2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * 2003-10-17 - Ported from altq
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
80 * segment are kept in order to avoid 64-bit divide operations
81 * that are expensive on 32-bit architectures.
85 u64 sm1
; /* scaled slope of the 1st segment */
86 u64 ism1
; /* scaled inverse-slope of the 1st segment */
87 u64 dx
; /* the x-projection of the 1st segment */
88 u64 dy
; /* the y-projection of the 1st segment */
89 u64 sm2
; /* scaled slope of the 2nd segment */
90 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
93 /* runtime service curve */
95 u64 x
; /* current starting position on x-axis */
96 u64 y
; /* current starting position on y-axis */
97 u64 sm1
; /* scaled slope of the 1st segment */
98 u64 ism1
; /* scaled inverse-slope of the 1st segment */
99 u64 dx
; /* the x-projection of the 1st segment */
100 u64 dy
; /* the y-projection of the 1st segment */
101 u64 sm2
; /* scaled slope of the 2nd segment */
102 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
105 enum hfsc_class_flags
{
112 struct Qdisc_class_common cl_common
;
114 struct gnet_stats_basic_sync bstats
;
115 struct gnet_stats_queue qstats
;
116 struct net_rate_estimator __rcu
*rate_est
;
117 struct tcf_proto __rcu
*filter_list
; /* filter list */
118 struct tcf_block
*block
;
119 unsigned int level
; /* class level in hierarchy */
121 struct hfsc_sched
*sched
; /* scheduler data */
122 struct hfsc_class
*cl_parent
; /* parent class */
123 struct list_head siblings
; /* sibling classes */
124 struct list_head children
; /* child classes */
125 struct Qdisc
*qdisc
; /* leaf qdisc */
127 struct rb_node el_node
; /* qdisc's eligible tree member */
128 struct rb_root vt_tree
; /* active children sorted by cl_vt */
129 struct rb_node vt_node
; /* parent's vt_tree member */
130 struct rb_root cf_tree
; /* active children sorted by cl_f */
131 struct rb_node cf_node
; /* parent's cf_heap member */
133 u64 cl_total
; /* total work in bytes */
134 u64 cl_cumul
; /* cumulative work in bytes done by
135 real-time criteria */
137 u64 cl_d
; /* deadline*/
138 u64 cl_e
; /* eligible time */
139 u64 cl_vt
; /* virtual time */
140 u64 cl_f
; /* time when this class will fit for
141 link-sharing, max(myf, cfmin) */
142 u64 cl_myf
; /* my fit-time (calculated from this
143 class's own upperlimit curve) */
144 u64 cl_cfmin
; /* earliest children's fit-time (used
145 with cl_myf to obtain cl_f) */
146 u64 cl_cvtmin
; /* minimal virtual time among the
147 children fit for link-sharing
148 (monotonic within a period) */
149 u64 cl_vtadj
; /* intra-period cumulative vt
151 u64 cl_cvtoff
; /* largest virtual time seen among
154 struct internal_sc cl_rsc
; /* internal real-time service curve */
155 struct internal_sc cl_fsc
; /* internal fair service curve */
156 struct internal_sc cl_usc
; /* internal upperlimit service curve */
157 struct runtime_sc cl_deadline
; /* deadline curve */
158 struct runtime_sc cl_eligible
; /* eligible curve */
159 struct runtime_sc cl_virtual
; /* virtual curve */
160 struct runtime_sc cl_ulimit
; /* upperlimit curve */
162 u8 cl_flags
; /* which curves are valid */
163 u32 cl_vtperiod
; /* vt period sequence number */
164 u32 cl_parentperiod
;/* parent's vt period sequence number*/
165 u32 cl_nactive
; /* number of active children */
169 u16 defcls
; /* default class id */
170 struct hfsc_class root
; /* root class */
171 struct Qdisc_class_hash clhash
; /* class hash */
172 struct rb_root eligible
; /* eligible tree */
173 struct qdisc_watchdog watchdog
; /* watchdog timer */
176 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
180 * eligible tree holds backlogged classes being sorted by their eligible times.
181 * there is one eligible tree per hfsc instance.
185 eltree_insert(struct hfsc_class
*cl
)
187 struct rb_node
**p
= &cl
->sched
->eligible
.rb_node
;
188 struct rb_node
*parent
= NULL
;
189 struct hfsc_class
*cl1
;
193 cl1
= rb_entry(parent
, struct hfsc_class
, el_node
);
194 if (cl
->cl_e
>= cl1
->cl_e
)
195 p
= &parent
->rb_right
;
197 p
= &parent
->rb_left
;
199 rb_link_node(&cl
->el_node
, parent
, p
);
200 rb_insert_color(&cl
->el_node
, &cl
->sched
->eligible
);
204 eltree_remove(struct hfsc_class
*cl
)
206 rb_erase(&cl
->el_node
, &cl
->sched
->eligible
);
210 eltree_update(struct hfsc_class
*cl
)
216 /* find the class with the minimum deadline among the eligible classes */
217 static inline struct hfsc_class
*
218 eltree_get_mindl(struct hfsc_sched
*q
, u64 cur_time
)
220 struct hfsc_class
*p
, *cl
= NULL
;
223 for (n
= rb_first(&q
->eligible
); n
!= NULL
; n
= rb_next(n
)) {
224 p
= rb_entry(n
, struct hfsc_class
, el_node
);
225 if (p
->cl_e
> cur_time
)
227 if (cl
== NULL
|| p
->cl_d
< cl
->cl_d
)
233 /* find the class with minimum eligible time among the eligible classes */
234 static inline struct hfsc_class
*
235 eltree_get_minel(struct hfsc_sched
*q
)
239 n
= rb_first(&q
->eligible
);
242 return rb_entry(n
, struct hfsc_class
, el_node
);
246 * vttree holds holds backlogged child classes being sorted by their virtual
247 * time. each intermediate class has one vttree.
250 vttree_insert(struct hfsc_class
*cl
)
252 struct rb_node
**p
= &cl
->cl_parent
->vt_tree
.rb_node
;
253 struct rb_node
*parent
= NULL
;
254 struct hfsc_class
*cl1
;
258 cl1
= rb_entry(parent
, struct hfsc_class
, vt_node
);
259 if (cl
->cl_vt
>= cl1
->cl_vt
)
260 p
= &parent
->rb_right
;
262 p
= &parent
->rb_left
;
264 rb_link_node(&cl
->vt_node
, parent
, p
);
265 rb_insert_color(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
269 vttree_remove(struct hfsc_class
*cl
)
271 rb_erase(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
275 vttree_update(struct hfsc_class
*cl
)
281 static inline struct hfsc_class
*
282 vttree_firstfit(struct hfsc_class
*cl
, u64 cur_time
)
284 struct hfsc_class
*p
;
287 for (n
= rb_first(&cl
->vt_tree
); n
!= NULL
; n
= rb_next(n
)) {
288 p
= rb_entry(n
, struct hfsc_class
, vt_node
);
289 if (p
->cl_f
<= cur_time
)
296 * get the leaf class with the minimum vt in the hierarchy
298 static struct hfsc_class
*
299 vttree_get_minvt(struct hfsc_class
*cl
, u64 cur_time
)
301 /* if root-class's cfmin is bigger than cur_time nothing to do */
302 if (cl
->cl_cfmin
> cur_time
)
305 while (cl
->level
> 0) {
306 cl
= vttree_firstfit(cl
, cur_time
);
310 * update parent's cl_cvtmin.
312 if (cl
->cl_parent
->cl_cvtmin
< cl
->cl_vt
)
313 cl
->cl_parent
->cl_cvtmin
= cl
->cl_vt
;
319 cftree_insert(struct hfsc_class
*cl
)
321 struct rb_node
**p
= &cl
->cl_parent
->cf_tree
.rb_node
;
322 struct rb_node
*parent
= NULL
;
323 struct hfsc_class
*cl1
;
327 cl1
= rb_entry(parent
, struct hfsc_class
, cf_node
);
328 if (cl
->cl_f
>= cl1
->cl_f
)
329 p
= &parent
->rb_right
;
331 p
= &parent
->rb_left
;
333 rb_link_node(&cl
->cf_node
, parent
, p
);
334 rb_insert_color(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
338 cftree_remove(struct hfsc_class
*cl
)
340 rb_erase(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
344 cftree_update(struct hfsc_class
*cl
)
351 * service curve support functions
353 * external service curve parameters
356 * internal service curve parameters
357 * sm: (bytes/psched_us) << SM_SHIFT
358 * ism: (psched_us/byte) << ISM_SHIFT
361 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
363 * sm and ism are scaled in order to keep effective digits.
364 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
365 * digits in decimal using the following table.
367 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
368 * ------------+-------------------------------------------------------
369 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
371 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
373 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
375 #define SM_SHIFT (30 - PSCHED_SHIFT)
376 #define ISM_SHIFT (8 + PSCHED_SHIFT)
378 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
379 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
382 seg_x2y(u64 x
, u64 sm
)
388 * y = x * sm >> SM_SHIFT
389 * but divide it for the upper and lower bits to avoid overflow
391 y
= (x
>> SM_SHIFT
) * sm
+ (((x
& SM_MASK
) * sm
) >> SM_SHIFT
);
396 seg_y2x(u64 y
, u64 ism
)
402 else if (ism
== HT_INFINITY
)
405 x
= (y
>> ISM_SHIFT
) * ism
406 + (((y
& ISM_MASK
) * ism
) >> ISM_SHIFT
);
411 /* Convert m (bps) into sm (bytes/psched us) */
417 sm
= ((u64
)m
<< SM_SHIFT
);
418 sm
+= PSCHED_TICKS_PER_SEC
- 1;
419 do_div(sm
, PSCHED_TICKS_PER_SEC
);
423 /* convert m (bps) into ism (psched us/byte) */
432 ism
= ((u64
)PSCHED_TICKS_PER_SEC
<< ISM_SHIFT
);
439 /* convert d (us) into dx (psched us) */
445 dx
= ((u64
)d
* PSCHED_TICKS_PER_SEC
);
446 dx
+= USEC_PER_SEC
- 1;
447 do_div(dx
, USEC_PER_SEC
);
451 /* convert sm (bytes/psched us) into m (bps) */
457 m
= (sm
* PSCHED_TICKS_PER_SEC
) >> SM_SHIFT
;
461 /* convert dx (psched us) into d (us) */
467 d
= dx
* USEC_PER_SEC
;
468 do_div(d
, PSCHED_TICKS_PER_SEC
);
473 sc2isc(struct tc_service_curve
*sc
, struct internal_sc
*isc
)
475 isc
->sm1
= m2sm(sc
->m1
);
476 isc
->ism1
= m2ism(sc
->m1
);
477 isc
->dx
= d2dx(sc
->d
);
478 isc
->dy
= seg_x2y(isc
->dx
, isc
->sm1
);
479 isc
->sm2
= m2sm(sc
->m2
);
480 isc
->ism2
= m2ism(sc
->m2
);
484 * initialize the runtime service curve with the given internal
485 * service curve starting at (x, y).
488 rtsc_init(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
492 rtsc
->sm1
= isc
->sm1
;
493 rtsc
->ism1
= isc
->ism1
;
496 rtsc
->sm2
= isc
->sm2
;
497 rtsc
->ism2
= isc
->ism2
;
501 * calculate the y-projection of the runtime service curve by the
502 * given x-projection value
505 rtsc_y2x(struct runtime_sc
*rtsc
, u64 y
)
511 else if (y
<= rtsc
->y
+ rtsc
->dy
) {
512 /* x belongs to the 1st segment */
514 x
= rtsc
->x
+ rtsc
->dx
;
516 x
= rtsc
->x
+ seg_y2x(y
- rtsc
->y
, rtsc
->ism1
);
518 /* x belongs to the 2nd segment */
519 x
= rtsc
->x
+ rtsc
->dx
520 + seg_y2x(y
- rtsc
->y
- rtsc
->dy
, rtsc
->ism2
);
526 rtsc_x2y(struct runtime_sc
*rtsc
, u64 x
)
532 else if (x
<= rtsc
->x
+ rtsc
->dx
)
533 /* y belongs to the 1st segment */
534 y
= rtsc
->y
+ seg_x2y(x
- rtsc
->x
, rtsc
->sm1
);
536 /* y belongs to the 2nd segment */
537 y
= rtsc
->y
+ rtsc
->dy
538 + seg_x2y(x
- rtsc
->x
- rtsc
->dx
, rtsc
->sm2
);
543 * update the runtime service curve by taking the minimum of the current
544 * runtime service curve and the service curve starting at (x, y).
547 rtsc_min(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
552 if (isc
->sm1
<= isc
->sm2
) {
553 /* service curve is convex */
554 y1
= rtsc_x2y(rtsc
, x
);
556 /* the current rtsc is smaller */
564 * service curve is concave
565 * compute the two y values of the current rtsc
569 y1
= rtsc_x2y(rtsc
, x
);
571 /* rtsc is below isc, no change to rtsc */
575 y2
= rtsc_x2y(rtsc
, x
+ isc
->dx
);
576 if (y2
>= y
+ isc
->dy
) {
577 /* rtsc is above isc, replace rtsc by isc */
586 * the two curves intersect
587 * compute the offsets (dx, dy) using the reverse
588 * function of seg_x2y()
589 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
591 dx
= (y1
- y
) << SM_SHIFT
;
592 dsm
= isc
->sm1
- isc
->sm2
;
595 * check if (x, y1) belongs to the 1st segment of rtsc.
596 * if so, add the offset.
598 if (rtsc
->x
+ rtsc
->dx
> x
)
599 dx
+= rtsc
->x
+ rtsc
->dx
- x
;
600 dy
= seg_x2y(dx
, isc
->sm1
);
609 init_ed(struct hfsc_class
*cl
, unsigned int next_len
)
611 u64 cur_time
= psched_get_time();
613 /* update the deadline curve */
614 rtsc_min(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
617 * update the eligible curve.
618 * for concave, it is equal to the deadline curve.
619 * for convex, it is a linear curve with slope m2.
621 cl
->cl_eligible
= cl
->cl_deadline
;
622 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
623 cl
->cl_eligible
.dx
= 0;
624 cl
->cl_eligible
.dy
= 0;
627 /* compute e and d */
628 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
629 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
635 update_ed(struct hfsc_class
*cl
, unsigned int next_len
)
637 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
638 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
644 update_d(struct hfsc_class
*cl
, unsigned int next_len
)
646 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
650 update_cfmin(struct hfsc_class
*cl
)
652 struct rb_node
*n
= rb_first(&cl
->cf_tree
);
653 struct hfsc_class
*p
;
659 p
= rb_entry(n
, struct hfsc_class
, cf_node
);
660 cl
->cl_cfmin
= p
->cl_f
;
664 init_vf(struct hfsc_class
*cl
, unsigned int len
)
666 struct hfsc_class
*max_cl
;
673 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
674 if (go_active
&& cl
->cl_nactive
++ == 0)
680 n
= rb_last(&cl
->cl_parent
->vt_tree
);
682 max_cl
= rb_entry(n
, struct hfsc_class
, vt_node
);
684 * set vt to the average of the min and max
685 * classes. if the parent's period didn't
686 * change, don't decrease vt of the class.
689 if (cl
->cl_parent
->cl_cvtmin
!= 0)
690 vt
= (cl
->cl_parent
->cl_cvtmin
+ vt
)/2;
692 if (cl
->cl_parent
->cl_vtperiod
!=
693 cl
->cl_parentperiod
|| vt
> cl
->cl_vt
)
697 * first child for a new parent backlog period.
698 * initialize cl_vt to the highest value seen
699 * among the siblings. this is analogous to
700 * what cur_time would provide in realtime case.
702 cl
->cl_vt
= cl
->cl_parent
->cl_cvtoff
;
703 cl
->cl_parent
->cl_cvtmin
= 0;
706 /* update the virtual curve */
707 rtsc_min(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
710 cl
->cl_vtperiod
++; /* increment vt period */
711 cl
->cl_parentperiod
= cl
->cl_parent
->cl_vtperiod
;
712 if (cl
->cl_parent
->cl_nactive
== 0)
713 cl
->cl_parentperiod
++;
719 if (cl
->cl_flags
& HFSC_USC
) {
720 /* class has upper limit curve */
722 cur_time
= psched_get_time();
724 /* update the ulimit curve */
725 rtsc_min(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
,
728 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
,
733 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
738 update_cfmin(cl
->cl_parent
);
743 update_vf(struct hfsc_class
*cl
, unsigned int len
, u64 cur_time
)
745 u64 f
; /* , myf_bound, delta; */
748 if (cl
->qdisc
->q
.qlen
== 0 && cl
->cl_flags
& HFSC_FSC
)
751 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
754 if (!(cl
->cl_flags
& HFSC_FSC
) || cl
->cl_nactive
== 0)
757 if (go_passive
&& --cl
->cl_nactive
== 0)
763 cl
->cl_vt
= rtsc_y2x(&cl
->cl_virtual
, cl
->cl_total
) + cl
->cl_vtadj
;
766 * if vt of the class is smaller than cvtmin,
767 * the class was skipped in the past due to non-fit.
768 * if so, we need to adjust vtadj.
770 if (cl
->cl_vt
< cl
->cl_parent
->cl_cvtmin
) {
771 cl
->cl_vtadj
+= cl
->cl_parent
->cl_cvtmin
- cl
->cl_vt
;
772 cl
->cl_vt
= cl
->cl_parent
->cl_cvtmin
;
776 /* no more active child, going passive */
778 /* update cvtoff of the parent class */
779 if (cl
->cl_vt
> cl
->cl_parent
->cl_cvtoff
)
780 cl
->cl_parent
->cl_cvtoff
= cl
->cl_vt
;
782 /* remove this class from the vt tree */
786 update_cfmin(cl
->cl_parent
);
791 /* update the vt tree */
795 if (cl
->cl_flags
& HFSC_USC
) {
796 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
, cl
->cl_total
);
798 cl
->cl_myf
= cl
->cl_myfadj
+ rtsc_y2x(&cl
->cl_ulimit
,
801 * This code causes classes to stay way under their
802 * limit when multiple classes are used at gigabit
803 * speed. needs investigation. -kaber
806 * if myf lags behind by more than one clock tick
807 * from the current time, adjust myfadj to prevent
808 * a rate-limited class from going greedy.
809 * in a steady state under rate-limiting, myf
810 * fluctuates within one clock tick.
812 myf_bound
= cur_time
- PSCHED_JIFFIE2US(1);
813 if (cl
->cl_myf
< myf_bound
) {
814 delta
= cur_time
- cl
->cl_myf
;
815 cl
->cl_myfadj
+= delta
;
821 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
825 update_cfmin(cl
->cl_parent
);
831 qdisc_peek_len(struct Qdisc
*sch
)
836 skb
= sch
->ops
->peek(sch
);
837 if (unlikely(skb
== NULL
)) {
838 qdisc_warn_nonwc("qdisc_peek_len", sch
);
841 len
= qdisc_pkt_len(skb
);
847 hfsc_adjust_levels(struct hfsc_class
*cl
)
849 struct hfsc_class
*p
;
854 list_for_each_entry(p
, &cl
->children
, siblings
) {
855 if (p
->level
>= level
)
856 level
= p
->level
+ 1;
859 } while ((cl
= cl
->cl_parent
) != NULL
);
862 static inline struct hfsc_class
*
863 hfsc_find_class(u32 classid
, struct Qdisc
*sch
)
865 struct hfsc_sched
*q
= qdisc_priv(sch
);
866 struct Qdisc_class_common
*clc
;
868 clc
= qdisc_class_find(&q
->clhash
, classid
);
871 return container_of(clc
, struct hfsc_class
, cl_common
);
875 hfsc_change_rsc(struct hfsc_class
*cl
, struct tc_service_curve
*rsc
,
878 sc2isc(rsc
, &cl
->cl_rsc
);
879 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
880 cl
->cl_eligible
= cl
->cl_deadline
;
881 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
882 cl
->cl_eligible
.dx
= 0;
883 cl
->cl_eligible
.dy
= 0;
885 cl
->cl_flags
|= HFSC_RSC
;
889 hfsc_change_fsc(struct hfsc_class
*cl
, struct tc_service_curve
*fsc
)
891 sc2isc(fsc
, &cl
->cl_fsc
);
892 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
893 cl
->cl_flags
|= HFSC_FSC
;
897 hfsc_change_usc(struct hfsc_class
*cl
, struct tc_service_curve
*usc
,
900 sc2isc(usc
, &cl
->cl_usc
);
901 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
, cl
->cl_total
);
902 cl
->cl_flags
|= HFSC_USC
;
906 hfsc_upgrade_rt(struct hfsc_class
*cl
)
908 cl
->cl_fsc
= cl
->cl_rsc
;
909 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
910 cl
->cl_flags
|= HFSC_FSC
;
913 static const struct nla_policy hfsc_policy
[TCA_HFSC_MAX
+ 1] = {
914 [TCA_HFSC_RSC
] = { .len
= sizeof(struct tc_service_curve
) },
915 [TCA_HFSC_FSC
] = { .len
= sizeof(struct tc_service_curve
) },
916 [TCA_HFSC_USC
] = { .len
= sizeof(struct tc_service_curve
) },
920 hfsc_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
921 struct nlattr
**tca
, unsigned long *arg
,
922 struct netlink_ext_ack
*extack
)
924 struct hfsc_sched
*q
= qdisc_priv(sch
);
925 struct hfsc_class
*cl
= (struct hfsc_class
*)*arg
;
926 struct hfsc_class
*parent
= NULL
;
927 struct nlattr
*opt
= tca
[TCA_OPTIONS
];
928 struct nlattr
*tb
[TCA_HFSC_MAX
+ 1];
929 struct tc_service_curve
*rsc
= NULL
, *fsc
= NULL
, *usc
= NULL
;
936 err
= nla_parse_nested_deprecated(tb
, TCA_HFSC_MAX
, opt
, hfsc_policy
,
941 if (tb
[TCA_HFSC_RSC
]) {
942 rsc
= nla_data(tb
[TCA_HFSC_RSC
]);
943 if (rsc
->m1
== 0 && rsc
->m2
== 0)
947 if (tb
[TCA_HFSC_FSC
]) {
948 fsc
= nla_data(tb
[TCA_HFSC_FSC
]);
949 if (fsc
->m1
== 0 && fsc
->m2
== 0)
953 if (tb
[TCA_HFSC_USC
]) {
954 usc
= nla_data(tb
[TCA_HFSC_USC
]);
955 if (usc
->m1
== 0 && usc
->m2
== 0)
964 cl
->cl_parent
->cl_common
.classid
!= parentid
)
966 if (cl
->cl_parent
== NULL
&& parentid
!= TC_H_ROOT
)
969 cur_time
= psched_get_time();
972 err
= gen_replace_estimator(&cl
->bstats
, NULL
,
982 old_flags
= cl
->cl_flags
;
985 hfsc_change_rsc(cl
, rsc
, cur_time
);
987 hfsc_change_fsc(cl
, fsc
);
989 hfsc_change_usc(cl
, usc
, cur_time
);
991 if (cl
->qdisc
->q
.qlen
!= 0) {
992 int len
= qdisc_peek_len(cl
->qdisc
);
994 if (cl
->cl_flags
& HFSC_RSC
) {
995 if (old_flags
& HFSC_RSC
)
1001 if (cl
->cl_flags
& HFSC_FSC
) {
1002 if (old_flags
& HFSC_FSC
)
1003 update_vf(cl
, 0, cur_time
);
1008 sch_tree_unlock(sch
);
1013 if (parentid
== TC_H_ROOT
)
1018 parent
= hfsc_find_class(parentid
, sch
);
1023 if (classid
== 0 || TC_H_MAJ(classid
^ sch
->handle
) != 0)
1025 if (hfsc_find_class(classid
, sch
))
1028 if (rsc
== NULL
&& fsc
== NULL
)
1031 cl
= kzalloc(sizeof(struct hfsc_class
), GFP_KERNEL
);
1035 err
= tcf_block_get(&cl
->block
, &cl
->filter_list
, sch
, extack
);
1041 if (tca
[TCA_RATE
]) {
1042 err
= gen_new_estimator(&cl
->bstats
, NULL
, &cl
->rate_est
,
1043 NULL
, true, tca
[TCA_RATE
]);
1045 tcf_block_put(cl
->block
);
1052 hfsc_change_rsc(cl
, rsc
, 0);
1054 hfsc_change_fsc(cl
, fsc
);
1056 hfsc_change_usc(cl
, usc
, 0);
1058 cl
->cl_common
.classid
= classid
;
1060 cl
->cl_parent
= parent
;
1061 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1063 if (cl
->qdisc
== NULL
)
1064 cl
->qdisc
= &noop_qdisc
;
1066 qdisc_hash_add(cl
->qdisc
, true);
1067 INIT_LIST_HEAD(&cl
->children
);
1068 cl
->vt_tree
= RB_ROOT
;
1069 cl
->cf_tree
= RB_ROOT
;
1072 /* Check if the inner class is a misconfigured 'rt' */
1073 if (!(parent
->cl_flags
& HFSC_FSC
) && parent
!= &q
->root
) {
1074 NL_SET_ERR_MSG(extack
,
1075 "Forced curve change on parent 'rt' to 'sc'");
1076 hfsc_upgrade_rt(parent
);
1078 qdisc_class_hash_insert(&q
->clhash
, &cl
->cl_common
);
1079 list_add_tail(&cl
->siblings
, &parent
->children
);
1080 if (parent
->level
== 0)
1081 qdisc_purge_queue(parent
->qdisc
);
1082 hfsc_adjust_levels(parent
);
1083 sch_tree_unlock(sch
);
1085 qdisc_class_hash_grow(sch
, &q
->clhash
);
1087 *arg
= (unsigned long)cl
;
1092 hfsc_destroy_class(struct Qdisc
*sch
, struct hfsc_class
*cl
)
1094 struct hfsc_sched
*q
= qdisc_priv(sch
);
1096 tcf_block_put(cl
->block
);
1097 qdisc_put(cl
->qdisc
);
1098 gen_kill_estimator(&cl
->rate_est
);
1104 hfsc_delete_class(struct Qdisc
*sch
, unsigned long arg
,
1105 struct netlink_ext_ack
*extack
)
1107 struct hfsc_sched
*q
= qdisc_priv(sch
);
1108 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1110 if (cl
->level
> 0 || qdisc_class_in_use(&cl
->cl_common
) ||
1112 NL_SET_ERR_MSG(extack
, "HFSC class in use");
1118 list_del(&cl
->siblings
);
1119 hfsc_adjust_levels(cl
->cl_parent
);
1121 qdisc_purge_queue(cl
->qdisc
);
1122 qdisc_class_hash_remove(&q
->clhash
, &cl
->cl_common
);
1124 sch_tree_unlock(sch
);
1126 hfsc_destroy_class(sch
, cl
);
1130 static struct hfsc_class
*
1131 hfsc_classify(struct sk_buff
*skb
, struct Qdisc
*sch
, int *qerr
)
1133 struct hfsc_sched
*q
= qdisc_priv(sch
);
1134 struct hfsc_class
*head
, *cl
;
1135 struct tcf_result res
;
1136 struct tcf_proto
*tcf
;
1139 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0 &&
1140 (cl
= hfsc_find_class(skb
->priority
, sch
)) != NULL
)
1144 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
1146 tcf
= rcu_dereference_bh(q
->root
.filter_list
);
1147 while (tcf
&& (result
= tcf_classify(skb
, NULL
, tcf
, &res
, false)) >= 0) {
1148 #ifdef CONFIG_NET_CLS_ACT
1153 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
1159 cl
= (struct hfsc_class
*)res
.class;
1161 cl
= hfsc_find_class(res
.classid
, sch
);
1163 break; /* filter selected invalid classid */
1164 if (cl
->level
>= head
->level
)
1165 break; /* filter may only point downwards */
1169 return cl
; /* hit leaf class */
1171 /* apply inner filter chain */
1172 tcf
= rcu_dereference_bh(cl
->filter_list
);
1176 /* classification failed, try default class */
1177 cl
= hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch
->handle
),
1178 READ_ONCE(q
->defcls
)), sch
);
1179 if (cl
== NULL
|| cl
->level
> 0)
1186 hfsc_graft_class(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1187 struct Qdisc
**old
, struct netlink_ext_ack
*extack
)
1189 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1194 new = qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1195 cl
->cl_common
.classid
, NULL
);
1200 *old
= qdisc_replace(sch
, new, &cl
->qdisc
);
1204 static struct Qdisc
*
1205 hfsc_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
1207 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1216 hfsc_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1218 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1220 /* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
1221 * needs to be called explicitly to remove a class from vttree.
1223 update_vf(cl
, 0, 0);
1224 if (cl
->cl_flags
& HFSC_RSC
)
1228 static unsigned long
1229 hfsc_search_class(struct Qdisc
*sch
, u32 classid
)
1231 return (unsigned long)hfsc_find_class(classid
, sch
);
1234 static unsigned long
1235 hfsc_bind_tcf(struct Qdisc
*sch
, unsigned long parent
, u32 classid
)
1237 struct hfsc_class
*p
= (struct hfsc_class
*)parent
;
1238 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1241 if (p
!= NULL
&& p
->level
<= cl
->level
)
1243 qdisc_class_get(&cl
->cl_common
);
1246 return (unsigned long)cl
;
1250 hfsc_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
1252 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1254 qdisc_class_put(&cl
->cl_common
);
1257 static struct tcf_block
*hfsc_tcf_block(struct Qdisc
*sch
, unsigned long arg
,
1258 struct netlink_ext_ack
*extack
)
1260 struct hfsc_sched
*q
= qdisc_priv(sch
);
1261 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1270 hfsc_dump_sc(struct sk_buff
*skb
, int attr
, struct internal_sc
*sc
)
1272 struct tc_service_curve tsc
;
1274 tsc
.m1
= sm2m(sc
->sm1
);
1275 tsc
.d
= dx2d(sc
->dx
);
1276 tsc
.m2
= sm2m(sc
->sm2
);
1277 if (nla_put(skb
, attr
, sizeof(tsc
), &tsc
))
1278 goto nla_put_failure
;
1287 hfsc_dump_curves(struct sk_buff
*skb
, struct hfsc_class
*cl
)
1289 if ((cl
->cl_flags
& HFSC_RSC
) &&
1290 (hfsc_dump_sc(skb
, TCA_HFSC_RSC
, &cl
->cl_rsc
) < 0))
1291 goto nla_put_failure
;
1293 if ((cl
->cl_flags
& HFSC_FSC
) &&
1294 (hfsc_dump_sc(skb
, TCA_HFSC_FSC
, &cl
->cl_fsc
) < 0))
1295 goto nla_put_failure
;
1297 if ((cl
->cl_flags
& HFSC_USC
) &&
1298 (hfsc_dump_sc(skb
, TCA_HFSC_USC
, &cl
->cl_usc
) < 0))
1299 goto nla_put_failure
;
1308 hfsc_dump_class(struct Qdisc
*sch
, unsigned long arg
, struct sk_buff
*skb
,
1311 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1312 struct nlattr
*nest
;
1314 tcm
->tcm_parent
= cl
->cl_parent
? cl
->cl_parent
->cl_common
.classid
:
1316 tcm
->tcm_handle
= cl
->cl_common
.classid
;
1318 tcm
->tcm_info
= cl
->qdisc
->handle
;
1320 nest
= nla_nest_start_noflag(skb
, TCA_OPTIONS
);
1322 goto nla_put_failure
;
1323 if (hfsc_dump_curves(skb
, cl
) < 0)
1324 goto nla_put_failure
;
1325 return nla_nest_end(skb
, nest
);
1328 nla_nest_cancel(skb
, nest
);
1333 hfsc_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
1334 struct gnet_dump
*d
)
1336 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1337 struct tc_hfsc_stats xstats
;
1340 qdisc_qstats_qlen_backlog(cl
->qdisc
, &qlen
, &cl
->qstats
.backlog
);
1341 xstats
.level
= cl
->level
;
1342 xstats
.period
= cl
->cl_vtperiod
;
1343 xstats
.work
= cl
->cl_total
;
1344 xstats
.rtwork
= cl
->cl_cumul
;
1346 if (gnet_stats_copy_basic(d
, NULL
, &cl
->bstats
, true) < 0 ||
1347 gnet_stats_copy_rate_est(d
, &cl
->rate_est
) < 0 ||
1348 gnet_stats_copy_queue(d
, NULL
, &cl
->qstats
, qlen
) < 0)
1351 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
1357 hfsc_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
1359 struct hfsc_sched
*q
= qdisc_priv(sch
);
1360 struct hfsc_class
*cl
;
1366 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1367 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
],
1369 if (!tc_qdisc_stats_dump(sch
, (unsigned long)cl
, arg
))
1376 hfsc_schedule_watchdog(struct Qdisc
*sch
)
1378 struct hfsc_sched
*q
= qdisc_priv(sch
);
1379 struct hfsc_class
*cl
;
1382 cl
= eltree_get_minel(q
);
1384 next_time
= cl
->cl_e
;
1385 if (q
->root
.cl_cfmin
!= 0) {
1386 if (next_time
== 0 || next_time
> q
->root
.cl_cfmin
)
1387 next_time
= q
->root
.cl_cfmin
;
1390 qdisc_watchdog_schedule(&q
->watchdog
, next_time
);
1394 hfsc_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
,
1395 struct netlink_ext_ack
*extack
)
1397 struct hfsc_sched
*q
= qdisc_priv(sch
);
1398 struct tc_hfsc_qopt
*qopt
;
1401 qdisc_watchdog_init(&q
->watchdog
, sch
);
1403 if (!opt
|| nla_len(opt
) < sizeof(*qopt
))
1405 qopt
= nla_data(opt
);
1407 q
->defcls
= qopt
->defcls
;
1408 err
= qdisc_class_hash_init(&q
->clhash
);
1411 q
->eligible
= RB_ROOT
;
1413 err
= tcf_block_get(&q
->root
.block
, &q
->root
.filter_list
, sch
, extack
);
1417 gnet_stats_basic_sync_init(&q
->root
.bstats
);
1418 q
->root
.cl_common
.classid
= sch
->handle
;
1420 q
->root
.qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1422 if (q
->root
.qdisc
== NULL
)
1423 q
->root
.qdisc
= &noop_qdisc
;
1425 qdisc_hash_add(q
->root
.qdisc
, true);
1426 INIT_LIST_HEAD(&q
->root
.children
);
1427 q
->root
.vt_tree
= RB_ROOT
;
1428 q
->root
.cf_tree
= RB_ROOT
;
1430 qdisc_class_hash_insert(&q
->clhash
, &q
->root
.cl_common
);
1431 qdisc_class_hash_grow(sch
, &q
->clhash
);
1437 hfsc_change_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
,
1438 struct netlink_ext_ack
*extack
)
1440 struct hfsc_sched
*q
= qdisc_priv(sch
);
1441 struct tc_hfsc_qopt
*qopt
;
1443 if (nla_len(opt
) < sizeof(*qopt
))
1445 qopt
= nla_data(opt
);
1447 WRITE_ONCE(q
->defcls
, qopt
->defcls
);
1453 hfsc_reset_class(struct hfsc_class
*cl
)
1463 cl
->cl_vtperiod
= 0;
1464 cl
->cl_parentperiod
= 0;
1470 cl
->vt_tree
= RB_ROOT
;
1471 cl
->cf_tree
= RB_ROOT
;
1472 qdisc_reset(cl
->qdisc
);
1474 if (cl
->cl_flags
& HFSC_RSC
)
1475 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, 0, 0);
1476 if (cl
->cl_flags
& HFSC_FSC
)
1477 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, 0, 0);
1478 if (cl
->cl_flags
& HFSC_USC
)
1479 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, 0, 0);
1483 hfsc_reset_qdisc(struct Qdisc
*sch
)
1485 struct hfsc_sched
*q
= qdisc_priv(sch
);
1486 struct hfsc_class
*cl
;
1489 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1490 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1491 hfsc_reset_class(cl
);
1493 q
->eligible
= RB_ROOT
;
1494 qdisc_watchdog_cancel(&q
->watchdog
);
1498 hfsc_destroy_qdisc(struct Qdisc
*sch
)
1500 struct hfsc_sched
*q
= qdisc_priv(sch
);
1501 struct hlist_node
*next
;
1502 struct hfsc_class
*cl
;
1505 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1506 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
) {
1507 tcf_block_put(cl
->block
);
1511 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1512 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1514 hfsc_destroy_class(sch
, cl
);
1516 qdisc_class_hash_destroy(&q
->clhash
);
1517 qdisc_watchdog_cancel(&q
->watchdog
);
1521 hfsc_dump_qdisc(struct Qdisc
*sch
, struct sk_buff
*skb
)
1523 struct hfsc_sched
*q
= qdisc_priv(sch
);
1524 unsigned char *b
= skb_tail_pointer(skb
);
1525 struct tc_hfsc_qopt qopt
;
1527 qopt
.defcls
= READ_ONCE(q
->defcls
);
1528 if (nla_put(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
))
1529 goto nla_put_failure
;
1538 hfsc_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
, struct sk_buff
**to_free
)
1540 unsigned int len
= qdisc_pkt_len(skb
);
1541 struct hfsc_class
*cl
;
1545 cl
= hfsc_classify(skb
, sch
, &err
);
1547 if (err
& __NET_XMIT_BYPASS
)
1548 qdisc_qstats_drop(sch
);
1549 __qdisc_drop(skb
, to_free
);
1553 first
= !cl
->qdisc
->q
.qlen
;
1554 err
= qdisc_enqueue(skb
, cl
->qdisc
, to_free
);
1555 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1556 if (net_xmit_drop_count(err
)) {
1558 qdisc_qstats_drop(sch
);
1564 if (cl
->cl_flags
& HFSC_RSC
)
1566 if (cl
->cl_flags
& HFSC_FSC
)
1569 * If this is the first packet, isolate the head so an eventual
1570 * head drop before the first dequeue operation has no chance
1571 * to invalidate the deadline.
1573 if (cl
->cl_flags
& HFSC_RSC
)
1574 cl
->qdisc
->ops
->peek(cl
->qdisc
);
1578 sch
->qstats
.backlog
+= len
;
1581 return NET_XMIT_SUCCESS
;
1584 static struct sk_buff
*
1585 hfsc_dequeue(struct Qdisc
*sch
)
1587 struct hfsc_sched
*q
= qdisc_priv(sch
);
1588 struct hfsc_class
*cl
;
1589 struct sk_buff
*skb
;
1591 unsigned int next_len
;
1594 if (sch
->q
.qlen
== 0)
1597 cur_time
= psched_get_time();
1600 * if there are eligible classes, use real-time criteria.
1601 * find the class with the minimum deadline among
1602 * the eligible classes.
1604 cl
= eltree_get_mindl(q
, cur_time
);
1609 * use link-sharing criteria
1610 * get the class with the minimum vt in the hierarchy
1612 cl
= vttree_get_minvt(&q
->root
, cur_time
);
1614 qdisc_qstats_overlimit(sch
);
1615 hfsc_schedule_watchdog(sch
);
1620 skb
= qdisc_dequeue_peeked(cl
->qdisc
);
1622 qdisc_warn_nonwc("HFSC", cl
->qdisc
);
1626 bstats_update(&cl
->bstats
, skb
);
1627 update_vf(cl
, qdisc_pkt_len(skb
), cur_time
);
1629 cl
->cl_cumul
+= qdisc_pkt_len(skb
);
1631 if (cl
->cl_flags
& HFSC_RSC
) {
1632 if (cl
->qdisc
->q
.qlen
!= 0) {
1634 next_len
= qdisc_peek_len(cl
->qdisc
);
1636 update_ed(cl
, next_len
);
1638 update_d(cl
, next_len
);
1640 /* the class becomes passive */
1645 qdisc_bstats_update(sch
, skb
);
1646 qdisc_qstats_backlog_dec(sch
, skb
);
1652 static const struct Qdisc_class_ops hfsc_class_ops
= {
1653 .change
= hfsc_change_class
,
1654 .delete = hfsc_delete_class
,
1655 .graft
= hfsc_graft_class
,
1656 .leaf
= hfsc_class_leaf
,
1657 .qlen_notify
= hfsc_qlen_notify
,
1658 .find
= hfsc_search_class
,
1659 .bind_tcf
= hfsc_bind_tcf
,
1660 .unbind_tcf
= hfsc_unbind_tcf
,
1661 .tcf_block
= hfsc_tcf_block
,
1662 .dump
= hfsc_dump_class
,
1663 .dump_stats
= hfsc_dump_class_stats
,
1667 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly
= {
1669 .init
= hfsc_init_qdisc
,
1670 .change
= hfsc_change_qdisc
,
1671 .reset
= hfsc_reset_qdisc
,
1672 .destroy
= hfsc_destroy_qdisc
,
1673 .dump
= hfsc_dump_qdisc
,
1674 .enqueue
= hfsc_enqueue
,
1675 .dequeue
= hfsc_dequeue
,
1676 .peek
= qdisc_peek_dequeued
,
1677 .cl_ops
= &hfsc_class_ops
,
1678 .priv_size
= sizeof(struct hfsc_sched
),
1679 .owner
= THIS_MODULE
1681 MODULE_ALIAS_NET_SCH("hfsc");
1686 return register_qdisc(&hfsc_qdisc_ops
);
1692 unregister_qdisc(&hfsc_qdisc_ops
);
1695 MODULE_LICENSE("GPL");
1696 MODULE_DESCRIPTION("Hierarchical Fair Service Curve scheduler");
1697 module_init(hfsc_init
);
1698 module_exit(hfsc_cleanup
);