2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
37 #include <trace/events/sock.h>
42 void rds_tcp_keepalive(struct socket
*sock
)
44 /* values below based on xs_udp_default_timeout */
45 int keepidle
= 5; /* send a probe 'keepidle' secs after last data */
46 int keepcnt
= 5; /* number of unack'ed probes before declaring dead */
48 sock_set_keepalive(sock
->sk
);
49 tcp_sock_set_keepcnt(sock
->sk
, keepcnt
);
50 tcp_sock_set_keepidle(sock
->sk
, keepidle
);
51 /* KEEPINTVL is the interval between successive probes. We follow
52 * the model in xs_tcp_finish_connecting() and re-use keepidle.
54 tcp_sock_set_keepintvl(sock
->sk
, keepidle
);
57 /* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the
58 * client's ipaddr < server's ipaddr. Otherwise, close the accepted
59 * socket and force a reconneect from smaller -> larger ip addr. The reason
60 * we special case cp_index 0 is to allow the rds probe ping itself to itself
61 * get through efficiently.
62 * Since reconnects are only initiated from the node with the numerically
63 * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side
64 * by moving them to CONNECTING in this function.
67 struct rds_tcp_connection
*rds_tcp_accept_one_path(struct rds_connection
*conn
)
70 int npaths
= max_t(int, 1, conn
->c_npaths
);
72 /* for mprds, all paths MUST be initiated by the peer
73 * with the smaller address.
75 if (rds_addr_cmp(&conn
->c_faddr
, &conn
->c_laddr
) >= 0) {
76 /* Make sure we initiate at least one path if this
77 * has not already been done; rds_start_mprds() will
78 * take care of additional paths, if necessary.
81 rds_conn_path_connect_if_down(&conn
->c_path
[0]);
85 for (i
= 0; i
< npaths
; i
++) {
86 struct rds_conn_path
*cp
= &conn
->c_path
[i
];
88 if (rds_conn_path_transition(cp
, RDS_CONN_DOWN
,
89 RDS_CONN_CONNECTING
) ||
90 rds_conn_path_transition(cp
, RDS_CONN_ERROR
,
91 RDS_CONN_CONNECTING
)) {
92 return cp
->cp_transport_data
;
98 int rds_tcp_accept_one(struct socket
*sock
)
100 struct socket
*new_sock
= NULL
;
101 struct rds_connection
*conn
;
103 struct inet_sock
*inet
;
104 struct rds_tcp_connection
*rs_tcp
= NULL
;
106 struct rds_conn_path
*cp
;
107 struct in6_addr
*my_addr
, *peer_addr
;
108 struct proto_accept_arg arg
= {
112 #if !IS_ENABLED(CONFIG_IPV6)
113 struct in6_addr saddr
, daddr
;
117 if (!sock
) /* module unload or netns delete in progress */
120 ret
= sock_create_lite(sock
->sk
->sk_family
,
121 sock
->sk
->sk_type
, sock
->sk
->sk_protocol
,
126 ret
= sock
->ops
->accept(sock
, new_sock
, &arg
);
130 /* sock_create_lite() does not get a hold on the owner module so we
131 * need to do it here. Note that sock_release() uses sock->ops to
132 * determine if it needs to decrement the reference count. So set
133 * sock->ops after calling accept() in case that fails. And there's
134 * no need to do try_module_get() as the listener should have a hold
137 new_sock
->ops
= sock
->ops
;
138 __module_get(new_sock
->ops
->owner
);
140 rds_tcp_keepalive(new_sock
);
141 if (!rds_tcp_tune(new_sock
)) {
146 inet
= inet_sk(new_sock
->sk
);
148 #if IS_ENABLED(CONFIG_IPV6)
149 my_addr
= &new_sock
->sk
->sk_v6_rcv_saddr
;
150 peer_addr
= &new_sock
->sk
->sk_v6_daddr
;
152 ipv6_addr_set_v4mapped(inet
->inet_saddr
, &saddr
);
153 ipv6_addr_set_v4mapped(inet
->inet_daddr
, &daddr
);
157 rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n",
159 my_addr
, ntohs(inet
->inet_sport
),
160 peer_addr
, ntohs(inet
->inet_dport
));
162 #if IS_ENABLED(CONFIG_IPV6)
163 /* sk_bound_dev_if is not set if the peer address is not link local
164 * address. In this case, it happens that mcast_oif is set. So
167 if ((ipv6_addr_type(my_addr
) & IPV6_ADDR_LINKLOCAL
) &&
168 !(ipv6_addr_type(peer_addr
) & IPV6_ADDR_LINKLOCAL
)) {
169 struct ipv6_pinfo
*inet6
;
171 inet6
= inet6_sk(new_sock
->sk
);
172 dev_if
= READ_ONCE(inet6
->mcast_oif
);
174 dev_if
= new_sock
->sk
->sk_bound_dev_if
;
178 if (!rds_tcp_laddr_check(sock_net(sock
->sk
), peer_addr
, dev_if
)) {
179 /* local address connection is only allowed via loopback */
184 conn
= rds_conn_create(sock_net(sock
->sk
),
186 &rds_tcp_transport
, 0, GFP_KERNEL
, dev_if
);
192 /* An incoming SYN request came in, and TCP just accepted it.
194 * If the client reboots, this conn will need to be cleaned up.
195 * rds_tcp_state_change() will do that cleanup
197 rs_tcp
= rds_tcp_accept_one_path(conn
);
200 mutex_lock(&rs_tcp
->t_conn_path_lock
);
201 cp
= rs_tcp
->t_cpath
;
202 conn_state
= rds_conn_path_state(cp
);
203 WARN_ON(conn_state
== RDS_CONN_UP
);
204 if (conn_state
!= RDS_CONN_CONNECTING
&& conn_state
!= RDS_CONN_ERROR
)
206 if (rs_tcp
->t_sock
) {
207 /* Duelling SYN has been handled in rds_tcp_accept_one() */
208 rds_tcp_reset_callbacks(new_sock
, cp
);
209 /* rds_connect_path_complete() marks RDS_CONN_UP */
210 rds_connect_path_complete(cp
, RDS_CONN_RESETTING
);
212 rds_tcp_set_callbacks(new_sock
, cp
);
213 rds_connect_path_complete(cp
, RDS_CONN_CONNECTING
);
217 if (conn
->c_npaths
== 0)
218 rds_send_ping(cp
->cp_conn
, cp
->cp_index
);
221 /* reset the newly returned accept sock and bail.
222 * It is safe to set linger on new_sock because the RDS connection
223 * has not been brought up on new_sock, so no RDS-level data could
224 * be pending on it. By setting linger, we achieve the side-effect
225 * of avoiding TIME_WAIT state on new_sock.
227 sock_no_linger(new_sock
->sk
);
228 kernel_sock_shutdown(new_sock
, SHUT_RDWR
);
232 mutex_unlock(&rs_tcp
->t_conn_path_lock
);
234 sock_release(new_sock
);
238 void rds_tcp_listen_data_ready(struct sock
*sk
)
240 void (*ready
)(struct sock
*sk
);
242 trace_sk_data_ready(sk
);
243 rdsdebug("listen data ready sk %p\n", sk
);
245 read_lock_bh(&sk
->sk_callback_lock
);
246 ready
= sk
->sk_user_data
;
247 if (!ready
) { /* check for teardown race */
248 ready
= sk
->sk_data_ready
;
253 * ->sk_data_ready is also called for a newly established child socket
254 * before it has been accepted and the accepter has set up their
255 * data_ready.. we only want to queue listen work for our listening
258 * (*ready)() may be null if we are racing with netns delete, and
259 * the listen socket is being torn down.
261 if (sk
->sk_state
== TCP_LISTEN
)
262 rds_tcp_accept_work(sk
);
264 ready
= rds_tcp_listen_sock_def_readable(sock_net(sk
));
267 read_unlock_bh(&sk
->sk_callback_lock
);
272 struct socket
*rds_tcp_listen_init(struct net
*net
, bool isv6
)
274 struct socket
*sock
= NULL
;
275 struct sockaddr_storage ss
;
276 struct sockaddr_in6
*sin6
;
277 struct sockaddr_in
*sin
;
281 ret
= sock_create_kern(net
, isv6
? PF_INET6
: PF_INET
, SOCK_STREAM
,
284 rdsdebug("could not create %s listener socket: %d\n",
285 isv6
? "IPv6" : "IPv4", ret
);
289 sock
->sk
->sk_reuse
= SK_CAN_REUSE
;
290 tcp_sock_set_nodelay(sock
->sk
);
292 write_lock_bh(&sock
->sk
->sk_callback_lock
);
293 sock
->sk
->sk_user_data
= sock
->sk
->sk_data_ready
;
294 sock
->sk
->sk_data_ready
= rds_tcp_listen_data_ready
;
295 write_unlock_bh(&sock
->sk
->sk_callback_lock
);
298 sin6
= (struct sockaddr_in6
*)&ss
;
299 sin6
->sin6_family
= PF_INET6
;
300 sin6
->sin6_addr
= in6addr_any
;
301 sin6
->sin6_port
= (__force u16
)htons(RDS_TCP_PORT
);
302 sin6
->sin6_scope_id
= 0;
303 sin6
->sin6_flowinfo
= 0;
304 addr_len
= sizeof(*sin6
);
306 sin
= (struct sockaddr_in
*)&ss
;
307 sin
->sin_family
= PF_INET
;
308 sin
->sin_addr
.s_addr
= INADDR_ANY
;
309 sin
->sin_port
= (__force u16
)htons(RDS_TCP_PORT
);
310 addr_len
= sizeof(*sin
);
313 ret
= kernel_bind(sock
, (struct sockaddr
*)&ss
, addr_len
);
315 rdsdebug("could not bind %s listener socket: %d\n",
316 isv6
? "IPv6" : "IPv4", ret
);
320 ret
= sock
->ops
->listen(sock
, 64);
331 void rds_tcp_listen_stop(struct socket
*sock
, struct work_struct
*acceptor
)
340 /* serialize with and prevent further callbacks */
342 write_lock_bh(&sk
->sk_callback_lock
);
343 if (sk
->sk_user_data
) {
344 sk
->sk_data_ready
= sk
->sk_user_data
;
345 sk
->sk_user_data
= NULL
;
347 write_unlock_bh(&sk
->sk_callback_lock
);
350 /* wait for accepts to stop and close the socket */
351 flush_workqueue(rds_wq
);
352 flush_work(acceptor
);