1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
20 #include <trace/events/sock.h>
22 #include <linux/ceph/ceph_features.h>
23 #include <linux/ceph/libceph.h>
24 #include <linux/ceph/messenger.h>
25 #include <linux/ceph/decode.h>
26 #include <linux/ceph/pagelist.h>
27 #include <linux/export.h>
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
45 * | NEW* | transient initial state
47 * | con_sock_state_init()
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
53 * | \ con_sock_state_connecting()
54 * | ----------------------
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
64 * | + con_sock_state_closing() \ |
66 * | / --------------- | |
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
74 * | CONNECTED | TCP connection established
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
86 static bool con_flag_valid(unsigned long con_flag
)
89 case CEPH_CON_F_LOSSYTX
:
90 case CEPH_CON_F_KEEPALIVE_PENDING
:
91 case CEPH_CON_F_WRITE_PENDING
:
92 case CEPH_CON_F_SOCK_CLOSED
:
93 case CEPH_CON_F_BACKOFF
:
100 void ceph_con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
102 BUG_ON(!con_flag_valid(con_flag
));
104 clear_bit(con_flag
, &con
->flags
);
107 void ceph_con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
109 BUG_ON(!con_flag_valid(con_flag
));
111 set_bit(con_flag
, &con
->flags
);
114 bool ceph_con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
116 BUG_ON(!con_flag_valid(con_flag
));
118 return test_bit(con_flag
, &con
->flags
);
121 bool ceph_con_flag_test_and_clear(struct ceph_connection
*con
,
122 unsigned long con_flag
)
124 BUG_ON(!con_flag_valid(con_flag
));
126 return test_and_clear_bit(con_flag
, &con
->flags
);
129 bool ceph_con_flag_test_and_set(struct ceph_connection
*con
,
130 unsigned long con_flag
)
132 BUG_ON(!con_flag_valid(con_flag
));
134 return test_and_set_bit(con_flag
, &con
->flags
);
137 /* Slab caches for frequently-allocated structures */
139 static struct kmem_cache
*ceph_msg_cache
;
141 #ifdef CONFIG_LOCKDEP
142 static struct lock_class_key socket_class
;
145 static void queue_con(struct ceph_connection
*con
);
146 static void cancel_con(struct ceph_connection
*con
);
147 static void ceph_con_workfn(struct work_struct
*);
148 static void con_fault(struct ceph_connection
*con
);
151 * Nicely render a sockaddr as a string. An array of formatted
152 * strings is used, to approximate reentrancy.
154 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
159 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
160 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
162 struct page
*ceph_zero_page
; /* used in certain error cases */
164 const char *ceph_pr_addr(const struct ceph_entity_addr
*addr
)
168 struct sockaddr_storage ss
= addr
->in_addr
; /* align */
169 struct sockaddr_in
*in4
= (struct sockaddr_in
*)&ss
;
170 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*)&ss
;
172 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
175 switch (ss
.ss_family
) {
177 snprintf(s
, MAX_ADDR_STR_LEN
, "(%d)%pI4:%hu",
178 le32_to_cpu(addr
->type
), &in4
->sin_addr
,
179 ntohs(in4
->sin_port
));
183 snprintf(s
, MAX_ADDR_STR_LEN
, "(%d)[%pI6c]:%hu",
184 le32_to_cpu(addr
->type
), &in6
->sin6_addr
,
185 ntohs(in6
->sin6_port
));
189 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
195 EXPORT_SYMBOL(ceph_pr_addr
);
197 void ceph_encode_my_addr(struct ceph_messenger
*msgr
)
199 if (!ceph_msgr2(from_msgr(msgr
))) {
200 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
,
201 sizeof(msgr
->my_enc_addr
));
202 ceph_encode_banner_addr(&msgr
->my_enc_addr
);
207 * work queue for all reading and writing to/from the socket.
209 static struct workqueue_struct
*ceph_msgr_wq
;
211 static int ceph_msgr_slab_init(void)
213 BUG_ON(ceph_msg_cache
);
214 ceph_msg_cache
= KMEM_CACHE(ceph_msg
, 0);
221 static void ceph_msgr_slab_exit(void)
223 BUG_ON(!ceph_msg_cache
);
224 kmem_cache_destroy(ceph_msg_cache
);
225 ceph_msg_cache
= NULL
;
228 static void _ceph_msgr_exit(void)
231 destroy_workqueue(ceph_msgr_wq
);
235 BUG_ON(!ceph_zero_page
);
236 put_page(ceph_zero_page
);
237 ceph_zero_page
= NULL
;
239 ceph_msgr_slab_exit();
242 int __init
ceph_msgr_init(void)
244 if (ceph_msgr_slab_init())
247 BUG_ON(ceph_zero_page
);
248 ceph_zero_page
= ZERO_PAGE(0);
249 get_page(ceph_zero_page
);
252 * The number of active work items is limited by the number of
253 * connections, so leave @max_active at default.
255 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
259 pr_err("msgr_init failed to create workqueue\n");
265 void ceph_msgr_exit(void)
267 BUG_ON(ceph_msgr_wq
== NULL
);
272 void ceph_msgr_flush(void)
274 flush_workqueue(ceph_msgr_wq
);
276 EXPORT_SYMBOL(ceph_msgr_flush
);
278 /* Connection socket state transition functions */
280 static void con_sock_state_init(struct ceph_connection
*con
)
284 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
285 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
286 printk("%s: unexpected old state %d\n", __func__
, old_state
);
287 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
288 CON_SOCK_STATE_CLOSED
);
291 static void con_sock_state_connecting(struct ceph_connection
*con
)
295 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
296 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
297 printk("%s: unexpected old state %d\n", __func__
, old_state
);
298 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
299 CON_SOCK_STATE_CONNECTING
);
302 static void con_sock_state_connected(struct ceph_connection
*con
)
306 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
307 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
308 printk("%s: unexpected old state %d\n", __func__
, old_state
);
309 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
310 CON_SOCK_STATE_CONNECTED
);
313 static void con_sock_state_closing(struct ceph_connection
*con
)
317 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
318 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
319 old_state
!= CON_SOCK_STATE_CONNECTED
&&
320 old_state
!= CON_SOCK_STATE_CLOSING
))
321 printk("%s: unexpected old state %d\n", __func__
, old_state
);
322 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
323 CON_SOCK_STATE_CLOSING
);
326 static void con_sock_state_closed(struct ceph_connection
*con
)
330 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
331 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
332 old_state
!= CON_SOCK_STATE_CLOSING
&&
333 old_state
!= CON_SOCK_STATE_CONNECTING
&&
334 old_state
!= CON_SOCK_STATE_CLOSED
))
335 printk("%s: unexpected old state %d\n", __func__
, old_state
);
336 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
337 CON_SOCK_STATE_CLOSED
);
341 * socket callback functions
344 /* data available on socket, or listen socket received a connect */
345 static void ceph_sock_data_ready(struct sock
*sk
)
347 struct ceph_connection
*con
= sk
->sk_user_data
;
349 trace_sk_data_ready(sk
);
351 if (atomic_read(&con
->msgr
->stopping
)) {
355 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
356 dout("%s %p state = %d, queueing work\n", __func__
,
362 /* socket has buffer space for writing */
363 static void ceph_sock_write_space(struct sock
*sk
)
365 struct ceph_connection
*con
= sk
->sk_user_data
;
367 /* only queue to workqueue if there is data we want to write,
368 * and there is sufficient space in the socket buffer to accept
369 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
370 * doesn't get called again until try_write() fills the socket
371 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372 * and net/core/stream.c:sk_stream_write_space().
374 if (ceph_con_flag_test(con
, CEPH_CON_F_WRITE_PENDING
)) {
375 if (sk_stream_is_writeable(sk
)) {
376 dout("%s %p queueing write work\n", __func__
, con
);
377 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
381 dout("%s %p nothing to write\n", __func__
, con
);
385 /* socket's state has changed */
386 static void ceph_sock_state_change(struct sock
*sk
)
388 struct ceph_connection
*con
= sk
->sk_user_data
;
390 dout("%s %p state = %d sk_state = %u\n", __func__
,
391 con
, con
->state
, sk
->sk_state
);
393 switch (sk
->sk_state
) {
395 dout("%s TCP_CLOSE\n", __func__
);
398 dout("%s TCP_CLOSE_WAIT\n", __func__
);
399 con_sock_state_closing(con
);
400 ceph_con_flag_set(con
, CEPH_CON_F_SOCK_CLOSED
);
403 case TCP_ESTABLISHED
:
404 dout("%s TCP_ESTABLISHED\n", __func__
);
405 con_sock_state_connected(con
);
408 default: /* Everything else is uninteresting */
414 * set up socket callbacks
416 static void set_sock_callbacks(struct socket
*sock
,
417 struct ceph_connection
*con
)
419 struct sock
*sk
= sock
->sk
;
420 sk
->sk_user_data
= con
;
421 sk
->sk_data_ready
= ceph_sock_data_ready
;
422 sk
->sk_write_space
= ceph_sock_write_space
;
423 sk
->sk_state_change
= ceph_sock_state_change
;
432 * initiate connection to a remote socket.
434 int ceph_tcp_connect(struct ceph_connection
*con
)
436 struct sockaddr_storage ss
= con
->peer_addr
.in_addr
; /* align */
438 unsigned int noio_flag
;
441 dout("%s con %p peer_addr %s\n", __func__
, con
,
442 ceph_pr_addr(&con
->peer_addr
));
445 /* sock_create_kern() allocates with GFP_KERNEL */
446 noio_flag
= memalloc_noio_save();
447 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), ss
.ss_family
,
448 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
449 memalloc_noio_restore(noio_flag
);
452 sock
->sk
->sk_allocation
= GFP_NOFS
;
453 sock
->sk
->sk_use_task_frag
= false;
455 #ifdef CONFIG_LOCKDEP
456 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
459 set_sock_callbacks(sock
, con
);
461 con_sock_state_connecting(con
);
462 ret
= kernel_connect(sock
, (struct sockaddr
*)&ss
, sizeof(ss
),
464 if (ret
== -EINPROGRESS
) {
465 dout("connect %s EINPROGRESS sk_state = %u\n",
466 ceph_pr_addr(&con
->peer_addr
),
468 } else if (ret
< 0) {
469 pr_err("connect %s error %d\n",
470 ceph_pr_addr(&con
->peer_addr
), ret
);
475 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
))
476 tcp_sock_set_nodelay(sock
->sk
);
483 * Shutdown/close the socket for the given connection.
485 int ceph_con_close_socket(struct ceph_connection
*con
)
489 dout("%s con %p sock %p\n", __func__
, con
, con
->sock
);
491 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
492 sock_release(con
->sock
);
497 * Forcibly clear the SOCK_CLOSED flag. It gets set
498 * independent of the connection mutex, and we could have
499 * received a socket close event before we had the chance to
500 * shut the socket down.
502 ceph_con_flag_clear(con
, CEPH_CON_F_SOCK_CLOSED
);
504 con_sock_state_closed(con
);
508 static void ceph_con_reset_protocol(struct ceph_connection
*con
)
510 dout("%s con %p\n", __func__
, con
);
512 ceph_con_close_socket(con
);
514 WARN_ON(con
->in_msg
->con
!= con
);
515 ceph_msg_put(con
->in_msg
);
519 WARN_ON(con
->out_msg
->con
!= con
);
520 ceph_msg_put(con
->out_msg
);
523 if (con
->bounce_page
) {
524 __free_page(con
->bounce_page
);
525 con
->bounce_page
= NULL
;
528 if (ceph_msgr2(from_msgr(con
->msgr
)))
529 ceph_con_v2_reset_protocol(con
);
531 ceph_con_v1_reset_protocol(con
);
535 * Reset a connection. Discard all incoming and outgoing messages
536 * and clear *_seq state.
538 static void ceph_msg_remove(struct ceph_msg
*msg
)
540 list_del_init(&msg
->list_head
);
545 static void ceph_msg_remove_list(struct list_head
*head
)
547 while (!list_empty(head
)) {
548 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
550 ceph_msg_remove(msg
);
554 void ceph_con_reset_session(struct ceph_connection
*con
)
556 dout("%s con %p\n", __func__
, con
);
558 WARN_ON(con
->in_msg
);
559 WARN_ON(con
->out_msg
);
560 ceph_msg_remove_list(&con
->out_queue
);
561 ceph_msg_remove_list(&con
->out_sent
);
564 con
->in_seq_acked
= 0;
566 if (ceph_msgr2(from_msgr(con
->msgr
)))
567 ceph_con_v2_reset_session(con
);
569 ceph_con_v1_reset_session(con
);
573 * mark a peer down. drop any open connections.
575 void ceph_con_close(struct ceph_connection
*con
)
577 mutex_lock(&con
->mutex
);
578 dout("con_close %p peer %s\n", con
, ceph_pr_addr(&con
->peer_addr
));
579 con
->state
= CEPH_CON_S_CLOSED
;
581 ceph_con_flag_clear(con
, CEPH_CON_F_LOSSYTX
); /* so we retry next
583 ceph_con_flag_clear(con
, CEPH_CON_F_KEEPALIVE_PENDING
);
584 ceph_con_flag_clear(con
, CEPH_CON_F_WRITE_PENDING
);
585 ceph_con_flag_clear(con
, CEPH_CON_F_BACKOFF
);
587 ceph_con_reset_protocol(con
);
588 ceph_con_reset_session(con
);
590 mutex_unlock(&con
->mutex
);
592 EXPORT_SYMBOL(ceph_con_close
);
595 * Reopen a closed connection, with a new peer address.
597 void ceph_con_open(struct ceph_connection
*con
,
598 __u8 entity_type
, __u64 entity_num
,
599 struct ceph_entity_addr
*addr
)
601 mutex_lock(&con
->mutex
);
602 dout("con_open %p %s\n", con
, ceph_pr_addr(addr
));
604 WARN_ON(con
->state
!= CEPH_CON_S_CLOSED
);
605 con
->state
= CEPH_CON_S_PREOPEN
;
607 con
->peer_name
.type
= (__u8
) entity_type
;
608 con
->peer_name
.num
= cpu_to_le64(entity_num
);
610 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
611 con
->delay
= 0; /* reset backoff memory */
612 mutex_unlock(&con
->mutex
);
615 EXPORT_SYMBOL(ceph_con_open
);
618 * return true if this connection ever successfully opened
620 bool ceph_con_opened(struct ceph_connection
*con
)
622 if (ceph_msgr2(from_msgr(con
->msgr
)))
623 return ceph_con_v2_opened(con
);
625 return ceph_con_v1_opened(con
);
629 * initialize a new connection.
631 void ceph_con_init(struct ceph_connection
*con
, void *private,
632 const struct ceph_connection_operations
*ops
,
633 struct ceph_messenger
*msgr
)
635 dout("con_init %p\n", con
);
636 memset(con
, 0, sizeof(*con
));
637 con
->private = private;
641 con_sock_state_init(con
);
643 mutex_init(&con
->mutex
);
644 INIT_LIST_HEAD(&con
->out_queue
);
645 INIT_LIST_HEAD(&con
->out_sent
);
646 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
648 con
->state
= CEPH_CON_S_CLOSED
;
650 EXPORT_SYMBOL(ceph_con_init
);
653 * We maintain a global counter to order connection attempts. Get
654 * a unique seq greater than @gt.
656 u32
ceph_get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
660 spin_lock(&msgr
->global_seq_lock
);
661 if (msgr
->global_seq
< gt
)
662 msgr
->global_seq
= gt
;
663 ret
= ++msgr
->global_seq
;
664 spin_unlock(&msgr
->global_seq_lock
);
669 * Discard messages that have been acked by the server.
671 void ceph_con_discard_sent(struct ceph_connection
*con
, u64 ack_seq
)
673 struct ceph_msg
*msg
;
676 dout("%s con %p ack_seq %llu\n", __func__
, con
, ack_seq
);
677 while (!list_empty(&con
->out_sent
)) {
678 msg
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
680 WARN_ON(msg
->needs_out_seq
);
681 seq
= le64_to_cpu(msg
->hdr
.seq
);
685 dout("%s con %p discarding msg %p seq %llu\n", __func__
, con
,
687 ceph_msg_remove(msg
);
692 * Discard messages that have been requeued in con_fault(), up to
693 * reconnect_seq. This avoids gratuitously resending messages that
694 * the server had received and handled prior to reconnect.
696 void ceph_con_discard_requeued(struct ceph_connection
*con
, u64 reconnect_seq
)
698 struct ceph_msg
*msg
;
701 dout("%s con %p reconnect_seq %llu\n", __func__
, con
, reconnect_seq
);
702 while (!list_empty(&con
->out_queue
)) {
703 msg
= list_first_entry(&con
->out_queue
, struct ceph_msg
,
705 if (msg
->needs_out_seq
)
707 seq
= le64_to_cpu(msg
->hdr
.seq
);
708 if (seq
> reconnect_seq
)
711 dout("%s con %p discarding msg %p seq %llu\n", __func__
, con
,
713 ceph_msg_remove(msg
);
720 * For a bio data item, a piece is whatever remains of the next
721 * entry in the current bio iovec, or the first entry in the next
724 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
727 struct ceph_msg_data
*data
= cursor
->data
;
728 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
730 cursor
->resid
= min_t(size_t, length
, data
->bio_length
);
732 if (cursor
->resid
< it
->iter
.bi_size
)
733 it
->iter
.bi_size
= cursor
->resid
;
735 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
738 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
742 struct bio_vec bv
= bio_iter_iovec(cursor
->bio_iter
.bio
,
743 cursor
->bio_iter
.iter
);
745 *page_offset
= bv
.bv_offset
;
750 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
753 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
754 struct page
*page
= bio_iter_page(it
->bio
, it
->iter
);
756 BUG_ON(bytes
> cursor
->resid
);
757 BUG_ON(bytes
> bio_iter_len(it
->bio
, it
->iter
));
758 cursor
->resid
-= bytes
;
759 bio_advance_iter(it
->bio
, &it
->iter
, bytes
);
762 return false; /* no more data */
764 if (!bytes
|| (it
->iter
.bi_size
&& it
->iter
.bi_bvec_done
&&
765 page
== bio_iter_page(it
->bio
, it
->iter
)))
766 return false; /* more bytes to process in this segment */
768 if (!it
->iter
.bi_size
) {
769 it
->bio
= it
->bio
->bi_next
;
770 it
->iter
= it
->bio
->bi_iter
;
771 if (cursor
->resid
< it
->iter
.bi_size
)
772 it
->iter
.bi_size
= cursor
->resid
;
775 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
778 #endif /* CONFIG_BLOCK */
780 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor
*cursor
,
783 struct ceph_msg_data
*data
= cursor
->data
;
784 struct bio_vec
*bvecs
= data
->bvec_pos
.bvecs
;
786 cursor
->resid
= min_t(size_t, length
, data
->bvec_pos
.iter
.bi_size
);
787 cursor
->bvec_iter
= data
->bvec_pos
.iter
;
788 cursor
->bvec_iter
.bi_size
= cursor
->resid
;
790 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
793 static struct page
*ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor
*cursor
,
797 struct bio_vec bv
= bvec_iter_bvec(cursor
->data
->bvec_pos
.bvecs
,
800 *page_offset
= bv
.bv_offset
;
805 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor
*cursor
,
808 struct bio_vec
*bvecs
= cursor
->data
->bvec_pos
.bvecs
;
809 struct page
*page
= bvec_iter_page(bvecs
, cursor
->bvec_iter
);
811 BUG_ON(bytes
> cursor
->resid
);
812 BUG_ON(bytes
> bvec_iter_len(bvecs
, cursor
->bvec_iter
));
813 cursor
->resid
-= bytes
;
814 bvec_iter_advance(bvecs
, &cursor
->bvec_iter
, bytes
);
817 return false; /* no more data */
819 if (!bytes
|| (cursor
->bvec_iter
.bi_bvec_done
&&
820 page
== bvec_iter_page(bvecs
, cursor
->bvec_iter
)))
821 return false; /* more bytes to process in this segment */
823 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
828 * For a page array, a piece comes from the first page in the array
829 * that has not already been fully consumed.
831 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
834 struct ceph_msg_data
*data
= cursor
->data
;
837 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
839 BUG_ON(!data
->pages
);
840 BUG_ON(!data
->length
);
842 cursor
->resid
= min(length
, data
->length
);
843 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
844 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
845 cursor
->page_index
= 0;
846 BUG_ON(page_count
> (int)USHRT_MAX
);
847 cursor
->page_count
= (unsigned short)page_count
;
848 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
852 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
853 size_t *page_offset
, size_t *length
)
855 struct ceph_msg_data
*data
= cursor
->data
;
857 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
859 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
860 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
862 *page_offset
= cursor
->page_offset
;
863 *length
= min_t(size_t, cursor
->resid
, PAGE_SIZE
- *page_offset
);
864 return data
->pages
[cursor
->page_index
];
867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
870 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
872 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
874 /* Advance the cursor page offset */
876 cursor
->resid
-= bytes
;
877 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
878 if (!bytes
|| cursor
->page_offset
)
879 return false; /* more bytes to process in the current page */
882 return false; /* no more data */
884 /* Move on to the next page; offset is already at 0 */
886 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
887 cursor
->page_index
++;
892 * For a pagelist, a piece is whatever remains to be consumed in the
893 * first page in the list, or the front of the next page.
896 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
899 struct ceph_msg_data
*data
= cursor
->data
;
900 struct ceph_pagelist
*pagelist
;
903 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
905 pagelist
= data
->pagelist
;
909 return; /* pagelist can be assigned but empty */
911 BUG_ON(list_empty(&pagelist
->head
));
912 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
914 cursor
->resid
= min(length
, pagelist
->length
);
920 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
921 size_t *page_offset
, size_t *length
)
923 struct ceph_msg_data
*data
= cursor
->data
;
924 struct ceph_pagelist
*pagelist
;
926 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
928 pagelist
= data
->pagelist
;
931 BUG_ON(!cursor
->page
);
932 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
934 /* offset of first page in pagelist is always 0 */
935 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
936 *length
= min_t(size_t, cursor
->resid
, PAGE_SIZE
- *page_offset
);
940 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
943 struct ceph_msg_data
*data
= cursor
->data
;
944 struct ceph_pagelist
*pagelist
;
946 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
948 pagelist
= data
->pagelist
;
951 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
952 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
954 /* Advance the cursor offset */
956 cursor
->resid
-= bytes
;
957 cursor
->offset
+= bytes
;
958 /* offset of first page in pagelist is always 0 */
959 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
960 return false; /* more bytes to process in the current page */
963 return false; /* no more data */
965 /* Move on to the next page */
967 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
968 cursor
->page
= list_next_entry(cursor
->page
, lru
);
972 static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor
*cursor
,
975 struct ceph_msg_data
*data
= cursor
->data
;
977 cursor
->iov_iter
= data
->iter
;
979 iov_iter_truncate(&cursor
->iov_iter
, length
);
980 cursor
->resid
= iov_iter_count(&cursor
->iov_iter
);
983 static struct page
*ceph_msg_data_iter_next(struct ceph_msg_data_cursor
*cursor
,
984 size_t *page_offset
, size_t *length
)
990 iov_iter_revert(&cursor
->iov_iter
, cursor
->lastlen
);
992 len
= iov_iter_get_pages2(&cursor
->iov_iter
, &page
, PAGE_SIZE
,
996 cursor
->lastlen
= len
;
999 * FIXME: The assumption is that the pages represented by the iov_iter
1000 * are pinned, with the references held by the upper-level
1001 * callers, or by virtue of being under writeback. Eventually,
1002 * we'll get an iov_iter_get_pages2 variant that doesn't take
1003 * page refs. Until then, just put the page ref.
1005 VM_BUG_ON_PAGE(!PageWriteback(page
) && page_count(page
) < 2, page
);
1008 *length
= min_t(size_t, len
, cursor
->resid
);
1012 static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor
*cursor
,
1015 BUG_ON(bytes
> cursor
->resid
);
1016 cursor
->resid
-= bytes
;
1018 if (bytes
< cursor
->lastlen
) {
1019 cursor
->lastlen
-= bytes
;
1021 iov_iter_advance(&cursor
->iov_iter
, bytes
- cursor
->lastlen
);
1022 cursor
->lastlen
= 0;
1025 return cursor
->resid
;
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page. The network layer might not
1031 * consume an entire piece at once. A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece. It also tracks whether the current
1034 * piece is the last one in the data item.
1036 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1038 size_t length
= cursor
->total_resid
;
1040 switch (cursor
->data
->type
) {
1041 case CEPH_MSG_DATA_PAGELIST
:
1042 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1044 case CEPH_MSG_DATA_PAGES
:
1045 ceph_msg_data_pages_cursor_init(cursor
, length
);
1048 case CEPH_MSG_DATA_BIO
:
1049 ceph_msg_data_bio_cursor_init(cursor
, length
);
1051 #endif /* CONFIG_BLOCK */
1052 case CEPH_MSG_DATA_BVECS
:
1053 ceph_msg_data_bvecs_cursor_init(cursor
, length
);
1055 case CEPH_MSG_DATA_ITER
:
1056 ceph_msg_data_iter_cursor_init(cursor
, length
);
1058 case CEPH_MSG_DATA_NONE
:
1063 cursor
->need_crc
= true;
1066 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
,
1067 struct ceph_msg
*msg
, size_t length
)
1070 BUG_ON(length
> msg
->data_length
);
1071 BUG_ON(!msg
->num_data_items
);
1073 cursor
->total_resid
= length
;
1074 cursor
->data
= msg
->data
;
1075 cursor
->sr_resid
= 0;
1077 __ceph_msg_data_cursor_init(cursor
);
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1085 struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1086 size_t *page_offset
, size_t *length
)
1090 switch (cursor
->data
->type
) {
1091 case CEPH_MSG_DATA_PAGELIST
:
1092 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1094 case CEPH_MSG_DATA_PAGES
:
1095 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1098 case CEPH_MSG_DATA_BIO
:
1099 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1101 #endif /* CONFIG_BLOCK */
1102 case CEPH_MSG_DATA_BVECS
:
1103 page
= ceph_msg_data_bvecs_next(cursor
, page_offset
, length
);
1105 case CEPH_MSG_DATA_ITER
:
1106 page
= ceph_msg_data_iter_next(cursor
, page_offset
, length
);
1108 case CEPH_MSG_DATA_NONE
:
1115 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1117 BUG_ON(*length
> cursor
->resid
);
1123 * Returns true if the result moves the cursor on to the next piece
1126 void ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
, size_t bytes
)
1130 BUG_ON(bytes
> cursor
->resid
);
1131 switch (cursor
->data
->type
) {
1132 case CEPH_MSG_DATA_PAGELIST
:
1133 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1135 case CEPH_MSG_DATA_PAGES
:
1136 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1139 case CEPH_MSG_DATA_BIO
:
1140 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1142 #endif /* CONFIG_BLOCK */
1143 case CEPH_MSG_DATA_BVECS
:
1144 new_piece
= ceph_msg_data_bvecs_advance(cursor
, bytes
);
1146 case CEPH_MSG_DATA_ITER
:
1147 new_piece
= ceph_msg_data_iter_advance(cursor
, bytes
);
1149 case CEPH_MSG_DATA_NONE
:
1154 cursor
->total_resid
-= bytes
;
1156 if (!cursor
->resid
&& cursor
->total_resid
) {
1158 __ceph_msg_data_cursor_init(cursor
);
1161 cursor
->need_crc
= new_piece
;
1164 u32
ceph_crc32c_page(u32 crc
, struct page
*page
, unsigned int page_offset
,
1165 unsigned int length
)
1170 BUG_ON(kaddr
== NULL
);
1171 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1177 bool ceph_addr_is_blank(const struct ceph_entity_addr
*addr
)
1179 struct sockaddr_storage ss
= addr
->in_addr
; /* align */
1180 struct in_addr
*addr4
= &((struct sockaddr_in
*)&ss
)->sin_addr
;
1181 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)&ss
)->sin6_addr
;
1183 switch (ss
.ss_family
) {
1185 return addr4
->s_addr
== htonl(INADDR_ANY
);
1187 return ipv6_addr_any(addr6
);
1192 EXPORT_SYMBOL(ceph_addr_is_blank
);
1194 int ceph_addr_port(const struct ceph_entity_addr
*addr
)
1196 switch (get_unaligned(&addr
->in_addr
.ss_family
)) {
1198 return ntohs(get_unaligned(&((struct sockaddr_in
*)&addr
->in_addr
)->sin_port
));
1200 return ntohs(get_unaligned(&((struct sockaddr_in6
*)&addr
->in_addr
)->sin6_port
));
1205 void ceph_addr_set_port(struct ceph_entity_addr
*addr
, int p
)
1207 switch (get_unaligned(&addr
->in_addr
.ss_family
)) {
1209 put_unaligned(htons(p
), &((struct sockaddr_in
*)&addr
->in_addr
)->sin_port
);
1212 put_unaligned(htons(p
), &((struct sockaddr_in6
*)&addr
->in_addr
)->sin6_port
);
1218 * Unlike other *_pton function semantics, zero indicates success.
1220 static int ceph_pton(const char *str
, size_t len
, struct ceph_entity_addr
*addr
,
1221 char delim
, const char **ipend
)
1223 memset(&addr
->in_addr
, 0, sizeof(addr
->in_addr
));
1225 if (in4_pton(str
, len
, (u8
*)&((struct sockaddr_in
*)&addr
->in_addr
)->sin_addr
.s_addr
, delim
, ipend
)) {
1226 put_unaligned(AF_INET
, &addr
->in_addr
.ss_family
);
1230 if (in6_pton(str
, len
, (u8
*)&((struct sockaddr_in6
*)&addr
->in_addr
)->sin6_addr
.s6_addr
, delim
, ipend
)) {
1231 put_unaligned(AF_INET6
, &addr
->in_addr
.ss_family
);
1239 * Extract hostname string and resolve using kernel DNS facility.
1241 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1243 struct ceph_entity_addr
*addr
, char delim
, const char **ipend
)
1245 const char *end
, *delim_p
;
1246 char *colon_p
, *ip_addr
= NULL
;
1250 * The end of the hostname occurs immediately preceding the delimiter or
1251 * the port marker (':') where the delimiter takes precedence.
1253 delim_p
= memchr(name
, delim
, namelen
);
1254 colon_p
= memchr(name
, ':', namelen
);
1256 if (delim_p
&& colon_p
)
1257 end
= min(delim_p
, colon_p
);
1258 else if (!delim_p
&& colon_p
)
1262 if (!end
) /* case: hostname:/ */
1263 end
= name
+ namelen
;
1269 /* do dns_resolve upcall */
1270 ip_len
= dns_query(current
->nsproxy
->net_ns
,
1271 NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
, false);
1273 ret
= ceph_pton(ip_addr
, ip_len
, addr
, -1, NULL
);
1281 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1282 ret
, ret
? "failed" : ceph_pr_addr(addr
));
1287 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1288 struct ceph_entity_addr
*addr
, char delim
, const char **ipend
)
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1298 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1299 struct ceph_entity_addr
*addr
, char delim
, const char **ipend
)
1303 ret
= ceph_pton(name
, namelen
, addr
, delim
, ipend
);
1305 ret
= ceph_dns_resolve_name(name
, namelen
, addr
, delim
, ipend
);
1311 * Parse an ip[:port] list into an addr array. Use the default
1312 * monitor port if a port isn't specified.
1314 int ceph_parse_ips(const char *c
, const char *end
,
1315 struct ceph_entity_addr
*addr
,
1316 int max_count
, int *count
, char delim
)
1318 int i
, ret
= -EINVAL
;
1321 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1322 for (i
= 0; i
< max_count
; i
++) {
1323 char cur_delim
= delim
;
1332 ret
= ceph_parse_server_name(p
, end
- p
, &addr
[i
], cur_delim
,
1340 if (cur_delim
== ']') {
1342 dout("missing matching ']'\n");
1349 if (p
< end
&& *p
== ':') {
1352 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1353 port
= (port
* 10) + (*p
- '0');
1357 port
= CEPH_MON_PORT
;
1358 else if (port
> 65535)
1361 port
= CEPH_MON_PORT
;
1364 ceph_addr_set_port(&addr
[i
], port
);
1366 * We want the type to be set according to ms_mode
1367 * option, but options are normally parsed after mon
1368 * addresses. Rather than complicating parsing, set
1369 * to LEGACY and override in build_initial_monmap()
1370 * for mon addresses and ceph_messenger_init() for
1373 addr
[i
].type
= CEPH_ENTITY_ADDR_TYPE_LEGACY
;
1376 dout("%s got %s\n", __func__
, ceph_pr_addr(&addr
[i
]));
1397 * Process message. This happens in the worker thread. The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1401 void ceph_con_process_message(struct ceph_connection
*con
)
1403 struct ceph_msg
*msg
= con
->in_msg
;
1405 BUG_ON(con
->in_msg
->con
!= con
);
1408 /* if first message, set peer_name */
1409 if (con
->peer_name
.type
== 0)
1410 con
->peer_name
= msg
->hdr
.src
;
1413 mutex_unlock(&con
->mutex
);
1415 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416 msg
, le64_to_cpu(msg
->hdr
.seq
),
1417 ENTITY_NAME(msg
->hdr
.src
),
1418 le16_to_cpu(msg
->hdr
.type
),
1419 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1420 le32_to_cpu(msg
->hdr
.front_len
),
1421 le32_to_cpu(msg
->hdr
.middle_len
),
1422 le32_to_cpu(msg
->hdr
.data_len
),
1423 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
1424 con
->ops
->dispatch(con
, msg
);
1426 mutex_lock(&con
->mutex
);
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1434 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
1436 if (!con
->ops
->get(con
)) {
1437 dout("%s %p ref count 0\n", __func__
, con
);
1442 delay
= round_jiffies_relative(delay
);
1444 dout("%s %p %lu\n", __func__
, con
, delay
);
1445 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
1446 dout("%s %p - already queued\n", __func__
, con
);
1454 static void queue_con(struct ceph_connection
*con
)
1456 (void) queue_con_delay(con
, 0);
1459 static void cancel_con(struct ceph_connection
*con
)
1461 if (cancel_delayed_work(&con
->work
)) {
1462 dout("%s %p\n", __func__
, con
);
1467 static bool con_sock_closed(struct ceph_connection
*con
)
1469 if (!ceph_con_flag_test_and_clear(con
, CEPH_CON_F_SOCK_CLOSED
))
1473 case CEPH_CON_S_ ## x: \
1474 con->error_msg = "socket closed (con state " #x ")"; \
1477 switch (con
->state
) {
1481 CASE(V1_CONNECT_MSG
);
1482 CASE(V2_BANNER_PREFIX
);
1483 CASE(V2_BANNER_PAYLOAD
);
1486 CASE(V2_AUTH_SIGNATURE
);
1487 CASE(V2_SESSION_CONNECT
);
1488 CASE(V2_SESSION_RECONNECT
);
1499 static bool con_backoff(struct ceph_connection
*con
)
1503 if (!ceph_con_flag_test_and_clear(con
, CEPH_CON_F_BACKOFF
))
1506 ret
= queue_con_delay(con
, con
->delay
);
1508 dout("%s: con %p FAILED to back off %lu\n", __func__
,
1510 BUG_ON(ret
== -ENOENT
);
1511 ceph_con_flag_set(con
, CEPH_CON_F_BACKOFF
);
1517 /* Finish fault handling; con->mutex must *not* be held here */
1519 static void con_fault_finish(struct ceph_connection
*con
)
1521 dout("%s %p\n", __func__
, con
);
1524 * in case we faulted due to authentication, invalidate our
1525 * current tickets so that we can get new ones.
1527 if (con
->v1
.auth_retry
) {
1528 dout("auth_retry %d, invalidating\n", con
->v1
.auth_retry
);
1529 if (con
->ops
->invalidate_authorizer
)
1530 con
->ops
->invalidate_authorizer(con
);
1531 con
->v1
.auth_retry
= 0;
1534 if (con
->ops
->fault
)
1535 con
->ops
->fault(con
);
1539 * Do some work on a connection. Drop a connection ref when we're done.
1541 static void ceph_con_workfn(struct work_struct
*work
)
1543 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
1547 mutex_lock(&con
->mutex
);
1551 if ((fault
= con_sock_closed(con
))) {
1552 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
1555 if (con_backoff(con
)) {
1556 dout("%s: con %p BACKOFF\n", __func__
, con
);
1559 if (con
->state
== CEPH_CON_S_STANDBY
) {
1560 dout("%s: con %p STANDBY\n", __func__
, con
);
1563 if (con
->state
== CEPH_CON_S_CLOSED
) {
1564 dout("%s: con %p CLOSED\n", __func__
, con
);
1568 if (con
->state
== CEPH_CON_S_PREOPEN
) {
1569 dout("%s: con %p PREOPEN\n", __func__
, con
);
1573 if (ceph_msgr2(from_msgr(con
->msgr
)))
1574 ret
= ceph_con_v2_try_read(con
);
1576 ret
= ceph_con_v1_try_read(con
);
1580 if (!con
->error_msg
)
1581 con
->error_msg
= "socket error on read";
1586 if (ceph_msgr2(from_msgr(con
->msgr
)))
1587 ret
= ceph_con_v2_try_write(con
);
1589 ret
= ceph_con_v1_try_write(con
);
1593 if (!con
->error_msg
)
1594 con
->error_msg
= "socket error on write";
1598 break; /* If we make it to here, we're done */
1602 mutex_unlock(&con
->mutex
);
1605 con_fault_finish(con
);
1611 * Generic error/fault handler. A retry mechanism is used with
1612 * exponential backoff
1614 static void con_fault(struct ceph_connection
*con
)
1616 dout("fault %p state %d to peer %s\n",
1617 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
));
1619 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
1620 ceph_pr_addr(&con
->peer_addr
), con
->error_msg
);
1621 con
->error_msg
= NULL
;
1623 WARN_ON(con
->state
== CEPH_CON_S_STANDBY
||
1624 con
->state
== CEPH_CON_S_CLOSED
);
1626 ceph_con_reset_protocol(con
);
1628 if (ceph_con_flag_test(con
, CEPH_CON_F_LOSSYTX
)) {
1629 dout("fault on LOSSYTX channel, marking CLOSED\n");
1630 con
->state
= CEPH_CON_S_CLOSED
;
1634 /* Requeue anything that hasn't been acked */
1635 list_splice_init(&con
->out_sent
, &con
->out_queue
);
1637 /* If there are no messages queued or keepalive pending, place
1638 * the connection in a STANDBY state */
1639 if (list_empty(&con
->out_queue
) &&
1640 !ceph_con_flag_test(con
, CEPH_CON_F_KEEPALIVE_PENDING
)) {
1641 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
1642 ceph_con_flag_clear(con
, CEPH_CON_F_WRITE_PENDING
);
1643 con
->state
= CEPH_CON_S_STANDBY
;
1645 /* retry after a delay. */
1646 con
->state
= CEPH_CON_S_PREOPEN
;
1648 con
->delay
= BASE_DELAY_INTERVAL
;
1649 } else if (con
->delay
< MAX_DELAY_INTERVAL
) {
1651 if (con
->delay
> MAX_DELAY_INTERVAL
)
1652 con
->delay
= MAX_DELAY_INTERVAL
;
1654 ceph_con_flag_set(con
, CEPH_CON_F_BACKOFF
);
1659 void ceph_messenger_reset_nonce(struct ceph_messenger
*msgr
)
1661 u32 nonce
= le32_to_cpu(msgr
->inst
.addr
.nonce
) + 1000000;
1662 msgr
->inst
.addr
.nonce
= cpu_to_le32(nonce
);
1663 ceph_encode_my_addr(msgr
);
1667 * initialize a new messenger instance
1669 void ceph_messenger_init(struct ceph_messenger
*msgr
,
1670 struct ceph_entity_addr
*myaddr
)
1672 spin_lock_init(&msgr
->global_seq_lock
);
1675 memcpy(&msgr
->inst
.addr
.in_addr
, &myaddr
->in_addr
,
1676 sizeof(msgr
->inst
.addr
.in_addr
));
1677 ceph_addr_set_port(&msgr
->inst
.addr
, 0);
1681 * Since nautilus, clients are identified using type ANY.
1682 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1684 msgr
->inst
.addr
.type
= CEPH_ENTITY_ADDR_TYPE_ANY
;
1686 /* generate a random non-zero nonce */
1688 get_random_bytes(&msgr
->inst
.addr
.nonce
,
1689 sizeof(msgr
->inst
.addr
.nonce
));
1690 } while (!msgr
->inst
.addr
.nonce
);
1691 ceph_encode_my_addr(msgr
);
1693 atomic_set(&msgr
->stopping
, 0);
1694 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
1696 dout("%s %p\n", __func__
, msgr
);
1699 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
1701 put_net(read_pnet(&msgr
->net
));
1704 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
1707 msg
->con
->ops
->put(msg
->con
);
1709 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
1710 BUG_ON(msg
->con
!= con
);
1713 static void clear_standby(struct ceph_connection
*con
)
1715 /* come back from STANDBY? */
1716 if (con
->state
== CEPH_CON_S_STANDBY
) {
1717 dout("clear_standby %p and ++connect_seq\n", con
);
1718 con
->state
= CEPH_CON_S_PREOPEN
;
1719 con
->v1
.connect_seq
++;
1720 WARN_ON(ceph_con_flag_test(con
, CEPH_CON_F_WRITE_PENDING
));
1721 WARN_ON(ceph_con_flag_test(con
, CEPH_CON_F_KEEPALIVE_PENDING
));
1726 * Queue up an outgoing message on the given connection.
1728 * Consumes a ref on @msg.
1730 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
1733 msg
->hdr
.src
= con
->msgr
->inst
.name
;
1734 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
1735 msg
->needs_out_seq
= true;
1737 mutex_lock(&con
->mutex
);
1739 if (con
->state
== CEPH_CON_S_CLOSED
) {
1740 dout("con_send %p closed, dropping %p\n", con
, msg
);
1742 mutex_unlock(&con
->mutex
);
1746 msg_con_set(msg
, con
);
1748 BUG_ON(!list_empty(&msg
->list_head
));
1749 list_add_tail(&msg
->list_head
, &con
->out_queue
);
1750 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
1751 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
1752 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1753 le32_to_cpu(msg
->hdr
.front_len
),
1754 le32_to_cpu(msg
->hdr
.middle_len
),
1755 le32_to_cpu(msg
->hdr
.data_len
));
1758 mutex_unlock(&con
->mutex
);
1760 /* if there wasn't anything waiting to send before, queue
1762 if (!ceph_con_flag_test_and_set(con
, CEPH_CON_F_WRITE_PENDING
))
1765 EXPORT_SYMBOL(ceph_con_send
);
1768 * Revoke a message that was previously queued for send
1770 void ceph_msg_revoke(struct ceph_msg
*msg
)
1772 struct ceph_connection
*con
= msg
->con
;
1775 dout("%s msg %p null con\n", __func__
, msg
);
1776 return; /* Message not in our possession */
1779 mutex_lock(&con
->mutex
);
1780 if (list_empty(&msg
->list_head
)) {
1781 WARN_ON(con
->out_msg
== msg
);
1782 dout("%s con %p msg %p not linked\n", __func__
, con
, msg
);
1783 mutex_unlock(&con
->mutex
);
1787 dout("%s con %p msg %p was linked\n", __func__
, con
, msg
);
1789 ceph_msg_remove(msg
);
1791 if (con
->out_msg
== msg
) {
1792 WARN_ON(con
->state
!= CEPH_CON_S_OPEN
);
1793 dout("%s con %p msg %p was sending\n", __func__
, con
, msg
);
1794 if (ceph_msgr2(from_msgr(con
->msgr
)))
1795 ceph_con_v2_revoke(con
);
1797 ceph_con_v1_revoke(con
);
1798 ceph_msg_put(con
->out_msg
);
1799 con
->out_msg
= NULL
;
1801 dout("%s con %p msg %p not current, out_msg %p\n", __func__
,
1802 con
, msg
, con
->out_msg
);
1804 mutex_unlock(&con
->mutex
);
1808 * Revoke a message that we may be reading data into
1810 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
1812 struct ceph_connection
*con
= msg
->con
;
1815 dout("%s msg %p null con\n", __func__
, msg
);
1816 return; /* Message not in our possession */
1819 mutex_lock(&con
->mutex
);
1820 if (con
->in_msg
== msg
) {
1821 WARN_ON(con
->state
!= CEPH_CON_S_OPEN
);
1822 dout("%s con %p msg %p was recving\n", __func__
, con
, msg
);
1823 if (ceph_msgr2(from_msgr(con
->msgr
)))
1824 ceph_con_v2_revoke_incoming(con
);
1826 ceph_con_v1_revoke_incoming(con
);
1827 ceph_msg_put(con
->in_msg
);
1830 dout("%s con %p msg %p not current, in_msg %p\n", __func__
,
1831 con
, msg
, con
->in_msg
);
1833 mutex_unlock(&con
->mutex
);
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1839 void ceph_con_keepalive(struct ceph_connection
*con
)
1841 dout("con_keepalive %p\n", con
);
1842 mutex_lock(&con
->mutex
);
1844 ceph_con_flag_set(con
, CEPH_CON_F_KEEPALIVE_PENDING
);
1845 mutex_unlock(&con
->mutex
);
1847 if (!ceph_con_flag_test_and_set(con
, CEPH_CON_F_WRITE_PENDING
))
1850 EXPORT_SYMBOL(ceph_con_keepalive
);
1852 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
1853 unsigned long interval
)
1856 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
1857 struct timespec64 now
;
1858 struct timespec64 ts
;
1859 ktime_get_real_ts64(&now
);
1860 jiffies_to_timespec64(interval
, &ts
);
1861 ts
= timespec64_add(con
->last_keepalive_ack
, ts
);
1862 return timespec64_compare(&now
, &ts
) >= 0;
1867 static struct ceph_msg_data
*ceph_msg_data_add(struct ceph_msg
*msg
)
1869 BUG_ON(msg
->num_data_items
>= msg
->max_data_items
);
1870 return &msg
->data
[msg
->num_data_items
++];
1873 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
1875 if (data
->type
== CEPH_MSG_DATA_PAGES
&& data
->own_pages
) {
1876 int num_pages
= calc_pages_for(data
->alignment
, data
->length
);
1877 ceph_release_page_vector(data
->pages
, num_pages
);
1878 } else if (data
->type
== CEPH_MSG_DATA_PAGELIST
) {
1879 ceph_pagelist_release(data
->pagelist
);
1883 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
1884 size_t length
, size_t alignment
, bool own_pages
)
1886 struct ceph_msg_data
*data
;
1891 data
= ceph_msg_data_add(msg
);
1892 data
->type
= CEPH_MSG_DATA_PAGES
;
1893 data
->pages
= pages
;
1894 data
->length
= length
;
1895 data
->alignment
= alignment
& ~PAGE_MASK
;
1896 data
->own_pages
= own_pages
;
1898 msg
->data_length
+= length
;
1900 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
1902 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
1903 struct ceph_pagelist
*pagelist
)
1905 struct ceph_msg_data
*data
;
1908 BUG_ON(!pagelist
->length
);
1910 data
= ceph_msg_data_add(msg
);
1911 data
->type
= CEPH_MSG_DATA_PAGELIST
;
1912 refcount_inc(&pagelist
->refcnt
);
1913 data
->pagelist
= pagelist
;
1915 msg
->data_length
+= pagelist
->length
;
1917 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
1920 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct ceph_bio_iter
*bio_pos
,
1923 struct ceph_msg_data
*data
;
1925 data
= ceph_msg_data_add(msg
);
1926 data
->type
= CEPH_MSG_DATA_BIO
;
1927 data
->bio_pos
= *bio_pos
;
1928 data
->bio_length
= length
;
1930 msg
->data_length
+= length
;
1932 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
1933 #endif /* CONFIG_BLOCK */
1935 void ceph_msg_data_add_bvecs(struct ceph_msg
*msg
,
1936 struct ceph_bvec_iter
*bvec_pos
)
1938 struct ceph_msg_data
*data
;
1940 data
= ceph_msg_data_add(msg
);
1941 data
->type
= CEPH_MSG_DATA_BVECS
;
1942 data
->bvec_pos
= *bvec_pos
;
1944 msg
->data_length
+= bvec_pos
->iter
.bi_size
;
1946 EXPORT_SYMBOL(ceph_msg_data_add_bvecs
);
1948 void ceph_msg_data_add_iter(struct ceph_msg
*msg
,
1949 struct iov_iter
*iter
)
1951 struct ceph_msg_data
*data
;
1953 data
= ceph_msg_data_add(msg
);
1954 data
->type
= CEPH_MSG_DATA_ITER
;
1957 msg
->data_length
+= iov_iter_count(&data
->iter
);
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1964 struct ceph_msg
*ceph_msg_new2(int type
, int front_len
, int max_data_items
,
1965 gfp_t flags
, bool can_fail
)
1969 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
1973 m
->hdr
.type
= cpu_to_le16(type
);
1974 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
1975 m
->hdr
.front_len
= cpu_to_le32(front_len
);
1977 INIT_LIST_HEAD(&m
->list_head
);
1978 kref_init(&m
->kref
);
1982 m
->front
.iov_base
= kvmalloc(front_len
, flags
);
1983 if (m
->front
.iov_base
== NULL
) {
1984 dout("ceph_msg_new can't allocate %d bytes\n",
1989 m
->front
.iov_base
= NULL
;
1991 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
1993 if (max_data_items
) {
1994 m
->data
= kmalloc_array(max_data_items
, sizeof(*m
->data
),
1999 m
->max_data_items
= max_data_items
;
2002 dout("ceph_msg_new %p front %d\n", m
, front_len
);
2009 pr_err("msg_new can't create type %d front %d\n", type
,
2013 dout("msg_new can't create type %d front %d\n", type
,
2018 EXPORT_SYMBOL(ceph_msg_new2
);
2020 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
2023 return ceph_msg_new2(type
, front_len
, 0, flags
, can_fail
);
2025 EXPORT_SYMBOL(ceph_msg_new
);
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg. This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2034 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2036 int type
= le16_to_cpu(msg
->hdr
.type
);
2037 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
2039 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
2040 ceph_msg_type_name(type
), middle_len
);
2041 BUG_ON(!middle_len
);
2042 BUG_ON(msg
->middle
);
2044 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg. Uses the
2053 * connection's private alloc_msg op if available.
2055 * Returns 0 on success, or a negative error code.
2057 * On success, if we set *skip = 1:
2058 * - the next message should be skipped and ignored.
2059 * - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 * - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 * - con->in_msg == NULL
2065 int ceph_con_in_msg_alloc(struct ceph_connection
*con
,
2066 struct ceph_msg_header
*hdr
, int *skip
)
2068 int middle_len
= le32_to_cpu(hdr
->middle_len
);
2069 struct ceph_msg
*msg
;
2072 BUG_ON(con
->in_msg
!= NULL
);
2073 BUG_ON(!con
->ops
->alloc_msg
);
2075 mutex_unlock(&con
->mutex
);
2076 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
2077 mutex_lock(&con
->mutex
);
2078 if (con
->state
!= CEPH_CON_S_OPEN
) {
2085 msg_con_set(msg
, con
);
2089 * Null message pointer means either we should skip
2090 * this message or we couldn't allocate memory. The
2091 * former is not an error.
2096 con
->error_msg
= "error allocating memory for incoming message";
2099 memcpy(&con
->in_msg
->hdr
, hdr
, sizeof(*hdr
));
2101 if (middle_len
&& !con
->in_msg
->middle
) {
2102 ret
= ceph_alloc_middle(con
, con
->in_msg
);
2104 ceph_msg_put(con
->in_msg
);
2112 void ceph_con_get_out_msg(struct ceph_connection
*con
)
2114 struct ceph_msg
*msg
;
2116 BUG_ON(list_empty(&con
->out_queue
));
2117 msg
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
2118 WARN_ON(msg
->con
!= con
);
2121 * Put the message on "sent" list using a ref from ceph_con_send().
2122 * It is put when the message is acked or revoked.
2124 list_move_tail(&msg
->list_head
, &con
->out_sent
);
2127 * Only assign outgoing seq # if we haven't sent this message
2128 * yet. If it is requeued, resend with it's original seq.
2130 if (msg
->needs_out_seq
) {
2131 msg
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
2132 msg
->needs_out_seq
= false;
2134 if (con
->ops
->reencode_message
)
2135 con
->ops
->reencode_message(msg
);
2139 * Get a ref for out_msg. It is put when we are done sending the
2140 * message or in case of a fault.
2142 WARN_ON(con
->out_msg
);
2143 con
->out_msg
= ceph_msg_get(msg
);
2147 * Free a generically kmalloc'd message.
2149 static void ceph_msg_free(struct ceph_msg
*m
)
2151 dout("%s %p\n", __func__
, m
);
2152 kvfree(m
->front
.iov_base
);
2154 kmem_cache_free(ceph_msg_cache
, m
);
2157 static void ceph_msg_release(struct kref
*kref
)
2159 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
2162 dout("%s %p\n", __func__
, m
);
2163 WARN_ON(!list_empty(&m
->list_head
));
2165 msg_con_set(m
, NULL
);
2167 /* drop middle, data, if any */
2169 ceph_buffer_put(m
->middle
);
2173 for (i
= 0; i
< m
->num_data_items
; i
++)
2174 ceph_msg_data_destroy(&m
->data
[i
]);
2177 ceph_msgpool_put(m
->pool
, m
);
2182 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
2184 dout("%s %p (was %d)\n", __func__
, msg
,
2185 kref_read(&msg
->kref
));
2186 kref_get(&msg
->kref
);
2189 EXPORT_SYMBOL(ceph_msg_get
);
2191 void ceph_msg_put(struct ceph_msg
*msg
)
2193 dout("%s %p (was %d)\n", __func__
, msg
,
2194 kref_read(&msg
->kref
));
2195 kref_put(&msg
->kref
, ceph_msg_release
);
2197 EXPORT_SYMBOL(ceph_msg_put
);
2199 void ceph_msg_dump(struct ceph_msg
*msg
)
2201 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
2202 msg
->front_alloc_len
, msg
->data_length
);
2203 print_hex_dump(KERN_DEBUG
, "header: ",
2204 DUMP_PREFIX_OFFSET
, 16, 1,
2205 &msg
->hdr
, sizeof(msg
->hdr
), true);
2206 print_hex_dump(KERN_DEBUG
, " front: ",
2207 DUMP_PREFIX_OFFSET
, 16, 1,
2208 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
2210 print_hex_dump(KERN_DEBUG
, "middle: ",
2211 DUMP_PREFIX_OFFSET
, 16, 1,
2212 msg
->middle
->vec
.iov_base
,
2213 msg
->middle
->vec
.iov_len
, true);
2214 print_hex_dump(KERN_DEBUG
, "footer: ",
2215 DUMP_PREFIX_OFFSET
, 16, 1,
2216 &msg
->footer
, sizeof(msg
->footer
), true);
2218 EXPORT_SYMBOL(ceph_msg_dump
);