printf: Remove unused 'bprintf'
[drm/drm-misc.git] / arch / mips / mm / tlbex.c
blob69ea54bdc0c36182ddb0c8e289a7e2ee573182c6
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/smp.h>
29 #include <linux/string.h>
30 #include <linux/cache.h>
31 #include <linux/pgtable.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu-type.h>
35 #include <asm/mipsregs.h>
36 #include <asm/mmu_context.h>
37 #include <asm/regdef.h>
38 #include <asm/uasm.h>
39 #include <asm/setup.h>
40 #include <asm/tlbex.h>
42 static int mips_xpa_disabled;
44 static int __init xpa_disable(char *s)
46 mips_xpa_disabled = 1;
48 return 1;
51 __setup("noxpa", xpa_disable);
54 * TLB load/store/modify handlers.
56 * Only the fastpath gets synthesized at runtime, the slowpath for
57 * do_page_fault remains normal asm.
59 extern void tlb_do_page_fault_0(void);
60 extern void tlb_do_page_fault_1(void);
62 struct work_registers {
63 int r1;
64 int r2;
65 int r3;
68 struct tlb_reg_save {
69 unsigned long a;
70 unsigned long b;
71 } ____cacheline_aligned_in_smp;
73 static struct tlb_reg_save handler_reg_save[NR_CPUS];
75 static inline int r45k_bvahwbug(void)
77 /* XXX: We should probe for the presence of this bug, but we don't. */
78 return 0;
81 static inline int r4k_250MHZhwbug(void)
83 /* XXX: We should probe for the presence of this bug, but we don't. */
84 return 0;
87 extern int sb1250_m3_workaround_needed(void);
89 static inline int __maybe_unused bcm1250_m3_war(void)
91 if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
92 return sb1250_m3_workaround_needed();
93 return 0;
96 static inline int __maybe_unused r10000_llsc_war(void)
98 return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
101 static int use_bbit_insns(void)
103 switch (current_cpu_type()) {
104 case CPU_CAVIUM_OCTEON:
105 case CPU_CAVIUM_OCTEON_PLUS:
106 case CPU_CAVIUM_OCTEON2:
107 case CPU_CAVIUM_OCTEON3:
108 return 1;
109 default:
110 return 0;
114 static int use_lwx_insns(void)
116 switch (current_cpu_type()) {
117 case CPU_CAVIUM_OCTEON2:
118 case CPU_CAVIUM_OCTEON3:
119 return 1;
120 default:
121 return 0;
124 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
125 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
126 static bool scratchpad_available(void)
128 return true;
130 static int scratchpad_offset(int i)
133 * CVMSEG starts at address -32768 and extends for
134 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
136 i += 1; /* Kernel use starts at the top and works down. */
137 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
139 #else
140 static bool scratchpad_available(void)
142 return false;
144 static int scratchpad_offset(int i)
146 BUG();
147 /* Really unreachable, but evidently some GCC want this. */
148 return 0;
150 #endif
152 * Found by experiment: At least some revisions of the 4kc throw under
153 * some circumstances a machine check exception, triggered by invalid
154 * values in the index register. Delaying the tlbp instruction until
155 * after the next branch, plus adding an additional nop in front of
156 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
157 * why; it's not an issue caused by the core RTL.
160 static int m4kc_tlbp_war(void)
162 return current_cpu_type() == CPU_4KC;
165 /* Handle labels (which must be positive integers). */
166 enum label_id {
167 label_second_part = 1,
168 label_leave,
169 label_vmalloc,
170 label_vmalloc_done,
171 label_tlbw_hazard_0,
172 label_split = label_tlbw_hazard_0 + 8,
173 label_tlbl_goaround1,
174 label_tlbl_goaround2,
175 label_nopage_tlbl,
176 label_nopage_tlbs,
177 label_nopage_tlbm,
178 label_smp_pgtable_change,
179 label_r3000_write_probe_fail,
180 label_large_segbits_fault,
181 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
182 label_tlb_huge_update,
183 #endif
186 UASM_L_LA(_second_part)
187 UASM_L_LA(_leave)
188 UASM_L_LA(_vmalloc)
189 UASM_L_LA(_vmalloc_done)
190 /* _tlbw_hazard_x is handled differently. */
191 UASM_L_LA(_split)
192 UASM_L_LA(_tlbl_goaround1)
193 UASM_L_LA(_tlbl_goaround2)
194 UASM_L_LA(_nopage_tlbl)
195 UASM_L_LA(_nopage_tlbs)
196 UASM_L_LA(_nopage_tlbm)
197 UASM_L_LA(_smp_pgtable_change)
198 UASM_L_LA(_r3000_write_probe_fail)
199 UASM_L_LA(_large_segbits_fault)
200 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
201 UASM_L_LA(_tlb_huge_update)
202 #endif
204 static int hazard_instance;
206 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
208 switch (instance) {
209 case 0 ... 7:
210 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
211 return;
212 default:
213 BUG();
217 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
219 switch (instance) {
220 case 0 ... 7:
221 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
222 break;
223 default:
224 BUG();
229 * pgtable bits are assigned dynamically depending on processor feature
230 * and statically based on kernel configuration. This spits out the actual
231 * values the kernel is using. Required to make sense from disassembled
232 * TLB exception handlers.
234 static void output_pgtable_bits_defines(void)
236 #define pr_define(fmt, ...) \
237 pr_debug("#define " fmt, ##__VA_ARGS__)
239 pr_debug("#include <asm/asm.h>\n");
240 pr_debug("#include <asm/regdef.h>\n");
241 pr_debug("\n");
243 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
244 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
245 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
246 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
247 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
248 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
249 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
250 #endif
251 #ifdef _PAGE_NO_EXEC_SHIFT
252 if (cpu_has_rixi)
253 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
254 #endif
255 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
256 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
257 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
258 pr_define("PFN_PTE_SHIFT %d\n", PFN_PTE_SHIFT);
259 pr_debug("\n");
262 static inline void dump_handler(const char *symbol, const void *start, const void *end)
264 unsigned int count = (end - start) / sizeof(u32);
265 const u32 *handler = start;
266 int i;
268 pr_debug("LEAF(%s)\n", symbol);
270 pr_debug("\t.set push\n");
271 pr_debug("\t.set noreorder\n");
273 for (i = 0; i < count; i++)
274 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
276 pr_debug("\t.set\tpop\n");
278 pr_debug("\tEND(%s)\n", symbol);
281 #ifdef CONFIG_64BIT
282 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
283 #else
284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
285 #endif
287 /* The worst case length of the handler is around 18 instructions for
288 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
289 * Maximum space available is 32 instructions for R3000 and 64
290 * instructions for R4000.
292 * We deliberately chose a buffer size of 128, so we won't scribble
293 * over anything important on overflow before we panic.
295 static u32 tlb_handler[128];
297 /* simply assume worst case size for labels and relocs */
298 static struct uasm_label labels[128];
299 static struct uasm_reloc relocs[128];
301 static int check_for_high_segbits;
302 static bool fill_includes_sw_bits;
304 static unsigned int kscratch_used_mask;
306 static inline int __maybe_unused c0_kscratch(void)
308 return 31;
311 static int allocate_kscratch(void)
313 int r;
314 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
316 r = ffs(a);
318 if (r == 0)
319 return -1;
321 r--; /* make it zero based */
323 kscratch_used_mask |= (1 << r);
325 return r;
328 static int scratch_reg;
329 int pgd_reg;
330 EXPORT_SYMBOL_GPL(pgd_reg);
331 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
333 static struct work_registers build_get_work_registers(u32 **p)
335 struct work_registers r;
337 if (scratch_reg >= 0) {
338 /* Save in CPU local C0_KScratch? */
339 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
340 r.r1 = GPR_K0;
341 r.r2 = GPR_K1;
342 r.r3 = GPR_AT;
343 return r;
346 if (num_possible_cpus() > 1) {
347 /* Get smp_processor_id */
348 UASM_i_CPUID_MFC0(p, GPR_K0, SMP_CPUID_REG);
349 UASM_i_SRL_SAFE(p, GPR_K0, GPR_K0, SMP_CPUID_REGSHIFT);
351 /* handler_reg_save index in GPR_K0 */
352 UASM_i_SLL(p, GPR_K0, GPR_K0, ilog2(sizeof(struct tlb_reg_save)));
354 UASM_i_LA(p, GPR_K1, (long)&handler_reg_save);
355 UASM_i_ADDU(p, GPR_K0, GPR_K0, GPR_K1);
356 } else {
357 UASM_i_LA(p, GPR_K0, (long)&handler_reg_save);
359 /* GPR_K0 now points to save area, save $1 and $2 */
360 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
361 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
363 r.r1 = GPR_K1;
364 r.r2 = 1;
365 r.r3 = 2;
366 return r;
369 static void build_restore_work_registers(u32 **p)
371 if (scratch_reg >= 0) {
372 uasm_i_ehb(p);
373 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
374 return;
376 /* GPR_K0 already points to save area, restore $1 and $2 */
377 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
378 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
381 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
384 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
385 * we cannot do r3000 under these circumstances.
387 * The R3000 TLB handler is simple.
389 static void build_r3000_tlb_refill_handler(void)
391 long pgdc = (long)pgd_current;
392 u32 *p;
394 memset(tlb_handler, 0, sizeof(tlb_handler));
395 p = tlb_handler;
397 uasm_i_mfc0(&p, GPR_K0, C0_BADVADDR);
398 uasm_i_lui(&p, GPR_K1, uasm_rel_hi(pgdc)); /* cp0 delay */
399 uasm_i_lw(&p, GPR_K1, uasm_rel_lo(pgdc), GPR_K1);
400 uasm_i_srl(&p, GPR_K0, GPR_K0, 22); /* load delay */
401 uasm_i_sll(&p, GPR_K0, GPR_K0, 2);
402 uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
403 uasm_i_mfc0(&p, GPR_K0, C0_CONTEXT);
404 uasm_i_lw(&p, GPR_K1, 0, GPR_K1); /* cp0 delay */
405 uasm_i_andi(&p, GPR_K0, GPR_K0, 0xffc); /* load delay */
406 uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
407 uasm_i_lw(&p, GPR_K0, 0, GPR_K1);
408 uasm_i_nop(&p); /* load delay */
409 uasm_i_mtc0(&p, GPR_K0, C0_ENTRYLO0);
410 uasm_i_mfc0(&p, GPR_K1, C0_EPC); /* cp0 delay */
411 uasm_i_tlbwr(&p); /* cp0 delay */
412 uasm_i_jr(&p, GPR_K1);
413 uasm_i_rfe(&p); /* branch delay */
415 if (p > tlb_handler + 32)
416 panic("TLB refill handler space exceeded");
418 pr_debug("Wrote TLB refill handler (%u instructions).\n",
419 (unsigned int)(p - tlb_handler));
421 memcpy((void *)ebase, tlb_handler, 0x80);
422 local_flush_icache_range(ebase, ebase + 0x80);
423 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
425 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
428 * The R4000 TLB handler is much more complicated. We have two
429 * consecutive handler areas with 32 instructions space each.
430 * Since they aren't used at the same time, we can overflow in the
431 * other one.To keep things simple, we first assume linear space,
432 * then we relocate it to the final handler layout as needed.
434 static u32 final_handler[64];
437 * Hazards
439 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
440 * 2. A timing hazard exists for the TLBP instruction.
442 * stalling_instruction
443 * TLBP
445 * The JTLB is being read for the TLBP throughout the stall generated by the
446 * previous instruction. This is not really correct as the stalling instruction
447 * can modify the address used to access the JTLB. The failure symptom is that
448 * the TLBP instruction will use an address created for the stalling instruction
449 * and not the address held in C0_ENHI and thus report the wrong results.
451 * The software work-around is to not allow the instruction preceding the TLBP
452 * to stall - make it an NOP or some other instruction guaranteed not to stall.
454 * Errata 2 will not be fixed. This errata is also on the R5000.
456 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
458 static void __maybe_unused build_tlb_probe_entry(u32 **p)
460 switch (current_cpu_type()) {
461 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
462 case CPU_R4600:
463 case CPU_R4700:
464 case CPU_R5000:
465 case CPU_NEVADA:
466 uasm_i_nop(p);
467 uasm_i_tlbp(p);
468 break;
470 default:
471 uasm_i_tlbp(p);
472 break;
476 void build_tlb_write_entry(u32 **p, struct uasm_label **l,
477 struct uasm_reloc **r,
478 enum tlb_write_entry wmode)
480 void(*tlbw)(u32 **) = NULL;
482 switch (wmode) {
483 case tlb_random: tlbw = uasm_i_tlbwr; break;
484 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
487 if (cpu_has_mips_r2_r6) {
488 if (cpu_has_mips_r2_exec_hazard)
489 uasm_i_ehb(p);
490 tlbw(p);
491 return;
494 switch (current_cpu_type()) {
495 case CPU_R4000PC:
496 case CPU_R4000SC:
497 case CPU_R4000MC:
498 case CPU_R4400PC:
499 case CPU_R4400SC:
500 case CPU_R4400MC:
502 * This branch uses up a mtc0 hazard nop slot and saves
503 * two nops after the tlbw instruction.
505 uasm_bgezl_hazard(p, r, hazard_instance);
506 tlbw(p);
507 uasm_bgezl_label(l, p, hazard_instance);
508 hazard_instance++;
509 uasm_i_nop(p);
510 break;
512 case CPU_R4600:
513 case CPU_R4700:
514 uasm_i_nop(p);
515 tlbw(p);
516 uasm_i_nop(p);
517 break;
519 case CPU_R5000:
520 case CPU_NEVADA:
521 uasm_i_nop(p); /* QED specifies 2 nops hazard */
522 uasm_i_nop(p); /* QED specifies 2 nops hazard */
523 tlbw(p);
524 break;
526 case CPU_R4300:
527 case CPU_5KC:
528 case CPU_TX49XX:
529 case CPU_PR4450:
530 uasm_i_nop(p);
531 tlbw(p);
532 break;
534 case CPU_R10000:
535 case CPU_R12000:
536 case CPU_R14000:
537 case CPU_R16000:
538 case CPU_4KC:
539 case CPU_4KEC:
540 case CPU_M14KC:
541 case CPU_M14KEC:
542 case CPU_SB1:
543 case CPU_SB1A:
544 case CPU_4KSC:
545 case CPU_20KC:
546 case CPU_25KF:
547 case CPU_BMIPS32:
548 case CPU_BMIPS3300:
549 case CPU_BMIPS4350:
550 case CPU_BMIPS4380:
551 case CPU_BMIPS5000:
552 case CPU_LOONGSON2EF:
553 case CPU_LOONGSON64:
554 case CPU_R5500:
555 if (m4kc_tlbp_war())
556 uasm_i_nop(p);
557 fallthrough;
558 case CPU_ALCHEMY:
559 tlbw(p);
560 break;
562 case CPU_RM7000:
563 uasm_i_nop(p);
564 uasm_i_nop(p);
565 uasm_i_nop(p);
566 uasm_i_nop(p);
567 tlbw(p);
568 break;
570 case CPU_XBURST:
571 tlbw(p);
572 uasm_i_nop(p);
573 break;
575 default:
576 panic("No TLB refill handler yet (CPU type: %d)",
577 current_cpu_type());
578 break;
581 EXPORT_SYMBOL_GPL(build_tlb_write_entry);
583 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
584 unsigned int reg)
586 if (_PAGE_GLOBAL_SHIFT == 0) {
587 /* pte_t is already in EntryLo format */
588 return;
591 if (cpu_has_rixi && _PAGE_NO_EXEC != 0) {
592 if (fill_includes_sw_bits) {
593 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
594 } else {
595 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
596 UASM_i_ROTR(p, reg, reg,
597 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
599 } else {
600 #ifdef CONFIG_PHYS_ADDR_T_64BIT
601 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
602 #else
603 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
604 #endif
608 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
610 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
611 unsigned int tmp, enum label_id lid,
612 int restore_scratch)
614 if (restore_scratch) {
616 * Ensure the MFC0 below observes the value written to the
617 * KScratch register by the prior MTC0.
619 if (scratch_reg >= 0)
620 uasm_i_ehb(p);
622 /* Reset default page size */
623 if (PM_DEFAULT_MASK >> 16) {
624 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
625 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
626 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
627 uasm_il_b(p, r, lid);
628 } else if (PM_DEFAULT_MASK) {
629 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
630 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
631 uasm_il_b(p, r, lid);
632 } else {
633 uasm_i_mtc0(p, 0, C0_PAGEMASK);
634 uasm_il_b(p, r, lid);
636 if (scratch_reg >= 0)
637 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
638 else
639 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
640 } else {
641 /* Reset default page size */
642 if (PM_DEFAULT_MASK >> 16) {
643 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
644 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
645 uasm_il_b(p, r, lid);
646 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
647 } else if (PM_DEFAULT_MASK) {
648 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
649 uasm_il_b(p, r, lid);
650 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
651 } else {
652 uasm_il_b(p, r, lid);
653 uasm_i_mtc0(p, 0, C0_PAGEMASK);
658 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
659 struct uasm_reloc **r,
660 unsigned int tmp,
661 enum tlb_write_entry wmode,
662 int restore_scratch)
664 /* Set huge page tlb entry size */
665 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
666 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
667 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
669 build_tlb_write_entry(p, l, r, wmode);
671 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
675 * Check if Huge PTE is present, if so then jump to LABEL.
677 static void
678 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
679 unsigned int pmd, int lid)
681 UASM_i_LW(p, tmp, 0, pmd);
682 if (use_bbit_insns()) {
683 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
684 } else {
685 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
686 uasm_il_bnez(p, r, tmp, lid);
690 static void build_huge_update_entries(u32 **p, unsigned int pte,
691 unsigned int tmp)
693 int small_sequence;
696 * A huge PTE describes an area the size of the
697 * configured huge page size. This is twice the
698 * of the large TLB entry size we intend to use.
699 * A TLB entry half the size of the configured
700 * huge page size is configured into entrylo0
701 * and entrylo1 to cover the contiguous huge PTE
702 * address space.
704 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
706 /* We can clobber tmp. It isn't used after this.*/
707 if (!small_sequence)
708 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
710 build_convert_pte_to_entrylo(p, pte);
711 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
712 /* convert to entrylo1 */
713 if (small_sequence)
714 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
715 else
716 UASM_i_ADDU(p, pte, pte, tmp);
718 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
721 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
722 struct uasm_label **l,
723 unsigned int pte,
724 unsigned int ptr,
725 unsigned int flush)
727 #ifdef CONFIG_SMP
728 UASM_i_SC(p, pte, 0, ptr);
729 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
730 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
731 #else
732 UASM_i_SW(p, pte, 0, ptr);
733 #endif
734 if (cpu_has_ftlb && flush) {
735 BUG_ON(!cpu_has_tlbinv);
737 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
738 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
739 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
740 build_tlb_write_entry(p, l, r, tlb_indexed);
742 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
743 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
744 build_huge_update_entries(p, pte, ptr);
745 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
747 return;
750 build_huge_update_entries(p, pte, ptr);
751 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
753 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
755 #ifdef CONFIG_64BIT
757 * TMP and PTR are scratch.
758 * TMP will be clobbered, PTR will hold the pmd entry.
760 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
761 unsigned int tmp, unsigned int ptr)
763 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
764 long pgdc = (long)pgd_current;
765 #endif
767 * The vmalloc handling is not in the hotpath.
769 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
771 if (check_for_high_segbits) {
773 * The kernel currently implicitly assumes that the
774 * MIPS SEGBITS parameter for the processor is
775 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
776 * allocate virtual addresses outside the maximum
777 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
778 * that doesn't prevent user code from accessing the
779 * higher xuseg addresses. Here, we make sure that
780 * everything but the lower xuseg addresses goes down
781 * the module_alloc/vmalloc path.
783 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
784 uasm_il_bnez(p, r, ptr, label_vmalloc);
785 } else {
786 uasm_il_bltz(p, r, tmp, label_vmalloc);
788 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
790 if (pgd_reg != -1) {
791 /* pgd is in pgd_reg */
792 if (cpu_has_ldpte)
793 UASM_i_MFC0(p, ptr, C0_PWBASE);
794 else
795 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
796 } else {
797 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
799 * &pgd << 11 stored in CONTEXT [23..63].
801 UASM_i_MFC0(p, ptr, C0_CONTEXT);
803 /* Clear lower 23 bits of context. */
804 uasm_i_dins(p, ptr, 0, 0, 23);
806 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
807 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
808 uasm_i_drotr(p, ptr, ptr, 11);
809 #elif defined(CONFIG_SMP)
810 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
811 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
812 UASM_i_LA_mostly(p, tmp, pgdc);
813 uasm_i_daddu(p, ptr, ptr, tmp);
814 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
815 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
816 #else
817 UASM_i_LA_mostly(p, ptr, pgdc);
818 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
819 #endif
822 uasm_l_vmalloc_done(l, *p);
824 /* get pgd offset in bytes */
825 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
827 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
828 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
829 #ifndef __PAGETABLE_PUD_FOLDED
830 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
831 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
832 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
833 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
834 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
835 #endif
836 #ifndef __PAGETABLE_PMD_FOLDED
837 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
838 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
839 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
840 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
841 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
842 #endif
844 EXPORT_SYMBOL_GPL(build_get_pmde64);
847 * BVADDR is the faulting address, PTR is scratch.
848 * PTR will hold the pgd for vmalloc.
850 static void
851 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
852 unsigned int bvaddr, unsigned int ptr,
853 enum vmalloc64_mode mode)
855 long swpd = (long)swapper_pg_dir;
856 int single_insn_swpd;
857 int did_vmalloc_branch = 0;
859 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
861 uasm_l_vmalloc(l, *p);
863 if (mode != not_refill && check_for_high_segbits) {
864 if (single_insn_swpd) {
865 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
866 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
867 did_vmalloc_branch = 1;
868 /* fall through */
869 } else {
870 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
873 if (!did_vmalloc_branch) {
874 if (single_insn_swpd) {
875 uasm_il_b(p, r, label_vmalloc_done);
876 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
877 } else {
878 UASM_i_LA_mostly(p, ptr, swpd);
879 uasm_il_b(p, r, label_vmalloc_done);
880 if (uasm_in_compat_space_p(swpd))
881 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
882 else
883 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
886 if (mode != not_refill && check_for_high_segbits) {
887 uasm_l_large_segbits_fault(l, *p);
889 if (mode == refill_scratch && scratch_reg >= 0)
890 uasm_i_ehb(p);
893 * We get here if we are an xsseg address, or if we are
894 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
896 * Ignoring xsseg (assume disabled so would generate
897 * (address errors?), the only remaining possibility
898 * is the upper xuseg addresses. On processors with
899 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
900 * addresses would have taken an address error. We try
901 * to mimic that here by taking a load/istream page
902 * fault.
904 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
905 uasm_i_sync(p, 0);
906 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
907 uasm_i_jr(p, ptr);
909 if (mode == refill_scratch) {
910 if (scratch_reg >= 0)
911 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
912 else
913 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
914 } else {
915 uasm_i_nop(p);
920 #else /* !CONFIG_64BIT */
923 * TMP and PTR are scratch.
924 * TMP will be clobbered, PTR will hold the pgd entry.
926 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
928 if (pgd_reg != -1) {
929 /* pgd is in pgd_reg */
930 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
931 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
932 } else {
933 long pgdc = (long)pgd_current;
935 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
936 #ifdef CONFIG_SMP
937 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
938 UASM_i_LA_mostly(p, tmp, pgdc);
939 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
940 uasm_i_addu(p, ptr, tmp, ptr);
941 #else
942 UASM_i_LA_mostly(p, ptr, pgdc);
943 #endif
944 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
945 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
947 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
948 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
949 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
951 EXPORT_SYMBOL_GPL(build_get_pgde32);
953 #endif /* !CONFIG_64BIT */
955 static void build_adjust_context(u32 **p, unsigned int ctx)
957 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
958 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
960 if (shift)
961 UASM_i_SRL(p, ctx, ctx, shift);
962 uasm_i_andi(p, ctx, ctx, mask);
965 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
968 * Bug workaround for the Nevada. It seems as if under certain
969 * circumstances the move from cp0_context might produce a
970 * bogus result when the mfc0 instruction and its consumer are
971 * in a different cacheline or a load instruction, probably any
972 * memory reference, is between them.
974 switch (current_cpu_type()) {
975 case CPU_NEVADA:
976 UASM_i_LW(p, ptr, 0, ptr);
977 GET_CONTEXT(p, tmp); /* get context reg */
978 break;
980 default:
981 GET_CONTEXT(p, tmp); /* get context reg */
982 UASM_i_LW(p, ptr, 0, ptr);
983 break;
986 build_adjust_context(p, tmp);
987 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
989 EXPORT_SYMBOL_GPL(build_get_ptep);
991 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
993 int pte_off_even = 0;
994 int pte_off_odd = sizeof(pte_t);
996 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
997 /* The low 32 bits of EntryLo is stored in pte_high */
998 pte_off_even += offsetof(pte_t, pte_high);
999 pte_off_odd += offsetof(pte_t, pte_high);
1000 #endif
1002 if (IS_ENABLED(CONFIG_XPA)) {
1003 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1004 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1005 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1007 if (cpu_has_xpa && !mips_xpa_disabled) {
1008 uasm_i_lw(p, tmp, 0, ptep);
1009 uasm_i_ext(p, tmp, tmp, 0, 24);
1010 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1013 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1014 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1015 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1017 if (cpu_has_xpa && !mips_xpa_disabled) {
1018 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1019 uasm_i_ext(p, tmp, tmp, 0, 24);
1020 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1022 return;
1025 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1026 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1027 if (r45k_bvahwbug())
1028 build_tlb_probe_entry(p);
1029 build_convert_pte_to_entrylo(p, tmp);
1030 if (r4k_250MHZhwbug())
1031 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1032 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033 build_convert_pte_to_entrylo(p, ptep);
1034 if (r45k_bvahwbug())
1035 uasm_i_mfc0(p, tmp, C0_INDEX);
1036 if (r4k_250MHZhwbug())
1037 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1038 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1040 EXPORT_SYMBOL_GPL(build_update_entries);
1042 struct mips_huge_tlb_info {
1043 int huge_pte;
1044 int restore_scratch;
1045 bool need_reload_pte;
1048 static struct mips_huge_tlb_info
1049 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1050 struct uasm_reloc **r, unsigned int tmp,
1051 unsigned int ptr, int c0_scratch_reg)
1053 struct mips_huge_tlb_info rv;
1054 unsigned int even, odd;
1055 int vmalloc_branch_delay_filled = 0;
1056 const int scratch = 1; /* Our extra working register */
1058 rv.huge_pte = scratch;
1059 rv.restore_scratch = 0;
1060 rv.need_reload_pte = false;
1062 if (check_for_high_segbits) {
1063 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1065 if (pgd_reg != -1)
1066 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1067 else
1068 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1070 if (c0_scratch_reg >= 0)
1071 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1072 else
1073 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1075 uasm_i_dsrl_safe(p, scratch, tmp,
1076 PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1077 uasm_il_bnez(p, r, scratch, label_vmalloc);
1079 if (pgd_reg == -1) {
1080 vmalloc_branch_delay_filled = 1;
1081 /* Clear lower 23 bits of context. */
1082 uasm_i_dins(p, ptr, 0, 0, 23);
1084 } else {
1085 if (pgd_reg != -1)
1086 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1087 else
1088 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1090 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1092 if (c0_scratch_reg >= 0)
1093 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1094 else
1095 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1097 if (pgd_reg == -1)
1098 /* Clear lower 23 bits of context. */
1099 uasm_i_dins(p, ptr, 0, 0, 23);
1101 uasm_il_bltz(p, r, tmp, label_vmalloc);
1104 if (pgd_reg == -1) {
1105 vmalloc_branch_delay_filled = 1;
1106 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1107 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1109 uasm_i_drotr(p, ptr, ptr, 11);
1112 #ifdef __PAGETABLE_PMD_FOLDED
1113 #define LOC_PTEP scratch
1114 #else
1115 #define LOC_PTEP ptr
1116 #endif
1118 if (!vmalloc_branch_delay_filled)
1119 /* get pgd offset in bytes */
1120 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1122 uasm_l_vmalloc_done(l, *p);
1125 * tmp ptr
1126 * fall-through case = badvaddr *pgd_current
1127 * vmalloc case = badvaddr swapper_pg_dir
1130 if (vmalloc_branch_delay_filled)
1131 /* get pgd offset in bytes */
1132 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1134 #ifdef __PAGETABLE_PMD_FOLDED
1135 GET_CONTEXT(p, tmp); /* get context reg */
1136 #endif
1137 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1139 if (use_lwx_insns()) {
1140 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1141 } else {
1142 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1143 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1146 #ifndef __PAGETABLE_PUD_FOLDED
1147 /* get pud offset in bytes */
1148 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1149 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1151 if (use_lwx_insns()) {
1152 UASM_i_LWX(p, ptr, scratch, ptr);
1153 } else {
1154 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1155 UASM_i_LW(p, ptr, 0, ptr);
1157 /* ptr contains a pointer to PMD entry */
1158 /* tmp contains the address */
1159 #endif
1161 #ifndef __PAGETABLE_PMD_FOLDED
1162 /* get pmd offset in bytes */
1163 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1164 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1165 GET_CONTEXT(p, tmp); /* get context reg */
1167 if (use_lwx_insns()) {
1168 UASM_i_LWX(p, scratch, scratch, ptr);
1169 } else {
1170 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1171 UASM_i_LW(p, scratch, 0, ptr);
1173 #endif
1174 /* Adjust the context during the load latency. */
1175 build_adjust_context(p, tmp);
1177 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1178 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1180 * The in the LWX case we don't want to do the load in the
1181 * delay slot. It cannot issue in the same cycle and may be
1182 * speculative and unneeded.
1184 if (use_lwx_insns())
1185 uasm_i_nop(p);
1186 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1189 /* build_update_entries */
1190 if (use_lwx_insns()) {
1191 even = ptr;
1192 odd = tmp;
1193 UASM_i_LWX(p, even, scratch, tmp);
1194 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1195 UASM_i_LWX(p, odd, scratch, tmp);
1196 } else {
1197 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1198 even = tmp;
1199 odd = ptr;
1200 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1201 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1203 if (cpu_has_rixi) {
1204 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1205 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1206 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1207 } else {
1208 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1209 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1210 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1212 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1214 if (c0_scratch_reg >= 0) {
1215 uasm_i_ehb(p);
1216 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217 build_tlb_write_entry(p, l, r, tlb_random);
1218 uasm_l_leave(l, *p);
1219 rv.restore_scratch = 1;
1220 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1221 build_tlb_write_entry(p, l, r, tlb_random);
1222 uasm_l_leave(l, *p);
1223 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224 } else {
1225 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226 build_tlb_write_entry(p, l, r, tlb_random);
1227 uasm_l_leave(l, *p);
1228 rv.restore_scratch = 1;
1231 uasm_i_eret(p); /* return from trap */
1233 return rv;
1237 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238 * because EXL == 0. If we wrap, we can also use the 32 instruction
1239 * slots before the XTLB refill exception handler which belong to the
1240 * unused TLB refill exception.
1242 #define MIPS64_REFILL_INSNS 32
1244 static void build_r4000_tlb_refill_handler(void)
1246 u32 *p = tlb_handler;
1247 struct uasm_label *l = labels;
1248 struct uasm_reloc *r = relocs;
1249 u32 *f;
1250 unsigned int final_len;
1251 struct mips_huge_tlb_info htlb_info __maybe_unused;
1252 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1254 memset(tlb_handler, 0, sizeof(tlb_handler));
1255 memset(labels, 0, sizeof(labels));
1256 memset(relocs, 0, sizeof(relocs));
1257 memset(final_handler, 0, sizeof(final_handler));
1259 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, GPR_K0, GPR_K1,
1261 scratch_reg);
1262 vmalloc_mode = refill_scratch;
1263 } else {
1264 htlb_info.huge_pte = GPR_K0;
1265 htlb_info.restore_scratch = 0;
1266 htlb_info.need_reload_pte = true;
1267 vmalloc_mode = refill_noscratch;
1269 * create the plain linear handler
1271 if (bcm1250_m3_war()) {
1272 unsigned int segbits = 44;
1274 uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1275 uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
1276 uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
1277 uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
1278 uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
1279 uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
1280 uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
1281 uasm_il_bnez(&p, &r, GPR_K0, label_leave);
1282 /* No need for uasm_i_nop */
1285 #ifdef CONFIG_64BIT
1286 build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */
1287 #else
1288 build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */
1289 #endif
1291 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1292 build_is_huge_pte(&p, &r, GPR_K0, GPR_K1, label_tlb_huge_update);
1293 #endif
1295 build_get_ptep(&p, GPR_K0, GPR_K1);
1296 build_update_entries(&p, GPR_K0, GPR_K1);
1297 build_tlb_write_entry(&p, &l, &r, tlb_random);
1298 uasm_l_leave(&l, p);
1299 uasm_i_eret(&p); /* return from trap */
1301 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1302 uasm_l_tlb_huge_update(&l, p);
1303 if (htlb_info.need_reload_pte)
1304 UASM_i_LW(&p, htlb_info.huge_pte, 0, GPR_K1);
1305 build_huge_update_entries(&p, htlb_info.huge_pte, GPR_K1);
1306 build_huge_tlb_write_entry(&p, &l, &r, GPR_K0, tlb_random,
1307 htlb_info.restore_scratch);
1308 #endif
1310 #ifdef CONFIG_64BIT
1311 build_get_pgd_vmalloc64(&p, &l, &r, GPR_K0, GPR_K1, vmalloc_mode);
1312 #endif
1315 * Overflow check: For the 64bit handler, we need at least one
1316 * free instruction slot for the wrap-around branch. In worst
1317 * case, if the intended insertion point is a delay slot, we
1318 * need three, with the second nop'ed and the third being
1319 * unused.
1321 switch (boot_cpu_type()) {
1322 default:
1323 if (sizeof(long) == 4) {
1324 fallthrough;
1325 case CPU_LOONGSON2EF:
1326 /* Loongson2 ebase is different than r4k, we have more space */
1327 if ((p - tlb_handler) > 64)
1328 panic("TLB refill handler space exceeded");
1330 * Now fold the handler in the TLB refill handler space.
1332 f = final_handler;
1333 /* Simplest case, just copy the handler. */
1334 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1335 final_len = p - tlb_handler;
1336 break;
1337 } else {
1338 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1339 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1340 && uasm_insn_has_bdelay(relocs,
1341 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1342 panic("TLB refill handler space exceeded");
1344 * Now fold the handler in the TLB refill handler space.
1346 f = final_handler + MIPS64_REFILL_INSNS;
1347 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1348 /* Just copy the handler. */
1349 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1350 final_len = p - tlb_handler;
1351 } else {
1352 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1353 const enum label_id ls = label_tlb_huge_update;
1354 #else
1355 const enum label_id ls = label_vmalloc;
1356 #endif
1357 u32 *split;
1358 int ov = 0;
1359 int i;
1361 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1363 BUG_ON(i == ARRAY_SIZE(labels));
1364 split = labels[i].addr;
1367 * See if we have overflown one way or the other.
1369 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1370 split < p - MIPS64_REFILL_INSNS)
1371 ov = 1;
1373 if (ov) {
1375 * Split two instructions before the end. One
1376 * for the branch and one for the instruction
1377 * in the delay slot.
1379 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1382 * If the branch would fall in a delay slot,
1383 * we must back up an additional instruction
1384 * so that it is no longer in a delay slot.
1386 if (uasm_insn_has_bdelay(relocs, split - 1))
1387 split--;
1389 /* Copy first part of the handler. */
1390 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1391 f += split - tlb_handler;
1393 if (ov) {
1394 /* Insert branch. */
1395 uasm_l_split(&l, final_handler);
1396 uasm_il_b(&f, &r, label_split);
1397 if (uasm_insn_has_bdelay(relocs, split))
1398 uasm_i_nop(&f);
1399 else {
1400 uasm_copy_handler(relocs, labels,
1401 split, split + 1, f);
1402 uasm_move_labels(labels, f, f + 1, -1);
1403 f++;
1404 split++;
1408 /* Copy the rest of the handler. */
1409 uasm_copy_handler(relocs, labels, split, p, final_handler);
1410 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1411 (p - split);
1414 break;
1417 uasm_resolve_relocs(relocs, labels);
1418 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1419 final_len);
1421 memcpy((void *)ebase, final_handler, 0x100);
1422 local_flush_icache_range(ebase, ebase + 0x100);
1423 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1426 static void setup_pw(void)
1428 unsigned int pwctl;
1429 unsigned long pgd_i, pgd_w;
1430 #ifndef __PAGETABLE_PMD_FOLDED
1431 unsigned long pmd_i, pmd_w;
1432 #endif
1433 unsigned long pt_i, pt_w;
1434 unsigned long pte_i, pte_w;
1435 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1436 unsigned long psn;
1438 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1439 #endif
1440 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1441 #ifndef __PAGETABLE_PMD_FOLDED
1442 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_TABLE_ORDER;
1444 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1445 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1446 #else
1447 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_TABLE_ORDER;
1448 #endif
1450 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1451 pt_w = PAGE_SHIFT - 3;
1453 pte_i = ilog2(_PAGE_GLOBAL);
1454 pte_w = 0;
1455 pwctl = 1 << 30; /* Set PWDirExt */
1457 #ifndef __PAGETABLE_PMD_FOLDED
1458 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1459 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1460 #else
1461 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1462 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1463 #endif
1465 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1466 pwctl |= (1 << 6 | psn);
1467 #endif
1468 write_c0_pwctl(pwctl);
1469 write_c0_kpgd((long)swapper_pg_dir);
1470 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1473 static void build_loongson3_tlb_refill_handler(void)
1475 u32 *p = tlb_handler;
1476 struct uasm_label *l = labels;
1477 struct uasm_reloc *r = relocs;
1479 memset(labels, 0, sizeof(labels));
1480 memset(relocs, 0, sizeof(relocs));
1481 memset(tlb_handler, 0, sizeof(tlb_handler));
1483 if (check_for_high_segbits) {
1484 uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1485 uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0,
1486 PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1487 uasm_il_beqz(&p, &r, GPR_K1, label_vmalloc);
1488 uasm_i_nop(&p);
1490 uasm_il_bgez(&p, &r, GPR_K0, label_large_segbits_fault);
1491 uasm_i_nop(&p);
1492 uasm_l_vmalloc(&l, p);
1495 uasm_i_dmfc0(&p, GPR_K1, C0_PGD);
1497 uasm_i_lddir(&p, GPR_K0, GPR_K1, 3); /* global page dir */
1498 #ifndef __PAGETABLE_PMD_FOLDED
1499 uasm_i_lddir(&p, GPR_K1, GPR_K0, 1); /* middle page dir */
1500 #endif
1501 uasm_i_ldpte(&p, GPR_K1, 0); /* even */
1502 uasm_i_ldpte(&p, GPR_K1, 1); /* odd */
1503 uasm_i_tlbwr(&p);
1505 /* restore page mask */
1506 if (PM_DEFAULT_MASK >> 16) {
1507 uasm_i_lui(&p, GPR_K0, PM_DEFAULT_MASK >> 16);
1508 uasm_i_ori(&p, GPR_K0, GPR_K0, PM_DEFAULT_MASK & 0xffff);
1509 uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1510 } else if (PM_DEFAULT_MASK) {
1511 uasm_i_ori(&p, GPR_K0, 0, PM_DEFAULT_MASK);
1512 uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1513 } else {
1514 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1517 uasm_i_eret(&p);
1519 if (check_for_high_segbits) {
1520 uasm_l_large_segbits_fault(&l, p);
1521 UASM_i_LA(&p, GPR_K1, (unsigned long)tlb_do_page_fault_0);
1522 uasm_i_jr(&p, GPR_K1);
1523 uasm_i_nop(&p);
1526 uasm_resolve_relocs(relocs, labels);
1527 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1528 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1529 dump_handler("loongson3_tlb_refill",
1530 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1533 static void build_setup_pgd(void)
1535 const int a0 = 4;
1536 const int __maybe_unused a1 = 5;
1537 const int __maybe_unused a2 = 6;
1538 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1539 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1540 long pgdc = (long)pgd_current;
1541 #endif
1543 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1544 memset(labels, 0, sizeof(labels));
1545 memset(relocs, 0, sizeof(relocs));
1546 pgd_reg = allocate_kscratch();
1547 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1548 if (pgd_reg == -1) {
1549 struct uasm_label *l = labels;
1550 struct uasm_reloc *r = relocs;
1552 /* PGD << 11 in c0_Context */
1554 * If it is a ckseg0 address, convert to a physical
1555 * address. Shifting right by 29 and adding 4 will
1556 * result in zero for these addresses.
1559 UASM_i_SRA(&p, a1, a0, 29);
1560 UASM_i_ADDIU(&p, a1, a1, 4);
1561 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1562 uasm_i_nop(&p);
1563 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1564 uasm_l_tlbl_goaround1(&l, p);
1565 UASM_i_SLL(&p, a0, a0, 11);
1566 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1567 uasm_i_jr(&p, 31);
1568 uasm_i_ehb(&p);
1569 } else {
1570 /* PGD in c0_KScratch */
1571 if (cpu_has_ldpte)
1572 UASM_i_MTC0(&p, a0, C0_PWBASE);
1573 else
1574 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1575 uasm_i_jr(&p, 31);
1576 uasm_i_ehb(&p);
1578 #else
1579 #ifdef CONFIG_SMP
1580 /* Save PGD to pgd_current[smp_processor_id()] */
1581 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1582 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1583 UASM_i_LA_mostly(&p, a2, pgdc);
1584 UASM_i_ADDU(&p, a2, a2, a1);
1585 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1586 #else
1587 UASM_i_LA_mostly(&p, a2, pgdc);
1588 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1589 #endif /* SMP */
1591 /* if pgd_reg is allocated, save PGD also to scratch register */
1592 if (pgd_reg != -1) {
1593 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1594 uasm_i_jr(&p, 31);
1595 uasm_i_ehb(&p);
1596 } else {
1597 uasm_i_jr(&p, 31);
1598 uasm_i_nop(&p);
1600 #endif
1601 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1602 panic("tlbmiss_handler_setup_pgd space exceeded");
1604 uasm_resolve_relocs(relocs, labels);
1605 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1606 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1608 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1609 tlbmiss_handler_setup_pgd_end);
1612 static void
1613 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1615 #ifdef CONFIG_SMP
1616 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1617 uasm_i_sync(p, 0);
1618 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1619 if (cpu_has_64bits)
1620 uasm_i_lld(p, pte, 0, ptr);
1621 else
1622 # endif
1623 UASM_i_LL(p, pte, 0, ptr);
1624 #else
1625 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1626 if (cpu_has_64bits)
1627 uasm_i_ld(p, pte, 0, ptr);
1628 else
1629 # endif
1630 UASM_i_LW(p, pte, 0, ptr);
1631 #endif
1634 static void
1635 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1636 unsigned int mode, unsigned int scratch)
1638 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1639 unsigned int swmode = mode & ~hwmode;
1641 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1642 uasm_i_lui(p, scratch, swmode >> 16);
1643 uasm_i_or(p, pte, pte, scratch);
1644 BUG_ON(swmode & 0xffff);
1645 } else {
1646 uasm_i_ori(p, pte, pte, mode);
1649 #ifdef CONFIG_SMP
1650 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1651 if (cpu_has_64bits)
1652 uasm_i_scd(p, pte, 0, ptr);
1653 else
1654 # endif
1655 UASM_i_SC(p, pte, 0, ptr);
1657 if (r10000_llsc_war())
1658 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1659 else
1660 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1662 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1663 if (!cpu_has_64bits) {
1664 /* no uasm_i_nop needed */
1665 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1666 uasm_i_ori(p, pte, pte, hwmode);
1667 BUG_ON(hwmode & ~0xffff);
1668 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1669 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1670 /* no uasm_i_nop needed */
1671 uasm_i_lw(p, pte, 0, ptr);
1672 } else
1673 uasm_i_nop(p);
1674 # else
1675 uasm_i_nop(p);
1676 # endif
1677 #else
1678 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1679 if (cpu_has_64bits)
1680 uasm_i_sd(p, pte, 0, ptr);
1681 else
1682 # endif
1683 UASM_i_SW(p, pte, 0, ptr);
1685 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1686 if (!cpu_has_64bits) {
1687 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1688 uasm_i_ori(p, pte, pte, hwmode);
1689 BUG_ON(hwmode & ~0xffff);
1690 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1691 uasm_i_lw(p, pte, 0, ptr);
1693 # endif
1694 #endif
1698 * Check if PTE is present, if not then jump to LABEL. PTR points to
1699 * the page table where this PTE is located, PTE will be re-loaded
1700 * with its original value.
1702 static void
1703 build_pte_present(u32 **p, struct uasm_reloc **r,
1704 int pte, int ptr, int scratch, enum label_id lid)
1706 int t = scratch >= 0 ? scratch : pte;
1707 int cur = pte;
1709 if (cpu_has_rixi) {
1710 if (use_bbit_insns()) {
1711 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1712 uasm_i_nop(p);
1713 } else {
1714 if (_PAGE_PRESENT_SHIFT) {
1715 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1716 cur = t;
1718 uasm_i_andi(p, t, cur, 1);
1719 uasm_il_beqz(p, r, t, lid);
1720 if (pte == t)
1721 /* You lose the SMP race :-(*/
1722 iPTE_LW(p, pte, ptr);
1724 } else {
1725 if (_PAGE_PRESENT_SHIFT) {
1726 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1727 cur = t;
1729 uasm_i_andi(p, t, cur,
1730 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1731 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1732 uasm_il_bnez(p, r, t, lid);
1733 if (pte == t)
1734 /* You lose the SMP race :-(*/
1735 iPTE_LW(p, pte, ptr);
1739 /* Make PTE valid, store result in PTR. */
1740 static void
1741 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1742 unsigned int ptr, unsigned int scratch)
1744 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1746 iPTE_SW(p, r, pte, ptr, mode, scratch);
1750 * Check if PTE can be written to, if not branch to LABEL. Regardless
1751 * restore PTE with value from PTR when done.
1753 static void
1754 build_pte_writable(u32 **p, struct uasm_reloc **r,
1755 unsigned int pte, unsigned int ptr, int scratch,
1756 enum label_id lid)
1758 int t = scratch >= 0 ? scratch : pte;
1759 int cur = pte;
1761 if (_PAGE_PRESENT_SHIFT) {
1762 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1763 cur = t;
1765 uasm_i_andi(p, t, cur,
1766 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1767 uasm_i_xori(p, t, t,
1768 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1769 uasm_il_bnez(p, r, t, lid);
1770 if (pte == t)
1771 /* You lose the SMP race :-(*/
1772 iPTE_LW(p, pte, ptr);
1773 else
1774 uasm_i_nop(p);
1777 /* Make PTE writable, update software status bits as well, then store
1778 * at PTR.
1780 static void
1781 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1782 unsigned int ptr, unsigned int scratch)
1784 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1785 | _PAGE_DIRTY);
1787 iPTE_SW(p, r, pte, ptr, mode, scratch);
1791 * Check if PTE can be modified, if not branch to LABEL. Regardless
1792 * restore PTE with value from PTR when done.
1794 static void
1795 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1796 unsigned int pte, unsigned int ptr, int scratch,
1797 enum label_id lid)
1799 if (use_bbit_insns()) {
1800 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1801 uasm_i_nop(p);
1802 } else {
1803 int t = scratch >= 0 ? scratch : pte;
1804 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1805 uasm_i_andi(p, t, t, 1);
1806 uasm_il_beqz(p, r, t, lid);
1807 if (pte == t)
1808 /* You lose the SMP race :-(*/
1809 iPTE_LW(p, pte, ptr);
1813 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1817 * R3000 style TLB load/store/modify handlers.
1821 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1822 * Then it returns.
1824 static void
1825 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1827 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1828 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1829 uasm_i_tlbwi(p);
1830 uasm_i_jr(p, tmp);
1831 uasm_i_rfe(p); /* branch delay */
1835 * This places the pte into ENTRYLO0 and writes it with tlbwi
1836 * or tlbwr as appropriate. This is because the index register
1837 * may have the probe fail bit set as a result of a trap on a
1838 * kseg2 access, i.e. without refill. Then it returns.
1840 static void
1841 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1842 struct uasm_reloc **r, unsigned int pte,
1843 unsigned int tmp)
1845 uasm_i_mfc0(p, tmp, C0_INDEX);
1846 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1847 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1848 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1849 uasm_i_tlbwi(p); /* cp0 delay */
1850 uasm_i_jr(p, tmp);
1851 uasm_i_rfe(p); /* branch delay */
1852 uasm_l_r3000_write_probe_fail(l, *p);
1853 uasm_i_tlbwr(p); /* cp0 delay */
1854 uasm_i_jr(p, tmp);
1855 uasm_i_rfe(p); /* branch delay */
1858 static void
1859 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1860 unsigned int ptr)
1862 long pgdc = (long)pgd_current;
1864 uasm_i_mfc0(p, pte, C0_BADVADDR);
1865 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1866 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1867 uasm_i_srl(p, pte, pte, 22); /* load delay */
1868 uasm_i_sll(p, pte, pte, 2);
1869 uasm_i_addu(p, ptr, ptr, pte);
1870 uasm_i_mfc0(p, pte, C0_CONTEXT);
1871 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1872 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1873 uasm_i_addu(p, ptr, ptr, pte);
1874 uasm_i_lw(p, pte, 0, ptr);
1875 uasm_i_tlbp(p); /* load delay */
1878 static void build_r3000_tlb_load_handler(void)
1880 u32 *p = (u32 *)handle_tlbl;
1881 struct uasm_label *l = labels;
1882 struct uasm_reloc *r = relocs;
1884 memset(p, 0, handle_tlbl_end - (char *)p);
1885 memset(labels, 0, sizeof(labels));
1886 memset(relocs, 0, sizeof(relocs));
1888 build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1889 build_pte_present(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbl);
1890 uasm_i_nop(&p); /* load delay */
1891 build_make_valid(&p, &r, GPR_K0, GPR_K1, -1);
1892 build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1894 uasm_l_nopage_tlbl(&l, p);
1895 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1896 uasm_i_nop(&p);
1898 if (p >= (u32 *)handle_tlbl_end)
1899 panic("TLB load handler fastpath space exceeded");
1901 uasm_resolve_relocs(relocs, labels);
1902 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1903 (unsigned int)(p - (u32 *)handle_tlbl));
1905 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1908 static void build_r3000_tlb_store_handler(void)
1910 u32 *p = (u32 *)handle_tlbs;
1911 struct uasm_label *l = labels;
1912 struct uasm_reloc *r = relocs;
1914 memset(p, 0, handle_tlbs_end - (char *)p);
1915 memset(labels, 0, sizeof(labels));
1916 memset(relocs, 0, sizeof(relocs));
1918 build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1919 build_pte_writable(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbs);
1920 uasm_i_nop(&p); /* load delay */
1921 build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1922 build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1924 uasm_l_nopage_tlbs(&l, p);
1925 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1926 uasm_i_nop(&p);
1928 if (p >= (u32 *)handle_tlbs_end)
1929 panic("TLB store handler fastpath space exceeded");
1931 uasm_resolve_relocs(relocs, labels);
1932 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1933 (unsigned int)(p - (u32 *)handle_tlbs));
1935 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1938 static void build_r3000_tlb_modify_handler(void)
1940 u32 *p = (u32 *)handle_tlbm;
1941 struct uasm_label *l = labels;
1942 struct uasm_reloc *r = relocs;
1944 memset(p, 0, handle_tlbm_end - (char *)p);
1945 memset(labels, 0, sizeof(labels));
1946 memset(relocs, 0, sizeof(relocs));
1948 build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1949 build_pte_modifiable(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbm);
1950 uasm_i_nop(&p); /* load delay */
1951 build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1952 build_r3000_pte_reload_tlbwi(&p, GPR_K0, GPR_K1);
1954 uasm_l_nopage_tlbm(&l, p);
1955 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1956 uasm_i_nop(&p);
1958 if (p >= (u32 *)handle_tlbm_end)
1959 panic("TLB modify handler fastpath space exceeded");
1961 uasm_resolve_relocs(relocs, labels);
1962 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1963 (unsigned int)(p - (u32 *)handle_tlbm));
1965 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
1967 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1969 static bool cpu_has_tlbex_tlbp_race(void)
1972 * When a Hardware Table Walker is running it can replace TLB entries
1973 * at any time, leading to a race between it & the CPU.
1975 if (cpu_has_htw)
1976 return true;
1979 * If the CPU shares FTLB RAM with its siblings then our entry may be
1980 * replaced at any time by a sibling performing a write to the FTLB.
1982 if (cpu_has_shared_ftlb_ram)
1983 return true;
1985 /* In all other cases there ought to be no race condition to handle */
1986 return false;
1990 * R4000 style TLB load/store/modify handlers.
1992 static struct work_registers
1993 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1994 struct uasm_reloc **r)
1996 struct work_registers wr = build_get_work_registers(p);
1998 #ifdef CONFIG_64BIT
1999 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2000 #else
2001 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2002 #endif
2004 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2006 * For huge tlb entries, pmd doesn't contain an address but
2007 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2008 * see if we need to jump to huge tlb processing.
2010 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2011 #endif
2013 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2014 UASM_i_LW(p, wr.r2, 0, wr.r2);
2015 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT - PTE_T_LOG2);
2016 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2017 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2019 #ifdef CONFIG_SMP
2020 uasm_l_smp_pgtable_change(l, *p);
2021 #endif
2022 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2023 if (!m4kc_tlbp_war()) {
2024 build_tlb_probe_entry(p);
2025 if (cpu_has_tlbex_tlbp_race()) {
2026 /* race condition happens, leaving */
2027 uasm_i_ehb(p);
2028 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2029 uasm_il_bltz(p, r, wr.r3, label_leave);
2030 uasm_i_nop(p);
2033 return wr;
2036 static void
2037 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2038 struct uasm_reloc **r, unsigned int tmp,
2039 unsigned int ptr)
2041 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2042 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2043 build_update_entries(p, tmp, ptr);
2044 build_tlb_write_entry(p, l, r, tlb_indexed);
2045 uasm_l_leave(l, *p);
2046 build_restore_work_registers(p);
2047 uasm_i_eret(p); /* return from trap */
2049 #ifdef CONFIG_64BIT
2050 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2051 #endif
2054 static void build_r4000_tlb_load_handler(void)
2056 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2057 struct uasm_label *l = labels;
2058 struct uasm_reloc *r = relocs;
2059 struct work_registers wr;
2061 memset(p, 0, handle_tlbl_end - (char *)p);
2062 memset(labels, 0, sizeof(labels));
2063 memset(relocs, 0, sizeof(relocs));
2065 if (bcm1250_m3_war()) {
2066 unsigned int segbits = 44;
2068 uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
2069 uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
2070 uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
2071 uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
2072 uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
2073 uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
2074 uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
2075 uasm_il_bnez(&p, &r, GPR_K0, label_leave);
2076 /* No need for uasm_i_nop */
2079 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2080 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2081 if (m4kc_tlbp_war())
2082 build_tlb_probe_entry(&p);
2084 if (cpu_has_rixi && !cpu_has_rixiex) {
2086 * If the page is not _PAGE_VALID, RI or XI could not
2087 * have triggered it. Skip the expensive test..
2089 if (use_bbit_insns()) {
2090 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2091 label_tlbl_goaround1);
2092 } else {
2093 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2094 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2096 uasm_i_nop(&p);
2099 * Warn if something may race with us & replace the TLB entry
2100 * before we read it here. Everything with such races should
2101 * also have dedicated RiXi exception handlers, so this
2102 * shouldn't be hit.
2104 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2106 uasm_i_tlbr(&p);
2108 if (cpu_has_mips_r2_exec_hazard)
2109 uasm_i_ehb(&p);
2111 /* Examine entrylo 0 or 1 based on ptr. */
2112 if (use_bbit_insns()) {
2113 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2114 } else {
2115 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2116 uasm_i_beqz(&p, wr.r3, 8);
2118 /* load it in the delay slot*/
2119 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2120 /* load it if ptr is odd */
2121 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2123 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2124 * XI must have triggered it.
2126 if (use_bbit_insns()) {
2127 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2128 uasm_i_nop(&p);
2129 uasm_l_tlbl_goaround1(&l, p);
2130 } else {
2131 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2132 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2133 uasm_i_nop(&p);
2135 uasm_l_tlbl_goaround1(&l, p);
2137 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2138 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2140 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2142 * This is the entry point when build_r4000_tlbchange_handler_head
2143 * spots a huge page.
2145 uasm_l_tlb_huge_update(&l, p);
2146 iPTE_LW(&p, wr.r1, wr.r2);
2147 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2148 build_tlb_probe_entry(&p);
2150 if (cpu_has_rixi && !cpu_has_rixiex) {
2152 * If the page is not _PAGE_VALID, RI or XI could not
2153 * have triggered it. Skip the expensive test..
2155 if (use_bbit_insns()) {
2156 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2157 label_tlbl_goaround2);
2158 } else {
2159 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2160 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2162 uasm_i_nop(&p);
2165 * Warn if something may race with us & replace the TLB entry
2166 * before we read it here. Everything with such races should
2167 * also have dedicated RiXi exception handlers, so this
2168 * shouldn't be hit.
2170 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2172 uasm_i_tlbr(&p);
2174 if (cpu_has_mips_r2_exec_hazard)
2175 uasm_i_ehb(&p);
2177 /* Examine entrylo 0 or 1 based on ptr. */
2178 if (use_bbit_insns()) {
2179 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2180 } else {
2181 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2182 uasm_i_beqz(&p, wr.r3, 8);
2184 /* load it in the delay slot*/
2185 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2186 /* load it if ptr is odd */
2187 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2189 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2190 * XI must have triggered it.
2192 if (use_bbit_insns()) {
2193 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2194 } else {
2195 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2196 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2198 if (PM_DEFAULT_MASK == 0)
2199 uasm_i_nop(&p);
2201 * We clobbered C0_PAGEMASK, restore it. On the other branch
2202 * it is restored in build_huge_tlb_write_entry.
2204 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2206 uasm_l_tlbl_goaround2(&l, p);
2208 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2209 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2210 #endif
2212 uasm_l_nopage_tlbl(&l, p);
2213 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2214 uasm_i_sync(&p, 0);
2215 build_restore_work_registers(&p);
2216 #ifdef CONFIG_CPU_MICROMIPS
2217 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2218 uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2219 uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2220 uasm_i_jr(&p, GPR_K0);
2221 } else
2222 #endif
2223 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2224 uasm_i_nop(&p);
2226 if (p >= (u32 *)handle_tlbl_end)
2227 panic("TLB load handler fastpath space exceeded");
2229 uasm_resolve_relocs(relocs, labels);
2230 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2231 (unsigned int)(p - (u32 *)handle_tlbl));
2233 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2236 static void build_r4000_tlb_store_handler(void)
2238 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2239 struct uasm_label *l = labels;
2240 struct uasm_reloc *r = relocs;
2241 struct work_registers wr;
2243 memset(p, 0, handle_tlbs_end - (char *)p);
2244 memset(labels, 0, sizeof(labels));
2245 memset(relocs, 0, sizeof(relocs));
2247 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2248 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2249 if (m4kc_tlbp_war())
2250 build_tlb_probe_entry(&p);
2251 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2252 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2254 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2256 * This is the entry point when
2257 * build_r4000_tlbchange_handler_head spots a huge page.
2259 uasm_l_tlb_huge_update(&l, p);
2260 iPTE_LW(&p, wr.r1, wr.r2);
2261 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2262 build_tlb_probe_entry(&p);
2263 uasm_i_ori(&p, wr.r1, wr.r1,
2264 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2265 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2266 #endif
2268 uasm_l_nopage_tlbs(&l, p);
2269 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2270 uasm_i_sync(&p, 0);
2271 build_restore_work_registers(&p);
2272 #ifdef CONFIG_CPU_MICROMIPS
2273 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2274 uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2275 uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2276 uasm_i_jr(&p, GPR_K0);
2277 } else
2278 #endif
2279 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2280 uasm_i_nop(&p);
2282 if (p >= (u32 *)handle_tlbs_end)
2283 panic("TLB store handler fastpath space exceeded");
2285 uasm_resolve_relocs(relocs, labels);
2286 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2287 (unsigned int)(p - (u32 *)handle_tlbs));
2289 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2292 static void build_r4000_tlb_modify_handler(void)
2294 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2295 struct uasm_label *l = labels;
2296 struct uasm_reloc *r = relocs;
2297 struct work_registers wr;
2299 memset(p, 0, handle_tlbm_end - (char *)p);
2300 memset(labels, 0, sizeof(labels));
2301 memset(relocs, 0, sizeof(relocs));
2303 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2304 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2305 if (m4kc_tlbp_war())
2306 build_tlb_probe_entry(&p);
2307 /* Present and writable bits set, set accessed and dirty bits. */
2308 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2309 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2311 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2313 * This is the entry point when
2314 * build_r4000_tlbchange_handler_head spots a huge page.
2316 uasm_l_tlb_huge_update(&l, p);
2317 iPTE_LW(&p, wr.r1, wr.r2);
2318 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2319 build_tlb_probe_entry(&p);
2320 uasm_i_ori(&p, wr.r1, wr.r1,
2321 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2322 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2323 #endif
2325 uasm_l_nopage_tlbm(&l, p);
2326 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2327 uasm_i_sync(&p, 0);
2328 build_restore_work_registers(&p);
2329 #ifdef CONFIG_CPU_MICROMIPS
2330 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2331 uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2332 uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2333 uasm_i_jr(&p, GPR_K0);
2334 } else
2335 #endif
2336 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2337 uasm_i_nop(&p);
2339 if (p >= (u32 *)handle_tlbm_end)
2340 panic("TLB modify handler fastpath space exceeded");
2342 uasm_resolve_relocs(relocs, labels);
2343 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2344 (unsigned int)(p - (u32 *)handle_tlbm));
2346 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2349 static void flush_tlb_handlers(void)
2351 local_flush_icache_range((unsigned long)handle_tlbl,
2352 (unsigned long)handle_tlbl_end);
2353 local_flush_icache_range((unsigned long)handle_tlbs,
2354 (unsigned long)handle_tlbs_end);
2355 local_flush_icache_range((unsigned long)handle_tlbm,
2356 (unsigned long)handle_tlbm_end);
2357 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2358 (unsigned long)tlbmiss_handler_setup_pgd_end);
2361 static void print_htw_config(void)
2363 unsigned long config;
2364 unsigned int pwctl;
2365 const int field = 2 * sizeof(unsigned long);
2367 config = read_c0_pwfield();
2368 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2369 field, config,
2370 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2371 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2372 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2373 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2374 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2376 config = read_c0_pwsize();
2377 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2378 field, config,
2379 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2380 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2381 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2382 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2383 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2384 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2386 pwctl = read_c0_pwctl();
2387 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2388 pwctl,
2389 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2390 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2391 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2392 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2393 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2394 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2395 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2398 static void config_htw_params(void)
2400 unsigned long pwfield, pwsize, ptei;
2401 unsigned int config;
2404 * We are using 2-level page tables, so we only need to
2405 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2406 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2407 * write values less than 0xc in these fields because the entire
2408 * write will be dropped. As a result of which, we must preserve
2409 * the original reset values and overwrite only what we really want.
2412 pwfield = read_c0_pwfield();
2413 /* re-initialize the GDI field */
2414 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2415 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2416 /* re-initialize the PTI field including the even/odd bit */
2417 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2418 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2419 if (CONFIG_PGTABLE_LEVELS >= 3) {
2420 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2421 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2423 /* Set the PTEI right shift */
2424 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2425 pwfield |= ptei;
2426 write_c0_pwfield(pwfield);
2427 /* Check whether the PTEI value is supported */
2428 back_to_back_c0_hazard();
2429 pwfield = read_c0_pwfield();
2430 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2431 != ptei) {
2432 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2433 ptei);
2435 * Drop option to avoid HTW being enabled via another path
2436 * (eg htw_reset())
2438 current_cpu_data.options &= ~MIPS_CPU_HTW;
2439 return;
2442 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2443 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2444 if (CONFIG_PGTABLE_LEVELS >= 3)
2445 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2447 /* Set pointer size to size of directory pointers */
2448 if (IS_ENABLED(CONFIG_64BIT))
2449 pwsize |= MIPS_PWSIZE_PS_MASK;
2450 /* PTEs may be multiple pointers long (e.g. with XPA) */
2451 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2452 & MIPS_PWSIZE_PTEW_MASK;
2454 write_c0_pwsize(pwsize);
2456 /* Make sure everything is set before we enable the HTW */
2457 back_to_back_c0_hazard();
2460 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2461 * the pwctl fields.
2463 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2464 if (IS_ENABLED(CONFIG_64BIT))
2465 config |= MIPS_PWCTL_XU_MASK;
2466 write_c0_pwctl(config);
2467 pr_info("Hardware Page Table Walker enabled\n");
2469 print_htw_config();
2472 static void config_xpa_params(void)
2474 #ifdef CONFIG_XPA
2475 unsigned int pagegrain;
2477 if (mips_xpa_disabled) {
2478 pr_info("Extended Physical Addressing (XPA) disabled\n");
2479 return;
2482 pagegrain = read_c0_pagegrain();
2483 write_c0_pagegrain(pagegrain | PG_ELPA);
2484 back_to_back_c0_hazard();
2485 pagegrain = read_c0_pagegrain();
2487 if (pagegrain & PG_ELPA)
2488 pr_info("Extended Physical Addressing (XPA) enabled\n");
2489 else
2490 panic("Extended Physical Addressing (XPA) disabled");
2491 #endif
2494 static void check_pabits(void)
2496 unsigned long entry;
2497 unsigned pabits, fillbits;
2499 if (!cpu_has_rixi || _PAGE_NO_EXEC == 0) {
2501 * We'll only be making use of the fact that we can rotate bits
2502 * into the fill if the CPU supports RIXI, so don't bother
2503 * probing this for CPUs which don't.
2505 return;
2508 write_c0_entrylo0(~0ul);
2509 back_to_back_c0_hazard();
2510 entry = read_c0_entrylo0();
2512 /* clear all non-PFN bits */
2513 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2514 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2516 /* find a lower bound on PABITS, and upper bound on fill bits */
2517 pabits = fls_long(entry) + 6;
2518 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2520 /* minus the RI & XI bits */
2521 fillbits -= min_t(unsigned, fillbits, 2);
2523 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2524 fill_includes_sw_bits = true;
2526 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2529 void build_tlb_refill_handler(void)
2532 * The refill handler is generated per-CPU, multi-node systems
2533 * may have local storage for it. The other handlers are only
2534 * needed once.
2536 static int run_once = 0;
2538 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2539 panic("Kernels supporting XPA currently require CPUs with RIXI");
2541 output_pgtable_bits_defines();
2542 check_pabits();
2544 #ifdef CONFIG_64BIT
2545 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
2546 #endif
2548 if (cpu_has_3kex) {
2549 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2550 if (!run_once) {
2551 build_setup_pgd();
2552 build_r3000_tlb_refill_handler();
2553 build_r3000_tlb_load_handler();
2554 build_r3000_tlb_store_handler();
2555 build_r3000_tlb_modify_handler();
2556 flush_tlb_handlers();
2557 run_once++;
2559 #else
2560 panic("No R3000 TLB refill handler");
2561 #endif
2562 return;
2565 if (cpu_has_ldpte)
2566 setup_pw();
2568 if (!run_once) {
2569 scratch_reg = allocate_kscratch();
2570 build_setup_pgd();
2571 build_r4000_tlb_load_handler();
2572 build_r4000_tlb_store_handler();
2573 build_r4000_tlb_modify_handler();
2574 if (cpu_has_ldpte)
2575 build_loongson3_tlb_refill_handler();
2576 else
2577 build_r4000_tlb_refill_handler();
2578 flush_tlb_handlers();
2579 run_once++;
2581 if (cpu_has_xpa)
2582 config_xpa_params();
2583 if (cpu_has_htw)
2584 config_htw_params();