printf: Remove unused 'bprintf'
[drm/drm-misc.git] / arch / arm64 / mm / fault.c
blobef63651099a9dc20f3e56260161681c2a7a1b6c2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/pkeys.h>
27 #include <linux/preempt.h>
28 #include <linux/hugetlb.h>
30 #include <asm/acpi.h>
31 #include <asm/bug.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/cpufeature.h>
34 #include <asm/efi.h>
35 #include <asm/exception.h>
36 #include <asm/daifflags.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/esr.h>
39 #include <asm/kprobes.h>
40 #include <asm/mte.h>
41 #include <asm/processor.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/tlbflush.h>
45 #include <asm/traps.h>
47 struct fault_info {
48 int (*fn)(unsigned long far, unsigned long esr,
49 struct pt_regs *regs);
50 int sig;
51 int code;
52 const char *name;
55 static const struct fault_info fault_info[];
56 static struct fault_info debug_fault_info[];
58 static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
60 return fault_info + (esr & ESR_ELx_FSC);
63 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
65 return debug_fault_info + DBG_ESR_EVT(esr);
68 static void data_abort_decode(unsigned long esr)
70 unsigned long iss2 = ESR_ELx_ISS2(esr);
72 pr_alert("Data abort info:\n");
74 if (esr & ESR_ELx_ISV) {
75 pr_alert(" Access size = %u byte(s)\n",
76 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
77 pr_alert(" SSE = %lu, SRT = %lu\n",
78 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
79 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
80 pr_alert(" SF = %lu, AR = %lu\n",
81 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
82 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
83 } else {
84 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
85 esr & ESR_ELx_ISS_MASK, iss2);
88 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
89 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
90 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
91 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
92 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
94 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
95 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
96 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
97 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
98 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
101 static void mem_abort_decode(unsigned long esr)
103 pr_alert("Mem abort info:\n");
105 pr_alert(" ESR = 0x%016lx\n", esr);
106 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
107 ESR_ELx_EC(esr), esr_get_class_string(esr),
108 (esr & ESR_ELx_IL) ? 32 : 16);
109 pr_alert(" SET = %lu, FnV = %lu\n",
110 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
111 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
112 pr_alert(" EA = %lu, S1PTW = %lu\n",
113 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
114 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
115 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
116 esr_to_fault_info(esr)->name);
118 if (esr_is_data_abort(esr))
119 data_abort_decode(esr);
122 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
124 /* Either init_pg_dir or swapper_pg_dir */
125 if (mm == &init_mm)
126 return __pa_symbol(mm->pgd);
128 return (unsigned long)virt_to_phys(mm->pgd);
132 * Dump out the page tables associated with 'addr' in the currently active mm.
134 static void show_pte(unsigned long addr)
136 struct mm_struct *mm;
137 pgd_t *pgdp;
138 pgd_t pgd;
140 if (is_ttbr0_addr(addr)) {
141 /* TTBR0 */
142 mm = current->active_mm;
143 if (mm == &init_mm) {
144 pr_alert("[%016lx] user address but active_mm is swapper\n",
145 addr);
146 return;
148 } else if (is_ttbr1_addr(addr)) {
149 /* TTBR1 */
150 mm = &init_mm;
151 } else {
152 pr_alert("[%016lx] address between user and kernel address ranges\n",
153 addr);
154 return;
157 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
158 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
159 vabits_actual, mm_to_pgd_phys(mm));
160 pgdp = pgd_offset(mm, addr);
161 pgd = READ_ONCE(*pgdp);
162 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
164 do {
165 p4d_t *p4dp, p4d;
166 pud_t *pudp, pud;
167 pmd_t *pmdp, pmd;
168 pte_t *ptep, pte;
170 if (pgd_none(pgd) || pgd_bad(pgd))
171 break;
173 p4dp = p4d_offset(pgdp, addr);
174 p4d = READ_ONCE(*p4dp);
175 pr_cont(", p4d=%016llx", p4d_val(p4d));
176 if (p4d_none(p4d) || p4d_bad(p4d))
177 break;
179 pudp = pud_offset(p4dp, addr);
180 pud = READ_ONCE(*pudp);
181 pr_cont(", pud=%016llx", pud_val(pud));
182 if (pud_none(pud) || pud_bad(pud))
183 break;
185 pmdp = pmd_offset(pudp, addr);
186 pmd = READ_ONCE(*pmdp);
187 pr_cont(", pmd=%016llx", pmd_val(pmd));
188 if (pmd_none(pmd) || pmd_bad(pmd))
189 break;
191 ptep = pte_offset_map(pmdp, addr);
192 if (!ptep)
193 break;
195 pte = __ptep_get(ptep);
196 pr_cont(", pte=%016llx", pte_val(pte));
197 pte_unmap(ptep);
198 } while(0);
200 pr_cont("\n");
204 * This function sets the access flags (dirty, accessed), as well as write
205 * permission, and only to a more permissive setting.
207 * It needs to cope with hardware update of the accessed/dirty state by other
208 * agents in the system and can safely skip the __sync_icache_dcache() call as,
209 * like __set_ptes(), the PTE is never changed from no-exec to exec here.
211 * Returns whether or not the PTE actually changed.
213 int __ptep_set_access_flags(struct vm_area_struct *vma,
214 unsigned long address, pte_t *ptep,
215 pte_t entry, int dirty)
217 pteval_t old_pteval, pteval;
218 pte_t pte = __ptep_get(ptep);
220 if (pte_same(pte, entry))
221 return 0;
223 /* only preserve the access flags and write permission */
224 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
227 * Setting the flags must be done atomically to avoid racing with the
228 * hardware update of the access/dirty state. The PTE_RDONLY bit must
229 * be set to the most permissive (lowest value) of *ptep and entry
230 * (calculated as: a & b == ~(~a | ~b)).
232 pte_val(entry) ^= PTE_RDONLY;
233 pteval = pte_val(pte);
234 do {
235 old_pteval = pteval;
236 pteval ^= PTE_RDONLY;
237 pteval |= pte_val(entry);
238 pteval ^= PTE_RDONLY;
239 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
240 } while (pteval != old_pteval);
242 /* Invalidate a stale read-only entry */
243 if (dirty)
244 flush_tlb_page(vma, address);
245 return 1;
248 static bool is_el1_instruction_abort(unsigned long esr)
250 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
253 static bool is_el1_data_abort(unsigned long esr)
255 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
258 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
259 struct pt_regs *regs)
261 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
262 return false;
264 if (esr_fsc_is_permission_fault(esr))
265 return true;
267 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
268 return esr_fsc_is_translation_fault(esr) &&
269 (regs->pstate & PSR_PAN_BIT);
271 return false;
274 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
275 unsigned long esr,
276 struct pt_regs *regs)
278 unsigned long flags;
279 u64 par, dfsc;
281 if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
282 return false;
284 local_irq_save(flags);
285 asm volatile("at s1e1r, %0" :: "r" (addr));
286 isb();
287 par = read_sysreg_par();
288 local_irq_restore(flags);
291 * If we now have a valid translation, treat the translation fault as
292 * spurious.
294 if (!(par & SYS_PAR_EL1_F))
295 return true;
298 * If we got a different type of fault from the AT instruction,
299 * treat the translation fault as spurious.
301 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
302 return !esr_fsc_is_translation_fault(dfsc);
305 static void die_kernel_fault(const char *msg, unsigned long addr,
306 unsigned long esr, struct pt_regs *regs)
308 bust_spinlocks(1);
310 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
311 addr);
313 kasan_non_canonical_hook(addr);
315 mem_abort_decode(esr);
317 show_pte(addr);
318 die("Oops", regs, esr);
319 bust_spinlocks(0);
320 make_task_dead(SIGKILL);
323 #ifdef CONFIG_KASAN_HW_TAGS
324 static void report_tag_fault(unsigned long addr, unsigned long esr,
325 struct pt_regs *regs)
328 * SAS bits aren't set for all faults reported in EL1, so we can't
329 * find out access size.
331 bool is_write = !!(esr & ESR_ELx_WNR);
332 kasan_report((void *)addr, 0, is_write, regs->pc);
334 #else
335 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
336 static inline void report_tag_fault(unsigned long addr, unsigned long esr,
337 struct pt_regs *regs) { }
338 #endif
340 static void do_tag_recovery(unsigned long addr, unsigned long esr,
341 struct pt_regs *regs)
344 report_tag_fault(addr, esr, regs);
347 * Disable MTE Tag Checking on the local CPU for the current EL.
348 * It will be done lazily on the other CPUs when they will hit a
349 * tag fault.
351 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
352 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
353 isb();
356 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
358 unsigned long fsc = esr & ESR_ELx_FSC;
360 if (!is_el1_data_abort(esr))
361 return false;
363 if (fsc == ESR_ELx_FSC_MTE)
364 return true;
366 return false;
369 static void __do_kernel_fault(unsigned long addr, unsigned long esr,
370 struct pt_regs *regs)
372 const char *msg;
375 * Are we prepared to handle this kernel fault?
376 * We are almost certainly not prepared to handle instruction faults.
378 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
379 return;
381 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
382 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
383 return;
385 if (is_el1_mte_sync_tag_check_fault(esr)) {
386 do_tag_recovery(addr, esr, regs);
388 return;
391 if (is_el1_permission_fault(addr, esr, regs)) {
392 if (esr & ESR_ELx_WNR)
393 msg = "write to read-only memory";
394 else if (is_el1_instruction_abort(esr))
395 msg = "execute from non-executable memory";
396 else
397 msg = "read from unreadable memory";
398 } else if (addr < PAGE_SIZE) {
399 msg = "NULL pointer dereference";
400 } else {
401 if (esr_fsc_is_translation_fault(esr) &&
402 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
403 return;
405 msg = "paging request";
408 if (efi_runtime_fixup_exception(regs, msg))
409 return;
411 die_kernel_fault(msg, addr, esr, regs);
414 static void set_thread_esr(unsigned long address, unsigned long esr)
416 current->thread.fault_address = address;
419 * If the faulting address is in the kernel, we must sanitize the ESR.
420 * From userspace's point of view, kernel-only mappings don't exist
421 * at all, so we report them as level 0 translation faults.
422 * (This is not quite the way that "no mapping there at all" behaves:
423 * an alignment fault not caused by the memory type would take
424 * precedence over translation fault for a real access to empty
425 * space. Unfortunately we can't easily distinguish "alignment fault
426 * not caused by memory type" from "alignment fault caused by memory
427 * type", so we ignore this wrinkle and just return the translation
428 * fault.)
430 if (!is_ttbr0_addr(current->thread.fault_address)) {
431 switch (ESR_ELx_EC(esr)) {
432 case ESR_ELx_EC_DABT_LOW:
434 * These bits provide only information about the
435 * faulting instruction, which userspace knows already.
436 * We explicitly clear bits which are architecturally
437 * RES0 in case they are given meanings in future.
438 * We always report the ESR as if the fault was taken
439 * to EL1 and so ISV and the bits in ISS[23:14] are
440 * clear. (In fact it always will be a fault to EL1.)
442 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
443 ESR_ELx_CM | ESR_ELx_WNR;
444 esr |= ESR_ELx_FSC_FAULT;
445 break;
446 case ESR_ELx_EC_IABT_LOW:
448 * Claim a level 0 translation fault.
449 * All other bits are architecturally RES0 for faults
450 * reported with that DFSC value, so we clear them.
452 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
453 esr |= ESR_ELx_FSC_FAULT;
454 break;
455 default:
457 * This should never happen (entry.S only brings us
458 * into this code for insn and data aborts from a lower
459 * exception level). Fail safe by not providing an ESR
460 * context record at all.
462 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
463 esr = 0;
464 break;
468 current->thread.fault_code = esr;
471 static void do_bad_area(unsigned long far, unsigned long esr,
472 struct pt_regs *regs)
474 unsigned long addr = untagged_addr(far);
477 * If we are in kernel mode at this point, we have no context to
478 * handle this fault with.
480 if (user_mode(regs)) {
481 const struct fault_info *inf = esr_to_fault_info(esr);
483 set_thread_esr(addr, esr);
484 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
485 } else {
486 __do_kernel_fault(addr, esr, regs);
490 static bool fault_from_pkey(unsigned long esr, struct vm_area_struct *vma,
491 unsigned int mm_flags)
493 unsigned long iss2 = ESR_ELx_ISS2(esr);
495 if (!system_supports_poe())
496 return false;
498 if (esr_fsc_is_permission_fault(esr) && (iss2 & ESR_ELx_Overlay))
499 return true;
501 return !arch_vma_access_permitted(vma,
502 mm_flags & FAULT_FLAG_WRITE,
503 mm_flags & FAULT_FLAG_INSTRUCTION,
504 false);
507 static bool is_gcs_fault(unsigned long esr)
509 if (!esr_is_data_abort(esr))
510 return false;
512 return ESR_ELx_ISS2(esr) & ESR_ELx_GCS;
515 static bool is_el0_instruction_abort(unsigned long esr)
517 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
521 * Note: not valid for EL1 DC IVAC, but we never use that such that it
522 * should fault. EL0 cannot issue DC IVAC (undef).
524 static bool is_write_abort(unsigned long esr)
526 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
529 static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr)
531 if (!system_supports_gcs())
532 return false;
534 if (unlikely(is_gcs_fault(esr))) {
535 /* GCS accesses must be performed on a GCS page */
536 if (!(vma->vm_flags & VM_SHADOW_STACK))
537 return true;
538 } else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) {
539 /* Only GCS operations can write to a GCS page */
540 return esr_is_data_abort(esr) && is_write_abort(esr);
543 return false;
546 static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
547 struct pt_regs *regs)
549 const struct fault_info *inf;
550 struct mm_struct *mm = current->mm;
551 vm_fault_t fault;
552 unsigned long vm_flags;
553 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
554 unsigned long addr = untagged_addr(far);
555 struct vm_area_struct *vma;
556 int si_code;
557 int pkey = -1;
559 if (kprobe_page_fault(regs, esr))
560 return 0;
563 * If we're in an interrupt or have no user context, we must not take
564 * the fault.
566 if (faulthandler_disabled() || !mm)
567 goto no_context;
569 if (user_mode(regs))
570 mm_flags |= FAULT_FLAG_USER;
573 * vm_flags tells us what bits we must have in vma->vm_flags
574 * for the fault to be benign, __do_page_fault() would check
575 * vma->vm_flags & vm_flags and returns an error if the
576 * intersection is empty
578 if (is_el0_instruction_abort(esr)) {
579 /* It was exec fault */
580 vm_flags = VM_EXEC;
581 mm_flags |= FAULT_FLAG_INSTRUCTION;
582 } else if (is_gcs_fault(esr)) {
584 * The GCS permission on a page implies both read and
585 * write so always handle any GCS fault as a write fault,
586 * we need to trigger CoW even for GCS reads.
588 vm_flags = VM_WRITE;
589 mm_flags |= FAULT_FLAG_WRITE;
590 } else if (is_write_abort(esr)) {
591 /* It was write fault */
592 vm_flags = VM_WRITE;
593 mm_flags |= FAULT_FLAG_WRITE;
594 } else {
595 /* It was read fault */
596 vm_flags = VM_READ;
597 /* Write implies read */
598 vm_flags |= VM_WRITE;
599 /* If EPAN is absent then exec implies read */
600 if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
601 vm_flags |= VM_EXEC;
604 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
605 if (is_el1_instruction_abort(esr))
606 die_kernel_fault("execution of user memory",
607 addr, esr, regs);
609 if (!search_exception_tables(regs->pc))
610 die_kernel_fault("access to user memory outside uaccess routines",
611 addr, esr, regs);
614 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
616 if (!(mm_flags & FAULT_FLAG_USER))
617 goto lock_mmap;
619 vma = lock_vma_under_rcu(mm, addr);
620 if (!vma)
621 goto lock_mmap;
623 if (is_invalid_gcs_access(vma, esr)) {
624 vma_end_read(vma);
625 fault = 0;
626 si_code = SEGV_ACCERR;
627 goto bad_area;
630 if (!(vma->vm_flags & vm_flags)) {
631 vma_end_read(vma);
632 fault = 0;
633 si_code = SEGV_ACCERR;
634 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
635 goto bad_area;
638 if (fault_from_pkey(esr, vma, mm_flags)) {
639 pkey = vma_pkey(vma);
640 vma_end_read(vma);
641 fault = 0;
642 si_code = SEGV_PKUERR;
643 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
644 goto bad_area;
647 fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
648 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
649 vma_end_read(vma);
651 if (!(fault & VM_FAULT_RETRY)) {
652 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
653 goto done;
655 count_vm_vma_lock_event(VMA_LOCK_RETRY);
656 if (fault & VM_FAULT_MAJOR)
657 mm_flags |= FAULT_FLAG_TRIED;
659 /* Quick path to respond to signals */
660 if (fault_signal_pending(fault, regs)) {
661 if (!user_mode(regs))
662 goto no_context;
663 return 0;
665 lock_mmap:
667 retry:
668 vma = lock_mm_and_find_vma(mm, addr, regs);
669 if (unlikely(!vma)) {
670 fault = 0;
671 si_code = SEGV_MAPERR;
672 goto bad_area;
675 if (!(vma->vm_flags & vm_flags)) {
676 mmap_read_unlock(mm);
677 fault = 0;
678 si_code = SEGV_ACCERR;
679 goto bad_area;
682 if (fault_from_pkey(esr, vma, mm_flags)) {
683 pkey = vma_pkey(vma);
684 mmap_read_unlock(mm);
685 fault = 0;
686 si_code = SEGV_PKUERR;
687 goto bad_area;
690 fault = handle_mm_fault(vma, addr, mm_flags, regs);
692 /* Quick path to respond to signals */
693 if (fault_signal_pending(fault, regs)) {
694 if (!user_mode(regs))
695 goto no_context;
696 return 0;
699 /* The fault is fully completed (including releasing mmap lock) */
700 if (fault & VM_FAULT_COMPLETED)
701 return 0;
703 if (fault & VM_FAULT_RETRY) {
704 mm_flags |= FAULT_FLAG_TRIED;
705 goto retry;
707 mmap_read_unlock(mm);
709 done:
710 /* Handle the "normal" (no error) case first. */
711 if (likely(!(fault & VM_FAULT_ERROR)))
712 return 0;
714 si_code = SEGV_MAPERR;
715 bad_area:
717 * If we are in kernel mode at this point, we have no context to
718 * handle this fault with.
720 if (!user_mode(regs))
721 goto no_context;
723 if (fault & VM_FAULT_OOM) {
725 * We ran out of memory, call the OOM killer, and return to
726 * userspace (which will retry the fault, or kill us if we got
727 * oom-killed).
729 pagefault_out_of_memory();
730 return 0;
733 inf = esr_to_fault_info(esr);
734 set_thread_esr(addr, esr);
735 if (fault & VM_FAULT_SIGBUS) {
737 * We had some memory, but were unable to successfully fix up
738 * this page fault.
740 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
741 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
742 unsigned int lsb;
744 lsb = PAGE_SHIFT;
745 if (fault & VM_FAULT_HWPOISON_LARGE)
746 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
748 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
749 } else {
751 * The pkey value that we return to userspace can be different
752 * from the pkey that caused the fault.
754 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
755 * 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page
756 * 3. T1 : faults...
757 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
758 * 5. T1 : enters fault handler, takes mmap_lock, etc...
759 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
760 * faulted on a pte with its pkey=4.
762 /* Something tried to access memory that out of memory map */
763 if (si_code == SEGV_PKUERR)
764 arm64_force_sig_fault_pkey(far, inf->name, pkey);
765 else
766 arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
769 return 0;
771 no_context:
772 __do_kernel_fault(addr, esr, regs);
773 return 0;
776 static int __kprobes do_translation_fault(unsigned long far,
777 unsigned long esr,
778 struct pt_regs *regs)
780 unsigned long addr = untagged_addr(far);
782 if (is_ttbr0_addr(addr))
783 return do_page_fault(far, esr, regs);
785 do_bad_area(far, esr, regs);
786 return 0;
789 static int do_alignment_fault(unsigned long far, unsigned long esr,
790 struct pt_regs *regs)
792 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
793 compat_user_mode(regs))
794 return do_compat_alignment_fixup(far, regs);
795 do_bad_area(far, esr, regs);
796 return 0;
799 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
801 return 1; /* "fault" */
804 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
806 const struct fault_info *inf;
807 unsigned long siaddr;
809 inf = esr_to_fault_info(esr);
811 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
813 * APEI claimed this as a firmware-first notification.
814 * Some processing deferred to task_work before ret_to_user().
816 return 0;
819 if (esr & ESR_ELx_FnV) {
820 siaddr = 0;
821 } else {
823 * The architecture specifies that the tag bits of FAR_EL1 are
824 * UNKNOWN for synchronous external aborts. Mask them out now
825 * so that userspace doesn't see them.
827 siaddr = untagged_addr(far);
829 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
831 return 0;
834 static int do_tag_check_fault(unsigned long far, unsigned long esr,
835 struct pt_regs *regs)
838 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
839 * for tag check faults. Set them to corresponding bits in the untagged
840 * address.
842 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
843 do_bad_area(far, esr, regs);
844 return 0;
847 static const struct fault_info fault_info[] = {
848 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
849 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
850 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
851 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
852 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
853 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
854 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
855 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
856 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" },
857 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
858 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
859 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
860 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" },
861 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
862 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
863 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
864 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
865 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
866 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
867 { do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" },
868 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
869 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
870 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
871 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
872 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
873 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
874 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
875 { do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
876 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
877 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
878 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
879 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
880 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
881 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
882 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
883 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
884 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
885 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
886 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
887 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
888 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
889 { do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" },
890 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
891 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" },
892 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
893 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
894 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
895 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
896 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
897 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
898 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
899 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
900 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
901 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
902 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
903 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
904 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
905 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
906 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
907 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
908 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
909 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
910 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
911 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
914 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
916 const struct fault_info *inf = esr_to_fault_info(esr);
917 unsigned long addr = untagged_addr(far);
919 if (!inf->fn(far, esr, regs))
920 return;
922 if (!user_mode(regs))
923 die_kernel_fault(inf->name, addr, esr, regs);
926 * At this point we have an unrecognized fault type whose tag bits may
927 * have been defined as UNKNOWN. Therefore we only expose the untagged
928 * address to the signal handler.
930 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
932 NOKPROBE_SYMBOL(do_mem_abort);
934 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
936 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
937 addr, esr);
939 NOKPROBE_SYMBOL(do_sp_pc_abort);
942 * __refdata because early_brk64 is __init, but the reference to it is
943 * clobbered at arch_initcall time.
944 * See traps.c and debug-monitors.c:debug_traps_init().
946 static struct fault_info __refdata debug_fault_info[] = {
947 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
948 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
949 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
950 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
951 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
952 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
953 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
954 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
957 void __init hook_debug_fault_code(int nr,
958 int (*fn)(unsigned long, unsigned long, struct pt_regs *),
959 int sig, int code, const char *name)
961 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
963 debug_fault_info[nr].fn = fn;
964 debug_fault_info[nr].sig = sig;
965 debug_fault_info[nr].code = code;
966 debug_fault_info[nr].name = name;
970 * In debug exception context, we explicitly disable preemption despite
971 * having interrupts disabled.
972 * This serves two purposes: it makes it much less likely that we would
973 * accidentally schedule in exception context and it will force a warning
974 * if we somehow manage to schedule by accident.
976 static void debug_exception_enter(struct pt_regs *regs)
978 preempt_disable();
980 /* This code is a bit fragile. Test it. */
981 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
983 NOKPROBE_SYMBOL(debug_exception_enter);
985 static void debug_exception_exit(struct pt_regs *regs)
987 preempt_enable_no_resched();
989 NOKPROBE_SYMBOL(debug_exception_exit);
991 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
992 struct pt_regs *regs)
994 const struct fault_info *inf = esr_to_debug_fault_info(esr);
995 unsigned long pc = instruction_pointer(regs);
997 debug_exception_enter(regs);
999 if (user_mode(regs) && !is_ttbr0_addr(pc))
1000 arm64_apply_bp_hardening();
1002 if (inf->fn(addr_if_watchpoint, esr, regs)) {
1003 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
1006 debug_exception_exit(regs);
1008 NOKPROBE_SYMBOL(do_debug_exception);
1011 * Used during anonymous page fault handling.
1013 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
1014 unsigned long vaddr)
1016 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
1019 * If the page is mapped with PROT_MTE, initialise the tags at the
1020 * point of allocation and page zeroing as this is usually faster than
1021 * separate DC ZVA and STGM.
1023 if (vma->vm_flags & VM_MTE)
1024 flags |= __GFP_ZEROTAGS;
1026 return vma_alloc_folio(flags, 0, vma, vaddr);
1029 void tag_clear_highpage(struct page *page)
1031 /* Newly allocated page, shouldn't have been tagged yet */
1032 WARN_ON_ONCE(!try_page_mte_tagging(page));
1033 mte_zero_clear_page_tags(page_address(page));
1034 set_page_mte_tagged(page);