1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2002-2004, Instant802 Networks, Inc.
4 * Copyright 2005, Devicescape Software, Inc.
5 * Copyright (C) 2016 Intel Deutschland GmbH
7 #include <linux/kernel.h>
8 #include <linux/bitops.h>
9 #include <linux/types.h>
10 #include <linux/netdevice.h>
11 #include <linux/export.h>
12 #include <linux/unaligned.h>
14 #include <net/mac80211.h>
15 #include "driver-ops.h"
20 #define PHASE1_LOOP_COUNT 8
23 * 2-byte by 2-byte subset of the full AES S-box table; second part of this
24 * table is identical to first part but byte-swapped
26 static const u16 tkip_sbox
[256] =
28 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
29 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
30 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
31 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
32 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
33 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
34 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
35 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
36 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
37 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
38 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
39 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
40 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
41 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
42 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
43 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
44 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
45 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
46 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
47 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
48 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
49 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
50 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
51 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
52 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
53 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
54 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
55 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
56 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
57 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
58 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
59 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
62 static u16
tkipS(u16 val
)
64 return tkip_sbox
[val
& 0xff] ^ swab16(tkip_sbox
[val
>> 8]);
67 static u8
*write_tkip_iv(u8
*pos
, u16 iv16
)
70 *pos
++ = ((iv16
>> 8) | 0x20) & 0x7f;
76 * P1K := Phase1(TA, TK, TSC)
77 * TA = transmitter address (48 bits)
78 * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
79 * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
82 static void tkip_mixing_phase1(const u8
*tk
, struct tkip_ctx
*ctx
,
83 const u8
*ta
, u32 tsc_IV32
)
88 p1k
[0] = tsc_IV32
& 0xFFFF;
89 p1k
[1] = tsc_IV32
>> 16;
90 p1k
[2] = get_unaligned_le16(ta
+ 0);
91 p1k
[3] = get_unaligned_le16(ta
+ 2);
92 p1k
[4] = get_unaligned_le16(ta
+ 4);
94 for (i
= 0; i
< PHASE1_LOOP_COUNT
; i
++) {
96 p1k
[0] += tkipS(p1k
[4] ^ get_unaligned_le16(tk
+ 0 + j
));
97 p1k
[1] += tkipS(p1k
[0] ^ get_unaligned_le16(tk
+ 4 + j
));
98 p1k
[2] += tkipS(p1k
[1] ^ get_unaligned_le16(tk
+ 8 + j
));
99 p1k
[3] += tkipS(p1k
[2] ^ get_unaligned_le16(tk
+ 12 + j
));
100 p1k
[4] += tkipS(p1k
[3] ^ get_unaligned_le16(tk
+ 0 + j
)) + i
;
102 ctx
->state
= TKIP_STATE_PHASE1_DONE
;
103 ctx
->p1k_iv32
= tsc_IV32
;
106 static void tkip_mixing_phase2(const u8
*tk
, struct tkip_ctx
*ctx
,
107 u16 tsc_IV16
, u8
*rc4key
)
110 const u16
*p1k
= ctx
->p1k
;
118 ppk
[5] = p1k
[4] + tsc_IV16
;
120 ppk
[0] += tkipS(ppk
[5] ^ get_unaligned_le16(tk
+ 0));
121 ppk
[1] += tkipS(ppk
[0] ^ get_unaligned_le16(tk
+ 2));
122 ppk
[2] += tkipS(ppk
[1] ^ get_unaligned_le16(tk
+ 4));
123 ppk
[3] += tkipS(ppk
[2] ^ get_unaligned_le16(tk
+ 6));
124 ppk
[4] += tkipS(ppk
[3] ^ get_unaligned_le16(tk
+ 8));
125 ppk
[5] += tkipS(ppk
[4] ^ get_unaligned_le16(tk
+ 10));
126 ppk
[0] += ror16(ppk
[5] ^ get_unaligned_le16(tk
+ 12), 1);
127 ppk
[1] += ror16(ppk
[0] ^ get_unaligned_le16(tk
+ 14), 1);
128 ppk
[2] += ror16(ppk
[1], 1);
129 ppk
[3] += ror16(ppk
[2], 1);
130 ppk
[4] += ror16(ppk
[3], 1);
131 ppk
[5] += ror16(ppk
[4], 1);
133 rc4key
= write_tkip_iv(rc4key
, tsc_IV16
);
134 *rc4key
++ = ((ppk
[5] ^ get_unaligned_le16(tk
)) >> 1) & 0xFF;
136 for (i
= 0; i
< 6; i
++)
137 put_unaligned_le16(ppk
[i
], rc4key
+ 2 * i
);
140 /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
141 * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
142 * the packet payload). */
143 u8
*ieee80211_tkip_add_iv(u8
*pos
, struct ieee80211_key_conf
*keyconf
, u64 pn
)
145 pos
= write_tkip_iv(pos
, TKIP_PN_TO_IV16(pn
));
146 *pos
++ = (keyconf
->keyidx
<< 6) | (1 << 5) /* Ext IV */;
147 put_unaligned_le32(TKIP_PN_TO_IV32(pn
), pos
);
150 EXPORT_SYMBOL_GPL(ieee80211_tkip_add_iv
);
152 static void ieee80211_compute_tkip_p1k(struct ieee80211_key
*key
, u32 iv32
)
154 struct ieee80211_sub_if_data
*sdata
= key
->sdata
;
155 struct tkip_ctx
*ctx
= &key
->u
.tkip
.tx
;
156 const u8
*tk
= &key
->conf
.key
[NL80211_TKIP_DATA_OFFSET_ENCR_KEY
];
158 lockdep_assert_held(&key
->u
.tkip
.txlock
);
161 * Update the P1K when the IV32 is different from the value it
162 * had when we last computed it (or when not initialised yet).
163 * This might flip-flop back and forth if packets are processed
164 * out-of-order due to the different ACs, but then we have to
165 * just compute the P1K more often.
167 if (ctx
->p1k_iv32
!= iv32
|| ctx
->state
== TKIP_STATE_NOT_INIT
)
168 tkip_mixing_phase1(tk
, ctx
, sdata
->vif
.addr
, iv32
);
171 void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf
*keyconf
,
174 struct ieee80211_key
*key
= (struct ieee80211_key
*)
175 container_of(keyconf
, struct ieee80211_key
, conf
);
176 struct tkip_ctx
*ctx
= &key
->u
.tkip
.tx
;
178 spin_lock_bh(&key
->u
.tkip
.txlock
);
179 ieee80211_compute_tkip_p1k(key
, iv32
);
180 memcpy(p1k
, ctx
->p1k
, sizeof(ctx
->p1k
));
181 spin_unlock_bh(&key
->u
.tkip
.txlock
);
183 EXPORT_SYMBOL(ieee80211_get_tkip_p1k_iv
);
185 void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf
*keyconf
,
186 const u8
*ta
, u32 iv32
, u16
*p1k
)
188 const u8
*tk
= &keyconf
->key
[NL80211_TKIP_DATA_OFFSET_ENCR_KEY
];
191 tkip_mixing_phase1(tk
, &ctx
, ta
, iv32
);
192 memcpy(p1k
, ctx
.p1k
, sizeof(ctx
.p1k
));
194 EXPORT_SYMBOL(ieee80211_get_tkip_rx_p1k
);
196 void ieee80211_get_tkip_p2k(struct ieee80211_key_conf
*keyconf
,
197 struct sk_buff
*skb
, u8
*p2k
)
199 struct ieee80211_key
*key
= (struct ieee80211_key
*)
200 container_of(keyconf
, struct ieee80211_key
, conf
);
201 const u8
*tk
= &key
->conf
.key
[NL80211_TKIP_DATA_OFFSET_ENCR_KEY
];
202 struct tkip_ctx
*ctx
= &key
->u
.tkip
.tx
;
203 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
204 const u8
*data
= (u8
*)hdr
+ ieee80211_hdrlen(hdr
->frame_control
);
205 u32 iv32
= get_unaligned_le32(&data
[4]);
206 u16 iv16
= data
[2] | (data
[0] << 8);
208 spin_lock(&key
->u
.tkip
.txlock
);
209 ieee80211_compute_tkip_p1k(key
, iv32
);
210 tkip_mixing_phase2(tk
, ctx
, iv16
, p2k
);
211 spin_unlock(&key
->u
.tkip
.txlock
);
213 EXPORT_SYMBOL(ieee80211_get_tkip_p2k
);
216 * Encrypt packet payload with TKIP using @key. @pos is a pointer to the
217 * beginning of the buffer containing payload. This payload must include
218 * the IV/Ext.IV and space for (taildroom) four octets for ICV.
219 * @payload_len is the length of payload (_not_ including IV/ICV length).
220 * @ta is the transmitter addresses.
222 int ieee80211_tkip_encrypt_data(struct arc4_ctx
*ctx
,
223 struct ieee80211_key
*key
,
225 u8
*payload
, size_t payload_len
)
229 ieee80211_get_tkip_p2k(&key
->conf
, skb
, rc4key
);
231 return ieee80211_wep_encrypt_data(ctx
, rc4key
, 16,
232 payload
, payload_len
);
235 /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
236 * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
237 * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
238 * length of payload, including IV, Ext. IV, MIC, ICV. */
239 int ieee80211_tkip_decrypt_data(struct arc4_ctx
*ctx
,
240 struct ieee80211_key
*key
,
241 u8
*payload
, size_t payload_len
, u8
*ta
,
242 u8
*ra
, int only_iv
, int queue
,
243 u32
*out_iv32
, u16
*out_iv16
)
247 u8 rc4key
[16], keyid
, *pos
= payload
;
249 const u8
*tk
= &key
->conf
.key
[NL80211_TKIP_DATA_OFFSET_ENCR_KEY
];
250 struct tkip_ctx_rx
*rx_ctx
= &key
->u
.tkip
.rx
[queue
];
252 if (payload_len
< 12)
255 iv16
= (pos
[0] << 8) | pos
[2];
257 iv32
= get_unaligned_le32(pos
+ 4);
260 if (!(keyid
& (1 << 5)))
261 return TKIP_DECRYPT_NO_EXT_IV
;
263 if ((keyid
>> 6) != key
->conf
.keyidx
)
264 return TKIP_DECRYPT_INVALID_KEYIDX
;
266 /* Reject replays if the received TSC is smaller than or equal to the
267 * last received value in a valid message, but with an exception for
268 * the case where a new key has been set and no valid frame using that
269 * key has yet received and the local RSC was initialized to 0. This
270 * exception allows the very first frame sent by the transmitter to be
271 * accepted even if that transmitter were to use TSC 0 (IEEE 802.11
272 * described TSC to be initialized to 1 whenever a new key is taken into
275 if (iv32
< rx_ctx
->iv32
||
276 (iv32
== rx_ctx
->iv32
&&
277 (iv16
< rx_ctx
->iv16
||
278 (iv16
== rx_ctx
->iv16
&&
279 (rx_ctx
->iv32
|| rx_ctx
->iv16
||
280 rx_ctx
->ctx
.state
!= TKIP_STATE_NOT_INIT
)))))
281 return TKIP_DECRYPT_REPLAY
;
284 res
= TKIP_DECRYPT_OK
;
285 rx_ctx
->ctx
.state
= TKIP_STATE_PHASE1_HW_UPLOADED
;
289 if (rx_ctx
->ctx
.state
== TKIP_STATE_NOT_INIT
||
290 rx_ctx
->iv32
!= iv32
) {
291 /* IV16 wrapped around - perform TKIP phase 1 */
292 tkip_mixing_phase1(tk
, &rx_ctx
->ctx
, ta
, iv32
);
294 if (key
->local
->ops
->update_tkip_key
&&
295 key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
&&
296 rx_ctx
->ctx
.state
!= TKIP_STATE_PHASE1_HW_UPLOADED
) {
297 struct ieee80211_sub_if_data
*sdata
= key
->sdata
;
299 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
300 sdata
= container_of(key
->sdata
->bss
,
301 struct ieee80211_sub_if_data
, u
.ap
);
302 drv_update_tkip_key(key
->local
, sdata
, &key
->conf
, key
->sta
,
303 iv32
, rx_ctx
->ctx
.p1k
);
304 rx_ctx
->ctx
.state
= TKIP_STATE_PHASE1_HW_UPLOADED
;
307 tkip_mixing_phase2(tk
, &rx_ctx
->ctx
, iv16
, rc4key
);
309 res
= ieee80211_wep_decrypt_data(ctx
, rc4key
, 16, pos
, payload_len
- 12);
311 if (res
== TKIP_DECRYPT_OK
) {
313 * Record previously received IV, will be copied into the
314 * key information after MIC verification. It is possible
315 * that we don't catch replays of fragments but that's ok
316 * because the Michael MIC verication will then fail.