2 * Copyright (c) 2007, 2020 Oracle and/or its affiliates.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
55 static unsigned int rds_pages_in_vec(struct rds_iovec
*vec
)
57 if ((vec
->addr
+ vec
->bytes
<= vec
->addr
) ||
58 (vec
->bytes
> (u64
)UINT_MAX
))
61 return ((vec
->addr
+ vec
->bytes
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
) -
62 (vec
->addr
>> PAGE_SHIFT
);
65 static struct rds_mr
*rds_mr_tree_walk(struct rb_root
*root
, u64 key
,
66 struct rds_mr
*insert
)
68 struct rb_node
**p
= &root
->rb_node
;
69 struct rb_node
*parent
= NULL
;
74 mr
= rb_entry(parent
, struct rds_mr
, r_rb_node
);
78 else if (key
> mr
->r_key
)
85 rb_link_node(&insert
->r_rb_node
, parent
, p
);
86 rb_insert_color(&insert
->r_rb_node
, root
);
87 kref_get(&insert
->r_kref
);
93 * Destroy the transport-specific part of a MR.
95 static void rds_destroy_mr(struct rds_mr
*mr
)
97 struct rds_sock
*rs
= mr
->r_sock
;
98 void *trans_private
= NULL
;
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr
->r_key
, kref_read(&mr
->r_kref
));
104 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
105 if (!RB_EMPTY_NODE(&mr
->r_rb_node
))
106 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
107 trans_private
= mr
->r_trans_private
;
108 mr
->r_trans_private
= NULL
;
109 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
112 mr
->r_trans
->free_mr(trans_private
, mr
->r_invalidate
);
115 void __rds_put_mr_final(struct kref
*kref
)
117 struct rds_mr
*mr
= container_of(kref
, struct rds_mr
, r_kref
);
124 * By the time this is called we can't have any more ioctls called on
125 * the socket so we don't need to worry about racing with others.
127 void rds_rdma_drop_keys(struct rds_sock
*rs
)
130 struct rb_node
*node
;
133 /* Release any MRs associated with this socket */
134 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
135 while ((node
= rb_first(&rs
->rs_rdma_keys
))) {
136 mr
= rb_entry(node
, struct rds_mr
, r_rb_node
);
137 if (mr
->r_trans
== rs
->rs_transport
)
138 mr
->r_invalidate
= 0;
139 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
140 RB_CLEAR_NODE(&mr
->r_rb_node
);
141 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
142 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
143 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
145 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
147 if (rs
->rs_transport
&& rs
->rs_transport
->flush_mrs
)
148 rs
->rs_transport
->flush_mrs();
152 * Helper function to pin user pages.
154 static int rds_pin_pages(unsigned long user_addr
, unsigned int nr_pages
,
155 struct page
**pages
, int write
)
157 unsigned int gup_flags
= FOLL_LONGTERM
;
161 gup_flags
|= FOLL_WRITE
;
163 ret
= pin_user_pages_fast(user_addr
, nr_pages
, gup_flags
, pages
);
164 if (ret
>= 0 && ret
< nr_pages
) {
165 unpin_user_pages(pages
, ret
);
172 static int __rds_rdma_map(struct rds_sock
*rs
, struct rds_get_mr_args
*args
,
173 u64
*cookie_ret
, struct rds_mr
**mr_ret
,
174 struct rds_conn_path
*cp
)
176 struct rds_mr
*mr
= NULL
, *found
;
177 struct scatterlist
*sg
= NULL
;
178 unsigned int nr_pages
;
179 struct page
**pages
= NULL
;
182 rds_rdma_cookie_t cookie
;
183 unsigned int nents
= 0;
188 if (ipv6_addr_any(&rs
->rs_bound_addr
) || !rs
->rs_transport
) {
189 ret
= -ENOTCONN
; /* XXX not a great errno */
193 if (!rs
->rs_transport
->get_mr
) {
198 /* If the combination of the addr and size requested for this memory
199 * region causes an integer overflow, return error.
201 if (((args
->vec
.addr
+ args
->vec
.bytes
) < args
->vec
.addr
) ||
202 PAGE_ALIGN(args
->vec
.addr
+ args
->vec
.bytes
) <
203 (args
->vec
.addr
+ args
->vec
.bytes
)) {
208 if (!can_do_mlock()) {
213 nr_pages
= rds_pages_in_vec(&args
->vec
);
219 /* Restrict the size of mr irrespective of underlying transport
220 * To account for unaligned mr regions, subtract one from nr_pages
222 if ((nr_pages
- 1) > (RDS_MAX_MSG_SIZE
>> PAGE_SHIFT
)) {
227 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
228 args
->vec
.addr
, args
->vec
.bytes
, nr_pages
);
230 /* XXX clamp nr_pages to limit the size of this alloc? */
231 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
237 mr
= kzalloc(sizeof(struct rds_mr
), GFP_KERNEL
);
243 kref_init(&mr
->r_kref
);
244 RB_CLEAR_NODE(&mr
->r_rb_node
);
245 mr
->r_trans
= rs
->rs_transport
;
248 if (args
->flags
& RDS_RDMA_USE_ONCE
)
250 if (args
->flags
& RDS_RDMA_INVALIDATE
)
251 mr
->r_invalidate
= 1;
252 if (args
->flags
& RDS_RDMA_READWRITE
)
256 * Pin the pages that make up the user buffer and transfer the page
257 * pointers to the mr's sg array. We check to see if we've mapped
258 * the whole region after transferring the partial page references
259 * to the sg array so that we can have one page ref cleanup path.
261 * For now we have no flag that tells us whether the mapping is
262 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
265 ret
= rds_pin_pages(args
->vec
.addr
, nr_pages
, pages
, 1);
266 if (ret
== -EOPNOTSUPP
) {
268 } else if (ret
<= 0) {
272 sg
= kmalloc_array(nents
, sizeof(*sg
), GFP_KERNEL
);
278 sg_init_table(sg
, nents
);
280 /* Stick all pages into the scatterlist */
281 for (i
= 0 ; i
< nents
; i
++)
282 sg_set_page(&sg
[i
], pages
[i
], PAGE_SIZE
, 0);
284 rdsdebug("RDS: trans_private nents is %u\n", nents
);
286 /* Obtain a transport specific MR. If this succeeds, the
287 * s/g list is now owned by the MR.
288 * Note that dma_map() implies that pending writes are
289 * flushed to RAM, so no dma_sync is needed here. */
290 trans_private
= rs
->rs_transport
->get_mr(
291 sg
, nents
, rs
, &mr
->r_key
, cp
? cp
->cp_conn
: NULL
,
292 args
->vec
.addr
, args
->vec
.bytes
,
293 need_odp
? ODP_ZEROBASED
: ODP_NOT_NEEDED
);
295 if (IS_ERR(trans_private
)) {
296 /* In ODP case, we don't GUP pages, so don't need
297 * to release anything.
300 unpin_user_pages(pages
, nr_pages
);
303 ret
= PTR_ERR(trans_private
);
304 /* Trigger connection so that its ready for the next retry */
305 if (ret
== -ENODEV
&& cp
)
306 rds_conn_connect_if_down(cp
->cp_conn
);
310 mr
->r_trans_private
= trans_private
;
312 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
313 mr
->r_key
, (void *)(unsigned long) args
->cookie_addr
);
315 /* The user may pass us an unaligned address, but we can only
316 * map page aligned regions. So we keep the offset, and build
317 * a 64bit cookie containing <R_Key, offset> and pass that
320 cookie
= rds_rdma_make_cookie(mr
->r_key
, 0);
322 cookie
= rds_rdma_make_cookie(mr
->r_key
,
323 args
->vec
.addr
& ~PAGE_MASK
);
325 *cookie_ret
= cookie
;
327 if (args
->cookie_addr
&&
328 put_user(cookie
, (u64 __user
*)(unsigned long)args
->cookie_addr
)) {
330 unpin_user_pages(pages
, nr_pages
);
337 /* Inserting the new MR into the rbtree bumps its
338 * reference count. */
339 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
340 found
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, mr
->r_key
, mr
);
341 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
343 BUG_ON(found
&& found
!= mr
);
345 rdsdebug("RDS: get_mr key is %x\n", mr
->r_key
);
347 kref_get(&mr
->r_kref
);
355 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
359 int rds_get_mr(struct rds_sock
*rs
, sockptr_t optval
, int optlen
)
361 struct rds_get_mr_args args
;
363 if (optlen
!= sizeof(struct rds_get_mr_args
))
366 if (copy_from_sockptr(&args
, optval
, sizeof(struct rds_get_mr_args
)))
369 return __rds_rdma_map(rs
, &args
, NULL
, NULL
, NULL
);
372 int rds_get_mr_for_dest(struct rds_sock
*rs
, sockptr_t optval
, int optlen
)
374 struct rds_get_mr_for_dest_args args
;
375 struct rds_get_mr_args new_args
;
377 if (optlen
!= sizeof(struct rds_get_mr_for_dest_args
))
380 if (copy_from_sockptr(&args
, optval
,
381 sizeof(struct rds_get_mr_for_dest_args
)))
385 * Initially, just behave like get_mr().
386 * TODO: Implement get_mr as wrapper around this
389 new_args
.vec
= args
.vec
;
390 new_args
.cookie_addr
= args
.cookie_addr
;
391 new_args
.flags
= args
.flags
;
393 return __rds_rdma_map(rs
, &new_args
, NULL
, NULL
, NULL
);
397 * Free the MR indicated by the given R_Key
399 int rds_free_mr(struct rds_sock
*rs
, sockptr_t optval
, int optlen
)
401 struct rds_free_mr_args args
;
405 if (optlen
!= sizeof(struct rds_free_mr_args
))
408 if (copy_from_sockptr(&args
, optval
, sizeof(struct rds_free_mr_args
)))
411 /* Special case - a null cookie means flush all unused MRs */
412 if (args
.cookie
== 0) {
413 if (!rs
->rs_transport
|| !rs
->rs_transport
->flush_mrs
)
415 rs
->rs_transport
->flush_mrs();
419 /* Look up the MR given its R_key and remove it from the rbtree
420 * so nobody else finds it.
421 * This should also prevent races with rds_rdma_unuse.
423 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
424 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, rds_rdma_cookie_key(args
.cookie
), NULL
);
426 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
427 RB_CLEAR_NODE(&mr
->r_rb_node
);
428 if (args
.flags
& RDS_RDMA_INVALIDATE
)
429 mr
->r_invalidate
= 1;
431 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
436 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
441 * This is called when we receive an extension header that
442 * tells us this MR was used. It allows us to implement
445 void rds_rdma_unuse(struct rds_sock
*rs
, u32 r_key
, int force
)
451 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
452 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, r_key
, NULL
);
454 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
456 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
460 /* Get a reference so that the MR won't go away before calling
463 kref_get(&mr
->r_kref
);
465 /* If it is going to be freed, remove it from the tree now so
466 * that no other thread can find it and free it.
468 if (mr
->r_use_once
|| force
) {
469 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
470 RB_CLEAR_NODE(&mr
->r_rb_node
);
473 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
475 /* May have to issue a dma_sync on this memory region.
476 * Note we could avoid this if the operation was a RDMA READ,
477 * but at this point we can't tell. */
478 if (mr
->r_trans
->sync_mr
)
479 mr
->r_trans
->sync_mr(mr
->r_trans_private
, DMA_FROM_DEVICE
);
481 /* Release the reference held above. */
482 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
484 /* If the MR was marked as invalidate, this will
485 * trigger an async flush. */
487 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
490 void rds_rdma_free_op(struct rm_rdma_op
*ro
)
495 kref_put(&ro
->op_odp_mr
->r_kref
, __rds_put_mr_final
);
497 for (i
= 0; i
< ro
->op_nents
; i
++) {
498 struct page
*page
= sg_page(&ro
->op_sg
[i
]);
500 /* Mark page dirty if it was possibly modified, which
501 * is the case for a RDMA_READ which copies from remote
504 unpin_user_pages_dirty_lock(&page
, 1, !ro
->op_write
);
508 kfree(ro
->op_notifier
);
509 ro
->op_notifier
= NULL
;
511 ro
->op_odp_mr
= NULL
;
514 void rds_atomic_free_op(struct rm_atomic_op
*ao
)
516 struct page
*page
= sg_page(ao
->op_sg
);
518 /* Mark page dirty if it was possibly modified, which
519 * is the case for a RDMA_READ which copies from remote
521 unpin_user_pages_dirty_lock(&page
, 1, true);
523 kfree(ao
->op_notifier
);
524 ao
->op_notifier
= NULL
;
530 * Count the number of pages needed to describe an incoming iovec array.
532 static int rds_rdma_pages(struct rds_iovec iov
[], int nr_iovecs
)
535 unsigned int nr_pages
;
538 /* figure out the number of pages in the vector */
539 for (i
= 0; i
< nr_iovecs
; i
++) {
540 nr_pages
= rds_pages_in_vec(&iov
[i
]);
544 tot_pages
+= nr_pages
;
547 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
548 * so tot_pages cannot overflow without first going negative.
557 int rds_rdma_extra_size(struct rds_rdma_args
*args
,
558 struct rds_iov_vector
*iov
)
560 struct rds_iovec
*vec
;
561 struct rds_iovec __user
*local_vec
;
563 unsigned int nr_pages
;
566 local_vec
= (struct rds_iovec __user
*)(unsigned long) args
->local_vec_addr
;
568 if (args
->nr_local
== 0)
571 if (args
->nr_local
> UIO_MAXIOV
)
574 iov
->iov
= kcalloc(args
->nr_local
,
575 sizeof(struct rds_iovec
),
582 if (copy_from_user(vec
, local_vec
, args
->nr_local
*
583 sizeof(struct rds_iovec
)))
585 iov
->len
= args
->nr_local
;
587 /* figure out the number of pages in the vector */
588 for (i
= 0; i
< args
->nr_local
; i
++, vec
++) {
590 nr_pages
= rds_pages_in_vec(vec
);
594 tot_pages
+= nr_pages
;
597 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
598 * so tot_pages cannot overflow without first going negative.
604 return tot_pages
* sizeof(struct scatterlist
);
608 * The application asks for a RDMA transfer.
609 * Extract all arguments and set up the rdma_op
611 int rds_cmsg_rdma_args(struct rds_sock
*rs
, struct rds_message
*rm
,
612 struct cmsghdr
*cmsg
,
613 struct rds_iov_vector
*vec
)
615 struct rds_rdma_args
*args
;
616 struct rm_rdma_op
*op
= &rm
->rdma
;
618 unsigned int nr_bytes
;
619 struct page
**pages
= NULL
;
620 struct rds_iovec
*iovs
;
623 bool odp_supported
= true;
625 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_rdma_args
))
626 || rm
->rdma
.op_active
)
629 args
= CMSG_DATA(cmsg
);
631 if (ipv6_addr_any(&rs
->rs_bound_addr
)) {
632 ret
= -ENOTCONN
; /* XXX not a great errno */
636 if (args
->nr_local
> UIO_MAXIOV
) {
641 if (vec
->len
!= args
->nr_local
) {
645 /* odp-mr is not supported for multiple requests within one message */
646 if (args
->nr_local
!= 1)
647 odp_supported
= false;
651 nr_pages
= rds_rdma_pages(iovs
, args
->nr_local
);
657 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
663 op
->op_write
= !!(args
->flags
& RDS_RDMA_READWRITE
);
664 op
->op_fence
= !!(args
->flags
& RDS_RDMA_FENCE
);
665 op
->op_notify
= !!(args
->flags
& RDS_RDMA_NOTIFY_ME
);
666 op
->op_silent
= !!(args
->flags
& RDS_RDMA_SILENT
);
668 op
->op_recverr
= rs
->rs_recverr
;
669 op
->op_odp_mr
= NULL
;
672 op
->op_sg
= rds_message_alloc_sgs(rm
, nr_pages
);
673 if (IS_ERR(op
->op_sg
)) {
674 ret
= PTR_ERR(op
->op_sg
);
678 if (op
->op_notify
|| op
->op_recverr
) {
679 /* We allocate an uninitialized notifier here, because
680 * we don't want to do that in the completion handler. We
681 * would have to use GFP_ATOMIC there, and don't want to deal
682 * with failed allocations.
684 op
->op_notifier
= kmalloc(sizeof(struct rds_notifier
), GFP_KERNEL
);
685 if (!op
->op_notifier
) {
689 op
->op_notifier
->n_user_token
= args
->user_token
;
690 op
->op_notifier
->n_status
= RDS_RDMA_SUCCESS
;
693 /* The cookie contains the R_Key of the remote memory region, and
694 * optionally an offset into it. This is how we implement RDMA into
696 * When setting up the RDMA, we need to add that offset to the
697 * destination address (which is really an offset into the MR)
698 * FIXME: We may want to move this into ib_rdma.c
700 op
->op_rkey
= rds_rdma_cookie_key(args
->cookie
);
701 op
->op_remote_addr
= args
->remote_vec
.addr
+ rds_rdma_cookie_offset(args
->cookie
);
705 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
706 (unsigned long long)args
->nr_local
,
707 (unsigned long long)args
->remote_vec
.addr
,
710 for (i
= 0; i
< args
->nr_local
; i
++) {
711 struct rds_iovec
*iov
= &iovs
[i
];
712 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
713 unsigned int nr
= rds_pages_in_vec(iov
);
715 rs
->rs_user_addr
= iov
->addr
;
716 rs
->rs_user_bytes
= iov
->bytes
;
718 /* If it's a WRITE operation, we want to pin the pages for reading.
719 * If it's a READ operation, we need to pin the pages for writing.
721 ret
= rds_pin_pages(iov
->addr
, nr
, pages
, !op
->op_write
);
722 if ((!odp_supported
&& ret
<= 0) ||
723 (odp_supported
&& ret
<= 0 && ret
!= -EOPNOTSUPP
))
726 if (ret
== -EOPNOTSUPP
) {
727 struct rds_mr
*local_odp_mr
;
729 if (!rs
->rs_transport
->get_mr
) {
734 kzalloc(sizeof(*local_odp_mr
), GFP_KERNEL
);
739 RB_CLEAR_NODE(&local_odp_mr
->r_rb_node
);
740 kref_init(&local_odp_mr
->r_kref
);
741 local_odp_mr
->r_trans
= rs
->rs_transport
;
742 local_odp_mr
->r_sock
= rs
;
743 local_odp_mr
->r_trans_private
=
744 rs
->rs_transport
->get_mr(
745 NULL
, 0, rs
, &local_odp_mr
->r_key
, NULL
,
746 iov
->addr
, iov
->bytes
, ODP_VIRTUAL
);
747 if (IS_ERR(local_odp_mr
->r_trans_private
)) {
748 ret
= PTR_ERR(local_odp_mr
->r_trans_private
);
749 rdsdebug("get_mr ret %d %p\"", ret
,
750 local_odp_mr
->r_trans_private
);
755 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
756 local_odp_mr
, local_odp_mr
->r_trans_private
);
757 op
->op_odp_mr
= local_odp_mr
;
758 op
->op_odp_addr
= iov
->addr
;
761 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
762 nr_bytes
, nr
, iov
->bytes
, iov
->addr
);
764 nr_bytes
+= iov
->bytes
;
766 for (j
= 0; j
< nr
; j
++) {
767 unsigned int offset
= iov
->addr
& ~PAGE_MASK
;
768 struct scatterlist
*sg
;
770 sg
= &op
->op_sg
[op
->op_nents
+ j
];
771 sg_set_page(sg
, pages
[j
],
772 min_t(unsigned int, iov
->bytes
, PAGE_SIZE
- offset
),
775 sg_dma_len(sg
) = sg
->length
;
776 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
777 sg
->offset
, sg
->length
, iov
->addr
, iov
->bytes
);
779 iov
->addr
+= sg
->length
;
780 iov
->bytes
-= sg
->length
;
786 if (nr_bytes
> args
->remote_vec
.bytes
) {
787 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
789 (unsigned int) args
->remote_vec
.bytes
);
793 op
->op_bytes
= nr_bytes
;
800 rds_rdma_free_op(op
);
802 rds_stats_inc(s_send_rdma
);
808 * The application wants us to pass an RDMA destination (aka MR)
811 int rds_cmsg_rdma_dest(struct rds_sock
*rs
, struct rds_message
*rm
,
812 struct cmsghdr
*cmsg
)
819 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(rds_rdma_cookie_t
)) ||
820 rm
->m_rdma_cookie
!= 0)
823 memcpy(&rm
->m_rdma_cookie
, CMSG_DATA(cmsg
), sizeof(rm
->m_rdma_cookie
));
825 /* We are reusing a previously mapped MR here. Most likely, the
826 * application has written to the buffer, so we need to explicitly
827 * flush those writes to RAM. Otherwise the HCA may not see them
828 * when doing a DMA from that buffer.
830 r_key
= rds_rdma_cookie_key(rm
->m_rdma_cookie
);
832 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
833 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, r_key
, NULL
);
835 err
= -EINVAL
; /* invalid r_key */
837 kref_get(&mr
->r_kref
);
838 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
841 mr
->r_trans
->sync_mr(mr
->r_trans_private
,
843 rm
->rdma
.op_rdma_mr
= mr
;
849 * The application passes us an address range it wants to enable RDMA
850 * to/from. We map the area, and save the <R_Key,offset> pair
851 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
852 * in an extension header.
854 int rds_cmsg_rdma_map(struct rds_sock
*rs
, struct rds_message
*rm
,
855 struct cmsghdr
*cmsg
)
857 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_get_mr_args
)) ||
858 rm
->m_rdma_cookie
!= 0)
861 return __rds_rdma_map(rs
, CMSG_DATA(cmsg
), &rm
->m_rdma_cookie
,
862 &rm
->rdma
.op_rdma_mr
, rm
->m_conn_path
);
866 * Fill in rds_message for an atomic request.
868 int rds_cmsg_atomic(struct rds_sock
*rs
, struct rds_message
*rm
,
869 struct cmsghdr
*cmsg
)
871 struct page
*page
= NULL
;
872 struct rds_atomic_args
*args
;
875 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_atomic_args
))
876 || rm
->atomic
.op_active
)
879 args
= CMSG_DATA(cmsg
);
881 /* Nonmasked & masked cmsg ops converted to masked hw ops */
882 switch (cmsg
->cmsg_type
) {
883 case RDS_CMSG_ATOMIC_FADD
:
884 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_FADD
;
885 rm
->atomic
.op_m_fadd
.add
= args
->fadd
.add
;
886 rm
->atomic
.op_m_fadd
.nocarry_mask
= 0;
888 case RDS_CMSG_MASKED_ATOMIC_FADD
:
889 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_FADD
;
890 rm
->atomic
.op_m_fadd
.add
= args
->m_fadd
.add
;
891 rm
->atomic
.op_m_fadd
.nocarry_mask
= args
->m_fadd
.nocarry_mask
;
893 case RDS_CMSG_ATOMIC_CSWP
:
894 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_CSWP
;
895 rm
->atomic
.op_m_cswp
.compare
= args
->cswp
.compare
;
896 rm
->atomic
.op_m_cswp
.swap
= args
->cswp
.swap
;
897 rm
->atomic
.op_m_cswp
.compare_mask
= ~0;
898 rm
->atomic
.op_m_cswp
.swap_mask
= ~0;
900 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
901 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_CSWP
;
902 rm
->atomic
.op_m_cswp
.compare
= args
->m_cswp
.compare
;
903 rm
->atomic
.op_m_cswp
.swap
= args
->m_cswp
.swap
;
904 rm
->atomic
.op_m_cswp
.compare_mask
= args
->m_cswp
.compare_mask
;
905 rm
->atomic
.op_m_cswp
.swap_mask
= args
->m_cswp
.swap_mask
;
908 BUG(); /* should never happen */
911 rm
->atomic
.op_notify
= !!(args
->flags
& RDS_RDMA_NOTIFY_ME
);
912 rm
->atomic
.op_silent
= !!(args
->flags
& RDS_RDMA_SILENT
);
913 rm
->atomic
.op_active
= 1;
914 rm
->atomic
.op_recverr
= rs
->rs_recverr
;
915 rm
->atomic
.op_sg
= rds_message_alloc_sgs(rm
, 1);
916 if (IS_ERR(rm
->atomic
.op_sg
)) {
917 ret
= PTR_ERR(rm
->atomic
.op_sg
);
921 /* verify 8 byte-aligned */
922 if (args
->local_addr
& 0x7) {
927 ret
= rds_pin_pages(args
->local_addr
, 1, &page
, 1);
932 sg_set_page(rm
->atomic
.op_sg
, page
, 8, offset_in_page(args
->local_addr
));
934 if (rm
->atomic
.op_notify
|| rm
->atomic
.op_recverr
) {
935 /* We allocate an uninitialized notifier here, because
936 * we don't want to do that in the completion handler. We
937 * would have to use GFP_ATOMIC there, and don't want to deal
938 * with failed allocations.
940 rm
->atomic
.op_notifier
= kmalloc(sizeof(*rm
->atomic
.op_notifier
), GFP_KERNEL
);
941 if (!rm
->atomic
.op_notifier
) {
946 rm
->atomic
.op_notifier
->n_user_token
= args
->user_token
;
947 rm
->atomic
.op_notifier
->n_status
= RDS_RDMA_SUCCESS
;
950 rm
->atomic
.op_rkey
= rds_rdma_cookie_key(args
->cookie
);
951 rm
->atomic
.op_remote_addr
= args
->remote_addr
+ rds_rdma_cookie_offset(args
->cookie
);
956 unpin_user_page(page
);
957 rm
->atomic
.op_active
= 0;
958 kfree(rm
->atomic
.op_notifier
);