1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
5 * Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
7 * Meant to be mostly used for locally generated traffic :
8 * Fast classification depends on skb->sk being set before reaching us.
9 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10 * All packets belonging to a socket are considered as a 'flow'.
12 * Flows are dynamically allocated and stored in a hash table of RB trees
13 * They are also part of one Round Robin 'queues' (new or old flows)
15 * Burst avoidance (aka pacing) capability :
17 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18 * bunch of packets, and this packet scheduler adds delay between
19 * packets to respect rate limitation.
22 * - lookup one RB tree (out of 1024 or more) to find the flow.
23 * If non existent flow, create it, add it to the tree.
24 * Add skb to the per flow list of skb (fifo).
25 * - Use a special fifo for high prio packets
27 * dequeue() : serves flows in Round Robin
28 * Note : When a flow becomes empty, we do not immediately remove it from
29 * rb trees, for performance reasons (its expected to send additional packets,
30 * or SLAB cache will reuse socket for another flow)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
50 #include <net/tcp_states.h>
58 static inline struct fq_skb_cb
*fq_skb_cb(struct sk_buff
*skb
)
60 qdisc_cb_private_validate(skb
, sizeof(struct fq_skb_cb
));
61 return (struct fq_skb_cb
*)qdisc_skb_cb(skb
)->data
;
65 * Per flow structure, dynamically allocated.
66 * If packets have monotically increasing time_to_send, they are placed in O(1)
67 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
70 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
71 struct rb_root t_root
;
72 struct sk_buff
*head
; /* list of skbs for this flow : first skb */
74 struct sk_buff
*tail
; /* last skb in the list */
75 unsigned long age
; /* (jiffies | 1UL) when flow was emptied, for gc */
78 struct rb_node fq_node
; /* anchor in fq_root[] trees */
79 /* Following field is only used for q->internal,
80 * because q->internal is not hashed in fq_root[]
82 u64 stat_fastpath_packets
;
85 u32 socket_hash
; /* sk_hash */
86 int qlen
; /* number of packets in flow queue */
88 /* Second cache line */
91 struct fq_flow
*next
; /* next pointer in RR lists */
93 struct rb_node rate_node
; /* anchor in q->delayed tree */
98 struct fq_flow
*first
;
102 struct fq_perband_flows
{
103 struct fq_flow_head new_flows
;
104 struct fq_flow_head old_flows
;
106 int quantum
; /* based on band nr : 576KB, 192KB, 64KB */
109 #define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
111 struct fq_sched_data
{
112 /* Read mostly cache line */
116 u32 flow_refill_delay
;
117 u32 flow_plimit
; /* max packets per flow */
118 unsigned long flow_max_rate
; /* optional max rate per flow */
120 u64 horizon
; /* horizon in ns */
121 u32 orphan_mask
; /* mask for orphaned skb */
122 u32 low_rate_threshold
;
123 struct rb_root
*fq_root
;
127 u8 prio2band
[FQ_PRIO2BAND_CRUMB_SIZE
];
128 u32 timer_slack
; /* hrtimer slack in ns */
130 /* Read/Write fields. */
132 unsigned int band_nr
; /* band being serviced in fq_dequeue() */
134 struct fq_perband_flows band_flows
[FQ_BANDS
];
136 struct fq_flow internal
; /* fastpath queue. */
137 struct rb_root delayed
; /* for rate limited flows */
138 u64 time_next_delayed_flow
;
139 unsigned long unthrottle_latency_ns
;
141 u32 band_pkt_count
[FQ_BANDS
];
143 u32 inactive_flows
; /* Flows with no packet to send. */
147 struct qdisc_watchdog watchdog
;
150 /* Seldom used fields. */
152 u64 stat_band_drops
[FQ_BANDS
];
154 u64 stat_horizon_drops
;
155 u64 stat_horizon_caps
;
156 u64 stat_flows_plimit
;
157 u64 stat_pkts_too_long
;
158 u64 stat_allocation_errors
;
161 /* return the i-th 2-bit value ("crumb") */
162 static u8
fq_prio2band(const u8
*prio2band
, unsigned int prio
)
164 return (READ_ONCE(prio2band
[prio
/ 4]) >> (2 * (prio
& 0x3))) & 0x3;
168 * f->tail and f->age share the same location.
169 * We can use the low order bit to differentiate if this location points
170 * to a sk_buff or contains a jiffies value, if we force this value to be odd.
171 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
173 static void fq_flow_set_detached(struct fq_flow
*f
)
175 f
->age
= jiffies
| 1UL;
178 static bool fq_flow_is_detached(const struct fq_flow
*f
)
180 return !!(f
->age
& 1UL);
183 /* special value to mark a throttled flow (not on old/new list) */
184 static struct fq_flow throttled
;
186 static bool fq_flow_is_throttled(const struct fq_flow
*f
)
188 return f
->next
== &throttled
;
196 static void fq_flow_add_tail(struct fq_sched_data
*q
, struct fq_flow
*flow
,
197 enum new_flow list_sel
)
199 struct fq_perband_flows
*pband
= &q
->band_flows
[flow
->band
];
200 struct fq_flow_head
*head
= (list_sel
== NEW_FLOW
) ?
205 head
->last
->next
= flow
;
212 static void fq_flow_unset_throttled(struct fq_sched_data
*q
, struct fq_flow
*f
)
214 rb_erase(&f
->rate_node
, &q
->delayed
);
215 q
->throttled_flows
--;
216 fq_flow_add_tail(q
, f
, OLD_FLOW
);
219 static void fq_flow_set_throttled(struct fq_sched_data
*q
, struct fq_flow
*f
)
221 struct rb_node
**p
= &q
->delayed
.rb_node
, *parent
= NULL
;
227 aux
= rb_entry(parent
, struct fq_flow
, rate_node
);
228 if (f
->time_next_packet
>= aux
->time_next_packet
)
229 p
= &parent
->rb_right
;
231 p
= &parent
->rb_left
;
233 rb_link_node(&f
->rate_node
, parent
, p
);
234 rb_insert_color(&f
->rate_node
, &q
->delayed
);
235 q
->throttled_flows
++;
238 f
->next
= &throttled
;
239 if (q
->time_next_delayed_flow
> f
->time_next_packet
)
240 q
->time_next_delayed_flow
= f
->time_next_packet
;
244 static struct kmem_cache
*fq_flow_cachep __read_mostly
;
247 /* limit number of collected flows per round */
249 #define FQ_GC_AGE (3*HZ)
251 static bool fq_gc_candidate(const struct fq_flow
*f
)
253 return fq_flow_is_detached(f
) &&
254 time_after(jiffies
, f
->age
+ FQ_GC_AGE
);
257 static void fq_gc(struct fq_sched_data
*q
,
258 struct rb_root
*root
,
261 struct rb_node
**p
, *parent
;
262 void *tofree
[FQ_GC_MAX
];
271 f
= rb_entry(parent
, struct fq_flow
, fq_node
);
275 if (fq_gc_candidate(f
)) {
277 if (fcnt
== FQ_GC_MAX
)
282 p
= &parent
->rb_right
;
284 p
= &parent
->rb_left
;
290 for (i
= fcnt
; i
> 0; ) {
292 rb_erase(&f
->fq_node
, root
);
295 q
->inactive_flows
-= fcnt
;
296 q
->stat_gc_flows
+= fcnt
;
298 kmem_cache_free_bulk(fq_flow_cachep
, fcnt
, tofree
);
301 /* Fast path can be used if :
302 * 1) Packet tstamp is in the past.
304 * (no flow is currently eligible for transmit,
305 * AND fast path queue has less than 8 packets)
306 * 3) No SO_MAX_PACING_RATE on the socket (if any).
307 * 4) No @maxrate attribute on this qdisc,
309 * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
311 static bool fq_fastpath_check(const struct Qdisc
*sch
, struct sk_buff
*skb
,
314 const struct fq_sched_data
*q
= qdisc_priv(sch
);
315 const struct sock
*sk
;
317 if (fq_skb_cb(skb
)->time_to_send
> now
)
320 if (sch
->q
.qlen
!= 0) {
321 /* Even if some packets are stored in this qdisc,
322 * we can still enable fast path if all of them are
323 * scheduled in the future (ie no flows are eligible)
324 * or in the fast path queue.
326 if (q
->flows
!= q
->inactive_flows
+ q
->throttled_flows
)
329 /* Do not allow fast path queue to explode, we want Fair Queue mode
332 if (q
->internal
.qlen
>= 8)
337 if (sk
&& sk_fullsock(sk
) && !sk_is_tcp(sk
) &&
338 sk
->sk_max_pacing_rate
!= ~0UL)
341 if (q
->flow_max_rate
!= ~0UL)
347 static struct fq_flow
*fq_classify(struct Qdisc
*sch
, struct sk_buff
*skb
,
350 struct fq_sched_data
*q
= qdisc_priv(sch
);
351 struct rb_node
**p
, *parent
;
352 struct sock
*sk
= skb
->sk
;
353 struct rb_root
*root
;
356 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
357 * or a listener (SYNCOOKIE mode)
358 * 1) request sockets are not full blown,
359 * they do not contain sk_pacing_rate
360 * 2) They are not part of a 'flow' yet
361 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
362 * especially if the listener set SO_MAX_PACING_RATE
363 * 4) We pretend they are orphaned
365 if (!sk
|| sk_listener(sk
)) {
366 unsigned long hash
= skb_get_hash(skb
) & q
->orphan_mask
;
368 /* By forcing low order bit to 1, we make sure to not
369 * collide with a local flow (socket pointers are word aligned)
371 sk
= (struct sock
*)((hash
<< 1) | 1UL);
373 } else if (sk
->sk_state
== TCP_CLOSE
) {
374 unsigned long hash
= skb_get_hash(skb
) & q
->orphan_mask
;
376 * Sockets in TCP_CLOSE are non connected.
377 * Typical use case is UDP sockets, they can send packets
378 * with sendto() to many different destinations.
379 * We probably could use a generic bit advertising
380 * non connected sockets, instead of sk_state == TCP_CLOSE,
383 sk
= (struct sock
*)((hash
<< 1) | 1UL);
386 if (fq_fastpath_check(sch
, skb
, now
)) {
387 q
->internal
.stat_fastpath_packets
++;
388 if (skb
->sk
== sk
&& q
->rate_enable
&&
389 READ_ONCE(sk
->sk_pacing_status
) != SK_PACING_FQ
)
390 smp_store_release(&sk
->sk_pacing_status
,
395 root
= &q
->fq_root
[hash_ptr(sk
, q
->fq_trees_log
)];
404 f
= rb_entry(parent
, struct fq_flow
, fq_node
);
406 /* socket might have been reallocated, so check
407 * if its sk_hash is the same.
408 * It not, we need to refill credit with
411 if (unlikely(skb
->sk
== sk
&&
412 f
->socket_hash
!= sk
->sk_hash
)) {
413 f
->credit
= q
->initial_quantum
;
414 f
->socket_hash
= sk
->sk_hash
;
416 smp_store_release(&sk
->sk_pacing_status
,
418 if (fq_flow_is_throttled(f
))
419 fq_flow_unset_throttled(q
, f
);
420 f
->time_next_packet
= 0ULL;
425 p
= &parent
->rb_right
;
427 p
= &parent
->rb_left
;
430 f
= kmem_cache_zalloc(fq_flow_cachep
, GFP_ATOMIC
| __GFP_NOWARN
);
432 q
->stat_allocation_errors
++;
435 /* f->t_root is already zeroed after kmem_cache_zalloc() */
437 fq_flow_set_detached(f
);
440 f
->socket_hash
= sk
->sk_hash
;
442 smp_store_release(&sk
->sk_pacing_status
,
445 f
->credit
= q
->initial_quantum
;
447 rb_link_node(&f
->fq_node
, parent
, p
);
448 rb_insert_color(&f
->fq_node
, root
);
455 static struct sk_buff
*fq_peek(struct fq_flow
*flow
)
457 struct sk_buff
*skb
= skb_rb_first(&flow
->t_root
);
458 struct sk_buff
*head
= flow
->head
;
466 if (fq_skb_cb(skb
)->time_to_send
< fq_skb_cb(head
)->time_to_send
)
471 static void fq_erase_head(struct Qdisc
*sch
, struct fq_flow
*flow
,
474 if (skb
== flow
->head
) {
475 flow
->head
= skb
->next
;
477 rb_erase(&skb
->rbnode
, &flow
->t_root
);
478 skb
->dev
= qdisc_dev(sch
);
482 /* Remove one skb from flow queue.
483 * This skb must be the return value of prior fq_peek().
485 static void fq_dequeue_skb(struct Qdisc
*sch
, struct fq_flow
*flow
,
488 fq_erase_head(sch
, flow
, skb
);
489 skb_mark_not_on_list(skb
);
490 qdisc_qstats_backlog_dec(sch
, skb
);
494 static void flow_queue_add(struct fq_flow
*flow
, struct sk_buff
*skb
)
496 struct rb_node
**p
, *parent
;
497 struct sk_buff
*head
, *aux
;
501 fq_skb_cb(skb
)->time_to_send
>= fq_skb_cb(flow
->tail
)->time_to_send
) {
505 flow
->tail
->next
= skb
;
511 p
= &flow
->t_root
.rb_node
;
516 aux
= rb_to_skb(parent
);
517 if (fq_skb_cb(skb
)->time_to_send
>= fq_skb_cb(aux
)->time_to_send
)
518 p
= &parent
->rb_right
;
520 p
= &parent
->rb_left
;
522 rb_link_node(&skb
->rbnode
, parent
, p
);
523 rb_insert_color(&skb
->rbnode
, &flow
->t_root
);
526 static bool fq_packet_beyond_horizon(const struct sk_buff
*skb
,
527 const struct fq_sched_data
*q
, u64 now
)
529 return unlikely((s64
)skb
->tstamp
> (s64
)(now
+ q
->horizon
));
532 static int fq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
533 struct sk_buff
**to_free
)
535 struct fq_sched_data
*q
= qdisc_priv(sch
);
540 band
= fq_prio2band(q
->prio2band
, skb
->priority
& TC_PRIO_MAX
);
541 if (unlikely(q
->band_pkt_count
[band
] >= sch
->limit
)) {
542 q
->stat_band_drops
[band
]++;
543 return qdisc_drop(skb
, sch
, to_free
);
546 now
= ktime_get_ns();
548 fq_skb_cb(skb
)->time_to_send
= now
;
550 /* Check if packet timestamp is too far in the future. */
551 if (fq_packet_beyond_horizon(skb
, q
, now
)) {
552 if (q
->horizon_drop
) {
553 q
->stat_horizon_drops
++;
554 return qdisc_drop(skb
, sch
, to_free
);
556 q
->stat_horizon_caps
++;
557 skb
->tstamp
= now
+ q
->horizon
;
559 fq_skb_cb(skb
)->time_to_send
= skb
->tstamp
;
562 f
= fq_classify(sch
, skb
, now
);
564 if (f
!= &q
->internal
) {
565 if (unlikely(f
->qlen
>= q
->flow_plimit
)) {
566 q
->stat_flows_plimit
++;
567 return qdisc_drop(skb
, sch
, to_free
);
570 if (fq_flow_is_detached(f
)) {
571 fq_flow_add_tail(q
, f
, NEW_FLOW
);
572 if (time_after(jiffies
, f
->age
+ q
->flow_refill_delay
))
573 f
->credit
= max_t(u32
, f
->credit
, q
->quantum
);
577 q
->band_pkt_count
[band
]++;
578 fq_skb_cb(skb
)->band
= band
;
584 /* Note: this overwrites f->age */
585 flow_queue_add(f
, skb
);
587 qdisc_qstats_backlog_inc(sch
, skb
);
590 return NET_XMIT_SUCCESS
;
593 static void fq_check_throttled(struct fq_sched_data
*q
, u64 now
)
595 unsigned long sample
;
598 if (q
->time_next_delayed_flow
> now
)
601 /* Update unthrottle latency EWMA.
602 * This is cheap and can help diagnosing timer/latency problems.
604 sample
= (unsigned long)(now
- q
->time_next_delayed_flow
);
605 q
->unthrottle_latency_ns
-= q
->unthrottle_latency_ns
>> 3;
606 q
->unthrottle_latency_ns
+= sample
>> 3;
608 q
->time_next_delayed_flow
= ~0ULL;
609 while ((p
= rb_first(&q
->delayed
)) != NULL
) {
610 struct fq_flow
*f
= rb_entry(p
, struct fq_flow
, rate_node
);
612 if (f
->time_next_packet
> now
) {
613 q
->time_next_delayed_flow
= f
->time_next_packet
;
616 fq_flow_unset_throttled(q
, f
);
620 static struct fq_flow_head
*fq_pband_head_select(struct fq_perband_flows
*pband
)
622 if (pband
->credit
<= 0)
625 if (pband
->new_flows
.first
)
626 return &pband
->new_flows
;
628 return pband
->old_flows
.first
? &pband
->old_flows
: NULL
;
631 static struct sk_buff
*fq_dequeue(struct Qdisc
*sch
)
633 struct fq_sched_data
*q
= qdisc_priv(sch
);
634 struct fq_perband_flows
*pband
;
635 struct fq_flow_head
*head
;
646 skb
= fq_peek(&q
->internal
);
649 fq_dequeue_skb(sch
, &q
->internal
, skb
);
653 now
= ktime_get_ns();
654 fq_check_throttled(q
, now
);
656 pband
= &q
->band_flows
[q
->band_nr
];
658 head
= fq_pband_head_select(pband
);
660 while (++retry
<= FQ_BANDS
) {
661 if (++q
->band_nr
== FQ_BANDS
)
663 pband
= &q
->band_flows
[q
->band_nr
];
664 pband
->credit
= min(pband
->credit
+ pband
->quantum
,
666 if (pband
->credit
> 0)
670 if (q
->time_next_delayed_flow
!= ~0ULL)
671 qdisc_watchdog_schedule_range_ns(&q
->watchdog
,
672 q
->time_next_delayed_flow
,
678 if (f
->credit
<= 0) {
679 f
->credit
+= q
->quantum
;
680 head
->first
= f
->next
;
681 fq_flow_add_tail(q
, f
, OLD_FLOW
);
687 u64 time_next_packet
= max_t(u64
, fq_skb_cb(skb
)->time_to_send
,
688 f
->time_next_packet
);
690 if (now
< time_next_packet
) {
691 head
->first
= f
->next
;
692 f
->time_next_packet
= time_next_packet
;
693 fq_flow_set_throttled(q
, f
);
697 if ((s64
)(now
- time_next_packet
- q
->ce_threshold
) > 0) {
698 INET_ECN_set_ce(skb
);
703 q
->band_pkt_count
[fq_skb_cb(skb
)->band
]--;
704 fq_dequeue_skb(sch
, f
, skb
);
706 head
->first
= f
->next
;
707 /* force a pass through old_flows to prevent starvation */
708 if (head
== &pband
->new_flows
) {
709 fq_flow_add_tail(q
, f
, OLD_FLOW
);
711 fq_flow_set_detached(f
);
715 plen
= qdisc_pkt_len(skb
);
717 pband
->credit
-= plen
;
722 rate
= q
->flow_max_rate
;
724 /* If EDT time was provided for this skb, we need to
725 * update f->time_next_packet only if this qdisc enforces
730 rate
= min(READ_ONCE(skb
->sk
->sk_pacing_rate
), rate
);
732 if (rate
<= q
->low_rate_threshold
) {
735 plen
= max(plen
, q
->quantum
);
741 u64 len
= (u64
)plen
* NSEC_PER_SEC
;
744 len
= div64_ul(len
, rate
);
745 /* Since socket rate can change later,
746 * clamp the delay to 1 second.
747 * Really, providers of too big packets should be fixed !
749 if (unlikely(len
> NSEC_PER_SEC
)) {
751 q
->stat_pkts_too_long
++;
753 /* Account for schedule/timers drifts.
754 * f->time_next_packet was set when prior packet was sent,
755 * and current time (@now) can be too late by tens of us.
757 if (f
->time_next_packet
)
758 len
-= min(len
/2, now
- f
->time_next_packet
);
759 f
->time_next_packet
= now
+ len
;
762 qdisc_bstats_update(sch
, skb
);
766 static void fq_flow_purge(struct fq_flow
*flow
)
768 struct rb_node
*p
= rb_first(&flow
->t_root
);
771 struct sk_buff
*skb
= rb_to_skb(p
);
774 rb_erase(&skb
->rbnode
, &flow
->t_root
);
775 rtnl_kfree_skbs(skb
, skb
);
777 rtnl_kfree_skbs(flow
->head
, flow
->tail
);
782 static void fq_reset(struct Qdisc
*sch
)
784 struct fq_sched_data
*q
= qdisc_priv(sch
);
785 struct rb_root
*root
;
791 sch
->qstats
.backlog
= 0;
793 fq_flow_purge(&q
->internal
);
798 for (idx
= 0; idx
< (1U << q
->fq_trees_log
); idx
++) {
799 root
= &q
->fq_root
[idx
];
800 while ((p
= rb_first(root
)) != NULL
) {
801 f
= rb_entry(p
, struct fq_flow
, fq_node
);
806 kmem_cache_free(fq_flow_cachep
, f
);
809 for (idx
= 0; idx
< FQ_BANDS
; idx
++) {
810 q
->band_flows
[idx
].new_flows
.first
= NULL
;
811 q
->band_flows
[idx
].old_flows
.first
= NULL
;
813 q
->delayed
= RB_ROOT
;
815 q
->inactive_flows
= 0;
816 q
->throttled_flows
= 0;
819 static void fq_rehash(struct fq_sched_data
*q
,
820 struct rb_root
*old_array
, u32 old_log
,
821 struct rb_root
*new_array
, u32 new_log
)
823 struct rb_node
*op
, **np
, *parent
;
824 struct rb_root
*oroot
, *nroot
;
825 struct fq_flow
*of
, *nf
;
829 for (idx
= 0; idx
< (1U << old_log
); idx
++) {
830 oroot
= &old_array
[idx
];
831 while ((op
= rb_first(oroot
)) != NULL
) {
833 of
= rb_entry(op
, struct fq_flow
, fq_node
);
834 if (fq_gc_candidate(of
)) {
836 kmem_cache_free(fq_flow_cachep
, of
);
839 nroot
= &new_array
[hash_ptr(of
->sk
, new_log
)];
841 np
= &nroot
->rb_node
;
846 nf
= rb_entry(parent
, struct fq_flow
, fq_node
);
847 BUG_ON(nf
->sk
== of
->sk
);
850 np
= &parent
->rb_right
;
852 np
= &parent
->rb_left
;
855 rb_link_node(&of
->fq_node
, parent
, np
);
856 rb_insert_color(&of
->fq_node
, nroot
);
860 q
->inactive_flows
-= fcnt
;
861 q
->stat_gc_flows
+= fcnt
;
864 static void fq_free(void *addr
)
869 static int fq_resize(struct Qdisc
*sch
, u32 log
)
871 struct fq_sched_data
*q
= qdisc_priv(sch
);
872 struct rb_root
*array
;
876 if (q
->fq_root
&& log
== q
->fq_trees_log
)
879 /* If XPS was setup, we can allocate memory on right NUMA node */
880 array
= kvmalloc_node(sizeof(struct rb_root
) << log
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
,
881 netdev_queue_numa_node_read(sch
->dev_queue
));
885 for (idx
= 0; idx
< (1U << log
); idx
++)
886 array
[idx
] = RB_ROOT
;
890 old_fq_root
= q
->fq_root
;
892 fq_rehash(q
, old_fq_root
, q
->fq_trees_log
, array
, log
);
895 WRITE_ONCE(q
->fq_trees_log
, log
);
897 sch_tree_unlock(sch
);
899 fq_free(old_fq_root
);
904 static const struct netlink_range_validation iq_range
= {
908 static const struct nla_policy fq_policy
[TCA_FQ_MAX
+ 1] = {
909 [TCA_FQ_UNSPEC
] = { .strict_start_type
= TCA_FQ_TIMER_SLACK
},
911 [TCA_FQ_PLIMIT
] = { .type
= NLA_U32
},
912 [TCA_FQ_FLOW_PLIMIT
] = { .type
= NLA_U32
},
913 [TCA_FQ_QUANTUM
] = { .type
= NLA_U32
},
914 [TCA_FQ_INITIAL_QUANTUM
] = NLA_POLICY_FULL_RANGE(NLA_U32
, &iq_range
),
915 [TCA_FQ_RATE_ENABLE
] = { .type
= NLA_U32
},
916 [TCA_FQ_FLOW_DEFAULT_RATE
] = { .type
= NLA_U32
},
917 [TCA_FQ_FLOW_MAX_RATE
] = { .type
= NLA_U32
},
918 [TCA_FQ_BUCKETS_LOG
] = { .type
= NLA_U32
},
919 [TCA_FQ_FLOW_REFILL_DELAY
] = { .type
= NLA_U32
},
920 [TCA_FQ_ORPHAN_MASK
] = { .type
= NLA_U32
},
921 [TCA_FQ_LOW_RATE_THRESHOLD
] = { .type
= NLA_U32
},
922 [TCA_FQ_CE_THRESHOLD
] = { .type
= NLA_U32
},
923 [TCA_FQ_TIMER_SLACK
] = { .type
= NLA_U32
},
924 [TCA_FQ_HORIZON
] = { .type
= NLA_U32
},
925 [TCA_FQ_HORIZON_DROP
] = { .type
= NLA_U8
},
926 [TCA_FQ_PRIOMAP
] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt
)),
927 [TCA_FQ_WEIGHTS
] = NLA_POLICY_EXACT_LEN(FQ_BANDS
* sizeof(s32
)),
930 /* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
931 static void fq_prio2band_compress_crumb(const u8
*in
, u8
*out
)
933 const int num_elems
= TC_PRIO_MAX
+ 1;
934 u8 tmp
[FQ_PRIO2BAND_CRUMB_SIZE
];
937 memset(tmp
, 0, sizeof(tmp
));
938 for (i
= 0; i
< num_elems
; i
++)
939 tmp
[i
/ 4] |= in
[i
] << (2 * (i
& 0x3));
941 for (i
= 0; i
< FQ_PRIO2BAND_CRUMB_SIZE
; i
++)
942 WRITE_ONCE(out
[i
], tmp
[i
]);
945 static void fq_prio2band_decompress_crumb(const u8
*in
, u8
*out
)
947 const int num_elems
= TC_PRIO_MAX
+ 1;
950 for (i
= 0; i
< num_elems
; i
++)
951 out
[i
] = fq_prio2band(in
, i
);
954 static int fq_load_weights(struct fq_sched_data
*q
,
955 const struct nlattr
*attr
,
956 struct netlink_ext_ack
*extack
)
958 s32
*weights
= nla_data(attr
);
961 for (i
= 0; i
< FQ_BANDS
; i
++) {
962 if (weights
[i
] < FQ_MIN_WEIGHT
) {
963 NL_SET_ERR_MSG_FMT_MOD(extack
, "Weight %d less that minimum allowed %d",
964 weights
[i
], FQ_MIN_WEIGHT
);
968 for (i
= 0; i
< FQ_BANDS
; i
++)
969 WRITE_ONCE(q
->band_flows
[i
].quantum
, weights
[i
]);
973 static int fq_load_priomap(struct fq_sched_data
*q
,
974 const struct nlattr
*attr
,
975 struct netlink_ext_ack
*extack
)
977 const struct tc_prio_qopt
*map
= nla_data(attr
);
980 if (map
->bands
!= FQ_BANDS
) {
981 NL_SET_ERR_MSG_MOD(extack
, "FQ only supports 3 bands");
984 for (i
= 0; i
< TC_PRIO_MAX
+ 1; i
++) {
985 if (map
->priomap
[i
] >= FQ_BANDS
) {
986 NL_SET_ERR_MSG_FMT_MOD(extack
, "FQ priomap field %d maps to a too high band %d",
991 fq_prio2band_compress_crumb(map
->priomap
, q
->prio2band
);
995 static int fq_change(struct Qdisc
*sch
, struct nlattr
*opt
,
996 struct netlink_ext_ack
*extack
)
998 struct fq_sched_data
*q
= qdisc_priv(sch
);
999 struct nlattr
*tb
[TCA_FQ_MAX
+ 1];
1000 int err
, drop_count
= 0;
1001 unsigned drop_len
= 0;
1004 err
= nla_parse_nested_deprecated(tb
, TCA_FQ_MAX
, opt
, fq_policy
,
1011 fq_log
= q
->fq_trees_log
;
1013 if (tb
[TCA_FQ_BUCKETS_LOG
]) {
1014 u32 nval
= nla_get_u32(tb
[TCA_FQ_BUCKETS_LOG
]);
1016 if (nval
>= 1 && nval
<= ilog2(256*1024))
1021 if (tb
[TCA_FQ_PLIMIT
])
1022 WRITE_ONCE(sch
->limit
,
1023 nla_get_u32(tb
[TCA_FQ_PLIMIT
]));
1025 if (tb
[TCA_FQ_FLOW_PLIMIT
])
1026 WRITE_ONCE(q
->flow_plimit
,
1027 nla_get_u32(tb
[TCA_FQ_FLOW_PLIMIT
]));
1029 if (tb
[TCA_FQ_QUANTUM
]) {
1030 u32 quantum
= nla_get_u32(tb
[TCA_FQ_QUANTUM
]);
1032 if (quantum
> 0 && quantum
<= (1 << 20)) {
1033 WRITE_ONCE(q
->quantum
, quantum
);
1035 NL_SET_ERR_MSG_MOD(extack
, "invalid quantum");
1040 if (tb
[TCA_FQ_INITIAL_QUANTUM
])
1041 WRITE_ONCE(q
->initial_quantum
,
1042 nla_get_u32(tb
[TCA_FQ_INITIAL_QUANTUM
]));
1044 if (tb
[TCA_FQ_FLOW_DEFAULT_RATE
])
1045 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
1046 nla_get_u32(tb
[TCA_FQ_FLOW_DEFAULT_RATE
]));
1048 if (tb
[TCA_FQ_FLOW_MAX_RATE
]) {
1049 u32 rate
= nla_get_u32(tb
[TCA_FQ_FLOW_MAX_RATE
]);
1051 WRITE_ONCE(q
->flow_max_rate
,
1052 (rate
== ~0U) ? ~0UL : rate
);
1054 if (tb
[TCA_FQ_LOW_RATE_THRESHOLD
])
1055 WRITE_ONCE(q
->low_rate_threshold
,
1056 nla_get_u32(tb
[TCA_FQ_LOW_RATE_THRESHOLD
]));
1058 if (tb
[TCA_FQ_RATE_ENABLE
]) {
1059 u32 enable
= nla_get_u32(tb
[TCA_FQ_RATE_ENABLE
]);
1062 WRITE_ONCE(q
->rate_enable
,
1068 if (tb
[TCA_FQ_FLOW_REFILL_DELAY
]) {
1069 u32 usecs_delay
= nla_get_u32(tb
[TCA_FQ_FLOW_REFILL_DELAY
]) ;
1071 WRITE_ONCE(q
->flow_refill_delay
,
1072 usecs_to_jiffies(usecs_delay
));
1075 if (!err
&& tb
[TCA_FQ_PRIOMAP
])
1076 err
= fq_load_priomap(q
, tb
[TCA_FQ_PRIOMAP
], extack
);
1078 if (!err
&& tb
[TCA_FQ_WEIGHTS
])
1079 err
= fq_load_weights(q
, tb
[TCA_FQ_WEIGHTS
], extack
);
1081 if (tb
[TCA_FQ_ORPHAN_MASK
])
1082 WRITE_ONCE(q
->orphan_mask
,
1083 nla_get_u32(tb
[TCA_FQ_ORPHAN_MASK
]));
1085 if (tb
[TCA_FQ_CE_THRESHOLD
])
1086 WRITE_ONCE(q
->ce_threshold
,
1087 (u64
)NSEC_PER_USEC
*
1088 nla_get_u32(tb
[TCA_FQ_CE_THRESHOLD
]));
1090 if (tb
[TCA_FQ_TIMER_SLACK
])
1091 WRITE_ONCE(q
->timer_slack
,
1092 nla_get_u32(tb
[TCA_FQ_TIMER_SLACK
]));
1094 if (tb
[TCA_FQ_HORIZON
])
1095 WRITE_ONCE(q
->horizon
,
1096 (u64
)NSEC_PER_USEC
*
1097 nla_get_u32(tb
[TCA_FQ_HORIZON
]));
1099 if (tb
[TCA_FQ_HORIZON_DROP
])
1100 WRITE_ONCE(q
->horizon_drop
,
1101 nla_get_u8(tb
[TCA_FQ_HORIZON_DROP
]));
1105 sch_tree_unlock(sch
);
1106 err
= fq_resize(sch
, fq_log
);
1109 while (sch
->q
.qlen
> sch
->limit
) {
1110 struct sk_buff
*skb
= fq_dequeue(sch
);
1114 drop_len
+= qdisc_pkt_len(skb
);
1115 rtnl_kfree_skbs(skb
, skb
);
1118 qdisc_tree_reduce_backlog(sch
, drop_count
, drop_len
);
1120 sch_tree_unlock(sch
);
1124 static void fq_destroy(struct Qdisc
*sch
)
1126 struct fq_sched_data
*q
= qdisc_priv(sch
);
1129 fq_free(q
->fq_root
);
1130 qdisc_watchdog_cancel(&q
->watchdog
);
1133 static int fq_init(struct Qdisc
*sch
, struct nlattr
*opt
,
1134 struct netlink_ext_ack
*extack
)
1136 struct fq_sched_data
*q
= qdisc_priv(sch
);
1140 q
->flow_plimit
= 100;
1141 q
->quantum
= 2 * psched_mtu(qdisc_dev(sch
));
1142 q
->initial_quantum
= 10 * psched_mtu(qdisc_dev(sch
));
1143 q
->flow_refill_delay
= msecs_to_jiffies(40);
1144 q
->flow_max_rate
= ~0UL;
1145 q
->time_next_delayed_flow
= ~0ULL;
1147 for (i
= 0; i
< FQ_BANDS
; i
++) {
1148 q
->band_flows
[i
].new_flows
.first
= NULL
;
1149 q
->band_flows
[i
].old_flows
.first
= NULL
;
1151 q
->band_flows
[0].quantum
= 9 << 16;
1152 q
->band_flows
[1].quantum
= 3 << 16;
1153 q
->band_flows
[2].quantum
= 1 << 16;
1154 q
->delayed
= RB_ROOT
;
1156 q
->fq_trees_log
= ilog2(1024);
1157 q
->orphan_mask
= 1024 - 1;
1158 q
->low_rate_threshold
= 550000 / 8;
1160 q
->timer_slack
= 10 * NSEC_PER_USEC
; /* 10 usec of hrtimer slack */
1162 q
->horizon
= 10ULL * NSEC_PER_SEC
; /* 10 seconds */
1163 q
->horizon_drop
= 1; /* by default, drop packets beyond horizon */
1165 /* Default ce_threshold of 4294 seconds */
1166 q
->ce_threshold
= (u64
)NSEC_PER_USEC
* ~0U;
1168 fq_prio2band_compress_crumb(sch_default_prio2band
, q
->prio2band
);
1169 qdisc_watchdog_init_clockid(&q
->watchdog
, sch
, CLOCK_MONOTONIC
);
1172 err
= fq_change(sch
, opt
, extack
);
1174 err
= fq_resize(sch
, q
->fq_trees_log
);
1179 static int fq_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
1181 struct fq_sched_data
*q
= qdisc_priv(sch
);
1182 struct tc_prio_qopt prio
= {
1185 struct nlattr
*opts
;
1190 opts
= nla_nest_start_noflag(skb
, TCA_OPTIONS
);
1192 goto nla_put_failure
;
1194 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
1196 ce_threshold
= READ_ONCE(q
->ce_threshold
);
1197 do_div(ce_threshold
, NSEC_PER_USEC
);
1199 horizon
= READ_ONCE(q
->horizon
);
1200 do_div(horizon
, NSEC_PER_USEC
);
1202 if (nla_put_u32(skb
, TCA_FQ_PLIMIT
,
1203 READ_ONCE(sch
->limit
)) ||
1204 nla_put_u32(skb
, TCA_FQ_FLOW_PLIMIT
,
1205 READ_ONCE(q
->flow_plimit
)) ||
1206 nla_put_u32(skb
, TCA_FQ_QUANTUM
,
1207 READ_ONCE(q
->quantum
)) ||
1208 nla_put_u32(skb
, TCA_FQ_INITIAL_QUANTUM
,
1209 READ_ONCE(q
->initial_quantum
)) ||
1210 nla_put_u32(skb
, TCA_FQ_RATE_ENABLE
,
1211 READ_ONCE(q
->rate_enable
)) ||
1212 nla_put_u32(skb
, TCA_FQ_FLOW_MAX_RATE
,
1213 min_t(unsigned long,
1214 READ_ONCE(q
->flow_max_rate
), ~0U)) ||
1215 nla_put_u32(skb
, TCA_FQ_FLOW_REFILL_DELAY
,
1216 jiffies_to_usecs(READ_ONCE(q
->flow_refill_delay
))) ||
1217 nla_put_u32(skb
, TCA_FQ_ORPHAN_MASK
,
1218 READ_ONCE(q
->orphan_mask
)) ||
1219 nla_put_u32(skb
, TCA_FQ_LOW_RATE_THRESHOLD
,
1220 READ_ONCE(q
->low_rate_threshold
)) ||
1221 nla_put_u32(skb
, TCA_FQ_CE_THRESHOLD
, (u32
)ce_threshold
) ||
1222 nla_put_u32(skb
, TCA_FQ_BUCKETS_LOG
,
1223 READ_ONCE(q
->fq_trees_log
)) ||
1224 nla_put_u32(skb
, TCA_FQ_TIMER_SLACK
,
1225 READ_ONCE(q
->timer_slack
)) ||
1226 nla_put_u32(skb
, TCA_FQ_HORIZON
, (u32
)horizon
) ||
1227 nla_put_u8(skb
, TCA_FQ_HORIZON_DROP
,
1228 READ_ONCE(q
->horizon_drop
)))
1229 goto nla_put_failure
;
1231 fq_prio2band_decompress_crumb(q
->prio2band
, prio
.priomap
);
1232 if (nla_put(skb
, TCA_FQ_PRIOMAP
, sizeof(prio
), &prio
))
1233 goto nla_put_failure
;
1235 weights
[0] = READ_ONCE(q
->band_flows
[0].quantum
);
1236 weights
[1] = READ_ONCE(q
->band_flows
[1].quantum
);
1237 weights
[2] = READ_ONCE(q
->band_flows
[2].quantum
);
1238 if (nla_put(skb
, TCA_FQ_WEIGHTS
, sizeof(weights
), &weights
))
1239 goto nla_put_failure
;
1241 return nla_nest_end(skb
, opts
);
1247 static int fq_dump_stats(struct Qdisc
*sch
, struct gnet_dump
*d
)
1249 struct fq_sched_data
*q
= qdisc_priv(sch
);
1250 struct tc_fq_qd_stats st
;
1257 st
.gc_flows
= q
->stat_gc_flows
;
1258 st
.highprio_packets
= 0;
1259 st
.fastpath_packets
= q
->internal
.stat_fastpath_packets
;
1261 st
.throttled
= q
->stat_throttled
;
1262 st
.flows_plimit
= q
->stat_flows_plimit
;
1263 st
.pkts_too_long
= q
->stat_pkts_too_long
;
1264 st
.allocation_errors
= q
->stat_allocation_errors
;
1265 st
.time_next_delayed_flow
= q
->time_next_delayed_flow
+ q
->timer_slack
-
1267 st
.flows
= q
->flows
;
1268 st
.inactive_flows
= q
->inactive_flows
;
1269 st
.throttled_flows
= q
->throttled_flows
;
1270 st
.unthrottle_latency_ns
= min_t(unsigned long,
1271 q
->unthrottle_latency_ns
, ~0U);
1272 st
.ce_mark
= q
->stat_ce_mark
;
1273 st
.horizon_drops
= q
->stat_horizon_drops
;
1274 st
.horizon_caps
= q
->stat_horizon_caps
;
1275 for (i
= 0; i
< FQ_BANDS
; i
++) {
1276 st
.band_drops
[i
] = q
->stat_band_drops
[i
];
1277 st
.band_pkt_count
[i
] = q
->band_pkt_count
[i
];
1279 sch_tree_unlock(sch
);
1281 return gnet_stats_copy_app(d
, &st
, sizeof(st
));
1284 static struct Qdisc_ops fq_qdisc_ops __read_mostly
= {
1286 .priv_size
= sizeof(struct fq_sched_data
),
1288 .enqueue
= fq_enqueue
,
1289 .dequeue
= fq_dequeue
,
1290 .peek
= qdisc_peek_dequeued
,
1293 .destroy
= fq_destroy
,
1294 .change
= fq_change
,
1296 .dump_stats
= fq_dump_stats
,
1297 .owner
= THIS_MODULE
,
1299 MODULE_ALIAS_NET_SCH("fq");
1301 static int __init
fq_module_init(void)
1305 fq_flow_cachep
= kmem_cache_create("fq_flow_cache",
1306 sizeof(struct fq_flow
),
1307 0, SLAB_HWCACHE_ALIGN
, NULL
);
1308 if (!fq_flow_cachep
)
1311 ret
= register_qdisc(&fq_qdisc_ops
);
1313 kmem_cache_destroy(fq_flow_cachep
);
1317 static void __exit
fq_module_exit(void)
1319 unregister_qdisc(&fq_qdisc_ops
);
1320 kmem_cache_destroy(fq_flow_cachep
);
1323 module_init(fq_module_init
)
1324 module_exit(fq_module_exit
)
1325 MODULE_AUTHOR("Eric Dumazet");
1326 MODULE_LICENSE("GPL");
1327 MODULE_DESCRIPTION("Fair Queue Packet Scheduler");