printf: Remove unused 'bprintf'
[drm/drm-misc.git] / arch / arm / crypto / ghash-ce-glue.c
blob3af9970825340d93f9fea29e5cc5783ae7119c8d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
5 * Copyright (C) 2015 - 2018 Linaro Ltd.
6 * Copyright (C) 2023 Google LLC.
7 */
9 #include <asm/hwcap.h>
10 #include <asm/neon.h>
11 #include <asm/simd.h>
12 #include <linux/unaligned.h>
13 #include <crypto/aes.h>
14 #include <crypto/gcm.h>
15 #include <crypto/b128ops.h>
16 #include <crypto/cryptd.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/internal/simd.h>
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/gf128mul.h>
22 #include <crypto/scatterwalk.h>
23 #include <linux/cpufeature.h>
24 #include <linux/crypto.h>
25 #include <linux/jump_label.h>
26 #include <linux/module.h>
28 MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions");
29 MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
30 MODULE_LICENSE("GPL");
31 MODULE_ALIAS_CRYPTO("ghash");
32 MODULE_ALIAS_CRYPTO("gcm(aes)");
33 MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))");
35 #define GHASH_BLOCK_SIZE 16
36 #define GHASH_DIGEST_SIZE 16
38 #define RFC4106_NONCE_SIZE 4
40 struct ghash_key {
41 be128 k;
42 u64 h[][2];
45 struct gcm_key {
46 u64 h[4][2];
47 u32 rk[AES_MAX_KEYLENGTH_U32];
48 int rounds;
49 u8 nonce[]; // for RFC4106 nonce
52 struct ghash_desc_ctx {
53 u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
54 u8 buf[GHASH_BLOCK_SIZE];
55 u32 count;
58 struct ghash_async_ctx {
59 struct cryptd_ahash *cryptd_tfm;
62 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
63 u64 const h[][2], const char *head);
65 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
66 u64 const h[][2], const char *head);
68 static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64);
70 static int ghash_init(struct shash_desc *desc)
72 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
74 *ctx = (struct ghash_desc_ctx){};
75 return 0;
78 static void ghash_do_update(int blocks, u64 dg[], const char *src,
79 struct ghash_key *key, const char *head)
81 if (likely(crypto_simd_usable())) {
82 kernel_neon_begin();
83 if (static_branch_likely(&use_p64))
84 pmull_ghash_update_p64(blocks, dg, src, key->h, head);
85 else
86 pmull_ghash_update_p8(blocks, dg, src, key->h, head);
87 kernel_neon_end();
88 } else {
89 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
91 do {
92 const u8 *in = src;
94 if (head) {
95 in = head;
96 blocks++;
97 head = NULL;
98 } else {
99 src += GHASH_BLOCK_SIZE;
102 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
103 gf128mul_lle(&dst, &key->k);
104 } while (--blocks);
106 dg[0] = be64_to_cpu(dst.b);
107 dg[1] = be64_to_cpu(dst.a);
111 static int ghash_update(struct shash_desc *desc, const u8 *src,
112 unsigned int len)
114 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
115 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
117 ctx->count += len;
119 if ((partial + len) >= GHASH_BLOCK_SIZE) {
120 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
121 int blocks;
123 if (partial) {
124 int p = GHASH_BLOCK_SIZE - partial;
126 memcpy(ctx->buf + partial, src, p);
127 src += p;
128 len -= p;
131 blocks = len / GHASH_BLOCK_SIZE;
132 len %= GHASH_BLOCK_SIZE;
134 ghash_do_update(blocks, ctx->digest, src, key,
135 partial ? ctx->buf : NULL);
136 src += blocks * GHASH_BLOCK_SIZE;
137 partial = 0;
139 if (len)
140 memcpy(ctx->buf + partial, src, len);
141 return 0;
144 static int ghash_final(struct shash_desc *desc, u8 *dst)
146 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
147 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
149 if (partial) {
150 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
152 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
153 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
155 put_unaligned_be64(ctx->digest[1], dst);
156 put_unaligned_be64(ctx->digest[0], dst + 8);
158 *ctx = (struct ghash_desc_ctx){};
159 return 0;
162 static void ghash_reflect(u64 h[], const be128 *k)
164 u64 carry = be64_to_cpu(k->a) >> 63;
166 h[0] = (be64_to_cpu(k->b) << 1) | carry;
167 h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
169 if (carry)
170 h[1] ^= 0xc200000000000000UL;
173 static int ghash_setkey(struct crypto_shash *tfm,
174 const u8 *inkey, unsigned int keylen)
176 struct ghash_key *key = crypto_shash_ctx(tfm);
178 if (keylen != GHASH_BLOCK_SIZE)
179 return -EINVAL;
181 /* needed for the fallback */
182 memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
183 ghash_reflect(key->h[0], &key->k);
185 if (static_branch_likely(&use_p64)) {
186 be128 h = key->k;
188 gf128mul_lle(&h, &key->k);
189 ghash_reflect(key->h[1], &h);
191 gf128mul_lle(&h, &key->k);
192 ghash_reflect(key->h[2], &h);
194 gf128mul_lle(&h, &key->k);
195 ghash_reflect(key->h[3], &h);
197 return 0;
200 static struct shash_alg ghash_alg = {
201 .digestsize = GHASH_DIGEST_SIZE,
202 .init = ghash_init,
203 .update = ghash_update,
204 .final = ghash_final,
205 .setkey = ghash_setkey,
206 .descsize = sizeof(struct ghash_desc_ctx),
208 .base.cra_name = "ghash",
209 .base.cra_driver_name = "ghash-ce-sync",
210 .base.cra_priority = 300 - 1,
211 .base.cra_blocksize = GHASH_BLOCK_SIZE,
212 .base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
213 .base.cra_module = THIS_MODULE,
216 static int ghash_async_init(struct ahash_request *req)
218 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
219 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
220 struct ahash_request *cryptd_req = ahash_request_ctx(req);
221 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
222 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
223 struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
225 desc->tfm = child;
226 return crypto_shash_init(desc);
229 static int ghash_async_update(struct ahash_request *req)
231 struct ahash_request *cryptd_req = ahash_request_ctx(req);
232 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
233 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
234 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
236 if (!crypto_simd_usable() ||
237 (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
238 memcpy(cryptd_req, req, sizeof(*req));
239 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
240 return crypto_ahash_update(cryptd_req);
241 } else {
242 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
243 return shash_ahash_update(req, desc);
247 static int ghash_async_final(struct ahash_request *req)
249 struct ahash_request *cryptd_req = ahash_request_ctx(req);
250 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
251 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
252 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
254 if (!crypto_simd_usable() ||
255 (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
256 memcpy(cryptd_req, req, sizeof(*req));
257 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
258 return crypto_ahash_final(cryptd_req);
259 } else {
260 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
261 return crypto_shash_final(desc, req->result);
265 static int ghash_async_digest(struct ahash_request *req)
267 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
268 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
269 struct ahash_request *cryptd_req = ahash_request_ctx(req);
270 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
272 if (!crypto_simd_usable() ||
273 (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
274 memcpy(cryptd_req, req, sizeof(*req));
275 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
276 return crypto_ahash_digest(cryptd_req);
277 } else {
278 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
279 struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
281 desc->tfm = child;
282 return shash_ahash_digest(req, desc);
286 static int ghash_async_import(struct ahash_request *req, const void *in)
288 struct ahash_request *cryptd_req = ahash_request_ctx(req);
289 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
290 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
291 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
293 desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm);
295 return crypto_shash_import(desc, in);
298 static int ghash_async_export(struct ahash_request *req, void *out)
300 struct ahash_request *cryptd_req = ahash_request_ctx(req);
301 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
303 return crypto_shash_export(desc, out);
306 static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key,
307 unsigned int keylen)
309 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
310 struct crypto_ahash *child = &ctx->cryptd_tfm->base;
312 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313 crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
314 & CRYPTO_TFM_REQ_MASK);
315 return crypto_ahash_setkey(child, key, keylen);
318 static int ghash_async_init_tfm(struct crypto_tfm *tfm)
320 struct cryptd_ahash *cryptd_tfm;
321 struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
323 cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0);
324 if (IS_ERR(cryptd_tfm))
325 return PTR_ERR(cryptd_tfm);
326 ctx->cryptd_tfm = cryptd_tfm;
327 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
328 sizeof(struct ahash_request) +
329 crypto_ahash_reqsize(&cryptd_tfm->base));
331 return 0;
334 static void ghash_async_exit_tfm(struct crypto_tfm *tfm)
336 struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
338 cryptd_free_ahash(ctx->cryptd_tfm);
341 static struct ahash_alg ghash_async_alg = {
342 .init = ghash_async_init,
343 .update = ghash_async_update,
344 .final = ghash_async_final,
345 .setkey = ghash_async_setkey,
346 .digest = ghash_async_digest,
347 .import = ghash_async_import,
348 .export = ghash_async_export,
349 .halg.digestsize = GHASH_DIGEST_SIZE,
350 .halg.statesize = sizeof(struct ghash_desc_ctx),
351 .halg.base = {
352 .cra_name = "ghash",
353 .cra_driver_name = "ghash-ce",
354 .cra_priority = 300,
355 .cra_flags = CRYPTO_ALG_ASYNC,
356 .cra_blocksize = GHASH_BLOCK_SIZE,
357 .cra_ctxsize = sizeof(struct ghash_async_ctx),
358 .cra_module = THIS_MODULE,
359 .cra_init = ghash_async_init_tfm,
360 .cra_exit = ghash_async_exit_tfm,
365 void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src,
366 struct gcm_key const *k, char *dst,
367 const char *iv, int rounds, u32 counter);
369 void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag,
370 struct gcm_key const *k, char *head,
371 const char *iv, int rounds, u32 counter);
373 void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src,
374 struct gcm_key const *k, char *dst,
375 const char *iv, int rounds, u32 counter);
377 int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag,
378 struct gcm_key const *k, char *head,
379 const char *iv, int rounds, u32 counter,
380 const char *otag, int authsize);
382 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
383 unsigned int keylen)
385 struct gcm_key *ctx = crypto_aead_ctx(tfm);
386 struct crypto_aes_ctx aes_ctx;
387 be128 h, k;
388 int ret;
390 ret = aes_expandkey(&aes_ctx, inkey, keylen);
391 if (ret)
392 return -EINVAL;
394 aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){});
396 memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk));
397 ctx->rounds = 6 + keylen / 4;
399 memzero_explicit(&aes_ctx, sizeof(aes_ctx));
401 ghash_reflect(ctx->h[0], &k);
403 h = k;
404 gf128mul_lle(&h, &k);
405 ghash_reflect(ctx->h[1], &h);
407 gf128mul_lle(&h, &k);
408 ghash_reflect(ctx->h[2], &h);
410 gf128mul_lle(&h, &k);
411 ghash_reflect(ctx->h[3], &h);
413 return 0;
416 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
418 return crypto_gcm_check_authsize(authsize);
421 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
422 int *buf_count, struct gcm_key *ctx)
424 if (*buf_count > 0) {
425 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
427 memcpy(&buf[*buf_count], src, buf_added);
429 *buf_count += buf_added;
430 src += buf_added;
431 count -= buf_added;
434 if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
435 int blocks = count / GHASH_BLOCK_SIZE;
437 pmull_ghash_update_p64(blocks, dg, src, ctx->h,
438 *buf_count ? buf : NULL);
440 src += blocks * GHASH_BLOCK_SIZE;
441 count %= GHASH_BLOCK_SIZE;
442 *buf_count = 0;
445 if (count > 0) {
446 memcpy(buf, src, count);
447 *buf_count = count;
451 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
453 struct crypto_aead *aead = crypto_aead_reqtfm(req);
454 struct gcm_key *ctx = crypto_aead_ctx(aead);
455 u8 buf[GHASH_BLOCK_SIZE];
456 struct scatter_walk walk;
457 int buf_count = 0;
459 scatterwalk_start(&walk, req->src);
461 do {
462 u32 n = scatterwalk_clamp(&walk, len);
463 u8 *p;
465 if (!n) {
466 scatterwalk_start(&walk, sg_next(walk.sg));
467 n = scatterwalk_clamp(&walk, len);
470 p = scatterwalk_map(&walk);
471 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
472 scatterwalk_unmap(p);
474 if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) {
475 kernel_neon_end();
476 kernel_neon_begin();
479 len -= n;
480 scatterwalk_advance(&walk, n);
481 scatterwalk_done(&walk, 0, len);
482 } while (len);
484 if (buf_count) {
485 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
486 pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL);
490 static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
492 struct crypto_aead *aead = crypto_aead_reqtfm(req);
493 struct gcm_key *ctx = crypto_aead_ctx(aead);
494 struct skcipher_walk walk;
495 u8 buf[AES_BLOCK_SIZE];
496 u32 counter = 2;
497 u64 dg[2] = {};
498 be128 lengths;
499 const u8 *src;
500 u8 *tag, *dst;
501 int tail, err;
503 if (WARN_ON_ONCE(!may_use_simd()))
504 return -EBUSY;
506 err = skcipher_walk_aead_encrypt(&walk, req, false);
508 kernel_neon_begin();
510 if (assoclen)
511 gcm_calculate_auth_mac(req, dg, assoclen);
513 src = walk.src.virt.addr;
514 dst = walk.dst.virt.addr;
516 while (walk.nbytes >= AES_BLOCK_SIZE) {
517 int nblocks = walk.nbytes / AES_BLOCK_SIZE;
519 pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv,
520 ctx->rounds, counter);
521 counter += nblocks;
523 if (walk.nbytes == walk.total) {
524 src += nblocks * AES_BLOCK_SIZE;
525 dst += nblocks * AES_BLOCK_SIZE;
526 break;
529 kernel_neon_end();
531 err = skcipher_walk_done(&walk,
532 walk.nbytes % AES_BLOCK_SIZE);
533 if (err)
534 return err;
536 src = walk.src.virt.addr;
537 dst = walk.dst.virt.addr;
539 kernel_neon_begin();
543 lengths.a = cpu_to_be64(assoclen * 8);
544 lengths.b = cpu_to_be64(req->cryptlen * 8);
546 tag = (u8 *)&lengths;
547 tail = walk.nbytes % AES_BLOCK_SIZE;
550 * Bounce via a buffer unless we are encrypting in place and src/dst
551 * are not pointing to the start of the walk buffer. In that case, we
552 * can do a NEON load/xor/store sequence in place as long as we move
553 * the plain/ciphertext and keystream to the start of the register. If
554 * not, do a memcpy() to the end of the buffer so we can reuse the same
555 * logic.
557 if (unlikely(tail && (tail == walk.nbytes || src != dst)))
558 src = memcpy(buf + sizeof(buf) - tail, src, tail);
560 pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv,
561 ctx->rounds, counter);
562 kernel_neon_end();
564 if (unlikely(tail && src != dst))
565 memcpy(dst, src, tail);
567 if (walk.nbytes) {
568 err = skcipher_walk_done(&walk, 0);
569 if (err)
570 return err;
573 /* copy authtag to end of dst */
574 scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
575 crypto_aead_authsize(aead), 1);
577 return 0;
580 static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
582 struct crypto_aead *aead = crypto_aead_reqtfm(req);
583 struct gcm_key *ctx = crypto_aead_ctx(aead);
584 int authsize = crypto_aead_authsize(aead);
585 struct skcipher_walk walk;
586 u8 otag[AES_BLOCK_SIZE];
587 u8 buf[AES_BLOCK_SIZE];
588 u32 counter = 2;
589 u64 dg[2] = {};
590 be128 lengths;
591 const u8 *src;
592 u8 *tag, *dst;
593 int tail, err, ret;
595 if (WARN_ON_ONCE(!may_use_simd()))
596 return -EBUSY;
598 scatterwalk_map_and_copy(otag, req->src,
599 req->assoclen + req->cryptlen - authsize,
600 authsize, 0);
602 err = skcipher_walk_aead_decrypt(&walk, req, false);
604 kernel_neon_begin();
606 if (assoclen)
607 gcm_calculate_auth_mac(req, dg, assoclen);
609 src = walk.src.virt.addr;
610 dst = walk.dst.virt.addr;
612 while (walk.nbytes >= AES_BLOCK_SIZE) {
613 int nblocks = walk.nbytes / AES_BLOCK_SIZE;
615 pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv,
616 ctx->rounds, counter);
617 counter += nblocks;
619 if (walk.nbytes == walk.total) {
620 src += nblocks * AES_BLOCK_SIZE;
621 dst += nblocks * AES_BLOCK_SIZE;
622 break;
625 kernel_neon_end();
627 err = skcipher_walk_done(&walk,
628 walk.nbytes % AES_BLOCK_SIZE);
629 if (err)
630 return err;
632 src = walk.src.virt.addr;
633 dst = walk.dst.virt.addr;
635 kernel_neon_begin();
638 lengths.a = cpu_to_be64(assoclen * 8);
639 lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
641 tag = (u8 *)&lengths;
642 tail = walk.nbytes % AES_BLOCK_SIZE;
644 if (unlikely(tail && (tail == walk.nbytes || src != dst)))
645 src = memcpy(buf + sizeof(buf) - tail, src, tail);
647 ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv,
648 ctx->rounds, counter, otag, authsize);
649 kernel_neon_end();
651 if (unlikely(tail && src != dst))
652 memcpy(dst, src, tail);
654 if (walk.nbytes) {
655 err = skcipher_walk_done(&walk, 0);
656 if (err)
657 return err;
660 return ret ? -EBADMSG : 0;
663 static int gcm_aes_encrypt(struct aead_request *req)
665 return gcm_encrypt(req, req->iv, req->assoclen);
668 static int gcm_aes_decrypt(struct aead_request *req)
670 return gcm_decrypt(req, req->iv, req->assoclen);
673 static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
674 unsigned int keylen)
676 struct gcm_key *ctx = crypto_aead_ctx(tfm);
677 int err;
679 keylen -= RFC4106_NONCE_SIZE;
680 err = gcm_aes_setkey(tfm, inkey, keylen);
681 if (err)
682 return err;
684 memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
685 return 0;
688 static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
690 return crypto_rfc4106_check_authsize(authsize);
693 static int rfc4106_encrypt(struct aead_request *req)
695 struct crypto_aead *aead = crypto_aead_reqtfm(req);
696 struct gcm_key *ctx = crypto_aead_ctx(aead);
697 u8 iv[GCM_AES_IV_SIZE];
699 memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
700 memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
702 return crypto_ipsec_check_assoclen(req->assoclen) ?:
703 gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
706 static int rfc4106_decrypt(struct aead_request *req)
708 struct crypto_aead *aead = crypto_aead_reqtfm(req);
709 struct gcm_key *ctx = crypto_aead_ctx(aead);
710 u8 iv[GCM_AES_IV_SIZE];
712 memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
713 memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
715 return crypto_ipsec_check_assoclen(req->assoclen) ?:
716 gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
719 static struct aead_alg gcm_aes_algs[] = {{
720 .ivsize = GCM_AES_IV_SIZE,
721 .chunksize = AES_BLOCK_SIZE,
722 .maxauthsize = AES_BLOCK_SIZE,
723 .setkey = gcm_aes_setkey,
724 .setauthsize = gcm_aes_setauthsize,
725 .encrypt = gcm_aes_encrypt,
726 .decrypt = gcm_aes_decrypt,
728 .base.cra_name = "gcm(aes)",
729 .base.cra_driver_name = "gcm-aes-ce",
730 .base.cra_priority = 400,
731 .base.cra_blocksize = 1,
732 .base.cra_ctxsize = sizeof(struct gcm_key),
733 .base.cra_module = THIS_MODULE,
734 }, {
735 .ivsize = GCM_RFC4106_IV_SIZE,
736 .chunksize = AES_BLOCK_SIZE,
737 .maxauthsize = AES_BLOCK_SIZE,
738 .setkey = rfc4106_setkey,
739 .setauthsize = rfc4106_setauthsize,
740 .encrypt = rfc4106_encrypt,
741 .decrypt = rfc4106_decrypt,
743 .base.cra_name = "rfc4106(gcm(aes))",
744 .base.cra_driver_name = "rfc4106-gcm-aes-ce",
745 .base.cra_priority = 400,
746 .base.cra_blocksize = 1,
747 .base.cra_ctxsize = sizeof(struct gcm_key) + RFC4106_NONCE_SIZE,
748 .base.cra_module = THIS_MODULE,
751 static int __init ghash_ce_mod_init(void)
753 int err;
755 if (!(elf_hwcap & HWCAP_NEON))
756 return -ENODEV;
758 if (elf_hwcap2 & HWCAP2_PMULL) {
759 err = crypto_register_aeads(gcm_aes_algs,
760 ARRAY_SIZE(gcm_aes_algs));
761 if (err)
762 return err;
763 ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]);
764 static_branch_enable(&use_p64);
767 err = crypto_register_shash(&ghash_alg);
768 if (err)
769 goto err_aead;
770 err = crypto_register_ahash(&ghash_async_alg);
771 if (err)
772 goto err_shash;
774 return 0;
776 err_shash:
777 crypto_unregister_shash(&ghash_alg);
778 err_aead:
779 if (elf_hwcap2 & HWCAP2_PMULL)
780 crypto_unregister_aeads(gcm_aes_algs,
781 ARRAY_SIZE(gcm_aes_algs));
782 return err;
785 static void __exit ghash_ce_mod_exit(void)
787 crypto_unregister_ahash(&ghash_async_alg);
788 crypto_unregister_shash(&ghash_alg);
789 if (elf_hwcap2 & HWCAP2_PMULL)
790 crypto_unregister_aeads(gcm_aes_algs,
791 ARRAY_SIZE(gcm_aes_algs));
794 module_init(ghash_ce_mod_init);
795 module_exit(ghash_ce_mod_exit);