2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/sched/clock.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h>
37 #include <linux/dma-mapping.h>
38 #include <rdma/rdma_cm.h>
40 #include "rds_single_path.h"
44 static struct kmem_cache
*rds_ib_incoming_slab
;
45 static struct kmem_cache
*rds_ib_frag_slab
;
46 static atomic_t rds_ib_allocation
= ATOMIC_INIT(0);
48 void rds_ib_recv_init_ring(struct rds_ib_connection
*ic
)
50 struct rds_ib_recv_work
*recv
;
53 for (i
= 0, recv
= ic
->i_recvs
; i
< ic
->i_recv_ring
.w_nr
; i
++, recv
++) {
59 recv
->r_wr
.next
= NULL
;
61 recv
->r_wr
.sg_list
= recv
->r_sge
;
62 recv
->r_wr
.num_sge
= RDS_IB_RECV_SGE
;
64 sge
= &recv
->r_sge
[0];
65 sge
->addr
= ic
->i_recv_hdrs_dma
[i
];
66 sge
->length
= sizeof(struct rds_header
);
67 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
69 sge
= &recv
->r_sge
[1];
71 sge
->length
= RDS_FRAG_SIZE
;
72 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
77 * The entire 'from' list, including the from element itself, is put on
78 * to the tail of the 'to' list.
80 static void list_splice_entire_tail(struct list_head
*from
,
83 struct list_head
*from_last
= from
->prev
;
85 list_splice_tail(from_last
, to
);
86 list_add_tail(from_last
, to
);
89 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache
*cache
)
91 struct list_head
*tmp
;
93 tmp
= xchg(&cache
->xfer
, NULL
);
96 list_splice_entire_tail(tmp
, cache
->ready
);
102 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache
*cache
, gfp_t gfp
)
104 struct rds_ib_cache_head
*head
;
107 cache
->percpu
= alloc_percpu_gfp(struct rds_ib_cache_head
, gfp
);
111 for_each_possible_cpu(cpu
) {
112 head
= per_cpu_ptr(cache
->percpu
, cpu
);
122 int rds_ib_recv_alloc_caches(struct rds_ib_connection
*ic
, gfp_t gfp
)
126 ret
= rds_ib_recv_alloc_cache(&ic
->i_cache_incs
, gfp
);
128 ret
= rds_ib_recv_alloc_cache(&ic
->i_cache_frags
, gfp
);
130 free_percpu(ic
->i_cache_incs
.percpu
);
136 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache
*cache
,
137 struct list_head
*caller_list
)
139 struct rds_ib_cache_head
*head
;
142 for_each_possible_cpu(cpu
) {
143 head
= per_cpu_ptr(cache
->percpu
, cpu
);
145 list_splice_entire_tail(head
->first
, caller_list
);
151 list_splice_entire_tail(cache
->ready
, caller_list
);
156 void rds_ib_recv_free_caches(struct rds_ib_connection
*ic
)
158 struct rds_ib_incoming
*inc
;
159 struct rds_ib_incoming
*inc_tmp
;
160 struct rds_page_frag
*frag
;
161 struct rds_page_frag
*frag_tmp
;
164 rds_ib_cache_xfer_to_ready(&ic
->i_cache_incs
);
165 rds_ib_cache_splice_all_lists(&ic
->i_cache_incs
, &list
);
166 free_percpu(ic
->i_cache_incs
.percpu
);
168 list_for_each_entry_safe(inc
, inc_tmp
, &list
, ii_cache_entry
) {
169 list_del(&inc
->ii_cache_entry
);
170 WARN_ON(!list_empty(&inc
->ii_frags
));
171 kmem_cache_free(rds_ib_incoming_slab
, inc
);
172 atomic_dec(&rds_ib_allocation
);
175 rds_ib_cache_xfer_to_ready(&ic
->i_cache_frags
);
176 rds_ib_cache_splice_all_lists(&ic
->i_cache_frags
, &list
);
177 free_percpu(ic
->i_cache_frags
.percpu
);
179 list_for_each_entry_safe(frag
, frag_tmp
, &list
, f_cache_entry
) {
180 list_del(&frag
->f_cache_entry
);
181 WARN_ON(!list_empty(&frag
->f_item
));
182 kmem_cache_free(rds_ib_frag_slab
, frag
);
187 static void rds_ib_recv_cache_put(struct list_head
*new_item
,
188 struct rds_ib_refill_cache
*cache
);
189 static struct list_head
*rds_ib_recv_cache_get(struct rds_ib_refill_cache
*cache
);
192 /* Recycle frag and attached recv buffer f_sg */
193 static void rds_ib_frag_free(struct rds_ib_connection
*ic
,
194 struct rds_page_frag
*frag
)
196 rdsdebug("frag %p page %p\n", frag
, sg_page(&frag
->f_sg
));
198 rds_ib_recv_cache_put(&frag
->f_cache_entry
, &ic
->i_cache_frags
);
199 atomic_add(RDS_FRAG_SIZE
/ SZ_1K
, &ic
->i_cache_allocs
);
200 rds_ib_stats_add(s_ib_recv_added_to_cache
, RDS_FRAG_SIZE
);
203 /* Recycle inc after freeing attached frags */
204 void rds_ib_inc_free(struct rds_incoming
*inc
)
206 struct rds_ib_incoming
*ibinc
;
207 struct rds_page_frag
*frag
;
208 struct rds_page_frag
*pos
;
209 struct rds_ib_connection
*ic
= inc
->i_conn
->c_transport_data
;
211 ibinc
= container_of(inc
, struct rds_ib_incoming
, ii_inc
);
213 /* Free attached frags */
214 list_for_each_entry_safe(frag
, pos
, &ibinc
->ii_frags
, f_item
) {
215 list_del_init(&frag
->f_item
);
216 rds_ib_frag_free(ic
, frag
);
218 BUG_ON(!list_empty(&ibinc
->ii_frags
));
220 rdsdebug("freeing ibinc %p inc %p\n", ibinc
, inc
);
221 rds_ib_recv_cache_put(&ibinc
->ii_cache_entry
, &ic
->i_cache_incs
);
224 static void rds_ib_recv_clear_one(struct rds_ib_connection
*ic
,
225 struct rds_ib_recv_work
*recv
)
228 rds_inc_put(&recv
->r_ibinc
->ii_inc
);
229 recv
->r_ibinc
= NULL
;
232 ib_dma_unmap_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
, 1, DMA_FROM_DEVICE
);
233 rds_ib_frag_free(ic
, recv
->r_frag
);
238 void rds_ib_recv_clear_ring(struct rds_ib_connection
*ic
)
242 for (i
= 0; i
< ic
->i_recv_ring
.w_nr
; i
++)
243 rds_ib_recv_clear_one(ic
, &ic
->i_recvs
[i
]);
246 static struct rds_ib_incoming
*rds_ib_refill_one_inc(struct rds_ib_connection
*ic
,
249 struct rds_ib_incoming
*ibinc
;
250 struct list_head
*cache_item
;
253 cache_item
= rds_ib_recv_cache_get(&ic
->i_cache_incs
);
255 ibinc
= container_of(cache_item
, struct rds_ib_incoming
, ii_cache_entry
);
257 avail_allocs
= atomic_add_unless(&rds_ib_allocation
,
258 1, rds_ib_sysctl_max_recv_allocation
);
260 rds_ib_stats_inc(s_ib_rx_alloc_limit
);
263 ibinc
= kmem_cache_alloc(rds_ib_incoming_slab
, slab_mask
);
265 atomic_dec(&rds_ib_allocation
);
268 rds_ib_stats_inc(s_ib_rx_total_incs
);
270 INIT_LIST_HEAD(&ibinc
->ii_frags
);
271 rds_inc_init(&ibinc
->ii_inc
, ic
->conn
, &ic
->conn
->c_faddr
);
276 static struct rds_page_frag
*rds_ib_refill_one_frag(struct rds_ib_connection
*ic
,
277 gfp_t slab_mask
, gfp_t page_mask
)
279 struct rds_page_frag
*frag
;
280 struct list_head
*cache_item
;
283 cache_item
= rds_ib_recv_cache_get(&ic
->i_cache_frags
);
285 frag
= container_of(cache_item
, struct rds_page_frag
, f_cache_entry
);
286 atomic_sub(RDS_FRAG_SIZE
/ SZ_1K
, &ic
->i_cache_allocs
);
287 rds_ib_stats_add(s_ib_recv_added_to_cache
, RDS_FRAG_SIZE
);
289 frag
= kmem_cache_alloc(rds_ib_frag_slab
, slab_mask
);
293 sg_init_table(&frag
->f_sg
, 1);
294 ret
= rds_page_remainder_alloc(&frag
->f_sg
,
295 RDS_FRAG_SIZE
, page_mask
);
297 kmem_cache_free(rds_ib_frag_slab
, frag
);
300 rds_ib_stats_inc(s_ib_rx_total_frags
);
303 INIT_LIST_HEAD(&frag
->f_item
);
308 static int rds_ib_recv_refill_one(struct rds_connection
*conn
,
309 struct rds_ib_recv_work
*recv
, gfp_t gfp
)
311 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
314 gfp_t slab_mask
= gfp
;
315 gfp_t page_mask
= gfp
;
317 if (gfp
& __GFP_DIRECT_RECLAIM
) {
318 slab_mask
= GFP_KERNEL
;
319 page_mask
= GFP_HIGHUSER
;
322 if (!ic
->i_cache_incs
.ready
)
323 rds_ib_cache_xfer_to_ready(&ic
->i_cache_incs
);
324 if (!ic
->i_cache_frags
.ready
)
325 rds_ib_cache_xfer_to_ready(&ic
->i_cache_frags
);
328 * ibinc was taken from recv if recv contained the start of a message.
329 * recvs that were continuations will still have this allocated.
331 if (!recv
->r_ibinc
) {
332 recv
->r_ibinc
= rds_ib_refill_one_inc(ic
, slab_mask
);
337 WARN_ON(recv
->r_frag
); /* leak! */
338 recv
->r_frag
= rds_ib_refill_one_frag(ic
, slab_mask
, page_mask
);
342 ret
= ib_dma_map_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
,
346 sge
= &recv
->r_sge
[0];
347 sge
->addr
= ic
->i_recv_hdrs_dma
[recv
- ic
->i_recvs
];
348 sge
->length
= sizeof(struct rds_header
);
350 sge
= &recv
->r_sge
[1];
351 sge
->addr
= sg_dma_address(&recv
->r_frag
->f_sg
);
352 sge
->length
= sg_dma_len(&recv
->r_frag
->f_sg
);
359 static int acquire_refill(struct rds_connection
*conn
)
361 return test_and_set_bit(RDS_RECV_REFILL
, &conn
->c_flags
) == 0;
364 static void release_refill(struct rds_connection
*conn
)
366 clear_bit(RDS_RECV_REFILL
, &conn
->c_flags
);
367 smp_mb__after_atomic();
369 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
370 * hot path and finding waiters is very rare. We don't want to walk
371 * the system-wide hashed waitqueue buckets in the fast path only to
372 * almost never find waiters.
374 if (waitqueue_active(&conn
->c_waitq
))
375 wake_up_all(&conn
->c_waitq
);
379 * This tries to allocate and post unused work requests after making sure that
380 * they have all the allocations they need to queue received fragments into
383 void rds_ib_recv_refill(struct rds_connection
*conn
, int prefill
, gfp_t gfp
)
385 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
386 struct rds_ib_recv_work
*recv
;
387 unsigned int posted
= 0;
389 bool can_wait
= !!(gfp
& __GFP_DIRECT_RECLAIM
);
390 bool must_wake
= false;
393 /* the goal here is to just make sure that someone, somewhere
394 * is posting buffers. If we can't get the refill lock,
395 * let them do their thing
397 if (!acquire_refill(conn
))
400 while ((prefill
|| rds_conn_up(conn
)) &&
401 rds_ib_ring_alloc(&ic
->i_recv_ring
, 1, &pos
)) {
402 if (pos
>= ic
->i_recv_ring
.w_nr
) {
403 printk(KERN_NOTICE
"Argh - ring alloc returned pos=%u\n",
408 recv
= &ic
->i_recvs
[pos
];
409 ret
= rds_ib_recv_refill_one(conn
, recv
, gfp
);
415 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv
,
416 recv
->r_ibinc
, sg_page(&recv
->r_frag
->f_sg
),
417 (long)sg_dma_address(&recv
->r_frag
->f_sg
));
419 /* XXX when can this fail? */
420 ret
= ib_post_recv(ic
->i_cm_id
->qp
, &recv
->r_wr
, NULL
);
422 rds_ib_conn_error(conn
, "recv post on "
423 "%pI6c returned %d, disconnecting and "
424 "reconnecting\n", &conn
->c_faddr
,
431 if ((posted
> 128 && need_resched()) || posted
> 8192) {
437 /* We're doing flow control - update the window. */
438 if (ic
->i_flowctl
&& posted
)
439 rds_ib_advertise_credits(conn
, posted
);
442 rds_ib_ring_unalloc(&ic
->i_recv_ring
, 1);
444 release_refill(conn
);
446 /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
447 * in this case the ring being low is going to lead to more interrupts
448 * and we can safely let the softirq code take care of it unless the
449 * ring is completely empty.
451 * if we're called from krdsd, we'll be GFP_KERNEL. In this case
452 * we might have raced with the softirq code while we had the refill
453 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
454 * if we should requeue.
456 if (rds_conn_up(conn
) &&
458 (can_wait
&& rds_ib_ring_low(&ic
->i_recv_ring
)) ||
459 rds_ib_ring_empty(&ic
->i_recv_ring
))) {
460 queue_delayed_work(rds_wq
, &conn
->c_recv_w
, 1);
467 * We want to recycle several types of recv allocations, like incs and frags.
468 * To use this, the *_free() function passes in the ptr to a list_head within
469 * the recyclee, as well as the cache to put it on.
471 * First, we put the memory on a percpu list. When this reaches a certain size,
472 * We move it to an intermediate non-percpu list in a lockless manner, with some
473 * xchg/compxchg wizardry.
475 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
476 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
477 * list_empty() will return true with one element is actually present.
479 static void rds_ib_recv_cache_put(struct list_head
*new_item
,
480 struct rds_ib_refill_cache
*cache
)
483 struct list_head
*old
, *chpfirst
;
485 local_irq_save(flags
);
487 chpfirst
= __this_cpu_read(cache
->percpu
->first
);
489 INIT_LIST_HEAD(new_item
);
490 else /* put on front */
491 list_add_tail(new_item
, chpfirst
);
493 __this_cpu_write(cache
->percpu
->first
, new_item
);
494 __this_cpu_inc(cache
->percpu
->count
);
496 if (__this_cpu_read(cache
->percpu
->count
) < RDS_IB_RECYCLE_BATCH_COUNT
)
500 * Return our per-cpu first list to the cache's xfer by atomically
501 * grabbing the current xfer list, appending it to our per-cpu list,
502 * and then atomically returning that entire list back to the
503 * cache's xfer list as long as it's still empty.
506 old
= xchg(&cache
->xfer
, NULL
);
508 list_splice_entire_tail(old
, chpfirst
);
509 old
= cmpxchg(&cache
->xfer
, NULL
, chpfirst
);
513 __this_cpu_write(cache
->percpu
->first
, NULL
);
514 __this_cpu_write(cache
->percpu
->count
, 0);
516 local_irq_restore(flags
);
519 static struct list_head
*rds_ib_recv_cache_get(struct rds_ib_refill_cache
*cache
)
521 struct list_head
*head
= cache
->ready
;
524 if (!list_empty(head
)) {
525 cache
->ready
= head
->next
;
534 int rds_ib_inc_copy_to_user(struct rds_incoming
*inc
, struct iov_iter
*to
)
536 struct rds_ib_incoming
*ibinc
;
537 struct rds_page_frag
*frag
;
538 unsigned long to_copy
;
539 unsigned long frag_off
= 0;
544 ibinc
= container_of(inc
, struct rds_ib_incoming
, ii_inc
);
545 frag
= list_entry(ibinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
546 len
= be32_to_cpu(inc
->i_hdr
.h_len
);
548 while (iov_iter_count(to
) && copied
< len
) {
549 if (frag_off
== RDS_FRAG_SIZE
) {
550 frag
= list_entry(frag
->f_item
.next
,
551 struct rds_page_frag
, f_item
);
554 to_copy
= min_t(unsigned long, iov_iter_count(to
),
555 RDS_FRAG_SIZE
- frag_off
);
556 to_copy
= min_t(unsigned long, to_copy
, len
- copied
);
558 /* XXX needs + offset for multiple recvs per page */
559 rds_stats_add(s_copy_to_user
, to_copy
);
560 ret
= copy_page_to_iter(sg_page(&frag
->f_sg
),
561 frag
->f_sg
.offset
+ frag_off
,
574 /* ic starts out kzalloc()ed */
575 void rds_ib_recv_init_ack(struct rds_ib_connection
*ic
)
577 struct ib_send_wr
*wr
= &ic
->i_ack_wr
;
578 struct ib_sge
*sge
= &ic
->i_ack_sge
;
580 sge
->addr
= ic
->i_ack_dma
;
581 sge
->length
= sizeof(struct rds_header
);
582 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
586 wr
->opcode
= IB_WR_SEND
;
587 wr
->wr_id
= RDS_IB_ACK_WR_ID
;
588 wr
->send_flags
= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
592 * You'd think that with reliable IB connections you wouldn't need to ack
593 * messages that have been received. The problem is that IB hardware generates
594 * an ack message before it has DMAed the message into memory. This creates a
595 * potential message loss if the HCA is disabled for any reason between when it
596 * sends the ack and before the message is DMAed and processed. This is only a
597 * potential issue if another HCA is available for fail-over.
599 * When the remote host receives our ack they'll free the sent message from
600 * their send queue. To decrease the latency of this we always send an ack
601 * immediately after we've received messages.
603 * For simplicity, we only have one ack in flight at a time. This puts
604 * pressure on senders to have deep enough send queues to absorb the latency of
605 * a single ack frame being in flight. This might not be good enough.
607 * This is implemented by have a long-lived send_wr and sge which point to a
608 * statically allocated ack frame. This ack wr does not fall under the ring
609 * accounting that the tx and rx wrs do. The QP attribute specifically makes
610 * room for it beyond the ring size. Send completion notices its special
611 * wr_id and avoids working with the ring in that case.
613 #ifndef KERNEL_HAS_ATOMIC64
614 void rds_ib_set_ack(struct rds_ib_connection
*ic
, u64 seq
, int ack_required
)
618 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
619 ic
->i_ack_next
= seq
;
621 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
622 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
625 static u64
rds_ib_get_ack(struct rds_ib_connection
*ic
)
630 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
632 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
633 seq
= ic
->i_ack_next
;
634 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
639 void rds_ib_set_ack(struct rds_ib_connection
*ic
, u64 seq
, int ack_required
)
641 atomic64_set(&ic
->i_ack_next
, seq
);
643 smp_mb__before_atomic();
644 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
648 static u64
rds_ib_get_ack(struct rds_ib_connection
*ic
)
650 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
651 smp_mb__after_atomic();
653 return atomic64_read(&ic
->i_ack_next
);
658 static void rds_ib_send_ack(struct rds_ib_connection
*ic
, unsigned int adv_credits
)
660 struct rds_header
*hdr
= ic
->i_ack
;
664 seq
= rds_ib_get_ack(ic
);
666 rdsdebug("send_ack: ic %p ack %llu\n", ic
, (unsigned long long) seq
);
668 ib_dma_sync_single_for_cpu(ic
->rds_ibdev
->dev
, ic
->i_ack_dma
,
669 sizeof(*hdr
), DMA_TO_DEVICE
);
670 rds_message_populate_header(hdr
, 0, 0, 0);
671 hdr
->h_ack
= cpu_to_be64(seq
);
672 hdr
->h_credit
= adv_credits
;
673 rds_message_make_checksum(hdr
);
674 ib_dma_sync_single_for_device(ic
->rds_ibdev
->dev
, ic
->i_ack_dma
,
675 sizeof(*hdr
), DMA_TO_DEVICE
);
677 ic
->i_ack_queued
= jiffies
;
679 ret
= ib_post_send(ic
->i_cm_id
->qp
, &ic
->i_ack_wr
, NULL
);
681 /* Failed to send. Release the WR, and
684 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
685 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
687 rds_ib_stats_inc(s_ib_ack_send_failure
);
689 rds_ib_conn_error(ic
->conn
, "sending ack failed\n");
691 rds_ib_stats_inc(s_ib_ack_sent
);
695 * There are 3 ways of getting acknowledgements to the peer:
696 * 1. We call rds_ib_attempt_ack from the recv completion handler
697 * to send an ACK-only frame.
698 * However, there can be only one such frame in the send queue
699 * at any time, so we may have to postpone it.
700 * 2. When another (data) packet is transmitted while there's
701 * an ACK in the queue, we piggyback the ACK sequence number
702 * on the data packet.
703 * 3. If the ACK WR is done sending, we get called from the
704 * send queue completion handler, and check whether there's
705 * another ACK pending (postponed because the WR was on the
706 * queue). If so, we transmit it.
708 * We maintain 2 variables:
709 * - i_ack_flags, which keeps track of whether the ACK WR
710 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
711 * - i_ack_next, which is the last sequence number we received
713 * Potentially, send queue and receive queue handlers can run concurrently.
714 * It would be nice to not have to use a spinlock to synchronize things,
715 * but the one problem that rules this out is that 64bit updates are
716 * not atomic on all platforms. Things would be a lot simpler if
717 * we had atomic64 or maybe cmpxchg64 everywhere.
719 * Reconnecting complicates this picture just slightly. When we
720 * reconnect, we may be seeing duplicate packets. The peer
721 * is retransmitting them, because it hasn't seen an ACK for
722 * them. It is important that we ACK these.
724 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
725 * this flag set *MUST* be acknowledged immediately.
729 * When we get here, we're called from the recv queue handler.
730 * Check whether we ought to transmit an ACK.
732 void rds_ib_attempt_ack(struct rds_ib_connection
*ic
)
734 unsigned int adv_credits
;
736 if (!test_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
739 if (test_and_set_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
)) {
740 rds_ib_stats_inc(s_ib_ack_send_delayed
);
744 /* Can we get a send credit? */
745 if (!rds_ib_send_grab_credits(ic
, 1, &adv_credits
, 0, RDS_MAX_ADV_CREDIT
)) {
746 rds_ib_stats_inc(s_ib_tx_throttle
);
747 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
751 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
752 rds_ib_send_ack(ic
, adv_credits
);
756 * We get here from the send completion handler, when the
757 * adapter tells us the ACK frame was sent.
759 void rds_ib_ack_send_complete(struct rds_ib_connection
*ic
)
761 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
762 rds_ib_attempt_ack(ic
);
766 * This is called by the regular xmit code when it wants to piggyback
767 * an ACK on an outgoing frame.
769 u64
rds_ib_piggyb_ack(struct rds_ib_connection
*ic
)
771 if (test_and_clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
772 rds_ib_stats_inc(s_ib_ack_send_piggybacked
);
773 return rds_ib_get_ack(ic
);
777 * It's kind of lame that we're copying from the posted receive pages into
778 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
779 * them. But receiving new congestion bitmaps should be a *rare* event, so
780 * hopefully we won't need to invest that complexity in making it more
781 * efficient. By copying we can share a simpler core with TCP which has to
784 static void rds_ib_cong_recv(struct rds_connection
*conn
,
785 struct rds_ib_incoming
*ibinc
)
787 struct rds_cong_map
*map
;
788 unsigned int map_off
;
789 unsigned int map_page
;
790 struct rds_page_frag
*frag
;
791 unsigned long frag_off
;
792 unsigned long to_copy
;
793 unsigned long copied
;
794 __le64 uncongested
= 0;
797 /* catch completely corrupt packets */
798 if (be32_to_cpu(ibinc
->ii_inc
.i_hdr
.h_len
) != RDS_CONG_MAP_BYTES
)
805 frag
= list_entry(ibinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
810 while (copied
< RDS_CONG_MAP_BYTES
) {
814 to_copy
= min(RDS_FRAG_SIZE
- frag_off
, PAGE_SIZE
- map_off
);
815 BUG_ON(to_copy
& 7); /* Must be 64bit aligned. */
817 addr
= kmap_atomic(sg_page(&frag
->f_sg
));
819 src
= addr
+ frag
->f_sg
.offset
+ frag_off
;
820 dst
= (void *)map
->m_page_addrs
[map_page
] + map_off
;
821 for (k
= 0; k
< to_copy
; k
+= 8) {
822 /* Record ports that became uncongested, ie
823 * bits that changed from 0 to 1. */
824 uncongested
|= ~(*src
) & *dst
;
832 if (map_off
== PAGE_SIZE
) {
838 if (frag_off
== RDS_FRAG_SIZE
) {
839 frag
= list_entry(frag
->f_item
.next
,
840 struct rds_page_frag
, f_item
);
845 /* the congestion map is in little endian order */
846 rds_cong_map_updated(map
, le64_to_cpu(uncongested
));
849 static void rds_ib_process_recv(struct rds_connection
*conn
,
850 struct rds_ib_recv_work
*recv
, u32 data_len
,
851 struct rds_ib_ack_state
*state
)
853 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
854 struct rds_ib_incoming
*ibinc
= ic
->i_ibinc
;
855 struct rds_header
*ihdr
, *hdr
;
856 dma_addr_t dma_addr
= ic
->i_recv_hdrs_dma
[recv
- ic
->i_recvs
];
858 /* XXX shut down the connection if port 0,0 are seen? */
860 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic
, ibinc
, recv
,
863 if (data_len
< sizeof(struct rds_header
)) {
864 rds_ib_conn_error(conn
, "incoming message "
865 "from %pI6c didn't include a "
866 "header, disconnecting and "
871 data_len
-= sizeof(struct rds_header
);
873 ihdr
= ic
->i_recv_hdrs
[recv
- ic
->i_recvs
];
875 ib_dma_sync_single_for_cpu(ic
->rds_ibdev
->dev
, dma_addr
,
876 sizeof(*ihdr
), DMA_FROM_DEVICE
);
877 /* Validate the checksum. */
878 if (!rds_message_verify_checksum(ihdr
)) {
879 rds_ib_conn_error(conn
, "incoming message "
880 "from %pI6c has corrupted header - "
881 "forcing a reconnect\n",
883 rds_stats_inc(s_recv_drop_bad_checksum
);
887 /* Process the ACK sequence which comes with every packet */
888 state
->ack_recv
= be64_to_cpu(ihdr
->h_ack
);
889 state
->ack_recv_valid
= 1;
891 /* Process the credits update if there was one */
893 rds_ib_send_add_credits(conn
, ihdr
->h_credit
);
895 if (ihdr
->h_sport
== 0 && ihdr
->h_dport
== 0 && data_len
== 0) {
896 /* This is an ACK-only packet. The fact that it gets
897 * special treatment here is that historically, ACKs
898 * were rather special beasts.
900 rds_ib_stats_inc(s_ib_ack_received
);
903 * Usually the frags make their way on to incs and are then freed as
904 * the inc is freed. We don't go that route, so we have to drop the
905 * page ref ourselves. We can't just leave the page on the recv
906 * because that confuses the dma mapping of pages and each recv's use
909 * FIXME: Fold this into the code path below.
911 rds_ib_frag_free(ic
, recv
->r_frag
);
917 * If we don't already have an inc on the connection then this
918 * fragment has a header and starts a message.. copy its header
919 * into the inc and save the inc so we can hang upcoming fragments
923 ibinc
= recv
->r_ibinc
;
924 recv
->r_ibinc
= NULL
;
927 hdr
= &ibinc
->ii_inc
.i_hdr
;
928 ibinc
->ii_inc
.i_rx_lat_trace
[RDS_MSG_RX_HDR
] =
930 memcpy(hdr
, ihdr
, sizeof(*hdr
));
931 ic
->i_recv_data_rem
= be32_to_cpu(hdr
->h_len
);
932 ibinc
->ii_inc
.i_rx_lat_trace
[RDS_MSG_RX_START
] =
935 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic
, ibinc
,
936 ic
->i_recv_data_rem
, hdr
->h_flags
);
938 hdr
= &ibinc
->ii_inc
.i_hdr
;
939 /* We can't just use memcmp here; fragments of a
940 * single message may carry different ACKs */
941 if (hdr
->h_sequence
!= ihdr
->h_sequence
||
942 hdr
->h_len
!= ihdr
->h_len
||
943 hdr
->h_sport
!= ihdr
->h_sport
||
944 hdr
->h_dport
!= ihdr
->h_dport
) {
945 rds_ib_conn_error(conn
,
946 "fragment header mismatch; forcing reconnect\n");
951 list_add_tail(&recv
->r_frag
->f_item
, &ibinc
->ii_frags
);
954 if (ic
->i_recv_data_rem
> RDS_FRAG_SIZE
)
955 ic
->i_recv_data_rem
-= RDS_FRAG_SIZE
;
957 ic
->i_recv_data_rem
= 0;
960 if (ibinc
->ii_inc
.i_hdr
.h_flags
== RDS_FLAG_CONG_BITMAP
) {
961 rds_ib_cong_recv(conn
, ibinc
);
963 rds_recv_incoming(conn
, &conn
->c_faddr
, &conn
->c_laddr
,
964 &ibinc
->ii_inc
, GFP_ATOMIC
);
965 state
->ack_next
= be64_to_cpu(hdr
->h_sequence
);
966 state
->ack_next_valid
= 1;
969 /* Evaluate the ACK_REQUIRED flag *after* we received
970 * the complete frame, and after bumping the next_rx
972 if (hdr
->h_flags
& RDS_FLAG_ACK_REQUIRED
) {
973 rds_stats_inc(s_recv_ack_required
);
974 state
->ack_required
= 1;
977 rds_inc_put(&ibinc
->ii_inc
);
980 ib_dma_sync_single_for_device(ic
->rds_ibdev
->dev
, dma_addr
,
981 sizeof(*ihdr
), DMA_FROM_DEVICE
);
984 void rds_ib_recv_cqe_handler(struct rds_ib_connection
*ic
,
986 struct rds_ib_ack_state
*state
)
988 struct rds_connection
*conn
= ic
->conn
;
989 struct rds_ib_recv_work
*recv
;
991 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
992 (unsigned long long)wc
->wr_id
, wc
->status
,
993 ib_wc_status_msg(wc
->status
), wc
->byte_len
,
994 be32_to_cpu(wc
->ex
.imm_data
));
996 rds_ib_stats_inc(s_ib_rx_cq_event
);
997 recv
= &ic
->i_recvs
[rds_ib_ring_oldest(&ic
->i_recv_ring
)];
998 ib_dma_unmap_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
, 1,
1001 /* Also process recvs in connecting state because it is possible
1002 * to get a recv completion _before_ the rdmacm ESTABLISHED
1003 * event is processed.
1005 if (wc
->status
== IB_WC_SUCCESS
) {
1006 rds_ib_process_recv(conn
, recv
, wc
->byte_len
, state
);
1008 /* We expect errors as the qp is drained during shutdown */
1009 if (rds_conn_up(conn
) || rds_conn_connecting(conn
))
1010 rds_ib_conn_error(conn
, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1011 &conn
->c_laddr
, &conn
->c_faddr
,
1012 conn
->c_tos
, wc
->status
,
1013 ib_wc_status_msg(wc
->status
),
1017 /* rds_ib_process_recv() doesn't always consume the frag, and
1018 * we might not have called it at all if the wc didn't indicate
1019 * success. We already unmapped the frag's pages, though, and
1020 * the following rds_ib_ring_free() call tells the refill path
1021 * that it will not find an allocated frag here. Make sure we
1022 * keep that promise by freeing a frag that's still on the ring.
1025 rds_ib_frag_free(ic
, recv
->r_frag
);
1026 recv
->r_frag
= NULL
;
1028 rds_ib_ring_free(&ic
->i_recv_ring
, 1);
1030 /* If we ever end up with a really empty receive ring, we're
1031 * in deep trouble, as the sender will definitely see RNR
1033 if (rds_ib_ring_empty(&ic
->i_recv_ring
))
1034 rds_ib_stats_inc(s_ib_rx_ring_empty
);
1036 if (rds_ib_ring_low(&ic
->i_recv_ring
)) {
1037 rds_ib_recv_refill(conn
, 0, GFP_NOWAIT
| __GFP_NOWARN
);
1038 rds_ib_stats_inc(s_ib_rx_refill_from_cq
);
1042 int rds_ib_recv_path(struct rds_conn_path
*cp
)
1044 struct rds_connection
*conn
= cp
->cp_conn
;
1045 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
1047 rdsdebug("conn %p\n", conn
);
1048 if (rds_conn_up(conn
)) {
1049 rds_ib_attempt_ack(ic
);
1050 rds_ib_recv_refill(conn
, 0, GFP_KERNEL
);
1051 rds_ib_stats_inc(s_ib_rx_refill_from_thread
);
1057 int rds_ib_recv_init(void)
1062 /* Default to 30% of all available RAM for recv memory */
1064 rds_ib_sysctl_max_recv_allocation
= si
.totalram
/ 3 * PAGE_SIZE
/ RDS_FRAG_SIZE
;
1066 rds_ib_incoming_slab
=
1067 kmem_cache_create_usercopy("rds_ib_incoming",
1068 sizeof(struct rds_ib_incoming
),
1069 0, SLAB_HWCACHE_ALIGN
,
1070 offsetof(struct rds_ib_incoming
,
1072 sizeof(struct rds_inc_usercopy
),
1074 if (!rds_ib_incoming_slab
)
1077 rds_ib_frag_slab
= kmem_cache_create("rds_ib_frag",
1078 sizeof(struct rds_page_frag
),
1079 0, SLAB_HWCACHE_ALIGN
, NULL
);
1080 if (!rds_ib_frag_slab
) {
1081 kmem_cache_destroy(rds_ib_incoming_slab
);
1082 rds_ib_incoming_slab
= NULL
;
1089 void rds_ib_recv_exit(void)
1091 WARN_ON(atomic_read(&rds_ib_allocation
));
1093 kmem_cache_destroy(rds_ib_incoming_slab
);
1094 kmem_cache_destroy(rds_ib_frag_slab
);