drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / net / sunrpc / xprtrdma / frwr_ops.c
blob31434aeb8e29c3f9c8371f0984531e8d09195c60
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2015, 2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 */
7 /* Lightweight memory registration using Fast Registration Work
8 * Requests (FRWR).
10 * FRWR features ordered asynchronous registration and invalidation
11 * of arbitrarily-sized memory regions. This is the fastest and safest
12 * but most complex memory registration mode.
15 /* Normal operation
17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18 * Work Request (frwr_map). When the RDMA operation is finished, this
19 * Memory Region is invalidated using a LOCAL_INV Work Request
20 * (frwr_unmap_async and frwr_unmap_sync).
22 * Typically FAST_REG Work Requests are not signaled, and neither are
23 * RDMA Send Work Requests (with the exception of signaling occasionally
24 * to prevent provider work queue overflows). This greatly reduces HCA
25 * interrupt workload.
28 /* Transport recovery
30 * frwr_map and frwr_unmap_* cannot run at the same time the transport
31 * connect worker is running. The connect worker holds the transport
32 * send lock, just as ->send_request does. This prevents frwr_map and
33 * the connect worker from running concurrently. When a connection is
34 * closed, the Receive completion queue is drained before the allowing
35 * the connect worker to get control. This prevents frwr_unmap and the
36 * connect worker from running concurrently.
38 * When the underlying transport disconnects, MRs that are in flight
39 * are flushed and are likely unusable. Thus all MRs are destroyed.
40 * New MRs are created on demand.
43 #include <linux/sunrpc/svc_rdma.h>
45 #include "xprt_rdma.h"
46 #include <trace/events/rpcrdma.h>
48 static void frwr_cid_init(struct rpcrdma_ep *ep,
49 struct rpcrdma_mr *mr)
51 struct rpc_rdma_cid *cid = &mr->mr_cid;
53 cid->ci_queue_id = ep->re_attr.send_cq->res.id;
54 cid->ci_completion_id = mr->mr_ibmr->res.id;
57 static void frwr_mr_unmap(struct rpcrdma_mr *mr)
59 if (mr->mr_device) {
60 trace_xprtrdma_mr_unmap(mr);
61 ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
62 mr->mr_dir);
63 mr->mr_device = NULL;
67 /**
68 * frwr_mr_release - Destroy one MR
69 * @mr: MR allocated by frwr_mr_init
72 void frwr_mr_release(struct rpcrdma_mr *mr)
74 int rc;
76 frwr_mr_unmap(mr);
78 rc = ib_dereg_mr(mr->mr_ibmr);
79 if (rc)
80 trace_xprtrdma_frwr_dereg(mr, rc);
81 kfree(mr->mr_sg);
82 kfree(mr);
85 static void frwr_mr_put(struct rpcrdma_mr *mr)
87 frwr_mr_unmap(mr);
89 /* The MR is returned to the req's MR free list instead
90 * of to the xprt's MR free list. No spinlock is needed.
92 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
95 /**
96 * frwr_reset - Place MRs back on @req's free list
97 * @req: request to reset
99 * Used after a failed marshal. For FRWR, this means the MRs
100 * don't have to be fully released and recreated.
102 * NB: This is safe only as long as none of @req's MRs are
103 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
104 * Work Request.
106 void frwr_reset(struct rpcrdma_req *req)
108 struct rpcrdma_mr *mr;
110 while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
111 frwr_mr_put(mr);
115 * frwr_mr_init - Initialize one MR
116 * @r_xprt: controlling transport instance
117 * @mr: generic MR to prepare for FRWR
119 * Returns zero if successful. Otherwise a negative errno
120 * is returned.
122 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
124 struct rpcrdma_ep *ep = r_xprt->rx_ep;
125 unsigned int depth = ep->re_max_fr_depth;
126 struct scatterlist *sg;
127 struct ib_mr *frmr;
129 sg = kcalloc_node(depth, sizeof(*sg), XPRTRDMA_GFP_FLAGS,
130 ibdev_to_node(ep->re_id->device));
131 if (!sg)
132 return -ENOMEM;
134 frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
135 if (IS_ERR(frmr))
136 goto out_mr_err;
138 mr->mr_xprt = r_xprt;
139 mr->mr_ibmr = frmr;
140 mr->mr_device = NULL;
141 INIT_LIST_HEAD(&mr->mr_list);
142 init_completion(&mr->mr_linv_done);
143 frwr_cid_init(ep, mr);
145 sg_init_table(sg, depth);
146 mr->mr_sg = sg;
147 return 0;
149 out_mr_err:
150 kfree(sg);
151 trace_xprtrdma_frwr_alloc(mr, PTR_ERR(frmr));
152 return PTR_ERR(frmr);
156 * frwr_query_device - Prepare a transport for use with FRWR
157 * @ep: endpoint to fill in
158 * @device: RDMA device to query
160 * On success, sets:
161 * ep->re_attr
162 * ep->re_max_requests
163 * ep->re_max_rdma_segs
164 * ep->re_max_fr_depth
165 * ep->re_mrtype
167 * Return values:
168 * On success, returns zero.
169 * %-EINVAL - the device does not support FRWR memory registration
170 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
172 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
174 const struct ib_device_attr *attrs = &device->attrs;
175 int max_qp_wr, depth, delta;
176 unsigned int max_sge;
178 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
179 attrs->max_fast_reg_page_list_len == 0) {
180 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
181 device->name);
182 return -EINVAL;
185 max_sge = min_t(unsigned int, attrs->max_send_sge,
186 RPCRDMA_MAX_SEND_SGES);
187 if (max_sge < RPCRDMA_MIN_SEND_SGES) {
188 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
189 return -ENOMEM;
191 ep->re_attr.cap.max_send_sge = max_sge;
192 ep->re_attr.cap.max_recv_sge = 1;
194 ep->re_mrtype = IB_MR_TYPE_MEM_REG;
195 if (attrs->kernel_cap_flags & IBK_SG_GAPS_REG)
196 ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
198 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len
199 * capability, but perform optimally when the MRs are not larger
200 * than a page.
202 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
203 ep->re_max_fr_depth = attrs->max_sge_rd;
204 else
205 ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
206 if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
207 ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
209 /* Add room for frwr register and invalidate WRs.
210 * 1. FRWR reg WR for head
211 * 2. FRWR invalidate WR for head
212 * 3. N FRWR reg WRs for pagelist
213 * 4. N FRWR invalidate WRs for pagelist
214 * 5. FRWR reg WR for tail
215 * 6. FRWR invalidate WR for tail
216 * 7. The RDMA_SEND WR
218 depth = 7;
220 /* Calculate N if the device max FRWR depth is smaller than
221 * RPCRDMA_MAX_DATA_SEGS.
223 if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
224 delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
225 do {
226 depth += 2; /* FRWR reg + invalidate */
227 delta -= ep->re_max_fr_depth;
228 } while (delta > 0);
231 max_qp_wr = attrs->max_qp_wr;
232 max_qp_wr -= RPCRDMA_BACKWARD_WRS;
233 max_qp_wr -= 1;
234 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
235 return -ENOMEM;
236 if (ep->re_max_requests > max_qp_wr)
237 ep->re_max_requests = max_qp_wr;
238 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
239 if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
240 ep->re_max_requests = max_qp_wr / depth;
241 if (!ep->re_max_requests)
242 return -ENOMEM;
243 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
245 ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
246 ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
247 ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
248 ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
249 ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
250 ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
252 ep->re_max_rdma_segs =
253 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
254 /* Reply chunks require segments for head and tail buffers */
255 ep->re_max_rdma_segs += 2;
256 if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
257 ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
259 /* Ensure the underlying device is capable of conveying the
260 * largest r/wsize NFS will ask for. This guarantees that
261 * failing over from one RDMA device to another will not
262 * break NFS I/O.
264 if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
265 return -ENOMEM;
267 return 0;
271 * frwr_map - Register a memory region
272 * @r_xprt: controlling transport
273 * @seg: memory region co-ordinates
274 * @nsegs: number of segments remaining
275 * @writing: true when RDMA Write will be used
276 * @xid: XID of RPC using the registered memory
277 * @mr: MR to fill in
279 * Prepare a REG_MR Work Request to register a memory region
280 * for remote access via RDMA READ or RDMA WRITE.
282 * Returns the next segment or a negative errno pointer.
283 * On success, @mr is filled in.
285 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
286 struct rpcrdma_mr_seg *seg,
287 int nsegs, bool writing, __be32 xid,
288 struct rpcrdma_mr *mr)
290 struct rpcrdma_ep *ep = r_xprt->rx_ep;
291 struct ib_reg_wr *reg_wr;
292 int i, n, dma_nents;
293 struct ib_mr *ibmr;
294 u8 key;
296 if (nsegs > ep->re_max_fr_depth)
297 nsegs = ep->re_max_fr_depth;
298 for (i = 0; i < nsegs;) {
299 sg_set_page(&mr->mr_sg[i], seg->mr_page,
300 seg->mr_len, seg->mr_offset);
302 ++seg;
303 ++i;
304 if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
305 continue;
306 if ((i < nsegs && seg->mr_offset) ||
307 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
308 break;
310 mr->mr_dir = rpcrdma_data_dir(writing);
311 mr->mr_nents = i;
313 dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
314 mr->mr_dir);
315 if (!dma_nents)
316 goto out_dmamap_err;
317 mr->mr_device = ep->re_id->device;
319 ibmr = mr->mr_ibmr;
320 n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
321 if (n != dma_nents)
322 goto out_mapmr_err;
324 ibmr->iova &= 0x00000000ffffffff;
325 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
326 key = (u8)(ibmr->rkey & 0x000000FF);
327 ib_update_fast_reg_key(ibmr, ++key);
329 reg_wr = &mr->mr_regwr;
330 reg_wr->mr = ibmr;
331 reg_wr->key = ibmr->rkey;
332 reg_wr->access = writing ?
333 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
334 IB_ACCESS_REMOTE_READ;
336 mr->mr_handle = ibmr->rkey;
337 mr->mr_length = ibmr->length;
338 mr->mr_offset = ibmr->iova;
339 trace_xprtrdma_mr_map(mr);
341 return seg;
343 out_dmamap_err:
344 trace_xprtrdma_frwr_sgerr(mr, i);
345 return ERR_PTR(-EIO);
347 out_mapmr_err:
348 trace_xprtrdma_frwr_maperr(mr, n);
349 return ERR_PTR(-EIO);
353 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
354 * @cq: completion queue
355 * @wc: WCE for a completed FastReg WR
357 * Each flushed MR gets destroyed after the QP has drained.
359 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
361 struct ib_cqe *cqe = wc->wr_cqe;
362 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
364 /* WARNING: Only wr_cqe and status are reliable at this point */
365 trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
367 rpcrdma_flush_disconnect(cq->cq_context, wc);
371 * frwr_send - post Send WRs containing the RPC Call message
372 * @r_xprt: controlling transport instance
373 * @req: prepared RPC Call
375 * For FRWR, chain any FastReg WRs to the Send WR. Only a
376 * single ib_post_send call is needed to register memory
377 * and then post the Send WR.
379 * Returns the return code from ib_post_send.
381 * Caller must hold the transport send lock to ensure that the
382 * pointers to the transport's rdma_cm_id and QP are stable.
384 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
386 struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
387 struct rpcrdma_ep *ep = r_xprt->rx_ep;
388 struct rpcrdma_mr *mr;
389 unsigned int num_wrs;
390 int ret;
392 num_wrs = 1;
393 post_wr = send_wr;
394 list_for_each_entry(mr, &req->rl_registered, mr_list) {
395 trace_xprtrdma_mr_fastreg(mr);
397 mr->mr_cqe.done = frwr_wc_fastreg;
398 mr->mr_regwr.wr.next = post_wr;
399 mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
400 mr->mr_regwr.wr.num_sge = 0;
401 mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
402 mr->mr_regwr.wr.send_flags = 0;
403 post_wr = &mr->mr_regwr.wr;
404 ++num_wrs;
407 if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
408 send_wr->send_flags |= IB_SEND_SIGNALED;
409 ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
410 num_wrs - ep->re_send_count);
411 } else {
412 send_wr->send_flags &= ~IB_SEND_SIGNALED;
413 ep->re_send_count -= num_wrs;
416 trace_xprtrdma_post_send(req);
417 ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
418 if (ret)
419 trace_xprtrdma_post_send_err(r_xprt, req, ret);
420 return ret;
424 * frwr_reminv - handle a remotely invalidated mr on the @mrs list
425 * @rep: Received reply
426 * @mrs: list of MRs to check
429 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
431 struct rpcrdma_mr *mr;
433 list_for_each_entry(mr, mrs, mr_list)
434 if (mr->mr_handle == rep->rr_inv_rkey) {
435 list_del_init(&mr->mr_list);
436 trace_xprtrdma_mr_reminv(mr);
437 frwr_mr_put(mr);
438 break; /* only one invalidated MR per RPC */
442 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
444 if (likely(wc->status == IB_WC_SUCCESS))
445 frwr_mr_put(mr);
449 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
450 * @cq: completion queue
451 * @wc: WCE for a completed LocalInv WR
454 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
456 struct ib_cqe *cqe = wc->wr_cqe;
457 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
459 /* WARNING: Only wr_cqe and status are reliable at this point */
460 trace_xprtrdma_wc_li(wc, &mr->mr_cid);
461 frwr_mr_done(wc, mr);
463 rpcrdma_flush_disconnect(cq->cq_context, wc);
467 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
468 * @cq: completion queue
469 * @wc: WCE for a completed LocalInv WR
471 * Awaken anyone waiting for an MR to finish being fenced.
473 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
475 struct ib_cqe *cqe = wc->wr_cqe;
476 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
478 /* WARNING: Only wr_cqe and status are reliable at this point */
479 trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
480 frwr_mr_done(wc, mr);
481 complete(&mr->mr_linv_done);
483 rpcrdma_flush_disconnect(cq->cq_context, wc);
487 * frwr_unmap_sync - invalidate memory regions that were registered for @req
488 * @r_xprt: controlling transport instance
489 * @req: rpcrdma_req with a non-empty list of MRs to process
491 * Sleeps until it is safe for the host CPU to access the previously mapped
492 * memory regions. This guarantees that registered MRs are properly fenced
493 * from the server before the RPC consumer accesses the data in them. It
494 * also ensures proper Send flow control: waking the next RPC waits until
495 * this RPC has relinquished all its Send Queue entries.
497 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
499 struct ib_send_wr *first, **prev, *last;
500 struct rpcrdma_ep *ep = r_xprt->rx_ep;
501 const struct ib_send_wr *bad_wr;
502 struct rpcrdma_mr *mr;
503 int rc;
505 /* ORDER: Invalidate all of the MRs first
507 * Chain the LOCAL_INV Work Requests and post them with
508 * a single ib_post_send() call.
510 prev = &first;
511 mr = rpcrdma_mr_pop(&req->rl_registered);
512 do {
513 trace_xprtrdma_mr_localinv(mr);
514 r_xprt->rx_stats.local_inv_needed++;
516 last = &mr->mr_invwr;
517 last->next = NULL;
518 last->wr_cqe = &mr->mr_cqe;
519 last->sg_list = NULL;
520 last->num_sge = 0;
521 last->opcode = IB_WR_LOCAL_INV;
522 last->send_flags = IB_SEND_SIGNALED;
523 last->ex.invalidate_rkey = mr->mr_handle;
525 last->wr_cqe->done = frwr_wc_localinv;
527 *prev = last;
528 prev = &last->next;
529 } while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
531 mr = container_of(last, struct rpcrdma_mr, mr_invwr);
533 /* Strong send queue ordering guarantees that when the
534 * last WR in the chain completes, all WRs in the chain
535 * are complete.
537 last->wr_cqe->done = frwr_wc_localinv_wake;
538 reinit_completion(&mr->mr_linv_done);
540 /* Transport disconnect drains the receive CQ before it
541 * replaces the QP. The RPC reply handler won't call us
542 * unless re_id->qp is a valid pointer.
544 bad_wr = NULL;
545 rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
547 /* The final LOCAL_INV WR in the chain is supposed to
548 * do the wake. If it was never posted, the wake will
549 * not happen, so don't wait in that case.
551 if (bad_wr != first)
552 wait_for_completion(&mr->mr_linv_done);
553 if (!rc)
554 return;
556 /* On error, the MRs get destroyed once the QP has drained. */
557 trace_xprtrdma_post_linv_err(req, rc);
559 /* Force a connection loss to ensure complete recovery.
561 rpcrdma_force_disconnect(ep);
565 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
566 * @cq: completion queue
567 * @wc: WCE for a completed LocalInv WR
570 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
572 struct ib_cqe *cqe = wc->wr_cqe;
573 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
574 struct rpcrdma_rep *rep;
576 /* WARNING: Only wr_cqe and status are reliable at this point */
577 trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
579 /* Ensure that @rep is generated before the MR is released */
580 rep = mr->mr_req->rl_reply;
581 smp_rmb();
583 if (wc->status != IB_WC_SUCCESS) {
584 if (rep)
585 rpcrdma_unpin_rqst(rep);
586 rpcrdma_flush_disconnect(cq->cq_context, wc);
587 return;
589 frwr_mr_put(mr);
590 rpcrdma_complete_rqst(rep);
594 * frwr_unmap_async - invalidate memory regions that were registered for @req
595 * @r_xprt: controlling transport instance
596 * @req: rpcrdma_req with a non-empty list of MRs to process
598 * This guarantees that registered MRs are properly fenced from the
599 * server before the RPC consumer accesses the data in them. It also
600 * ensures proper Send flow control: waking the next RPC waits until
601 * this RPC has relinquished all its Send Queue entries.
603 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
605 struct ib_send_wr *first, *last, **prev;
606 struct rpcrdma_ep *ep = r_xprt->rx_ep;
607 struct rpcrdma_mr *mr;
608 int rc;
610 /* Chain the LOCAL_INV Work Requests and post them with
611 * a single ib_post_send() call.
613 prev = &first;
614 mr = rpcrdma_mr_pop(&req->rl_registered);
615 do {
616 trace_xprtrdma_mr_localinv(mr);
617 r_xprt->rx_stats.local_inv_needed++;
619 last = &mr->mr_invwr;
620 last->next = NULL;
621 last->wr_cqe = &mr->mr_cqe;
622 last->sg_list = NULL;
623 last->num_sge = 0;
624 last->opcode = IB_WR_LOCAL_INV;
625 last->send_flags = IB_SEND_SIGNALED;
626 last->ex.invalidate_rkey = mr->mr_handle;
628 last->wr_cqe->done = frwr_wc_localinv;
630 *prev = last;
631 prev = &last->next;
632 } while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
634 /* Strong send queue ordering guarantees that when the
635 * last WR in the chain completes, all WRs in the chain
636 * are complete. The last completion will wake up the
637 * RPC waiter.
639 last->wr_cqe->done = frwr_wc_localinv_done;
641 /* Transport disconnect drains the receive CQ before it
642 * replaces the QP. The RPC reply handler won't call us
643 * unless re_id->qp is a valid pointer.
645 rc = ib_post_send(ep->re_id->qp, first, NULL);
646 if (!rc)
647 return;
649 /* On error, the MRs get destroyed once the QP has drained. */
650 trace_xprtrdma_post_linv_err(req, rc);
652 /* The final LOCAL_INV WR in the chain is supposed to
653 * do the wake. If it was never posted, the wake does
654 * not happen. Unpin the rqst in preparation for its
655 * retransmission.
657 rpcrdma_unpin_rqst(req->rl_reply);
659 /* Force a connection loss to ensure complete recovery.
661 rpcrdma_force_disconnect(ep);
665 * frwr_wp_create - Create an MR for padding Write chunks
666 * @r_xprt: transport resources to use
668 * Return 0 on success, negative errno on failure.
670 int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
672 struct rpcrdma_ep *ep = r_xprt->rx_ep;
673 struct rpcrdma_mr_seg seg;
674 struct rpcrdma_mr *mr;
676 mr = rpcrdma_mr_get(r_xprt);
677 if (!mr)
678 return -EAGAIN;
679 mr->mr_req = NULL;
680 ep->re_write_pad_mr = mr;
682 seg.mr_len = XDR_UNIT;
683 seg.mr_page = virt_to_page(ep->re_write_pad);
684 seg.mr_offset = offset_in_page(ep->re_write_pad);
685 if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
686 return -EIO;
687 trace_xprtrdma_mr_fastreg(mr);
689 mr->mr_cqe.done = frwr_wc_fastreg;
690 mr->mr_regwr.wr.next = NULL;
691 mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
692 mr->mr_regwr.wr.num_sge = 0;
693 mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
694 mr->mr_regwr.wr.send_flags = 0;
696 return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);