1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
91 #include <linux/uaccess.h>
94 /* One semaphore structure for each semaphore in the system. */
96 int semval
; /* current value */
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
105 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter
; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const
; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime
; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp
;
113 /* One sem_array data structure for each set of semaphores in the system. */
115 struct kern_ipc_perm sem_perm
; /* permissions .. see ipc.h */
116 time64_t sem_ctime
; /* create/last semctl() time */
117 struct list_head pending_alter
; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const
; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id
; /* undo requests on this array */
122 int sem_nsems
; /* no. of semaphores in array */
123 int complex_count
; /* pending complex operations */
124 unsigned int use_global_lock
;/* >0: global lock required */
127 } __randomize_layout
;
129 /* One queue for each sleeping process in the system. */
131 struct list_head list
; /* queue of pending operations */
132 struct task_struct
*sleeper
; /* this process */
133 struct sem_undo
*undo
; /* undo structure */
134 struct pid
*pid
; /* process id of requesting process */
135 int status
; /* completion status of operation */
136 struct sembuf
*sops
; /* array of pending operations */
137 struct sembuf
*blocking
; /* the operation that blocked */
138 int nsops
; /* number of operations */
139 bool alter
; /* does *sops alter the array? */
140 bool dupsop
; /* sops on more than one sem_num */
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
147 struct list_head list_proc
; /* per-process list: *
148 * all undos from one process
150 struct rcu_head rcu
; /* rcu struct for sem_undo */
151 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
152 struct list_head list_id
; /* per semaphore array list:
153 * all undos for one array */
154 int semid
; /* semaphore set identifier */
155 short semadj
[]; /* array of adjustments */
156 /* one per semaphore */
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
162 struct sem_undo_list
{
165 struct list_head list_proc
;
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
171 static int newary(struct ipc_namespace
*, struct ipc_params
*);
172 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
189 * a) global sem_lock() for read/write
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
220 * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
221 * READ_ONCE()/WRITE_ONCE() is used.
223 * 2) queue.status: (SEM_BARRIER_2)
224 * Initialization is done while holding sem_lock(), so no further barrier is
226 * Setting it to a result code is a RELEASE, this is ensured by both a
227 * smp_store_release() (for case a) and while holding sem_lock()
229 * The ACQUIRE when reading the result code without holding sem_lock() is
230 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
232 * Reading the result code while holding sem_lock() needs no further barriers,
233 * the locks inside sem_lock() enforce ordering (case b above)
236 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
237 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
238 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
239 * when holding sem_lock(), no further barriers are required.
241 * See also ipc/mqueue.c for more details on the covered races.
244 #define sc_semmsl sem_ctls[0]
245 #define sc_semmns sem_ctls[1]
246 #define sc_semopm sem_ctls[2]
247 #define sc_semmni sem_ctls[3]
249 void sem_init_ns(struct ipc_namespace
*ns
)
251 ns
->sc_semmsl
= SEMMSL
;
252 ns
->sc_semmns
= SEMMNS
;
253 ns
->sc_semopm
= SEMOPM
;
254 ns
->sc_semmni
= SEMMNI
;
256 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
260 void sem_exit_ns(struct ipc_namespace
*ns
)
262 free_ipcs(ns
, &sem_ids(ns
), freeary
);
263 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
264 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
268 void __init
sem_init(void)
270 sem_init_ns(&init_ipc_ns
);
271 ipc_init_proc_interface("sysvipc/sem",
272 " key semid perms nsems uid gid cuid cgid otime ctime\n",
273 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
277 * unmerge_queues - unmerge queues, if possible.
278 * @sma: semaphore array
280 * The function unmerges the wait queues if complex_count is 0.
281 * It must be called prior to dropping the global semaphore array lock.
283 static void unmerge_queues(struct sem_array
*sma
)
285 struct sem_queue
*q
, *tq
;
287 /* complex operations still around? */
288 if (sma
->complex_count
)
291 * We will switch back to simple mode.
292 * Move all pending operation back into the per-semaphore
295 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
297 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
299 list_add_tail(&q
->list
, &curr
->pending_alter
);
301 INIT_LIST_HEAD(&sma
->pending_alter
);
305 * merge_queues - merge single semop queues into global queue
306 * @sma: semaphore array
308 * This function merges all per-semaphore queues into the global queue.
309 * It is necessary to achieve FIFO ordering for the pending single-sop
310 * operations when a multi-semop operation must sleep.
311 * Only the alter operations must be moved, the const operations can stay.
313 static void merge_queues(struct sem_array
*sma
)
316 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
317 struct sem
*sem
= &sma
->sems
[i
];
319 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
323 static void sem_rcu_free(struct rcu_head
*head
)
325 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
326 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
328 security_sem_free(&sma
->sem_perm
);
333 * Enter the mode suitable for non-simple operations:
334 * Caller must own sem_perm.lock.
336 static void complexmode_enter(struct sem_array
*sma
)
341 if (sma
->use_global_lock
> 0) {
343 * We are already in global lock mode.
344 * Nothing to do, just reset the
345 * counter until we return to simple mode.
347 WRITE_ONCE(sma
->use_global_lock
, USE_GLOBAL_LOCK_HYSTERESIS
);
350 WRITE_ONCE(sma
->use_global_lock
, USE_GLOBAL_LOCK_HYSTERESIS
);
352 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
354 spin_lock(&sem
->lock
);
355 spin_unlock(&sem
->lock
);
360 * Try to leave the mode that disallows simple operations:
361 * Caller must own sem_perm.lock.
363 static void complexmode_tryleave(struct sem_array
*sma
)
365 if (sma
->complex_count
) {
366 /* Complex ops are sleeping.
367 * We must stay in complex mode
371 if (sma
->use_global_lock
== 1) {
373 /* See SEM_BARRIER_1 for purpose/pairing */
374 smp_store_release(&sma
->use_global_lock
, 0);
376 WRITE_ONCE(sma
->use_global_lock
,
377 sma
->use_global_lock
-1);
381 #define SEM_GLOBAL_LOCK (-1)
383 * If the request contains only one semaphore operation, and there are
384 * no complex transactions pending, lock only the semaphore involved.
385 * Otherwise, lock the entire semaphore array, since we either have
386 * multiple semaphores in our own semops, or we need to look at
387 * semaphores from other pending complex operations.
389 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
396 /* Complex operation - acquire a full lock */
397 ipc_lock_object(&sma
->sem_perm
);
399 /* Prevent parallel simple ops */
400 complexmode_enter(sma
);
401 return SEM_GLOBAL_LOCK
;
405 * Only one semaphore affected - try to optimize locking.
406 * Optimized locking is possible if no complex operation
407 * is either enqueued or processed right now.
409 * Both facts are tracked by use_global_mode.
411 idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
412 sem
= &sma
->sems
[idx
];
415 * Initial check for use_global_lock. Just an optimization,
416 * no locking, no memory barrier.
418 if (!READ_ONCE(sma
->use_global_lock
)) {
420 * It appears that no complex operation is around.
421 * Acquire the per-semaphore lock.
423 spin_lock(&sem
->lock
);
425 /* see SEM_BARRIER_1 for purpose/pairing */
426 if (!smp_load_acquire(&sma
->use_global_lock
)) {
427 /* fast path successful! */
428 return sops
->sem_num
;
430 spin_unlock(&sem
->lock
);
433 /* slow path: acquire the full lock */
434 ipc_lock_object(&sma
->sem_perm
);
436 if (sma
->use_global_lock
== 0) {
438 * The use_global_lock mode ended while we waited for
439 * sma->sem_perm.lock. Thus we must switch to locking
441 * Unlike in the fast path, there is no need to recheck
442 * sma->use_global_lock after we have acquired sem->lock:
443 * We own sma->sem_perm.lock, thus use_global_lock cannot
446 spin_lock(&sem
->lock
);
448 ipc_unlock_object(&sma
->sem_perm
);
449 return sops
->sem_num
;
452 * Not a false alarm, thus continue to use the global lock
453 * mode. No need for complexmode_enter(), this was done by
454 * the caller that has set use_global_mode to non-zero.
456 return SEM_GLOBAL_LOCK
;
460 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
462 if (locknum
== SEM_GLOBAL_LOCK
) {
464 complexmode_tryleave(sma
);
465 ipc_unlock_object(&sma
->sem_perm
);
467 struct sem
*sem
= &sma
->sems
[locknum
];
468 spin_unlock(&sem
->lock
);
473 * sem_lock_(check_) routines are called in the paths where the rwsem
476 * The caller holds the RCU read lock.
478 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
480 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
483 return ERR_CAST(ipcp
);
485 return container_of(ipcp
, struct sem_array
, sem_perm
);
488 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
491 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
494 return ERR_CAST(ipcp
);
496 return container_of(ipcp
, struct sem_array
, sem_perm
);
499 static inline void sem_lock_and_putref(struct sem_array
*sma
)
501 sem_lock(sma
, NULL
, -1);
502 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
505 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
507 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
510 static struct sem_array
*sem_alloc(size_t nsems
)
512 struct sem_array
*sma
;
514 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
517 sma
= kvzalloc(struct_size(sma
, sems
, nsems
), GFP_KERNEL_ACCOUNT
);
525 * newary - Create a new semaphore set
527 * @params: ptr to the structure that contains key, semflg and nsems
529 * Called with sem_ids.rwsem held (as a writer)
531 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
534 struct sem_array
*sma
;
535 key_t key
= params
->key
;
536 int nsems
= params
->u
.nsems
;
537 int semflg
= params
->flg
;
542 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
545 sma
= sem_alloc(nsems
);
549 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
550 sma
->sem_perm
.key
= key
;
552 sma
->sem_perm
.security
= NULL
;
553 retval
= security_sem_alloc(&sma
->sem_perm
);
559 for (i
= 0; i
< nsems
; i
++) {
560 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
561 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
562 spin_lock_init(&sma
->sems
[i
].lock
);
565 sma
->complex_count
= 0;
566 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
567 INIT_LIST_HEAD(&sma
->pending_alter
);
568 INIT_LIST_HEAD(&sma
->pending_const
);
569 INIT_LIST_HEAD(&sma
->list_id
);
570 sma
->sem_nsems
= nsems
;
571 sma
->sem_ctime
= ktime_get_real_seconds();
573 /* ipc_addid() locks sma upon success. */
574 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
576 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
579 ns
->used_sems
+= nsems
;
584 return sma
->sem_perm
.id
;
589 * Called with sem_ids.rwsem and ipcp locked.
591 static int sem_more_checks(struct kern_ipc_perm
*ipcp
, struct ipc_params
*params
)
593 struct sem_array
*sma
;
595 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
596 if (params
->u
.nsems
> sma
->sem_nsems
)
602 long ksys_semget(key_t key
, int nsems
, int semflg
)
604 struct ipc_namespace
*ns
;
605 static const struct ipc_ops sem_ops
= {
607 .associate
= security_sem_associate
,
608 .more_checks
= sem_more_checks
,
610 struct ipc_params sem_params
;
612 ns
= current
->nsproxy
->ipc_ns
;
614 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
617 sem_params
.key
= key
;
618 sem_params
.flg
= semflg
;
619 sem_params
.u
.nsems
= nsems
;
621 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
624 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
626 return ksys_semget(key
, nsems
, semflg
);
630 * perform_atomic_semop[_slow] - Attempt to perform semaphore
631 * operations on a given array.
632 * @sma: semaphore array
633 * @q: struct sem_queue that describes the operation
635 * Caller blocking are as follows, based the value
636 * indicated by the semaphore operation (sem_op):
638 * (1) >0 never blocks.
639 * (2) 0 (wait-for-zero operation): semval is non-zero.
640 * (3) <0 attempting to decrement semval to a value smaller than zero.
642 * Returns 0 if the operation was possible.
643 * Returns 1 if the operation is impossible, the caller must sleep.
644 * Returns <0 for error codes.
646 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
648 int result
, sem_op
, nsops
;
659 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
660 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
661 curr
= &sma
->sems
[idx
];
662 sem_op
= sop
->sem_op
;
663 result
= curr
->semval
;
665 if (!sem_op
&& result
)
674 if (sop
->sem_flg
& SEM_UNDO
) {
675 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
676 /* Exceeding the undo range is an error. */
677 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
679 un
->semadj
[sop
->sem_num
] = undo
;
682 curr
->semval
= result
;
687 while (sop
>= sops
) {
688 ipc_update_pid(&sma
->sems
[sop
->sem_num
].sempid
, pid
);
701 if (sop
->sem_flg
& IPC_NOWAIT
)
708 while (sop
>= sops
) {
709 sem_op
= sop
->sem_op
;
710 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
711 if (sop
->sem_flg
& SEM_UNDO
)
712 un
->semadj
[sop
->sem_num
] += sem_op
;
719 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
721 int result
, sem_op
, nsops
;
731 if (unlikely(q
->dupsop
))
732 return perform_atomic_semop_slow(sma
, q
);
735 * We scan the semaphore set twice, first to ensure that the entire
736 * operation can succeed, therefore avoiding any pointless writes
737 * to shared memory and having to undo such changes in order to block
738 * until the operations can go through.
740 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
741 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
743 curr
= &sma
->sems
[idx
];
744 sem_op
= sop
->sem_op
;
745 result
= curr
->semval
;
747 if (!sem_op
&& result
)
748 goto would_block
; /* wait-for-zero */
757 if (sop
->sem_flg
& SEM_UNDO
) {
758 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
760 /* Exceeding the undo range is an error. */
761 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
766 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
767 curr
= &sma
->sems
[sop
->sem_num
];
768 sem_op
= sop
->sem_op
;
770 if (sop
->sem_flg
& SEM_UNDO
) {
771 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
773 un
->semadj
[sop
->sem_num
] = undo
;
775 curr
->semval
+= sem_op
;
776 ipc_update_pid(&curr
->sempid
, q
->pid
);
783 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
786 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
787 struct wake_q_head
*wake_q
)
789 struct task_struct
*sleeper
;
791 sleeper
= get_task_struct(q
->sleeper
);
793 /* see SEM_BARRIER_2 for purpose/pairing */
794 smp_store_release(&q
->status
, error
);
796 wake_q_add_safe(wake_q
, sleeper
);
799 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
803 sma
->complex_count
--;
806 /** check_restart(sma, q)
807 * @sma: semaphore array
808 * @q: the operation that just completed
810 * update_queue is O(N^2) when it restarts scanning the whole queue of
811 * waiting operations. Therefore this function checks if the restart is
812 * really necessary. It is called after a previously waiting operation
813 * modified the array.
814 * Note that wait-for-zero operations are handled without restart.
816 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
818 /* pending complex alter operations are too difficult to analyse */
819 if (!list_empty(&sma
->pending_alter
))
822 /* we were a sleeping complex operation. Too difficult */
826 /* It is impossible that someone waits for the new value:
827 * - complex operations always restart.
828 * - wait-for-zero are handled separately.
829 * - q is a previously sleeping simple operation that
830 * altered the array. It must be a decrement, because
831 * simple increments never sleep.
832 * - If there are older (higher priority) decrements
833 * in the queue, then they have observed the original
834 * semval value and couldn't proceed. The operation
835 * decremented to value - thus they won't proceed either.
841 * wake_const_ops - wake up non-alter tasks
842 * @sma: semaphore array.
843 * @semnum: semaphore that was modified.
844 * @wake_q: lockless wake-queue head.
846 * wake_const_ops must be called after a semaphore in a semaphore array
847 * was set to 0. If complex const operations are pending, wake_const_ops must
848 * be called with semnum = -1, as well as with the number of each modified
850 * The tasks that must be woken up are added to @wake_q. The return code
851 * is stored in q->pid.
852 * The function returns 1 if at least one operation was completed successfully.
854 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
855 struct wake_q_head
*wake_q
)
857 struct sem_queue
*q
, *tmp
;
858 struct list_head
*pending_list
;
859 int semop_completed
= 0;
862 pending_list
= &sma
->pending_const
;
864 pending_list
= &sma
->sems
[semnum
].pending_const
;
866 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
867 int error
= perform_atomic_semop(sma
, q
);
871 /* operation completed, remove from queue & wakeup */
872 unlink_queue(sma
, q
);
874 wake_up_sem_queue_prepare(q
, error
, wake_q
);
879 return semop_completed
;
883 * do_smart_wakeup_zero - wakeup all wait for zero tasks
884 * @sma: semaphore array
885 * @sops: operations that were performed
886 * @nsops: number of operations
887 * @wake_q: lockless wake-queue head
889 * Checks all required queue for wait-for-zero operations, based
890 * on the actual changes that were performed on the semaphore array.
891 * The function returns 1 if at least one operation was completed successfully.
893 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
894 int nsops
, struct wake_q_head
*wake_q
)
897 int semop_completed
= 0;
900 /* first: the per-semaphore queues, if known */
902 for (i
= 0; i
< nsops
; i
++) {
903 int num
= sops
[i
].sem_num
;
905 if (sma
->sems
[num
].semval
== 0) {
907 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
912 * No sops means modified semaphores not known.
913 * Assume all were changed.
915 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
916 if (sma
->sems
[i
].semval
== 0) {
918 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
923 * If one of the modified semaphores got 0,
924 * then check the global queue, too.
927 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
929 return semop_completed
;
934 * update_queue - look for tasks that can be completed.
935 * @sma: semaphore array.
936 * @semnum: semaphore that was modified.
937 * @wake_q: lockless wake-queue head.
939 * update_queue must be called after a semaphore in a semaphore array
940 * was modified. If multiple semaphores were modified, update_queue must
941 * be called with semnum = -1, as well as with the number of each modified
943 * The tasks that must be woken up are added to @wake_q. The return code
944 * is stored in q->pid.
945 * The function internally checks if const operations can now succeed.
947 * The function return 1 if at least one semop was completed successfully.
949 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
951 struct sem_queue
*q
, *tmp
;
952 struct list_head
*pending_list
;
953 int semop_completed
= 0;
956 pending_list
= &sma
->pending_alter
;
958 pending_list
= &sma
->sems
[semnum
].pending_alter
;
961 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
964 /* If we are scanning the single sop, per-semaphore list of
965 * one semaphore and that semaphore is 0, then it is not
966 * necessary to scan further: simple increments
967 * that affect only one entry succeed immediately and cannot
968 * be in the per semaphore pending queue, and decrements
969 * cannot be successful if the value is already 0.
971 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
974 error
= perform_atomic_semop(sma
, q
);
976 /* Does q->sleeper still need to sleep? */
980 unlink_queue(sma
, q
);
986 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
987 restart
= check_restart(sma
, q
);
990 wake_up_sem_queue_prepare(q
, error
, wake_q
);
994 return semop_completed
;
998 * set_semotime - set sem_otime
999 * @sma: semaphore array
1000 * @sops: operations that modified the array, may be NULL
1002 * sem_otime is replicated to avoid cache line trashing.
1003 * This function sets one instance to the current time.
1005 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
1008 sma
->sems
[0].sem_otime
= ktime_get_real_seconds();
1010 sma
->sems
[sops
[0].sem_num
].sem_otime
=
1011 ktime_get_real_seconds();
1016 * do_smart_update - optimized update_queue
1017 * @sma: semaphore array
1018 * @sops: operations that were performed
1019 * @nsops: number of operations
1020 * @otime: force setting otime
1021 * @wake_q: lockless wake-queue head
1023 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1024 * based on the actual changes that were performed on the semaphore array.
1025 * Note that the function does not do the actual wake-up: the caller is
1026 * responsible for calling wake_up_q().
1027 * It is safe to perform this call after dropping all locks.
1029 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
1030 int otime
, struct wake_q_head
*wake_q
)
1034 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
1036 if (!list_empty(&sma
->pending_alter
)) {
1037 /* semaphore array uses the global queue - just process it. */
1038 otime
|= update_queue(sma
, -1, wake_q
);
1042 * No sops, thus the modified semaphores are not
1045 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1046 otime
|= update_queue(sma
, i
, wake_q
);
1049 * Check the semaphores that were increased:
1050 * - No complex ops, thus all sleeping ops are
1052 * - if we decreased the value, then any sleeping
1053 * semaphore ops won't be able to run: If the
1054 * previous value was too small, then the new
1055 * value will be too small, too.
1057 for (i
= 0; i
< nsops
; i
++) {
1058 if (sops
[i
].sem_op
> 0) {
1059 otime
|= update_queue(sma
,
1060 sops
[i
].sem_num
, wake_q
);
1066 set_semotime(sma
, sops
);
1070 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1072 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1075 struct sembuf
*sop
= q
->blocking
;
1078 * Linux always (since 0.99.10) reported a task as sleeping on all
1079 * semaphores. This violates SUS, therefore it was changed to the
1080 * standard compliant behavior.
1081 * Give the administrators a chance to notice that an application
1082 * might misbehave because it relies on the Linux behavior.
1084 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1085 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1086 current
->comm
, task_pid_nr(current
));
1088 if (sop
->sem_num
!= semnum
)
1091 if (count_zero
&& sop
->sem_op
== 0)
1093 if (!count_zero
&& sop
->sem_op
< 0)
1099 /* The following counts are associated to each semaphore:
1100 * semncnt number of tasks waiting on semval being nonzero
1101 * semzcnt number of tasks waiting on semval being zero
1103 * Per definition, a task waits only on the semaphore of the first semop
1104 * that cannot proceed, even if additional operation would block, too.
1106 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1109 struct list_head
*l
;
1110 struct sem_queue
*q
;
1114 /* First: check the simple operations. They are easy to evaluate */
1116 l
= &sma
->sems
[semnum
].pending_const
;
1118 l
= &sma
->sems
[semnum
].pending_alter
;
1120 list_for_each_entry(q
, l
, list
) {
1121 /* all task on a per-semaphore list sleep on exactly
1127 /* Then: check the complex operations. */
1128 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1129 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1132 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1133 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1139 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1140 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1141 * remains locked on exit.
1143 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1145 struct sem_undo
*un
, *tu
;
1146 struct sem_queue
*q
, *tq
;
1147 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1149 DEFINE_WAKE_Q(wake_q
);
1151 /* Free the existing undo structures for this semaphore set. */
1152 ipc_assert_locked_object(&sma
->sem_perm
);
1153 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1154 list_del(&un
->list_id
);
1155 spin_lock(&un
->ulp
->lock
);
1157 list_del_rcu(&un
->list_proc
);
1158 spin_unlock(&un
->ulp
->lock
);
1159 kvfree_rcu(un
, rcu
);
1162 /* Wake up all pending processes and let them fail with EIDRM. */
1163 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1164 unlink_queue(sma
, q
);
1165 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1168 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1169 unlink_queue(sma
, q
);
1170 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1172 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1173 struct sem
*sem
= &sma
->sems
[i
];
1174 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1175 unlink_queue(sma
, q
);
1176 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1178 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1179 unlink_queue(sma
, q
);
1180 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1182 ipc_update_pid(&sem
->sempid
, NULL
);
1185 /* Remove the semaphore set from the IDR */
1187 sem_unlock(sma
, -1);
1191 ns
->used_sems
-= sma
->sem_nsems
;
1192 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1195 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1199 return copy_to_user(buf
, in
, sizeof(*in
));
1202 struct semid_ds out
;
1204 memset(&out
, 0, sizeof(out
));
1206 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1208 out
.sem_otime
= in
->sem_otime
;
1209 out
.sem_ctime
= in
->sem_ctime
;
1210 out
.sem_nsems
= in
->sem_nsems
;
1212 return copy_to_user(buf
, &out
, sizeof(out
));
1219 static time64_t
get_semotime(struct sem_array
*sma
)
1224 res
= sma
->sems
[0].sem_otime
;
1225 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1226 time64_t to
= sma
->sems
[i
].sem_otime
;
1234 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1235 int cmd
, struct semid64_ds
*semid64
)
1237 struct sem_array
*sma
;
1241 memset(semid64
, 0, sizeof(*semid64
));
1244 if (cmd
== SEM_STAT
|| cmd
== SEM_STAT_ANY
) {
1245 sma
= sem_obtain_object(ns
, semid
);
1250 } else { /* IPC_STAT */
1251 sma
= sem_obtain_object_check(ns
, semid
);
1258 /* see comment for SHM_STAT_ANY */
1259 if (cmd
== SEM_STAT_ANY
)
1260 audit_ipc_obj(&sma
->sem_perm
);
1263 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1267 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1271 ipc_lock_object(&sma
->sem_perm
);
1273 if (!ipc_valid_object(&sma
->sem_perm
)) {
1274 ipc_unlock_object(&sma
->sem_perm
);
1279 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1280 semotime
= get_semotime(sma
);
1281 semid64
->sem_otime
= semotime
;
1282 semid64
->sem_ctime
= sma
->sem_ctime
;
1283 #ifndef CONFIG_64BIT
1284 semid64
->sem_otime_high
= semotime
>> 32;
1285 semid64
->sem_ctime_high
= sma
->sem_ctime
>> 32;
1287 semid64
->sem_nsems
= sma
->sem_nsems
;
1289 if (cmd
== IPC_STAT
) {
1291 * As defined in SUS:
1292 * Return 0 on success
1297 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1298 * Return the full id, including the sequence number
1300 err
= sma
->sem_perm
.id
;
1302 ipc_unlock_object(&sma
->sem_perm
);
1308 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1309 int cmd
, void __user
*p
)
1311 struct seminfo seminfo
;
1315 err
= security_sem_semctl(NULL
, cmd
);
1319 memset(&seminfo
, 0, sizeof(seminfo
));
1320 seminfo
.semmni
= ns
->sc_semmni
;
1321 seminfo
.semmns
= ns
->sc_semmns
;
1322 seminfo
.semmsl
= ns
->sc_semmsl
;
1323 seminfo
.semopm
= ns
->sc_semopm
;
1324 seminfo
.semvmx
= SEMVMX
;
1325 seminfo
.semmnu
= SEMMNU
;
1326 seminfo
.semmap
= SEMMAP
;
1327 seminfo
.semume
= SEMUME
;
1328 down_read(&sem_ids(ns
).rwsem
);
1329 if (cmd
== SEM_INFO
) {
1330 seminfo
.semusz
= sem_ids(ns
).in_use
;
1331 seminfo
.semaem
= ns
->used_sems
;
1333 seminfo
.semusz
= SEMUSZ
;
1334 seminfo
.semaem
= SEMAEM
;
1336 max_idx
= ipc_get_maxidx(&sem_ids(ns
));
1337 up_read(&sem_ids(ns
).rwsem
);
1338 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1340 return (max_idx
< 0) ? 0 : max_idx
;
1343 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1346 struct sem_undo
*un
;
1347 struct sem_array
*sma
;
1350 DEFINE_WAKE_Q(wake_q
);
1352 if (val
> SEMVMX
|| val
< 0)
1356 sma
= sem_obtain_object_check(ns
, semid
);
1359 return PTR_ERR(sma
);
1362 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1368 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1373 err
= security_sem_semctl(&sma
->sem_perm
, SETVAL
);
1379 sem_lock(sma
, NULL
, -1);
1381 if (!ipc_valid_object(&sma
->sem_perm
)) {
1382 sem_unlock(sma
, -1);
1387 semnum
= array_index_nospec(semnum
, sma
->sem_nsems
);
1388 curr
= &sma
->sems
[semnum
];
1390 ipc_assert_locked_object(&sma
->sem_perm
);
1391 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1392 un
->semadj
[semnum
] = 0;
1395 ipc_update_pid(&curr
->sempid
, task_tgid(current
));
1396 sma
->sem_ctime
= ktime_get_real_seconds();
1397 /* maybe some queued-up processes were waiting for this */
1398 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1399 sem_unlock(sma
, -1);
1405 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1406 int cmd
, void __user
*p
)
1408 struct sem_array
*sma
;
1411 ushort fast_sem_io
[SEMMSL_FAST
];
1412 ushort
*sem_io
= fast_sem_io
;
1413 DEFINE_WAKE_Q(wake_q
);
1416 sma
= sem_obtain_object_check(ns
, semid
);
1419 return PTR_ERR(sma
);
1422 nsems
= sma
->sem_nsems
;
1425 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1426 goto out_rcu_wakeup
;
1428 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1430 goto out_rcu_wakeup
;
1435 ushort __user
*array
= p
;
1438 sem_lock(sma
, NULL
, -1);
1439 if (!ipc_valid_object(&sma
->sem_perm
)) {
1443 if (nsems
> SEMMSL_FAST
) {
1444 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1448 sem_unlock(sma
, -1);
1450 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1452 if (sem_io
== NULL
) {
1453 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1458 sem_lock_and_putref(sma
);
1459 if (!ipc_valid_object(&sma
->sem_perm
)) {
1464 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1465 sem_io
[i
] = sma
->sems
[i
].semval
;
1466 sem_unlock(sma
, -1);
1469 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1476 struct sem_undo
*un
;
1478 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1480 goto out_rcu_wakeup
;
1484 if (nsems
> SEMMSL_FAST
) {
1485 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1487 if (sem_io
== NULL
) {
1488 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1493 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1494 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1499 for (i
= 0; i
< nsems
; i
++) {
1500 if (sem_io
[i
] > SEMVMX
) {
1501 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1507 sem_lock_and_putref(sma
);
1508 if (!ipc_valid_object(&sma
->sem_perm
)) {
1513 for (i
= 0; i
< nsems
; i
++) {
1514 sma
->sems
[i
].semval
= sem_io
[i
];
1515 ipc_update_pid(&sma
->sems
[i
].sempid
, task_tgid(current
));
1518 ipc_assert_locked_object(&sma
->sem_perm
);
1519 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1520 for (i
= 0; i
< nsems
; i
++)
1523 sma
->sem_ctime
= ktime_get_real_seconds();
1524 /* maybe some queued-up processes were waiting for this */
1525 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1529 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1532 if (semnum
< 0 || semnum
>= nsems
)
1533 goto out_rcu_wakeup
;
1535 sem_lock(sma
, NULL
, -1);
1536 if (!ipc_valid_object(&sma
->sem_perm
)) {
1541 semnum
= array_index_nospec(semnum
, nsems
);
1542 curr
= &sma
->sems
[semnum
];
1549 err
= pid_vnr(curr
->sempid
);
1552 err
= count_semcnt(sma
, semnum
, 0);
1555 err
= count_semcnt(sma
, semnum
, 1);
1560 sem_unlock(sma
, -1);
1565 if (sem_io
!= fast_sem_io
)
1570 static inline unsigned long
1571 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1575 if (copy_from_user(out
, buf
, sizeof(*out
)))
1580 struct semid_ds tbuf_old
;
1582 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1585 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1586 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1587 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1597 * This function handles some semctl commands which require the rwsem
1598 * to be held in write mode.
1599 * NOTE: no locks must be held, the rwsem is taken inside this function.
1601 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1602 int cmd
, struct semid64_ds
*semid64
)
1604 struct sem_array
*sma
;
1606 struct kern_ipc_perm
*ipcp
;
1608 down_write(&sem_ids(ns
).rwsem
);
1611 ipcp
= ipcctl_obtain_check(ns
, &sem_ids(ns
), semid
, cmd
,
1612 &semid64
->sem_perm
, 0);
1614 err
= PTR_ERR(ipcp
);
1618 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1620 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1626 sem_lock(sma
, NULL
, -1);
1627 /* freeary unlocks the ipc object and rcu */
1631 sem_lock(sma
, NULL
, -1);
1632 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1635 sma
->sem_ctime
= ktime_get_real_seconds();
1643 sem_unlock(sma
, -1);
1647 up_write(&sem_ids(ns
).rwsem
);
1651 static long ksys_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
, int version
)
1653 struct ipc_namespace
*ns
;
1654 void __user
*p
= (void __user
*)arg
;
1655 struct semid64_ds semid64
;
1661 ns
= current
->nsproxy
->ipc_ns
;
1666 return semctl_info(ns
, semid
, cmd
, p
);
1670 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1673 if (copy_semid_to_user(p
, &semid64
, version
))
1682 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1685 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1686 /* big-endian 64bit */
1689 /* 32bit or little-endian 64bit */
1692 return semctl_setval(ns
, semid
, semnum
, val
);
1695 if (copy_semid_from_user(&semid64
, p
, version
))
1699 return semctl_down(ns
, semid
, cmd
, &semid64
);
1705 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1707 return ksys_semctl(semid
, semnum
, cmd
, arg
, IPC_64
);
1710 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1711 long ksys_old_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
)
1713 int version
= ipc_parse_version(&cmd
);
1715 return ksys_semctl(semid
, semnum
, cmd
, arg
, version
);
1718 SYSCALL_DEFINE4(old_semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1720 return ksys_old_semctl(semid
, semnum
, cmd
, arg
);
1724 #ifdef CONFIG_COMPAT
1726 struct compat_semid_ds
{
1727 struct compat_ipc_perm sem_perm
;
1728 old_time32_t sem_otime
;
1729 old_time32_t sem_ctime
;
1730 compat_uptr_t sem_base
;
1731 compat_uptr_t sem_pending
;
1732 compat_uptr_t sem_pending_last
;
1734 unsigned short sem_nsems
;
1737 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1740 memset(out
, 0, sizeof(*out
));
1741 if (version
== IPC_64
) {
1742 struct compat_semid64_ds __user
*p
= buf
;
1743 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1745 struct compat_semid_ds __user
*p
= buf
;
1746 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1750 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1753 if (version
== IPC_64
) {
1754 struct compat_semid64_ds v
;
1755 memset(&v
, 0, sizeof(v
));
1756 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1757 v
.sem_otime
= lower_32_bits(in
->sem_otime
);
1758 v
.sem_otime_high
= upper_32_bits(in
->sem_otime
);
1759 v
.sem_ctime
= lower_32_bits(in
->sem_ctime
);
1760 v
.sem_ctime_high
= upper_32_bits(in
->sem_ctime
);
1761 v
.sem_nsems
= in
->sem_nsems
;
1762 return copy_to_user(buf
, &v
, sizeof(v
));
1764 struct compat_semid_ds v
;
1765 memset(&v
, 0, sizeof(v
));
1766 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1767 v
.sem_otime
= in
->sem_otime
;
1768 v
.sem_ctime
= in
->sem_ctime
;
1769 v
.sem_nsems
= in
->sem_nsems
;
1770 return copy_to_user(buf
, &v
, sizeof(v
));
1774 static long compat_ksys_semctl(int semid
, int semnum
, int cmd
, int arg
, int version
)
1776 void __user
*p
= compat_ptr(arg
);
1777 struct ipc_namespace
*ns
;
1778 struct semid64_ds semid64
;
1781 ns
= current
->nsproxy
->ipc_ns
;
1786 switch (cmd
& (~IPC_64
)) {
1789 return semctl_info(ns
, semid
, cmd
, p
);
1793 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1796 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1805 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1807 return semctl_setval(ns
, semid
, semnum
, arg
);
1809 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1813 return semctl_down(ns
, semid
, cmd
, &semid64
);
1819 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1821 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
, IPC_64
);
1824 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1825 long compat_ksys_old_semctl(int semid
, int semnum
, int cmd
, int arg
)
1827 int version
= compat_ipc_parse_version(&cmd
);
1829 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
, version
);
1832 COMPAT_SYSCALL_DEFINE4(old_semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1834 return compat_ksys_old_semctl(semid
, semnum
, cmd
, arg
);
1839 /* If the task doesn't already have a undo_list, then allocate one
1840 * here. We guarantee there is only one thread using this undo list,
1841 * and current is THE ONE
1843 * If this allocation and assignment succeeds, but later
1844 * portions of this code fail, there is no need to free the sem_undo_list.
1845 * Just let it stay associated with the task, and it'll be freed later
1848 * This can block, so callers must hold no locks.
1850 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1852 struct sem_undo_list
*undo_list
;
1854 undo_list
= current
->sysvsem
.undo_list
;
1856 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL_ACCOUNT
);
1857 if (undo_list
== NULL
)
1859 spin_lock_init(&undo_list
->lock
);
1860 refcount_set(&undo_list
->refcnt
, 1);
1861 INIT_LIST_HEAD(&undo_list
->list_proc
);
1863 current
->sysvsem
.undo_list
= undo_list
;
1865 *undo_listp
= undo_list
;
1869 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1871 struct sem_undo
*un
;
1873 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
,
1874 spin_is_locked(&ulp
->lock
)) {
1875 if (un
->semid
== semid
)
1881 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1883 struct sem_undo
*un
;
1885 assert_spin_locked(&ulp
->lock
);
1887 un
= __lookup_undo(ulp
, semid
);
1889 list_del_rcu(&un
->list_proc
);
1890 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1896 * find_alloc_undo - lookup (and if not present create) undo array
1898 * @semid: semaphore array id
1900 * The function looks up (and if not present creates) the undo structure.
1901 * The size of the undo structure depends on the size of the semaphore
1902 * array, thus the alloc path is not that straightforward.
1903 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1904 * performs a rcu_read_lock().
1906 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1908 struct sem_array
*sma
;
1909 struct sem_undo_list
*ulp
;
1910 struct sem_undo
*un
, *new;
1913 error
= get_undo_list(&ulp
);
1915 return ERR_PTR(error
);
1918 spin_lock(&ulp
->lock
);
1919 un
= lookup_undo(ulp
, semid
);
1920 spin_unlock(&ulp
->lock
);
1921 if (likely(un
!= NULL
))
1924 /* no undo structure around - allocate one. */
1925 /* step 1: figure out the size of the semaphore array */
1926 sma
= sem_obtain_object_check(ns
, semid
);
1929 return ERR_CAST(sma
);
1932 nsems
= sma
->sem_nsems
;
1933 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1935 un
= ERR_PTR(-EIDRM
);
1940 /* step 2: allocate new undo structure */
1941 new = kvzalloc(struct_size(new, semadj
, nsems
), GFP_KERNEL_ACCOUNT
);
1943 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1944 return ERR_PTR(-ENOMEM
);
1947 /* step 3: Acquire the lock on semaphore array */
1949 sem_lock_and_putref(sma
);
1950 if (!ipc_valid_object(&sma
->sem_perm
)) {
1951 sem_unlock(sma
, -1);
1954 un
= ERR_PTR(-EIDRM
);
1957 spin_lock(&ulp
->lock
);
1960 * step 4: check for races: did someone else allocate the undo struct?
1962 un
= lookup_undo(ulp
, semid
);
1964 spin_unlock(&ulp
->lock
);
1968 /* step 5: initialize & link new undo structure */
1971 assert_spin_locked(&ulp
->lock
);
1972 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1973 ipc_assert_locked_object(&sma
->sem_perm
);
1974 list_add(&new->list_id
, &sma
->list_id
);
1976 spin_unlock(&ulp
->lock
);
1978 sem_unlock(sma
, -1);
1983 long __do_semtimedop(int semid
, struct sembuf
*sops
,
1984 unsigned nsops
, const struct timespec64
*timeout
,
1985 struct ipc_namespace
*ns
)
1987 int error
= -EINVAL
;
1988 struct sem_array
*sma
;
1990 struct sem_undo
*un
;
1992 bool undos
= false, alter
= false, dupsop
= false;
1993 struct sem_queue queue
;
1994 unsigned long dup
= 0;
1995 ktime_t expires
, *exp
= NULL
;
1996 bool timed_out
= false;
1998 if (nsops
< 1 || semid
< 0)
2000 if (nsops
> ns
->sc_semopm
)
2004 if (!timespec64_valid(timeout
))
2006 expires
= ktime_add_safe(ktime_get(),
2007 timespec64_to_ktime(*timeout
));
2013 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
2014 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
2016 if (sop
->sem_num
>= max
)
2018 if (sop
->sem_flg
& SEM_UNDO
)
2022 * There was a previous alter access that appears
2023 * to have accessed the same semaphore, thus use
2024 * the dupsop logic. "appears", because the detection
2025 * can only check % BITS_PER_LONG.
2029 if (sop
->sem_op
!= 0) {
2036 /* On success, find_alloc_undo takes the rcu_read_lock */
2037 un
= find_alloc_undo(ns
, semid
);
2039 error
= PTR_ERR(un
);
2047 sma
= sem_obtain_object_check(ns
, semid
);
2050 error
= PTR_ERR(sma
);
2055 if (max
>= sma
->sem_nsems
) {
2061 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
2066 error
= security_sem_semop(&sma
->sem_perm
, sops
, nsops
, alter
);
2073 locknum
= sem_lock(sma
, sops
, nsops
);
2075 * We eventually might perform the following check in a lockless
2076 * fashion, considering ipc_valid_object() locking constraints.
2077 * If nsops == 1 and there is no contention for sem_perm.lock, then
2078 * only a per-semaphore lock is held and it's OK to proceed with the
2079 * check below. More details on the fine grained locking scheme
2080 * entangled here and why it's RMID race safe on comments at sem_lock()
2082 if (!ipc_valid_object(&sma
->sem_perm
))
2085 * semid identifiers are not unique - find_alloc_undo may have
2086 * allocated an undo structure, it was invalidated by an RMID
2087 * and now a new array with received the same id. Check and fail.
2088 * This case can be detected checking un->semid. The existence of
2089 * "un" itself is guaranteed by rcu.
2091 if (un
&& un
->semid
== -1)
2095 queue
.nsops
= nsops
;
2097 queue
.pid
= task_tgid(current
);
2098 queue
.alter
= alter
;
2099 queue
.dupsop
= dupsop
;
2101 error
= perform_atomic_semop(sma
, &queue
);
2102 if (error
== 0) { /* non-blocking successful path */
2103 DEFINE_WAKE_Q(wake_q
);
2106 * If the operation was successful, then do
2107 * the required updates.
2110 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2112 set_semotime(sma
, sops
);
2114 sem_unlock(sma
, locknum
);
2120 if (error
< 0) /* non-blocking error path */
2124 * We need to sleep on this operation, so we put the current
2125 * task into the pending queue and go to sleep.
2129 int idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
2130 curr
= &sma
->sems
[idx
];
2133 if (sma
->complex_count
) {
2134 list_add_tail(&queue
.list
,
2135 &sma
->pending_alter
);
2138 list_add_tail(&queue
.list
,
2139 &curr
->pending_alter
);
2142 list_add_tail(&queue
.list
, &curr
->pending_const
);
2145 if (!sma
->complex_count
)
2149 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2151 list_add_tail(&queue
.list
, &sma
->pending_const
);
2153 sma
->complex_count
++;
2157 /* memory ordering ensured by the lock in sem_lock() */
2158 WRITE_ONCE(queue
.status
, -EINTR
);
2159 queue
.sleeper
= current
;
2161 /* memory ordering is ensured by the lock in sem_lock() */
2162 __set_current_state(TASK_INTERRUPTIBLE
);
2163 sem_unlock(sma
, locknum
);
2166 timed_out
= !schedule_hrtimeout_range(exp
,
2167 current
->timer_slack_ns
, HRTIMER_MODE_ABS
);
2170 * fastpath: the semop has completed, either successfully or
2171 * not, from the syscall pov, is quite irrelevant to us at this
2172 * point; we're done.
2174 * We _do_ care, nonetheless, about being awoken by a signal or
2175 * spuriously. The queue.status is checked again in the
2176 * slowpath (aka after taking sem_lock), such that we can detect
2177 * scenarios where we were awakened externally, during the
2178 * window between wake_q_add() and wake_up_q().
2181 error
= READ_ONCE(queue
.status
);
2182 if (error
!= -EINTR
) {
2183 /* see SEM_BARRIER_2 for purpose/pairing */
2184 smp_acquire__after_ctrl_dep();
2189 locknum
= sem_lock(sma
, sops
, nsops
);
2191 if (!ipc_valid_object(&sma
->sem_perm
))
2195 * No necessity for any barrier: We are protect by sem_lock()
2197 error
= READ_ONCE(queue
.status
);
2200 * If queue.status != -EINTR we are woken up by another process.
2201 * Leave without unlink_queue(), but with sem_unlock().
2203 if (error
!= -EINTR
)
2207 * If an interrupt occurred we have to clean up the queue.
2211 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2213 unlink_queue(sma
, &queue
);
2216 sem_unlock(sma
, locknum
);
2222 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
2223 unsigned nsops
, const struct timespec64
*timeout
)
2225 struct sembuf fast_sops
[SEMOPM_FAST
];
2226 struct sembuf
*sops
= fast_sops
;
2227 struct ipc_namespace
*ns
;
2230 ns
= current
->nsproxy
->ipc_ns
;
2231 if (nsops
> ns
->sc_semopm
)
2236 if (nsops
> SEMOPM_FAST
) {
2237 sops
= kvmalloc_array(nsops
, sizeof(*sops
), GFP_KERNEL
);
2242 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
2247 ret
= __do_semtimedop(semid
, sops
, nsops
, timeout
, ns
);
2250 if (sops
!= fast_sops
)
2256 long ksys_semtimedop(int semid
, struct sembuf __user
*tsops
,
2257 unsigned int nsops
, const struct __kernel_timespec __user
*timeout
)
2260 struct timespec64 ts
;
2261 if (get_timespec64(&ts
, timeout
))
2263 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2265 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2268 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2269 unsigned int, nsops
, const struct __kernel_timespec __user
*, timeout
)
2271 return ksys_semtimedop(semid
, tsops
, nsops
, timeout
);
2274 #ifdef CONFIG_COMPAT_32BIT_TIME
2275 long compat_ksys_semtimedop(int semid
, struct sembuf __user
*tsems
,
2277 const struct old_timespec32 __user
*timeout
)
2280 struct timespec64 ts
;
2281 if (get_old_timespec32(&ts
, timeout
))
2283 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2285 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2288 SYSCALL_DEFINE4(semtimedop_time32
, int, semid
, struct sembuf __user
*, tsems
,
2289 unsigned int, nsops
,
2290 const struct old_timespec32 __user
*, timeout
)
2292 return compat_ksys_semtimedop(semid
, tsems
, nsops
, timeout
);
2296 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2299 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2302 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2303 * parent and child tasks.
2306 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2308 struct sem_undo_list
*undo_list
;
2311 if (clone_flags
& CLONE_SYSVSEM
) {
2312 error
= get_undo_list(&undo_list
);
2315 refcount_inc(&undo_list
->refcnt
);
2316 tsk
->sysvsem
.undo_list
= undo_list
;
2318 tsk
->sysvsem
.undo_list
= NULL
;
2324 * add semadj values to semaphores, free undo structures.
2325 * undo structures are not freed when semaphore arrays are destroyed
2326 * so some of them may be out of date.
2327 * IMPLEMENTATION NOTE: There is some confusion over whether the
2328 * set of adjustments that needs to be done should be done in an atomic
2329 * manner or not. That is, if we are attempting to decrement the semval
2330 * should we queue up and wait until we can do so legally?
2331 * The original implementation attempted to do this (queue and wait).
2332 * The current implementation does not do so. The POSIX standard
2333 * and SVID should be consulted to determine what behavior is mandated.
2335 void exit_sem(struct task_struct
*tsk
)
2337 struct sem_undo_list
*ulp
;
2339 ulp
= tsk
->sysvsem
.undo_list
;
2342 tsk
->sysvsem
.undo_list
= NULL
;
2344 if (!refcount_dec_and_test(&ulp
->refcnt
))
2348 struct sem_array
*sma
;
2349 struct sem_undo
*un
;
2351 DEFINE_WAKE_Q(wake_q
);
2356 un
= list_entry_rcu(ulp
->list_proc
.next
,
2357 struct sem_undo
, list_proc
);
2358 if (&un
->list_proc
== &ulp
->list_proc
) {
2360 * We must wait for freeary() before freeing this ulp,
2361 * in case we raced with last sem_undo. There is a small
2362 * possibility where we exit while freeary() didn't
2363 * finish unlocking sem_undo_list.
2365 spin_lock(&ulp
->lock
);
2366 spin_unlock(&ulp
->lock
);
2370 spin_lock(&ulp
->lock
);
2372 spin_unlock(&ulp
->lock
);
2374 /* exit_sem raced with IPC_RMID, nothing to do */
2380 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2381 /* exit_sem raced with IPC_RMID, nothing to do */
2387 sem_lock(sma
, NULL
, -1);
2388 /* exit_sem raced with IPC_RMID, nothing to do */
2389 if (!ipc_valid_object(&sma
->sem_perm
)) {
2390 sem_unlock(sma
, -1);
2394 un
= __lookup_undo(ulp
, semid
);
2396 /* exit_sem raced with IPC_RMID+semget() that created
2397 * exactly the same semid. Nothing to do.
2399 sem_unlock(sma
, -1);
2404 /* remove un from the linked lists */
2405 ipc_assert_locked_object(&sma
->sem_perm
);
2406 list_del(&un
->list_id
);
2408 spin_lock(&ulp
->lock
);
2409 list_del_rcu(&un
->list_proc
);
2410 spin_unlock(&ulp
->lock
);
2412 /* perform adjustments registered in un */
2413 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2414 struct sem
*semaphore
= &sma
->sems
[i
];
2415 if (un
->semadj
[i
]) {
2416 semaphore
->semval
+= un
->semadj
[i
];
2418 * Range checks of the new semaphore value,
2419 * not defined by sus:
2420 * - Some unices ignore the undo entirely
2421 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2422 * - some cap the value (e.g. FreeBSD caps
2423 * at 0, but doesn't enforce SEMVMX)
2425 * Linux caps the semaphore value, both at 0
2428 * Manfred <manfred@colorfullife.com>
2430 if (semaphore
->semval
< 0)
2431 semaphore
->semval
= 0;
2432 if (semaphore
->semval
> SEMVMX
)
2433 semaphore
->semval
= SEMVMX
;
2434 ipc_update_pid(&semaphore
->sempid
, task_tgid(current
));
2437 /* maybe some queued-up processes were waiting for this */
2438 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2439 sem_unlock(sma
, -1);
2443 kvfree_rcu(un
, rcu
);
2448 #ifdef CONFIG_PROC_FS
2449 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2451 struct user_namespace
*user_ns
= seq_user_ns(s
);
2452 struct kern_ipc_perm
*ipcp
= it
;
2453 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2457 * The proc interface isn't aware of sem_lock(), it calls
2458 * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2459 * (in sysvipc_find_ipc)
2460 * In order to stay compatible with sem_lock(), we must
2461 * enter / leave complex_mode.
2463 complexmode_enter(sma
);
2465 sem_otime
= get_semotime(sma
);
2468 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2473 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2474 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2475 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2476 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2480 complexmode_tryleave(sma
);