8 BTF (BPF Type Format) is the metadata format which encodes the debug info
9 related to BPF program/map. The name BTF was used initially to describe data
10 types. The BTF was later extended to include function info for defined
11 subroutines, and line info for source/line information.
13 The debug info is used for map pretty print, function signature, etc. The
14 function signature enables better bpf program/function kernel symbol. The line
15 info helps generate source annotated translated byte code, jited code and
18 The BTF specification contains two parts,
22 The kernel API is the contract between user space and kernel. The kernel
23 verifies the BTF info before using it. The ELF file format is a user space
24 contract between ELF file and libbpf loader.
26 The type and string sections are part of the BTF kernel API, describing the
27 debug info (mostly types related) referenced by the bpf program. These two
28 sections are discussed in details in :ref:`BTF_Type_String`.
32 2. BTF Type and String Encoding
33 ===============================
35 The file ``include/uapi/linux/btf.h`` provides high-level definition of how
36 types/strings are encoded.
38 The beginning of data blob must be::
46 /* All offsets are in bytes relative to the end of this header */
47 __u32 type_off; /* offset of type section */
48 __u32 type_len; /* length of type section */
49 __u32 str_off; /* offset of string section */
50 __u32 str_len; /* length of string section */
53 The magic is ``0xeB9F``, which has different encoding for big and little
54 endian systems, and can be used to test whether BTF is generated for big- or
55 little-endian target. The ``btf_header`` is designed to be extensible with
56 ``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
62 The first string in the string section must be a null string. The rest of
63 string table is a concatenation of other null-terminated strings.
68 The type id ``0`` is reserved for ``void`` type. The type section is parsed
69 sequentially and type id is assigned to each recognized type starting from id
70 ``1``. Currently, the following types are supported::
72 #define BTF_KIND_INT 1 /* Integer */
73 #define BTF_KIND_PTR 2 /* Pointer */
74 #define BTF_KIND_ARRAY 3 /* Array */
75 #define BTF_KIND_STRUCT 4 /* Struct */
76 #define BTF_KIND_UNION 5 /* Union */
77 #define BTF_KIND_ENUM 6 /* Enumeration up to 32-bit values */
78 #define BTF_KIND_FWD 7 /* Forward */
79 #define BTF_KIND_TYPEDEF 8 /* Typedef */
80 #define BTF_KIND_VOLATILE 9 /* Volatile */
81 #define BTF_KIND_CONST 10 /* Const */
82 #define BTF_KIND_RESTRICT 11 /* Restrict */
83 #define BTF_KIND_FUNC 12 /* Function */
84 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */
85 #define BTF_KIND_VAR 14 /* Variable */
86 #define BTF_KIND_DATASEC 15 /* Section */
87 #define BTF_KIND_FLOAT 16 /* Floating point */
88 #define BTF_KIND_DECL_TAG 17 /* Decl Tag */
89 #define BTF_KIND_TYPE_TAG 18 /* Type Tag */
90 #define BTF_KIND_ENUM64 19 /* Enumeration up to 64-bit values */
92 Note that the type section encodes debug info, not just pure types.
93 ``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
95 Each type contains the following common data::
99 /* "info" bits arrangement
100 * bits 0-15: vlen (e.g. # of struct's members)
102 * bits 24-28: kind (e.g. int, ptr, array...etc)
104 * bit 31: kind_flag, currently used by
105 * struct, union, fwd, enum and enum64.
108 /* "size" is used by INT, ENUM, STRUCT, UNION and ENUM64.
109 * "size" tells the size of the type it is describing.
111 * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
112 * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG.
113 * "type" is a type_id referring to another type.
121 For certain kinds, the common data are followed by kind-specific data. The
122 ``name_off`` in ``struct btf_type`` specifies the offset in the string table.
123 The following sections detail encoding of each kind.
128 ``struct btf_type`` encoding requirement:
129 * ``name_off``: any valid offset
130 * ``info.kind_flag``: 0
131 * ``info.kind``: BTF_KIND_INT
133 * ``size``: the size of the int type in bytes.
135 ``btf_type`` is followed by a ``u32`` with the following bits arrangement::
137 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x0f000000) >> 24)
138 #define BTF_INT_OFFSET(VAL) (((VAL) & 0x00ff0000) >> 16)
139 #define BTF_INT_BITS(VAL) ((VAL) & 0x000000ff)
141 The ``BTF_INT_ENCODING`` has the following attributes::
143 #define BTF_INT_SIGNED (1 << 0)
144 #define BTF_INT_CHAR (1 << 1)
145 #define BTF_INT_BOOL (1 << 2)
147 The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
148 bool, for the int type. The char and bool encoding are mostly useful for
149 pretty print. At most one encoding can be specified for the int type.
151 The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
152 type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
153 The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
154 for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
156 The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
157 for this int. For example, a bitfield struct member has:
159 * btf member bit offset 100 from the start of the structure,
160 * btf member pointing to an int type,
161 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
163 Then in the struct memory layout, this member will occupy ``4`` bits starting
164 from bits ``100 + 2 = 102``.
166 Alternatively, the bitfield struct member can be the following to access the
167 same bits as the above:
169 * btf member bit offset 102,
170 * btf member pointing to an int type,
171 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
173 The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
174 bitfield encoding. Currently, both llvm and pahole generate
175 ``BTF_INT_OFFSET() = 0`` for all int types.
180 ``struct btf_type`` encoding requirement:
182 * ``info.kind_flag``: 0
183 * ``info.kind``: BTF_KIND_PTR
185 * ``type``: the pointee type of the pointer
187 No additional type data follow ``btf_type``.
192 ``struct btf_type`` encoding requirement:
194 * ``info.kind_flag``: 0
195 * ``info.kind``: BTF_KIND_ARRAY
197 * ``size/type``: 0, not used
199 ``btf_type`` is followed by one ``struct btf_array``::
207 The ``struct btf_array`` encoding:
208 * ``type``: the element type
209 * ``index_type``: the index type
210 * ``nelems``: the number of elements for this array (``0`` is also allowed).
212 The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
213 ``u64``, ``unsigned __int128``). The original design of including
214 ``index_type`` follows DWARF, which has an ``index_type`` for its array type.
215 Currently in BTF, beyond type verification, the ``index_type`` is not used.
217 The ``struct btf_array`` allows chaining through element type to represent
218 multidimensional arrays. For example, for ``int a[5][6]``, the following type
219 information illustrates the chaining:
222 * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
223 * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``
225 Currently, both pahole and llvm collapse multidimensional array into
226 one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
227 equal to ``30``. This is because the original use case is map pretty print
228 where the whole array is dumped out so one-dimensional array is enough. As
229 more BTF usage is explored, pahole and llvm can be changed to generate proper
230 chained representation for multidimensional arrays.
232 2.2.4 BTF_KIND_STRUCT
233 ~~~~~~~~~~~~~~~~~~~~~
237 ``struct btf_type`` encoding requirement:
238 * ``name_off``: 0 or offset to a valid C identifier
239 * ``info.kind_flag``: 0 or 1
240 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
241 * ``info.vlen``: the number of struct/union members
242 * ``info.size``: the size of the struct/union in bytes
244 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::
252 ``struct btf_member`` encoding:
253 * ``name_off``: offset to a valid C identifier
254 * ``type``: the member type
255 * ``offset``: <see below>
257 If the type info ``kind_flag`` is not set, the offset contains only bit offset
258 of the member. Note that the base type of the bitfield can only be int or enum
259 type. If the bitfield size is 32, the base type can be either int or enum
260 type. If the bitfield size is not 32, the base type must be int, and int type
261 ``BTF_INT_BITS()`` encodes the bitfield size.
263 If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
264 bitfield size and bit offset. The bitfield size and bit offset are calculated
267 #define BTF_MEMBER_BITFIELD_SIZE(val) ((val) >> 24)
268 #define BTF_MEMBER_BIT_OFFSET(val) ((val) & 0xffffff)
270 In this case, if the base type is an int type, it must be a regular int type:
272 * ``BTF_INT_OFFSET()`` must be 0.
273 * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.
275 Commit 9d5f9f701b18 introduced ``kind_flag`` and explains why both modes
281 ``struct btf_type`` encoding requirement:
282 * ``name_off``: 0 or offset to a valid C identifier
283 * ``info.kind_flag``: 0 for unsigned, 1 for signed
284 * ``info.kind``: BTF_KIND_ENUM
285 * ``info.vlen``: number of enum values
288 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::
295 The ``btf_enum`` encoding:
296 * ``name_off``: offset to a valid C identifier
299 If the original enum value is signed and the size is less than 4,
300 that value will be sign extended into 4 bytes. If the size is 8,
301 the value will be truncated into 4 bytes.
306 ``struct btf_type`` encoding requirement:
307 * ``name_off``: offset to a valid C identifier
308 * ``info.kind_flag``: 0 for struct, 1 for union
309 * ``info.kind``: BTF_KIND_FWD
313 No additional type data follow ``btf_type``.
315 2.2.8 BTF_KIND_TYPEDEF
316 ~~~~~~~~~~~~~~~~~~~~~~
318 ``struct btf_type`` encoding requirement:
319 * ``name_off``: offset to a valid C identifier
320 * ``info.kind_flag``: 0
321 * ``info.kind``: BTF_KIND_TYPEDEF
323 * ``type``: the type which can be referred by name at ``name_off``
325 No additional type data follow ``btf_type``.
327 2.2.9 BTF_KIND_VOLATILE
328 ~~~~~~~~~~~~~~~~~~~~~~~
330 ``struct btf_type`` encoding requirement:
332 * ``info.kind_flag``: 0
333 * ``info.kind``: BTF_KIND_VOLATILE
335 * ``type``: the type with ``volatile`` qualifier
337 No additional type data follow ``btf_type``.
339 2.2.10 BTF_KIND_CONST
340 ~~~~~~~~~~~~~~~~~~~~~
342 ``struct btf_type`` encoding requirement:
344 * ``info.kind_flag``: 0
345 * ``info.kind``: BTF_KIND_CONST
347 * ``type``: the type with ``const`` qualifier
349 No additional type data follow ``btf_type``.
351 2.2.11 BTF_KIND_RESTRICT
352 ~~~~~~~~~~~~~~~~~~~~~~~~
354 ``struct btf_type`` encoding requirement:
356 * ``info.kind_flag``: 0
357 * ``info.kind``: BTF_KIND_RESTRICT
359 * ``type``: the type with ``restrict`` qualifier
361 No additional type data follow ``btf_type``.
366 ``struct btf_type`` encoding requirement:
367 * ``name_off``: offset to a valid C identifier
368 * ``info.kind_flag``: 0
369 * ``info.kind``: BTF_KIND_FUNC
370 * ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL
371 or BTF_FUNC_EXTERN - see :ref:`BTF_Function_Linkage_Constants`)
372 * ``type``: a BTF_KIND_FUNC_PROTO type
374 No additional type data follow ``btf_type``.
376 A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
377 signature is defined by ``type``. The subprogram is thus an instance of that
378 type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
379 :ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
382 Currently, only linkage values of BTF_FUNC_STATIC and BTF_FUNC_GLOBAL are
383 supported in the kernel.
385 2.2.13 BTF_KIND_FUNC_PROTO
386 ~~~~~~~~~~~~~~~~~~~~~~~~~~
388 ``struct btf_type`` encoding requirement:
390 * ``info.kind_flag``: 0
391 * ``info.kind``: BTF_KIND_FUNC_PROTO
392 * ``info.vlen``: # of parameters
393 * ``type``: the return type
395 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::
402 If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
403 ``btf_param.name_off`` must point to a valid C identifier except for the
404 possible last argument representing the variable argument. The btf_param.type
405 refers to parameter type.
407 If the function has variable arguments, the last parameter is encoded with
408 ``name_off = 0`` and ``type = 0``.
413 ``struct btf_type`` encoding requirement:
414 * ``name_off``: offset to a valid C identifier
415 * ``info.kind_flag``: 0
416 * ``info.kind``: BTF_KIND_VAR
418 * ``type``: the type of the variable
420 ``btf_type`` is followed by a single ``struct btf_variable`` with the
427 ``btf_var.linkage`` may take the values: BTF_VAR_STATIC, BTF_VAR_GLOBAL_ALLOCATED or BTF_VAR_GLOBAL_EXTERN -
428 see :ref:`BTF_Var_Linkage_Constants`.
430 Not all type of global variables are supported by LLVM at this point.
431 The following is currently available:
433 * static variables with or without section attributes
434 * global variables with section attributes
436 The latter is for future extraction of map key/value type id's from a
439 2.2.15 BTF_KIND_DATASEC
440 ~~~~~~~~~~~~~~~~~~~~~~~
442 ``struct btf_type`` encoding requirement:
443 * ``name_off``: offset to a valid name associated with a variable or
444 one of .data/.bss/.rodata
445 * ``info.kind_flag``: 0
446 * ``info.kind``: BTF_KIND_DATASEC
447 * ``info.vlen``: # of variables
448 * ``size``: total section size in bytes (0 at compilation time, patched
449 to actual size by BPF loaders such as libbpf)
451 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::
453 struct btf_var_secinfo {
459 ``struct btf_var_secinfo`` encoding:
460 * ``type``: the type of the BTF_KIND_VAR variable
461 * ``offset``: the in-section offset of the variable
462 * ``size``: the size of the variable in bytes
464 2.2.16 BTF_KIND_FLOAT
465 ~~~~~~~~~~~~~~~~~~~~~
467 ``struct btf_type`` encoding requirement:
468 * ``name_off``: any valid offset
469 * ``info.kind_flag``: 0
470 * ``info.kind``: BTF_KIND_FLOAT
472 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16.
474 No additional type data follow ``btf_type``.
476 2.2.17 BTF_KIND_DECL_TAG
477 ~~~~~~~~~~~~~~~~~~~~~~~~
479 ``struct btf_type`` encoding requirement:
480 * ``name_off``: offset to a non-empty string
481 * ``info.kind_flag``: 0
482 * ``info.kind``: BTF_KIND_DECL_TAG
484 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef``
486 ``btf_type`` is followed by ``struct btf_decl_tag``.::
488 struct btf_decl_tag {
492 The ``name_off`` encodes btf_decl_tag attribute string.
493 The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``.
494 For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``.
495 For the other three types, if the btf_decl_tag attribute is
496 applied to the ``struct``, ``union`` or ``func`` itself,
497 ``btf_decl_tag.component_idx`` must be ``-1``. Otherwise,
498 the attribute is applied to a ``struct``/``union`` member or
499 a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a
500 valid index (starting from 0) pointing to a member or an argument.
502 2.2.18 BTF_KIND_TYPE_TAG
503 ~~~~~~~~~~~~~~~~~~~~~~~~
505 ``struct btf_type`` encoding requirement:
506 * ``name_off``: offset to a non-empty string
507 * ``info.kind_flag``: 0
508 * ``info.kind``: BTF_KIND_TYPE_TAG
510 * ``type``: the type with ``btf_type_tag`` attribute
512 Currently, ``BTF_KIND_TYPE_TAG`` is only emitted for pointer types.
513 It has the following btf type chain:
517 -> [const | volatile | restrict | typedef]*
520 Basically, a pointer type points to zero or more
521 type_tag, then zero or more const/volatile/restrict/typedef
522 and finally the base type. The base type is one of
523 int, ptr, array, struct, union, enum, func_proto and float types.
525 2.2.19 BTF_KIND_ENUM64
526 ~~~~~~~~~~~~~~~~~~~~~~
528 ``struct btf_type`` encoding requirement:
529 * ``name_off``: 0 or offset to a valid C identifier
530 * ``info.kind_flag``: 0 for unsigned, 1 for signed
531 * ``info.kind``: BTF_KIND_ENUM64
532 * ``info.vlen``: number of enum values
535 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum64``.::
543 The ``btf_enum64`` encoding:
544 * ``name_off``: offset to a valid C identifier
545 * ``val_lo32``: lower 32-bit value for a 64-bit value
546 * ``val_hi32``: high 32-bit value for a 64-bit value
548 If the original enum value is signed and the size is less than 8,
549 that value will be sign extended into 8 bytes.
554 .. _BTF_Function_Linkage_Constants:
556 2.3.1 Function Linkage Constant Values
557 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
558 .. table:: Function Linkage Values and Meanings
560 =================== ===== ===========
561 kind value description
562 =================== ===== ===========
563 ``BTF_FUNC_STATIC`` 0x0 definition of subprogram not visible outside containing compilation unit
564 ``BTF_FUNC_GLOBAL`` 0x1 definition of subprogram visible outside containing compilation unit
565 ``BTF_FUNC_EXTERN`` 0x2 declaration of a subprogram whose definition is outside the containing compilation unit
566 =================== ===== ===========
569 .. _BTF_Var_Linkage_Constants:
571 2.3.2 Variable Linkage Constant Values
572 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
573 .. table:: Variable Linkage Values and Meanings
575 ============================ ===== ===========
576 kind value description
577 ============================ ===== ===========
578 ``BTF_VAR_STATIC`` 0x0 definition of global variable not visible outside containing compilation unit
579 ``BTF_VAR_GLOBAL_ALLOCATED`` 0x1 definition of global variable visible outside containing compilation unit
580 ``BTF_VAR_GLOBAL_EXTERN`` 0x2 declaration of global variable whose definition is outside the containing compilation unit
581 ============================ ===== ===========
586 The following bpf syscall command involves BTF:
587 * BPF_BTF_LOAD: load a blob of BTF data into kernel
588 * BPF_MAP_CREATE: map creation with btf key and value type info.
589 * BPF_PROG_LOAD: prog load with btf function and line info.
590 * BPF_BTF_GET_FD_BY_ID: get a btf fd
591 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
592 and other btf related info are returned.
594 The workflow typically looks like:
601 BPF_MAP_CREATE and BPF_PROG_LOAD
608 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
611 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
614 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
617 BPF_BTF_GET_FD_BY_ID (get btf_fd) |
620 BPF_OBJ_GET_INFO_BY_FD (get btf) |
623 pretty print types, dump func signatures and line info, etc.
629 Load a blob of BTF data into kernel. A blob of data, described in
630 :ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
631 is returned to a userspace.
636 A map can be created with ``btf_fd`` and specified key/value type id.::
638 __u32 btf_fd; /* fd pointing to a BTF type data */
639 __u32 btf_key_type_id; /* BTF type_id of the key */
640 __u32 btf_value_type_id; /* BTF type_id of the value */
642 In libbpf, the map can be defined with extra annotation like below:
646 __uint(type, BPF_MAP_TYPE_ARRAY);
648 __type(value, struct ipv_counts);
649 __uint(max_entries, 4);
650 } btf_map SEC(".maps");
652 During ELF parsing, libbpf is able to extract key/value type_id's and assign
653 them to BPF_MAP_CREATE attributes automatically.
660 During prog_load, func_info and line_info can be passed to kernel with proper
661 values for the following attributes:
667 __u32 prog_btf_fd; /* fd pointing to BTF type data */
668 __u32 func_info_rec_size; /* userspace bpf_func_info size */
669 __aligned_u64 func_info; /* func info */
670 __u32 func_info_cnt; /* number of bpf_func_info records */
671 __u32 line_info_rec_size; /* userspace bpf_line_info size */
672 __aligned_u64 line_info; /* line info */
673 __u32 line_info_cnt; /* number of bpf_line_info records */
675 The func_info and line_info are an array of below, respectively.::
677 struct bpf_func_info {
678 __u32 insn_off; /* [0, insn_cnt - 1] */
679 __u32 type_id; /* pointing to a BTF_KIND_FUNC type */
681 struct bpf_line_info {
682 __u32 insn_off; /* [0, insn_cnt - 1] */
683 __u32 file_name_off; /* offset to string table for the filename */
684 __u32 line_off; /* offset to string table for the source line */
685 __u32 line_col; /* line number and column number */
688 func_info_rec_size is the size of each func_info record, and
689 line_info_rec_size is the size of each line_info record. Passing the record
690 size to kernel make it possible to extend the record itself in the future.
692 Below are requirements for func_info:
693 * func_info[0].insn_off must be 0.
694 * the func_info insn_off is in strictly increasing order and matches
697 Below are requirements for line_info:
698 * the first insn in each func must have a line_info record pointing to it.
699 * the line_info insn_off is in strictly increasing order.
701 For line_info, the line number and column number are defined as below:
704 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
705 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
707 3.4 BPF_{PROG,MAP}_GET_NEXT_ID
708 ------------------------------
710 In kernel, every loaded program, map or btf has a unique id. The id won't
711 change during the lifetime of a program, map, or btf.
713 The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
714 each command, to user space, for bpf program or maps, respectively, so an
715 inspection tool can inspect all programs and maps.
717 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID
718 -------------------------------
720 An introspection tool cannot use id to get details about program or maps.
721 A file descriptor needs to be obtained first for reference-counting purpose.
723 3.6 BPF_OBJ_GET_INFO_BY_FD
724 --------------------------
726 Once a program/map fd is acquired, an introspection tool can get the detailed
727 information from kernel about this fd, some of which are BTF-related. For
728 example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
729 ``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
730 bpf byte codes, and jited_line_info.
732 3.7 BPF_BTF_GET_FD_BY_ID
733 ------------------------
735 With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
736 syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
737 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
738 kernel with BPF_BTF_LOAD, can be retrieved.
740 With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
741 tool has full btf knowledge and is able to pretty print map key/values, dump
742 func signatures and line info, along with byte/jit codes.
744 4. ELF File Format Interface
745 ============================
750 The .BTF section contains type and string data. The format of this section is
751 same as the one describe in :ref:`BTF_Type_String`.
758 The .BTF.ext section encodes func_info, line_info and CO-RE relocations
759 which needs loader manipulation before loading into the kernel.
761 The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
762 and ``tools/lib/bpf/btf.c``.
764 The current header of .BTF.ext section::
766 struct btf_ext_header {
772 /* All offsets are in bytes relative to the end of this header */
778 /* optional part of .BTF.ext header */
783 It is very similar to .BTF section. Instead of type/string section, it
784 contains func_info, line_info and core_relo sub-sections.
785 See :ref:`BPF_Prog_Load` for details about func_info and line_info
788 The func_info is organized as below.::
790 func_info_rec_size /* __u32 value */
791 btf_ext_info_sec for section #1 /* func_info for section #1 */
792 btf_ext_info_sec for section #2 /* func_info for section #2 */
795 ``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
796 .BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
797 func_info for each specific ELF section.::
799 struct btf_ext_info_sec {
800 __u32 sec_name_off; /* offset to section name */
802 /* Followed by num_info * record_size number of bytes */
806 Here, num_info must be greater than 0.
808 The line_info is organized as below.::
810 line_info_rec_size /* __u32 value */
811 btf_ext_info_sec for section #1 /* line_info for section #1 */
812 btf_ext_info_sec for section #2 /* line_info for section #2 */
815 ``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
816 .BTF.ext is generated.
818 The interpretation of ``bpf_func_info->insn_off`` and
819 ``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
820 kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
821 bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
822 beginning of section (``btf_ext_info_sec->sec_name_off``).
824 The core_relo is organized as below.::
826 core_relo_rec_size /* __u32 value */
827 btf_ext_info_sec for section #1 /* core_relo for section #1 */
828 btf_ext_info_sec for section #2 /* core_relo for section #2 */
830 ``core_relo_rec_size`` specifies the size of ``bpf_core_relo``
831 structure when .BTF.ext is generated. All ``bpf_core_relo`` structures
832 within a single ``btf_ext_info_sec`` describe relocations applied to
833 section named by ``btf_ext_info_sec->sec_name_off``.
835 See :ref:`Documentation/bpf/llvm_reloc.rst <btf-co-re-relocations>`
836 for more information on CO-RE relocations.
841 The .BTF_ids section encodes BTF ID values that are used within the kernel.
843 This section is created during the kernel compilation with the help of
844 macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can
845 use them to create lists and sets (sorted lists) of BTF ID values.
847 The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values,
848 with following syntax::
854 resulting in following layout in .BTF_ids section::
856 __BTF_ID__type1__name1__1:
858 __BTF_ID__type2__name2__2:
861 The ``u32 list[];`` variable is defined to access the list.
863 The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we
864 want to define unused entry in BTF_ID_LIST, like::
866 BTF_ID_LIST(bpf_skb_output_btf_ids)
867 BTF_ID(struct, sk_buff)
869 BTF_ID(struct, task_struct)
871 The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values
872 and their count, with following syntax::
879 resulting in following layout in .BTF_ids section::
883 __BTF_ID__type1__name1__3:
885 __BTF_ID__type2__name2__4:
888 The ``struct btf_id_set set;`` variable is defined to access the list.
890 The ``typeX`` name can be one of following::
892 struct, union, typedef, func
894 and is used as a filter when resolving the BTF ID value.
896 All the BTF ID lists and sets are compiled in the .BTF_ids section and
897 resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
899 4.4 .BTF.base section
900 ---------------------
901 Split BTF - where the .BTF section only contains types not in the associated
902 base .BTF section - is an extremely efficient way to encode type information
903 for kernel modules, since they generally consist of a few module-specific
904 types along with a large set of shared kernel types. The former are encoded
905 in split BTF, while the latter are encoded in base BTF, resulting in more
906 compact representations. A type in split BTF that refers to a type in
907 base BTF refers to it using its base BTF ID, and split BTF IDs start
908 at last_base_BTF_ID + 1.
910 The downside of this approach however is that this makes the split BTF
911 somewhat brittle - when the base BTF changes, base BTF ID references are
912 no longer valid and the split BTF itself becomes useless. The role of the
913 .BTF.base section is to make split BTF more resilient for cases where
914 the base BTF may change, as is the case for kernel modules not built every
915 time the kernel is for example. .BTF.base contains named base types; INTs,
916 FLOATs, STRUCTs, UNIONs, ENUM[64]s and FWDs. INTs and FLOATs are fully
917 described in .BTF.base sections, while composite types like structs
918 and unions are not fully defined - the .BTF.base type simply serves as
919 a description of the type the split BTF referred to, so structs/unions
920 have 0 members in the .BTF.base section. ENUM[64]s are similarly recorded
921 with 0 members. Any other types are added to the split BTF. This
922 distillation process then leaves us with a .BTF.base section with
923 such minimal descriptions of base types and .BTF split section which refers
924 to those base types. Later, we can relocate the split BTF using both the
925 information stored in the .BTF.base section and the new .BTF base; the type
926 information in the .BTF.base section allows us to update the split BTF
927 references to point at the corresponding new base BTF IDs.
929 BTF relocation happens on kernel module load when a kernel module has a
930 .BTF.base section, and libbpf also provides a btf__relocate() API to
933 As an example consider the following base BTF::
935 [1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
936 [2] STRUCT 'foo' size=8 vlen=2
937 'f1' type_id=1 bits_offset=0
938 'f2' type_id=1 bits_offset=32
940 ...and associated split BTF::
942 [3] PTR '(anon)' type_id=2
944 i.e. split BTF describes a pointer to struct foo { int f1; int f2 };
946 .BTF.base will consist of::
948 [1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
949 [2] STRUCT 'foo' size=8 vlen=0
951 If we relocate the split BTF later using the following new base BTF::
953 [1] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)
954 [2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
955 [3] STRUCT 'foo' size=8 vlen=2
956 'f1' type_id=2 bits_offset=0
957 'f2' type_id=2 bits_offset=32
959 ...we can use our .BTF.base description to know that the split BTF reference
960 is to struct foo, and relocation results in new split BTF::
962 [4] PTR '(anon)' type_id=3
964 Note that we had to update BTF ID and start BTF ID for the split BTF.
966 So we see how .BTF.base plays the role of facilitating later relocation,
967 leading to more resilient split BTF.
969 .BTF.base sections will be generated automatically for out-of-tree kernel module
970 builds - i.e. where KBUILD_EXTMOD is set (as it would be for "make M=path/2/mod"
971 cases). .BTF.base generation requires pahole support for the "distilled_base"
972 BTF feature; this is available in pahole v1.28 and later.
977 5.1 bpftool map pretty print
978 ----------------------------
980 With BTF, the map key/value can be printed based on fields rather than simply
981 raw bytes. This is especially valuable for large structure or if your data
982 structure has bitfields. For example, for the following map,::
984 enum A { A1, A2, A3, A4, A5 };
996 __uint(type, BPF_MAP_TYPE_ARRAY);
998 __type(value, struct tmp_t);
999 __uint(max_entries, 1);
1000 } tmpmap SEC(".maps");
1002 bpftool is able to pretty print like below:
1018 5.2 bpftool prog dump
1019 ---------------------
1021 The following is an example showing how func_info and line_info can help prog
1022 dump with better kernel symbol names, function prototypes and line
1025 $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
1027 int test_long_fname_2(struct dummy_tracepoint_args * arg):
1028 bpf_prog_44a040bf25481309_test_long_fname_2:
1029 ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
1034 f: mov %rbx,0x0(%rbp)
1035 13: mov %r13,0x8(%rbp)
1036 17: mov %r14,0x10(%rbp)
1037 1b: mov %r15,0x18(%rbp)
1039 21: mov %rax,0x20(%rbp)
1042 27: mov %esi,-0x4(%rbp)
1044 2a: mov 0x8(%rdi),%rdi
1047 32: je 0x0000000000000070
1049 ; counts = bpf_map_lookup_elem(&btf_map, &key);
1055 The following is an example of how line_info can help debugging verification
1058 /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
1059 * is modified as below.
1061 data = (void *)(long)xdp->data;
1062 data_end = (void *)(long)xdp->data_end;
1064 if (data + 4 > data_end)
1067 *(u32 *)data = dst->dst;
1069 $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
1070 ; data = (void *)(long)xdp->data;
1071 224: (79) r2 = *(u64 *)(r10 -112)
1072 225: (61) r2 = *(u32 *)(r2 +0)
1073 ; *(u32 *)data = dst->dst;
1074 226: (63) *(u32 *)(r2 +0) = r1
1075 invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
1076 R2 offset is outside of the packet
1081 You need latest pahole
1083 https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
1085 or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
1086 support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::
1094 -bash-4.4$ gcc -c -O2 -g t.c
1095 -bash-4.4$ pahole -JV t.o
1097 [1] STRUCT t kind_flag=1 size=4 vlen=3
1098 a type_id=2 bitfield_size=2 bits_offset=0
1099 b type_id=2 bitfield_size=3 bits_offset=2
1100 c type_id=2 bitfield_size=2 bits_offset=5
1101 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
1103 The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
1104 only. The assembly code (-S) is able to show the BTF encoding in assembly
1108 typedef int __int32;
1111 int (*f2)(char q1, __int32 q2, ...);
1114 int main() { return 0; }
1115 int test() { return 0; }
1116 -bash-4.4$ clang -c -g -O2 --target=bpf t2.c
1117 -bash-4.4$ readelf -S t2.o
1119 [ 8] .BTF PROGBITS 0000000000000000 00000247
1120 000000000000016e 0000000000000000 0 0 1
1121 [ 9] .BTF.ext PROGBITS 0000000000000000 000003b5
1122 0000000000000060 0000000000000000 0 0 1
1123 [10] .rel.BTF.ext REL 0000000000000000 000007e0
1124 0000000000000040 0000000000000010 16 9 8
1126 -bash-4.4$ clang -S -g -O2 --target=bpf t2.c
1129 .section .BTF,"",@progbits
1130 .short 60319 # 0xeb9f
1138 .long 0 # BTF_KIND_FUNC_PROTO(id = 1)
1139 .long 218103808 # 0xd000000
1141 .long 83 # BTF_KIND_INT(id = 2)
1142 .long 16777216 # 0x1000000
1144 .long 16777248 # 0x1000020
1146 .byte 0 # string offset=0
1147 .ascii ".text" # string offset=1
1149 .ascii "/home/yhs/tmp-pahole/t2.c" # string offset=7
1151 .ascii "int main() { return 0; }" # string offset=33
1153 .ascii "int test() { return 0; }" # string offset=58
1155 .ascii "int" # string offset=83
1157 .section .BTF.ext,"",@progbits
1158 .short 60319 # 0xeb9f
1167 .long 1 # FuncInfo section string offset=1
1174 .long 1 # LineInfo section string offset=1
1179 .long 7182 # Line 7 Col 14
1183 .long 8206 # Line 8 Col 14
1188 The kernel BPF selftest `tools/testing/selftests/bpf/prog_tests/btf.c`_
1189 provides an extensive set of BTF-related tests.
1192 .. _tools/testing/selftests/bpf/prog_tests/btf.c:
1193 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/bpf/prog_tests/btf.c