp_req
= kaddr
+ sg
->offset
;
2919 sci_swab32_cpy(smp_req
, smp_req
, sg
->length
/ sizeof(u32
));
2920 kunmap_atomic(kaddr
);
2927 spin_lock_irqsave(&task
->task_state_lock
, task_flags
);
2929 task
->task_status
.resp
= response
;
2930 task
->task_status
.stat
= status
;
2932 if (test_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
)) {
2933 /* Normal notification (task_done) */
2934 task
->task_state_flags
|= SAS_TASK_STATE_DONE
;
2935 task
->task_state_flags
&= ~SAS_TASK_STATE_PENDING
;
2937 spin_unlock_irqrestore(&task
->task_state_lock
, task_flags
);
2939 /* complete the io request to the core. */
2940 sci_controller_complete_io(ihost
, request
->target_device
, request
);
2942 /* set terminated handle so it cannot be completed or
2943 * terminated again, and to cause any calls into abort
2944 * task to recognize the already completed case.
2946 set_bit(IREQ_TERMINATED
, &request
->flags
);
2948 ireq_done(ihost
, request
, task
);
2951 static void sci_request_started_state_enter(struct sci_base_state_machine
*sm
)
2953 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2954 struct domain_device
*dev
= ireq
->target_device
->domain_dev
;
2955 enum sci_base_request_states state
;
2956 struct sas_task
*task
;
2958 /* XXX as hch said always creating an internal sas_task for tmf
2959 * requests would simplify the driver
2961 task
= (test_bit(IREQ_TMF
, &ireq
->flags
)) ? NULL
: isci_request_access_task(ireq
);
2963 /* all unaccelerated request types (non ssp or ncq) handled with
2966 if (!task
&& dev
->dev_type
== SAS_END_DEVICE
) {
2967 state
= SCI_REQ_TASK_WAIT_TC_COMP
;
2968 } else if (task
&& task
->task_proto
== SAS_PROTOCOL_SMP
) {
2969 state
= SCI_REQ_SMP_WAIT_RESP
;
2970 } else if (task
&& sas_protocol_ata(task
->task_proto
) &&
2971 !task
->ata_task
.use_ncq
) {
2972 if (dev
->sata_dev
.class == ATA_DEV_ATAPI
&&
2973 task
->ata_task
.fis
.command
== ATA_CMD_PACKET
) {
2974 state
= SCI_REQ_ATAPI_WAIT_H2D
;
2975 } else if (task
->data_dir
== DMA_NONE
) {
2976 state
= SCI_REQ_STP_NON_DATA_WAIT_H2D
;
2977 } else if (task
->ata_task
.dma_xfer
) {
2978 state
= SCI_REQ_STP_UDMA_WAIT_TC_COMP
;
2980 state
= SCI_REQ_STP_PIO_WAIT_H2D
;
2983 /* SSP or NCQ are fully accelerated, no substates */
2986 sci_change_state(sm
, state
);
2989 static void sci_request_completed_state_enter(struct sci_base_state_machine
*sm
)
2991 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2992 struct isci_host
*ihost
= ireq
->owning_controller
;
2994 /* Tell the SCI_USER that the IO request is complete */
2995 if (!test_bit(IREQ_TMF
, &ireq
->flags
))
2996 isci_request_io_request_complete(ihost
, ireq
,
2999 isci_task_request_complete(ihost
, ireq
, ireq
->sci_status
);
3002 static void sci_request_aborting_state_enter(struct sci_base_state_machine
*sm
)
3004 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3006 /* Setting the abort bit in the Task Context is required by the silicon. */
3007 ireq
->tc
->abort
= 1;
3010 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine
*sm
)
3012 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3014 ireq
->target_device
->working_request
= ireq
;
3017 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine
*sm
)
3019 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3021 ireq
->target_device
->working_request
= ireq
;
3024 static const struct sci_base_state sci_request_state_table
[] = {
3025 [SCI_REQ_INIT
] = { },
3026 [SCI_REQ_CONSTRUCTED
] = { },
3027 [SCI_REQ_STARTED
] = {
3028 .enter_state
= sci_request_started_state_enter
,
3030 [SCI_REQ_STP_NON_DATA_WAIT_H2D
] = {
3031 .enter_state
= sci_stp_request_started_non_data_await_h2d_completion_enter
,
3033 [SCI_REQ_STP_NON_DATA_WAIT_D2H
] = { },
3034 [SCI_REQ_STP_PIO_WAIT_H2D
] = {
3035 .enter_state
= sci_stp_request_started_pio_await_h2d_completion_enter
,
3037 [SCI_REQ_STP_PIO_WAIT_FRAME
] = { },
3038 [SCI_REQ_STP_PIO_DATA_IN
] = { },
3039 [SCI_REQ_STP_PIO_DATA_OUT
] = { },
3040 [SCI_REQ_STP_UDMA_WAIT_TC_COMP
] = { },
3041 [SCI_REQ_STP_UDMA_WAIT_D2H
] = { },
3042 [SCI_REQ_TASK_WAIT_TC_COMP
] = { },
3043 [SCI_REQ_TASK_WAIT_TC_RESP
] = { },
3044 [SCI_REQ_SMP_WAIT_RESP
] = { },
3045 [SCI_REQ_SMP_WAIT_TC_COMP
] = { },
3046 [SCI_REQ_ATAPI_WAIT_H2D
] = { },
3047 [SCI_REQ_ATAPI_WAIT_PIO_SETUP
] = { },
3048 [SCI_REQ_ATAPI_WAIT_D2H
] = { },
3049 [SCI_REQ_ATAPI_WAIT_TC_COMP
] = { },
3050 [SCI_REQ_COMPLETED
] = {
3051 .enter_state
= sci_request_completed_state_enter
,
3053 [SCI_REQ_ABORTING
] = {
3054 .enter_state
= sci_request_aborting_state_enter
,
3056 [SCI_REQ_FINAL
] = { },
3060 sci_general_request_construct(struct isci_host
*ihost
,
3061 struct isci_remote_device
*idev
,
3062 struct isci_request
*ireq
)
3064 sci_init_sm(&ireq
->sm
, sci_request_state_table
, SCI_REQ_INIT
);
3066 ireq
->target_device
= idev
;
3067 ireq
->protocol
= SAS_PROTOCOL_NONE
;
3068 ireq
->saved_rx_frame_index
= SCU_INVALID_FRAME_INDEX
;
3070 ireq
->sci_status
= SCI_SUCCESS
;
3071 ireq
->scu_status
= 0;
3072 ireq
->post_context
= 0xFFFFFFFF;
3075 static enum sci_status
3076 sci_io_request_construct(struct isci_host
*ihost
,
3077 struct isci_remote_device
*idev
,
3078 struct isci_request
*ireq
)
3080 struct domain_device
*dev
= idev
->domain_dev
;
3081 enum sci_status status
= SCI_SUCCESS
;
3083 /* Build the common part of the request */
3084 sci_general_request_construct(ihost
, idev
, ireq
);
3086 if (idev
->rnc
.remote_node_index
== SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
)
3087 return SCI_FAILURE_INVALID_REMOTE_DEVICE
;
3089 if (dev
->dev_type
== SAS_END_DEVICE
)
3091 else if (dev_is_sata(dev
))
3092 memset(&ireq
->stp
.cmd
, 0, sizeof(ireq
->stp
.cmd
));
3093 else if (dev_is_expander(dev
->dev_type
))
3096 return SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
3098 memset(ireq
->tc
, 0, offsetof(struct scu_task_context
, sgl_pair_ab
));
3103 enum sci_status
sci_task_request_construct(struct isci_host
*ihost
,
3104 struct isci_remote_device
*idev
,
3105 u16 io_tag
, struct isci_request
*ireq
)
3107 struct domain_device
*dev
= idev
->domain_dev
;
3108 enum sci_status status
= SCI_SUCCESS
;
3110 /* Build the common part of the request */
3111 sci_general_request_construct(ihost
, idev
, ireq
);
3113 if (dev
->dev_type
== SAS_END_DEVICE
|| dev_is_sata(dev
)) {
3114 set_bit(IREQ_TMF
, &ireq
->flags
);
3115 memset(ireq
->tc
, 0, sizeof(struct scu_task_context
));
3117 /* Set the protocol indicator. */
3118 if (dev_is_sata(dev
))
3119 ireq
->protocol
= SAS_PROTOCOL_STP
;
3121 ireq
->protocol
= SAS_PROTOCOL_SSP
;
3123 status
= SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
3128 static enum sci_status
isci_request_ssp_request_construct(
3129 struct isci_request
*request
)
3131 enum sci_status status
;
3133 dev_dbg(&request
->isci_host
->pdev
->dev
,
3134 "%s: request = %p\n",
3137 status
= sci_io_request_construct_basic_ssp(request
);
3141 static enum sci_status
isci_request_stp_request_construct(struct isci_request
*ireq
)
3143 struct sas_task
*task
= isci_request_access_task(ireq
);
3144 struct host_to_dev_fis
*fis
= &ireq
->stp
.cmd
;
3145 struct ata_queued_cmd
*qc
= task
->uldd_task
;
3146 enum sci_status status
;
3148 dev_dbg(&ireq
->isci_host
->pdev
->dev
,
3153 memcpy(fis
, &task
->ata_task
.fis
, sizeof(struct host_to_dev_fis
));
3154 if (!task
->ata_task
.device_control_reg_update
)
3158 status
= sci_io_request_construct_basic_sata(ireq
);
3160 if (qc
&& (qc
->tf
.command
== ATA_CMD_FPDMA_WRITE
||
3161 qc
->tf
.command
== ATA_CMD_FPDMA_READ
||
3162 qc
->tf
.command
== ATA_CMD_FPDMA_RECV
||
3163 qc
->tf
.command
== ATA_CMD_FPDMA_SEND
||
3164 qc
->tf
.command
== ATA_CMD_NCQ_NON_DATA
)) {
3165 fis
->sector_count
= qc
->tag
<< 3;
3166 ireq
->tc
->type
.stp
.ncq_tag
= qc
->tag
;
3172 static enum sci_status
3173 sci_io_request_construct_smp(struct device
*dev
,
3174 struct isci_request
*ireq
,
3175 struct sas_task
*task
)
3177 struct scatterlist
*sg
= &task
->smp_task
.smp_req
;
3178 struct isci_remote_device
*idev
;
3179 struct scu_task_context
*task_context
;
3180 struct isci_port
*iport
;
3181 struct smp_req
*smp_req
;
3186 kaddr
= kmap_atomic(sg_page(sg
));
3187 smp_req
= kaddr
+ sg
->offset
;
3189 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3190 * functions under SAS 2.0, a zero request length really indicates
3191 * a non-zero default length.
3193 if (smp_req
->req_len
== 0) {
3194 switch (smp_req
->func
) {
3196 case SMP_REPORT_PHY_ERR_LOG
:
3197 case SMP_REPORT_PHY_SATA
:
3198 case SMP_REPORT_ROUTE_INFO
:
3199 smp_req
->req_len
= 2;
3201 case SMP_CONF_ROUTE_INFO
:
3202 case SMP_PHY_CONTROL
:
3203 case SMP_PHY_TEST_FUNCTION
:
3204 smp_req
->req_len
= 9;
3206 /* Default - zero is a valid default for 2.0. */
3209 req_len
= smp_req
->req_len
;
3210 sci_swab32_cpy(smp_req
, smp_req
, sg
->length
/ sizeof(u32
));
3211 cmd
= *(u32
*) smp_req
;
3212 kunmap_atomic(kaddr
);
3214 if (!dma_map_sg(dev
, sg
, 1, DMA_TO_DEVICE
))
3217 ireq
->protocol
= SAS_PROTOCOL_SMP
;
3219 /* byte swap the smp request. */
3221 task_context
= ireq
->tc
;
3223 idev
= ireq
->target_device
;
3224 iport
= idev
->owning_port
;
3227 * Fill in the TC with its required data
3230 task_context
->priority
= 0;
3231 task_context
->initiator_request
= 1;
3232 task_context
->connection_rate
= idev
->connection_rate
;
3233 task_context
->protocol_engine_index
= ISCI_PEG
;
3234 task_context
->logical_port_index
= iport
->physical_port_index
;
3235 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_SMP
;
3236 task_context
->abort
= 0;
3237 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
3238 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
3241 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
3242 task_context
->command_code
= 0;
3243 task_context
->task_type
= SCU_TASK_TYPE_SMP_REQUEST
;
3246 task_context
->link_layer_control
= 0;
3247 task_context
->do_not_dma_ssp_good_response
= 1;
3248 task_context
->strict_ordering
= 0;
3249 task_context
->control_frame
= 1;
3250 task_context
->timeout_enable
= 0;
3251 task_context
->block_guard_enable
= 0;
3254 task_context
->address_modifier
= 0;
3257 task_context
->ssp_command_iu_length
= req_len
;
3260 task_context
->transfer_length_bytes
= 0;
3263 * 18h ~ 30h, protocol specific
3264 * since commandIU has been build by framework at this point, we just
3265 * copy the frist DWord from command IU to this location. */
3266 memcpy(&task_context
->type
.smp
, &cmd
, sizeof(u32
));
3270 * "For SMP you could program it to zero. We would prefer that way
3271 * so that done code will be consistent." - Venki
3273 task_context
->task_phase
= 0;
3275 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
3276 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
3277 (iport
->physical_port_index
<<
3278 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
3279 ISCI_TAG_TCI(ireq
->io_tag
));
3281 * Copy the physical address for the command buffer to the SCU Task
3282 * Context command buffer should not contain command header.
3284 task_context
->command_iu_upper
= upper_32_bits(sg_dma_address(sg
));
3285 task_context
->command_iu_lower
= lower_32_bits(sg_dma_address(sg
) + sizeof(u32
));
3287 /* SMP response comes as UF, so no need to set response IU address. */
3288 task_context
->response_iu_upper
= 0;
3289 task_context
->response_iu_lower
= 0;
3291 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
3297 * isci_smp_request_build() - This function builds the smp request.
3298 * @ireq: This parameter points to the isci_request allocated in the
3299 * request construct function.
3301 * SCI_SUCCESS on successfull completion, or specific failure code.
3303 static enum sci_status
isci_smp_request_build(struct isci_request
*ireq
)
3305 struct sas_task
*task
= isci_request_access_task(ireq
);
3306 struct device
*dev
= &ireq
->isci_host
->pdev
->dev
;
3307 enum sci_status status
= SCI_FAILURE
;
3309 status
= sci_io_request_construct_smp(dev
, ireq
, task
);
3310 if (status
!= SCI_SUCCESS
)
3311 dev_dbg(&ireq
->isci_host
->pdev
->dev
,
3312 "%s: failed with status = %d\n",
3320 * isci_io_request_build() - This function builds the io request object.
3321 * @ihost: This parameter specifies the ISCI host object
3322 * @request: This parameter points to the isci_request object allocated in the
3323 * request construct function.
3324 * @idev: This parameter is the handle for the sci core's remote device
3325 * object that is the destination for this request.
3327 * SCI_SUCCESS on successfull completion, or specific failure code.
3329 static enum sci_status
isci_io_request_build(struct isci_host
*ihost
,
3330 struct isci_request
*request
,
3331 struct isci_remote_device
*idev
)
3333 enum sci_status status
= SCI_SUCCESS
;
3334 struct sas_task
*task
= isci_request_access_task(request
);
3336 dev_dbg(&ihost
->pdev
->dev
,
3337 "%s: idev = 0x%p; request = %p, "
3338 "num_scatter = %d\n",
3344 /* map the sgl addresses, if present.
3345 * libata does the mapping for sata devices
3346 * before we get the request.
3348 if (task
->num_scatter
&&
3349 !sas_protocol_ata(task
->task_proto
) &&
3350 !(SAS_PROTOCOL_SMP
& task
->task_proto
)) {
3352 request
->num_sg_entries
= dma_map_sg(
3359 if (request
->num_sg_entries
== 0)
3360 return SCI_FAILURE_INSUFFICIENT_RESOURCES
;
3363 status
= sci_io_request_construct(ihost
, idev
, request
);
3365 if (status
!= SCI_SUCCESS
) {
3366 dev_dbg(&ihost
->pdev
->dev
,
3367 "%s: failed request construct\n",
3372 switch (task
->task_proto
) {
3373 case SAS_PROTOCOL_SMP
:
3374 status
= isci_smp_request_build(request
);
3376 case SAS_PROTOCOL_SSP
:
3377 status
= isci_request_ssp_request_construct(request
);
3379 case SAS_PROTOCOL_SATA
:
3380 case SAS_PROTOCOL_STP
:
3381 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
3382 status
= isci_request_stp_request_construct(request
);
3385 dev_dbg(&ihost
->pdev
->dev
,
3386 "%s: unknown protocol\n", __func__
);
3393 static struct isci_request
*isci_request_from_tag(struct isci_host
*ihost
, u16 tag
)
3395 struct isci_request
*ireq
;
3397 ireq
= ihost
->reqs
[ISCI_TAG_TCI(tag
)];
3399 ireq
->io_request_completion
= NULL
;
3401 ireq
->num_sg_entries
= 0;
3406 struct isci_request
*isci_io_request_from_tag(struct isci_host
*ihost
,
3407 struct sas_task
*task
,
3410 struct isci_request
*ireq
;
3412 ireq
= isci_request_from_tag(ihost
, tag
);
3413 ireq
->ttype_ptr
.io_task_ptr
= task
;
3414 clear_bit(IREQ_TMF
, &ireq
->flags
);
3415 task
->lldd_task
= ireq
;
3420 struct isci_request
*isci_tmf_request_from_tag(struct isci_host
*ihost
,
3421 struct isci_tmf
*isci_tmf
,
3424 struct isci_request
*ireq
;
3426 ireq
= isci_request_from_tag(ihost
, tag
);
3427 ireq
->ttype_ptr
.tmf_task_ptr
= isci_tmf
;
3428 set_bit(IREQ_TMF
, &ireq
->flags
);
3433 int isci_request_execute(struct isci_host
*ihost
, struct isci_remote_device
*idev
,
3434 struct sas_task
*task
, struct isci_request
*ireq
)
3436 enum sci_status status
;
3437 unsigned long flags
;
3440 status
= isci_io_request_build(ihost
, ireq
, idev
);
3441 if (status
!= SCI_SUCCESS
) {
3442 dev_dbg(&ihost
->pdev
->dev
,
3443 "%s: request_construct failed - status = 0x%x\n",
3449 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
3451 if (test_bit(IDEV_IO_NCQERROR
, &idev
->flags
)) {
3453 if (isci_task_is_ncq_recovery(task
)) {
3455 /* The device is in an NCQ recovery state. Issue the
3456 * request on the task side. Note that it will
3457 * complete on the I/O request side because the
3458 * request was built that way (ie.
3459 * ireq->is_task_management_request is false).
3461 status
= sci_controller_start_task(ihost
,
3465 status
= SCI_FAILURE
;
3468 /* send the request, let the core assign the IO TAG. */
3469 status
= sci_controller_start_io(ihost
, idev
,
3473 if (status
!= SCI_SUCCESS
&&
3474 status
!= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
) {
3475 dev_dbg(&ihost
->pdev
->dev
,
3476 "%s: failed request start (0x%x)\n",
3478 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
3481 /* Either I/O started OK, or the core has signaled that
3482 * the device needs a target reset.
3484 if (status
!= SCI_SUCCESS
) {
3485 /* The request did not really start in the
3486 * hardware, so clear the request handle
3487 * here so no terminations will be done.
3489 set_bit(IREQ_TERMINATED
, &ireq
->flags
);
3491 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
3494 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
) {
3495 /* Signal libsas that we need the SCSI error
3496 * handler thread to work on this I/O and that
3497 * we want a device reset.
3499 spin_lock_irqsave(&task
->task_state_lock
, flags
);
3500 task
->task_state_flags
|= SAS_TASK_NEED_DEV_RESET
;
3501 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
3503 /* Cause this task to be scheduled in the SCSI error
3506 sas_task_abort(task
);
3508 /* Change the status, since we are holding
3509 * the I/O until it is managed by the SCSI
3512 status
= SCI_SUCCESS
;