2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45 #include <linux/ubsan.h>
47 #include <asm/stacktrace.h>
48 #include <asm/processor.h>
49 #include <asm/debugreg.h>
50 #include <asm/realmode.h>
51 #include <asm/text-patching.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
56 #include <asm/fpu/api.h>
58 #include <asm/cpu_entry_area.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
67 #include <asm/insn-eval.h>
73 #include <asm/x86_init.h>
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
79 #include <asm/proto.h>
81 DECLARE_BITMAP(system_vectors
, NR_VECTORS
);
83 __always_inline
int is_valid_bugaddr(unsigned long addr
)
85 if (addr
< TASK_SIZE_MAX
)
89 * We got #UD, if the text isn't readable we'd have gotten
90 * a different exception.
92 return *(unsigned short *)addr
== INSN_UD2
;
96 * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
97 * If it's a UD1, get the ModRM byte to pass along to UBSan.
99 __always_inline
int decode_bug(unsigned long addr
, u32
*imm
)
103 if (addr
< TASK_SIZE_MAX
)
109 if (v
!= OPCODE_ESCAPE
)
113 if (v
== SECOND_BYTE_OPCODE_UD2
)
116 if (!IS_ENABLED(CONFIG_UBSAN_TRAP
) || v
!= SECOND_BYTE_OPCODE_UD1
)
119 /* Retrieve the immediate (type value) for the UBSAN UD1 */
121 if (X86_MODRM_RM(v
) == 4)
125 if (X86_MODRM_MOD(v
) == 1)
127 else if (X86_MODRM_MOD(v
) == 2)
130 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v
));
136 static nokprobe_inline
int
137 do_trap_no_signal(struct task_struct
*tsk
, int trapnr
, const char *str
,
138 struct pt_regs
*regs
, long error_code
)
140 if (v8086_mode(regs
)) {
142 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
143 * On nmi (interrupt 2), do_trap should not be called.
145 if (trapnr
< X86_TRAP_UD
) {
146 if (!handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
150 } else if (!user_mode(regs
)) {
151 if (fixup_exception(regs
, trapnr
, error_code
, 0))
154 tsk
->thread
.error_code
= error_code
;
155 tsk
->thread
.trap_nr
= trapnr
;
156 die(str
, regs
, error_code
);
158 if (fixup_vdso_exception(regs
, trapnr
, error_code
, 0))
163 * We want error_code and trap_nr set for userspace faults and
164 * kernelspace faults which result in die(), but not
165 * kernelspace faults which are fixed up. die() gives the
166 * process no chance to handle the signal and notice the
167 * kernel fault information, so that won't result in polluting
168 * the information about previously queued, but not yet
169 * delivered, faults. See also exc_general_protection below.
171 tsk
->thread
.error_code
= error_code
;
172 tsk
->thread
.trap_nr
= trapnr
;
177 static void show_signal(struct task_struct
*tsk
, int signr
,
178 const char *type
, const char *desc
,
179 struct pt_regs
*regs
, long error_code
)
181 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
182 printk_ratelimit()) {
183 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
184 tsk
->comm
, task_pid_nr(tsk
), type
, desc
,
185 regs
->ip
, regs
->sp
, error_code
);
186 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
192 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
193 long error_code
, int sicode
, void __user
*addr
)
195 struct task_struct
*tsk
= current
;
197 if (!do_trap_no_signal(tsk
, trapnr
, str
, regs
, error_code
))
200 show_signal(tsk
, signr
, "trap ", str
, regs
, error_code
);
205 force_sig_fault(signr
, sicode
, addr
);
207 NOKPROBE_SYMBOL(do_trap
);
209 static void do_error_trap(struct pt_regs
*regs
, long error_code
, char *str
,
210 unsigned long trapnr
, int signr
, int sicode
, void __user
*addr
)
212 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
214 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, signr
) !=
216 cond_local_irq_enable(regs
);
217 do_trap(trapnr
, signr
, str
, regs
, error_code
, sicode
, addr
);
218 cond_local_irq_disable(regs
);
223 * Posix requires to provide the address of the faulting instruction for
224 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
226 * This address is usually regs->ip, but when an uprobe moved the code out
227 * of line then regs->ip points to the XOL code which would confuse
228 * anything which analyzes the fault address vs. the unmodified binary. If
229 * a trap happened in XOL code then uprobe maps regs->ip back to the
230 * original instruction address.
232 static __always_inline
void __user
*error_get_trap_addr(struct pt_regs
*regs
)
234 return (void __user
*)uprobe_get_trap_addr(regs
);
237 DEFINE_IDTENTRY(exc_divide_error
)
239 do_error_trap(regs
, 0, "divide error", X86_TRAP_DE
, SIGFPE
,
240 FPE_INTDIV
, error_get_trap_addr(regs
));
243 DEFINE_IDTENTRY(exc_overflow
)
245 do_error_trap(regs
, 0, "overflow", X86_TRAP_OF
, SIGSEGV
, 0, NULL
);
248 #ifdef CONFIG_X86_F00F_BUG
249 void handle_invalid_op(struct pt_regs
*regs
)
251 static inline void handle_invalid_op(struct pt_regs
*regs
)
254 do_error_trap(regs
, 0, "invalid opcode", X86_TRAP_UD
, SIGILL
,
255 ILL_ILLOPN
, error_get_trap_addr(regs
));
258 static noinstr
bool handle_bug(struct pt_regs
*regs
)
260 bool handled
= false;
264 ud_type
= decode_bug(regs
->ip
, &imm
);
265 if (ud_type
== BUG_NONE
)
269 * All lies, just get the WARN/BUG out.
271 instrumentation_begin();
273 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
274 * is a rare case that uses @regs without passing them to
277 kmsan_unpoison_entry_regs(regs
);
279 * Since we're emulating a CALL with exceptions, restore the interrupt
280 * state to what it was at the exception site.
282 if (regs
->flags
& X86_EFLAGS_IF
)
283 raw_local_irq_enable();
284 if (ud_type
== BUG_UD2
) {
285 if (report_bug(regs
->ip
, regs
) == BUG_TRAP_TYPE_WARN
||
286 handle_cfi_failure(regs
) == BUG_TRAP_TYPE_WARN
) {
290 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP
)) {
291 pr_crit("%s at %pS\n", report_ubsan_failure(regs
, imm
), (void *)regs
->ip
);
293 if (regs
->flags
& X86_EFLAGS_IF
)
294 raw_local_irq_disable();
295 instrumentation_end();
300 DEFINE_IDTENTRY_RAW(exc_invalid_op
)
302 irqentry_state_t state
;
305 * We use UD2 as a short encoding for 'CALL __WARN', as such
306 * handle it before exception entry to avoid recursive WARN
307 * in case exception entry is the one triggering WARNs.
309 if (!user_mode(regs
) && handle_bug(regs
))
312 state
= irqentry_enter(regs
);
313 instrumentation_begin();
314 handle_invalid_op(regs
);
315 instrumentation_end();
316 irqentry_exit(regs
, state
);
319 DEFINE_IDTENTRY(exc_coproc_segment_overrun
)
321 do_error_trap(regs
, 0, "coprocessor segment overrun",
322 X86_TRAP_OLD_MF
, SIGFPE
, 0, NULL
);
325 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss
)
327 do_error_trap(regs
, error_code
, "invalid TSS", X86_TRAP_TS
, SIGSEGV
,
331 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present
)
333 do_error_trap(regs
, error_code
, "segment not present", X86_TRAP_NP
,
337 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment
)
339 do_error_trap(regs
, error_code
, "stack segment", X86_TRAP_SS
, SIGBUS
,
343 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check
)
345 char *str
= "alignment check";
347 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_AC
, SIGBUS
) == NOTIFY_STOP
)
350 if (!user_mode(regs
))
351 die("Split lock detected\n", regs
, error_code
);
355 if (handle_user_split_lock(regs
, error_code
))
358 do_trap(X86_TRAP_AC
, SIGBUS
, "alignment check", regs
,
359 error_code
, BUS_ADRALN
, NULL
);
365 #ifdef CONFIG_VMAP_STACK
366 __visible
void __noreturn
handle_stack_overflow(struct pt_regs
*regs
,
367 unsigned long fault_address
,
368 struct stack_info
*info
)
370 const char *name
= stack_type_name(info
->type
);
372 printk(KERN_EMERG
"BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
373 name
, (void *)fault_address
, info
->begin
, info
->end
);
375 die("stack guard page", regs
, 0);
377 /* Be absolutely certain we don't return. */
378 panic("%s stack guard hit", name
);
383 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
385 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
386 * SDM's warnings about double faults being unrecoverable, returning works as
387 * expected. Presumably what the SDM actually means is that the CPU may get
388 * the register state wrong on entry, so returning could be a bad idea.
390 * Various CPU engineers have promised that double faults due to an IRET fault
391 * while the stack is read-only are, in fact, recoverable.
393 * On x86_32, this is entered through a task gate, and regs are synthesized
394 * from the TSS. Returning is, in principle, okay, but changes to regs will
395 * be lost. If, for some reason, we need to return to a context with modified
396 * regs, the shim code could be adjusted to synchronize the registers.
398 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
399 * to be read before doing anything else.
401 DEFINE_IDTENTRY_DF(exc_double_fault
)
403 static const char str
[] = "double fault";
404 struct task_struct
*tsk
= current
;
406 #ifdef CONFIG_VMAP_STACK
407 unsigned long address
= read_cr2();
408 struct stack_info info
;
411 #ifdef CONFIG_X86_ESPFIX64
412 extern unsigned char native_irq_return_iret
[];
415 * If IRET takes a non-IST fault on the espfix64 stack, then we
416 * end up promoting it to a doublefault. In that case, take
417 * advantage of the fact that we're not using the normal (TSS.sp0)
418 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
419 * and then modify our own IRET frame so that, when we return,
420 * we land directly at the #GP(0) vector with the stack already
421 * set up according to its expectations.
423 * The net result is that our #GP handler will think that we
424 * entered from usermode with the bad user context.
426 * No need for nmi_enter() here because we don't use RCU.
428 if (((long)regs
->sp
>> P4D_SHIFT
) == ESPFIX_PGD_ENTRY
&&
429 regs
->cs
== __KERNEL_CS
&&
430 regs
->ip
== (unsigned long)native_irq_return_iret
)
432 struct pt_regs
*gpregs
= (struct pt_regs
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
433 unsigned long *p
= (unsigned long *)regs
->sp
;
436 * regs->sp points to the failing IRET frame on the
437 * ESPFIX64 stack. Copy it to the entry stack. This fills
438 * in gpregs->ss through gpregs->ip.
443 gpregs
->flags
= p
[2];
446 gpregs
->orig_ax
= 0; /* Missing (lost) #GP error code */
449 * Adjust our frame so that we return straight to the #GP
450 * vector with the expected RSP value. This is safe because
451 * we won't enable interrupts or schedule before we invoke
452 * general_protection, so nothing will clobber the stack
453 * frame we just set up.
455 * We will enter general_protection with kernel GSBASE,
456 * which is what the stub expects, given that the faulting
457 * RIP will be the IRET instruction.
459 regs
->ip
= (unsigned long)asm_exc_general_protection
;
460 regs
->sp
= (unsigned long)&gpregs
->orig_ax
;
466 irqentry_nmi_enter(regs
);
467 instrumentation_begin();
468 notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_DF
, SIGSEGV
);
470 tsk
->thread
.error_code
= error_code
;
471 tsk
->thread
.trap_nr
= X86_TRAP_DF
;
473 #ifdef CONFIG_VMAP_STACK
475 * If we overflow the stack into a guard page, the CPU will fail
476 * to deliver #PF and will send #DF instead. Similarly, if we
477 * take any non-IST exception while too close to the bottom of
478 * the stack, the processor will get a page fault while
479 * delivering the exception and will generate a double fault.
481 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
482 * Page-Fault Exception (#PF):
484 * Processors update CR2 whenever a page fault is detected. If a
485 * second page fault occurs while an earlier page fault is being
486 * delivered, the faulting linear address of the second fault will
487 * overwrite the contents of CR2 (replacing the previous
488 * address). These updates to CR2 occur even if the page fault
489 * results in a double fault or occurs during the delivery of a
492 * The logic below has a small possibility of incorrectly diagnosing
493 * some errors as stack overflows. For example, if the IDT or GDT
494 * gets corrupted such that #GP delivery fails due to a bad descriptor
495 * causing #GP and we hit this condition while CR2 coincidentally
496 * points to the stack guard page, we'll think we overflowed the
497 * stack. Given that we're going to panic one way or another
498 * if this happens, this isn't necessarily worth fixing.
500 * If necessary, we could improve the test by only diagnosing
501 * a stack overflow if the saved RSP points within 47 bytes of
502 * the bottom of the stack: if RSP == tsk_stack + 48 and we
503 * take an exception, the stack is already aligned and there
504 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
505 * possible error code, so a stack overflow would *not* double
506 * fault. With any less space left, exception delivery could
507 * fail, and, as a practical matter, we've overflowed the
508 * stack even if the actual trigger for the double fault was
511 if (get_stack_guard_info((void *)address
, &info
))
512 handle_stack_overflow(regs
, address
, &info
);
515 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code
);
516 die("double fault", regs
, error_code
);
517 panic("Machine halted.");
518 instrumentation_end();
521 DEFINE_IDTENTRY(exc_bounds
)
523 if (notify_die(DIE_TRAP
, "bounds", regs
, 0,
524 X86_TRAP_BR
, SIGSEGV
) == NOTIFY_STOP
)
526 cond_local_irq_enable(regs
);
528 if (!user_mode(regs
))
529 die("bounds", regs
, 0);
531 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, 0, 0, NULL
);
533 cond_local_irq_disable(regs
);
536 enum kernel_gp_hint
{
543 * When an uncaught #GP occurs, try to determine the memory address accessed by
544 * the instruction and return that address to the caller. Also, try to figure
545 * out whether any part of the access to that address was non-canonical.
547 static enum kernel_gp_hint
get_kernel_gp_address(struct pt_regs
*regs
,
550 u8 insn_buf
[MAX_INSN_SIZE
];
554 if (copy_from_kernel_nofault(insn_buf
, (void *)regs
->ip
,
558 ret
= insn_decode_kernel(&insn
, insn_buf
);
562 *addr
= (unsigned long)insn_get_addr_ref(&insn
, regs
);
569 * - the operand is not in the kernel half
570 * - the last byte of the operand is not in the user canonical half
572 if (*addr
< ~__VIRTUAL_MASK
&&
573 *addr
+ insn
.opnd_bytes
- 1 > __VIRTUAL_MASK
)
574 return GP_NON_CANONICAL
;
580 #define GPFSTR "general protection fault"
582 static bool fixup_iopl_exception(struct pt_regs
*regs
)
584 struct thread_struct
*t
= ¤t
->thread
;
588 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM
) || t
->iopl_emul
!= 3)
591 if (insn_get_effective_ip(regs
, &ip
))
594 if (get_user(byte
, (const char __user
*)ip
))
597 if (byte
!= 0xfa && byte
!= 0xfb)
600 if (!t
->iopl_warn
&& printk_ratelimit()) {
601 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
602 current
->comm
, task_pid_nr(current
), ip
);
603 print_vma_addr(KERN_CONT
" in ", ip
);
613 * The unprivileged ENQCMD instruction generates #GPs if the
614 * IA32_PASID MSR has not been populated. If possible, populate
615 * the MSR from a PASID previously allocated to the mm.
617 static bool try_fixup_enqcmd_gp(void)
619 #ifdef CONFIG_ARCH_HAS_CPU_PASID
623 * MSR_IA32_PASID is managed using XSAVE. Directly
624 * writing to the MSR is only possible when fpregs
625 * are valid and the fpstate is not. This is
626 * guaranteed when handling a userspace exception
627 * in *before* interrupts are re-enabled.
629 lockdep_assert_irqs_disabled();
632 * Hardware without ENQCMD will not generate
633 * #GPs that can be fixed up here.
635 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD
))
639 * If the mm has not been allocated a
640 * PASID, the #GP can not be fixed up.
642 if (!mm_valid_pasid(current
->mm
))
645 pasid
= mm_get_enqcmd_pasid(current
->mm
);
648 * Did this thread already have its PASID activated?
649 * If so, the #GP must be from something else.
651 if (current
->pasid_activated
)
654 wrmsrl(MSR_IA32_PASID
, pasid
| MSR_IA32_PASID_VALID
);
655 current
->pasid_activated
= 1;
663 static bool gp_try_fixup_and_notify(struct pt_regs
*regs
, int trapnr
,
664 unsigned long error_code
, const char *str
,
665 unsigned long address
)
667 if (fixup_exception(regs
, trapnr
, error_code
, address
))
670 current
->thread
.error_code
= error_code
;
671 current
->thread
.trap_nr
= trapnr
;
674 * To be potentially processing a kprobe fault and to trust the result
675 * from kprobe_running(), we have to be non-preemptible.
677 if (!preemptible() && kprobe_running() &&
678 kprobe_fault_handler(regs
, trapnr
))
681 return notify_die(DIE_GPF
, str
, regs
, error_code
, trapnr
, SIGSEGV
) == NOTIFY_STOP
;
684 static void gp_user_force_sig_segv(struct pt_regs
*regs
, int trapnr
,
685 unsigned long error_code
, const char *str
)
687 current
->thread
.error_code
= error_code
;
688 current
->thread
.trap_nr
= trapnr
;
689 show_signal(current
, SIGSEGV
, "", str
, regs
, error_code
);
693 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection
)
695 char desc
[sizeof(GPFSTR
) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR
;
696 enum kernel_gp_hint hint
= GP_NO_HINT
;
697 unsigned long gp_addr
;
699 if (user_mode(regs
) && try_fixup_enqcmd_gp())
702 cond_local_irq_enable(regs
);
704 if (static_cpu_has(X86_FEATURE_UMIP
)) {
705 if (user_mode(regs
) && fixup_umip_exception(regs
))
709 if (v8086_mode(regs
)) {
711 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
716 if (user_mode(regs
)) {
717 if (fixup_iopl_exception(regs
))
720 if (fixup_vdso_exception(regs
, X86_TRAP_GP
, error_code
, 0))
723 gp_user_force_sig_segv(regs
, X86_TRAP_GP
, error_code
, desc
);
727 if (gp_try_fixup_and_notify(regs
, X86_TRAP_GP
, error_code
, desc
, 0))
731 snprintf(desc
, sizeof(desc
), "segment-related " GPFSTR
);
733 hint
= get_kernel_gp_address(regs
, &gp_addr
);
735 if (hint
!= GP_NO_HINT
)
736 snprintf(desc
, sizeof(desc
), GPFSTR
", %s 0x%lx",
737 (hint
== GP_NON_CANONICAL
) ? "probably for non-canonical address"
738 : "maybe for address",
742 * KASAN is interested only in the non-canonical case, clear it
745 if (hint
!= GP_NON_CANONICAL
)
748 die_addr(desc
, regs
, error_code
, gp_addr
);
751 cond_local_irq_disable(regs
);
754 static bool do_int3(struct pt_regs
*regs
)
758 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
759 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, 0, X86_TRAP_BP
,
760 SIGTRAP
) == NOTIFY_STOP
)
762 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
764 #ifdef CONFIG_KPROBES
765 if (kprobe_int3_handler(regs
))
768 res
= notify_die(DIE_INT3
, "int3", regs
, 0, X86_TRAP_BP
, SIGTRAP
);
770 return res
== NOTIFY_STOP
;
772 NOKPROBE_SYMBOL(do_int3
);
774 static void do_int3_user(struct pt_regs
*regs
)
779 cond_local_irq_enable(regs
);
780 do_trap(X86_TRAP_BP
, SIGTRAP
, "int3", regs
, 0, 0, NULL
);
781 cond_local_irq_disable(regs
);
784 DEFINE_IDTENTRY_RAW(exc_int3
)
787 * poke_int3_handler() is completely self contained code; it does (and
788 * must) *NOT* call out to anything, lest it hits upon yet another
791 if (poke_int3_handler(regs
))
795 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
796 * and therefore can trigger INT3, hence poke_int3_handler() must
797 * be done before. If the entry came from kernel mode, then use
798 * nmi_enter() because the INT3 could have been hit in any context
801 if (user_mode(regs
)) {
802 irqentry_enter_from_user_mode(regs
);
803 instrumentation_begin();
805 instrumentation_end();
806 irqentry_exit_to_user_mode(regs
);
808 irqentry_state_t irq_state
= irqentry_nmi_enter(regs
);
810 instrumentation_begin();
812 die("int3", regs
, 0);
813 instrumentation_end();
814 irqentry_nmi_exit(regs
, irq_state
);
820 * Help handler running on a per-cpu (IST or entry trampoline) stack
821 * to switch to the normal thread stack if the interrupted code was in
822 * user mode. The actual stack switch is done in entry_64.S
824 asmlinkage __visible noinstr
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
826 struct pt_regs
*regs
= (struct pt_regs
*)current_top_of_stack() - 1;
832 #ifdef CONFIG_AMD_MEM_ENCRYPT
833 asmlinkage __visible noinstr
struct pt_regs
*vc_switch_off_ist(struct pt_regs
*regs
)
835 unsigned long sp
, *stack
;
836 struct stack_info info
;
837 struct pt_regs
*regs_ret
;
840 * In the SYSCALL entry path the RSP value comes from user-space - don't
841 * trust it and switch to the current kernel stack
843 if (ip_within_syscall_gap(regs
)) {
844 sp
= current_top_of_stack();
849 * From here on the RSP value is trusted. Now check whether entry
850 * happened from a safe stack. Not safe are the entry or unknown stacks,
851 * use the fall-back stack instead in this case.
854 stack
= (unsigned long *)sp
;
856 if (!get_stack_info_noinstr(stack
, current
, &info
) || info
.type
== STACK_TYPE_ENTRY
||
857 info
.type
> STACK_TYPE_EXCEPTION_LAST
)
858 sp
= __this_cpu_ist_top_va(VC2
);
862 * Found a safe stack - switch to it as if the entry didn't happen via
863 * IST stack. The code below only copies pt_regs, the real switch happens
866 sp
= ALIGN_DOWN(sp
, 8) - sizeof(*regs_ret
);
868 regs_ret
= (struct pt_regs
*)sp
;
875 asmlinkage __visible noinstr
struct pt_regs
*fixup_bad_iret(struct pt_regs
*bad_regs
)
877 struct pt_regs tmp
, *new_stack
;
880 * This is called from entry_64.S early in handling a fault
881 * caused by a bad iret to user mode. To handle the fault
882 * correctly, we want to move our stack frame to where it would
883 * be had we entered directly on the entry stack (rather than
884 * just below the IRET frame) and we want to pretend that the
885 * exception came from the IRET target.
887 new_stack
= (struct pt_regs
*)__this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
889 /* Copy the IRET target to the temporary storage. */
890 __memcpy(&tmp
.ip
, (void *)bad_regs
->sp
, 5*8);
892 /* Copy the remainder of the stack from the current stack. */
893 __memcpy(&tmp
, bad_regs
, offsetof(struct pt_regs
, ip
));
895 /* Update the entry stack */
896 __memcpy(new_stack
, &tmp
, sizeof(tmp
));
898 BUG_ON(!user_mode(new_stack
));
903 static bool is_sysenter_singlestep(struct pt_regs
*regs
)
906 * We don't try for precision here. If we're anywhere in the region of
907 * code that can be single-stepped in the SYSENTER entry path, then
908 * assume that this is a useless single-step trap due to SYSENTER
909 * being invoked with TF set. (We don't know in advance exactly
910 * which instructions will be hit because BTF could plausibly
914 return (regs
->ip
- (unsigned long)__begin_SYSENTER_singlestep_region
) <
915 (unsigned long)__end_SYSENTER_singlestep_region
-
916 (unsigned long)__begin_SYSENTER_singlestep_region
;
917 #elif defined(CONFIG_IA32_EMULATION)
918 return (regs
->ip
- (unsigned long)entry_SYSENTER_compat
) <
919 (unsigned long)__end_entry_SYSENTER_compat
-
920 (unsigned long)entry_SYSENTER_compat
;
926 static __always_inline
unsigned long debug_read_clear_dr6(void)
931 * The Intel SDM says:
933 * Certain debug exceptions may clear bits 0-3. The remaining
934 * contents of the DR6 register are never cleared by the
935 * processor. To avoid confusion in identifying debug
936 * exceptions, debug handlers should clear the register before
937 * returning to the interrupted task.
939 * Keep it simple: clear DR6 immediately.
941 get_debugreg(dr6
, 6);
942 set_debugreg(DR6_RESERVED
, 6);
943 dr6
^= DR6_RESERVED
; /* Flip to positive polarity */
949 * Our handling of the processor debug registers is non-trivial.
950 * We do not clear them on entry and exit from the kernel. Therefore
951 * it is possible to get a watchpoint trap here from inside the kernel.
952 * However, the code in ./ptrace.c has ensured that the user can
953 * only set watchpoints on userspace addresses. Therefore the in-kernel
954 * watchpoint trap can only occur in code which is reading/writing
955 * from user space. Such code must not hold kernel locks (since it
956 * can equally take a page fault), therefore it is safe to call
957 * force_sig_info even though that claims and releases locks.
959 * Code in ./signal.c ensures that the debug control register
960 * is restored before we deliver any signal, and therefore that
961 * user code runs with the correct debug control register even though
964 * Being careful here means that we don't have to be as careful in a
965 * lot of more complicated places (task switching can be a bit lazy
966 * about restoring all the debug state, and ptrace doesn't have to
967 * find every occurrence of the TF bit that could be saved away even
970 * May run on IST stack.
973 static bool notify_debug(struct pt_regs
*regs
, unsigned long *dr6
)
976 * Notifiers will clear bits in @dr6 to indicate the event has been
977 * consumed - hw_breakpoint_handler(), single_stop_cont().
979 * Notifiers will set bits in @virtual_dr6 to indicate the desire
980 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
982 if (notify_die(DIE_DEBUG
, "debug", regs
, (long)dr6
, 0, SIGTRAP
) == NOTIFY_STOP
)
988 static noinstr
void exc_debug_kernel(struct pt_regs
*regs
, unsigned long dr6
)
991 * Disable breakpoints during exception handling; recursive exceptions
992 * are exceedingly 'fun'.
994 * Since this function is NOKPROBE, and that also applies to
995 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
996 * HW_BREAKPOINT_W on our stack)
998 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
999 * includes the entry stack is excluded for everything.
1001 * For FRED, nested #DB should just work fine. But when a watchpoint or
1002 * breakpoint is set in the code path which is executed by #DB handler,
1003 * it results in an endless recursion and stack overflow. Thus we stay
1004 * with the IDT approach, i.e., save DR7 and disable #DB.
1006 unsigned long dr7
= local_db_save();
1007 irqentry_state_t irq_state
= irqentry_nmi_enter(regs
);
1008 instrumentation_begin();
1011 * If something gets miswired and we end up here for a user mode
1012 * #DB, we will malfunction.
1014 WARN_ON_ONCE(user_mode(regs
));
1016 if (test_thread_flag(TIF_BLOCKSTEP
)) {
1018 * The SDM says "The processor clears the BTF flag when it
1019 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1020 * it for userspace, but we just took a kernel #DB, so re-set
1023 unsigned long debugctl
;
1025 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
1026 debugctl
|= DEBUGCTLMSR_BTF
;
1027 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
1031 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1032 * watchpoint at the same time then that will still be handled.
1034 if (!cpu_feature_enabled(X86_FEATURE_FRED
) &&
1035 (dr6
& DR_STEP
) && is_sysenter_singlestep(regs
))
1039 * The kernel doesn't use INT1
1044 if (notify_debug(regs
, &dr6
))
1048 * The kernel doesn't use TF single-step outside of:
1050 * - Kprobes, consumed through kprobe_debug_handler()
1051 * - KGDB, consumed through notify_debug()
1053 * So if we get here with DR_STEP set, something is wonky.
1055 * A known way to trigger this is through QEMU's GDB stub,
1056 * which leaks #DB into the guest and causes IST recursion.
1058 if (WARN_ON_ONCE(dr6
& DR_STEP
))
1059 regs
->flags
&= ~X86_EFLAGS_TF
;
1061 instrumentation_end();
1062 irqentry_nmi_exit(regs
, irq_state
);
1064 local_db_restore(dr7
);
1067 static noinstr
void exc_debug_user(struct pt_regs
*regs
, unsigned long dr6
)
1072 * If something gets miswired and we end up here for a kernel mode
1073 * #DB, we will malfunction.
1075 WARN_ON_ONCE(!user_mode(regs
));
1078 * NB: We can't easily clear DR7 here because
1079 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1080 * user memory, etc. This means that a recursive #DB is possible. If
1081 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1082 * Since we're not on the IST stack right now, everything will be
1086 irqentry_enter_from_user_mode(regs
);
1087 instrumentation_begin();
1090 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1091 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1093 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1094 * even if it is not the result of PTRACE_SINGLESTEP.
1096 current
->thread
.virtual_dr6
= (dr6
& DR_STEP
);
1099 * The SDM says "The processor clears the BTF flag when it
1100 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1101 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1103 clear_thread_flag(TIF_BLOCKSTEP
);
1106 * If dr6 has no reason to give us about the origin of this trap,
1107 * then it's very likely the result of an icebp/int01 trap.
1108 * User wants a sigtrap for that.
1112 if (notify_debug(regs
, &dr6
))
1115 /* It's safe to allow irq's after DR6 has been saved */
1118 if (v8086_mode(regs
)) {
1119 handle_vm86_trap((struct kernel_vm86_regs
*)regs
, 0, X86_TRAP_DB
);
1123 /* #DB for bus lock can only be triggered from userspace. */
1124 if (dr6
& DR_BUS_LOCK
)
1125 handle_bus_lock(regs
);
1127 /* Add the virtual_dr6 bits for signals. */
1128 dr6
|= current
->thread
.virtual_dr6
;
1129 if (dr6
& (DR_STEP
| DR_TRAP_BITS
) || icebp
)
1130 send_sigtrap(regs
, 0, get_si_code(dr6
));
1133 local_irq_disable();
1135 instrumentation_end();
1136 irqentry_exit_to_user_mode(regs
);
1139 #ifdef CONFIG_X86_64
1140 /* IST stack entry */
1141 DEFINE_IDTENTRY_DEBUG(exc_debug
)
1143 exc_debug_kernel(regs
, debug_read_clear_dr6());
1146 /* User entry, runs on regular task stack */
1147 DEFINE_IDTENTRY_DEBUG_USER(exc_debug
)
1149 exc_debug_user(regs
, debug_read_clear_dr6());
1152 #ifdef CONFIG_X86_FRED
1154 * When occurred on different ring level, i.e., from user or kernel
1155 * context, #DB needs to be handled on different stack: User #DB on
1156 * current task stack, while kernel #DB on a dedicated stack.
1158 * This is exactly how FRED event delivery invokes an exception
1159 * handler: ring 3 event on level 0 stack, i.e., current task stack;
1160 * ring 0 event on the #DB dedicated stack specified in the
1161 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1162 * entry stub doesn't do stack switch.
1164 DEFINE_FREDENTRY_DEBUG(exc_debug
)
1167 * FRED #DB stores DR6 on the stack in the format which
1168 * debug_read_clear_dr6() returns for the IDT entry points.
1170 unsigned long dr6
= fred_event_data(regs
);
1172 if (user_mode(regs
))
1173 exc_debug_user(regs
, dr6
);
1175 exc_debug_kernel(regs
, dr6
);
1177 #endif /* CONFIG_X86_FRED */
1180 /* 32 bit does not have separate entry points. */
1181 DEFINE_IDTENTRY_RAW(exc_debug
)
1183 unsigned long dr6
= debug_read_clear_dr6();
1185 if (user_mode(regs
))
1186 exc_debug_user(regs
, dr6
);
1188 exc_debug_kernel(regs
, dr6
);
1193 * Note that we play around with the 'TS' bit in an attempt to get
1194 * the correct behaviour even in the presence of the asynchronous
1197 static void math_error(struct pt_regs
*regs
, int trapnr
)
1199 struct task_struct
*task
= current
;
1200 struct fpu
*fpu
= &task
->thread
.fpu
;
1202 char *str
= (trapnr
== X86_TRAP_MF
) ? "fpu exception" :
1205 cond_local_irq_enable(regs
);
1207 if (!user_mode(regs
)) {
1208 if (fixup_exception(regs
, trapnr
, 0, 0))
1211 task
->thread
.error_code
= 0;
1212 task
->thread
.trap_nr
= trapnr
;
1214 if (notify_die(DIE_TRAP
, str
, regs
, 0, trapnr
,
1215 SIGFPE
) != NOTIFY_STOP
)
1221 * Synchronize the FPU register state to the memory register state
1222 * if necessary. This allows the exception handler to inspect it.
1224 fpu_sync_fpstate(fpu
);
1226 task
->thread
.trap_nr
= trapnr
;
1227 task
->thread
.error_code
= 0;
1229 si_code
= fpu__exception_code(fpu
, trapnr
);
1230 /* Retry when we get spurious exceptions: */
1234 if (fixup_vdso_exception(regs
, trapnr
, 0, 0))
1237 force_sig_fault(SIGFPE
, si_code
,
1238 (void __user
*)uprobe_get_trap_addr(regs
));
1240 cond_local_irq_disable(regs
);
1243 DEFINE_IDTENTRY(exc_coprocessor_error
)
1245 math_error(regs
, X86_TRAP_MF
);
1248 DEFINE_IDTENTRY(exc_simd_coprocessor_error
)
1250 if (IS_ENABLED(CONFIG_X86_INVD_BUG
)) {
1251 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1252 if (!static_cpu_has(X86_FEATURE_XMM
)) {
1253 __exc_general_protection(regs
, 0);
1257 math_error(regs
, X86_TRAP_XF
);
1260 DEFINE_IDTENTRY(exc_spurious_interrupt_bug
)
1263 * This addresses a Pentium Pro Erratum:
1265 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1266 * Virtual Wire mode implemented through the local APIC, an
1267 * interrupt vector of 0Fh (Intel reserved encoding) may be
1268 * generated by the local APIC (Int 15). This vector may be
1269 * generated upon receipt of a spurious interrupt (an interrupt
1270 * which is removed before the system receives the INTA sequence)
1271 * instead of the programmed 8259 spurious interrupt vector.
1273 * IMPLICATION: The spurious interrupt vector programmed in the
1274 * 8259 is normally handled by an operating system's spurious
1275 * interrupt handler. However, a vector of 0Fh is unknown to some
1276 * operating systems, which would crash if this erratum occurred.
1278 * In theory this could be limited to 32bit, but the handler is not
1279 * hurting and who knows which other CPUs suffer from this.
1283 static bool handle_xfd_event(struct pt_regs
*regs
)
1288 if (!IS_ENABLED(CONFIG_X86_64
) || !cpu_feature_enabled(X86_FEATURE_XFD
))
1291 rdmsrl(MSR_IA32_XFD_ERR
, xfd_err
);
1295 wrmsrl(MSR_IA32_XFD_ERR
, 0);
1297 /* Die if that happens in kernel space */
1298 if (WARN_ON(!user_mode(regs
)))
1303 err
= xfd_enable_feature(xfd_err
);
1307 force_sig_fault(SIGILL
, ILL_ILLOPC
, error_get_trap_addr(regs
));
1314 local_irq_disable();
1318 DEFINE_IDTENTRY(exc_device_not_available
)
1320 unsigned long cr0
= read_cr0();
1322 if (handle_xfd_event(regs
))
1325 #ifdef CONFIG_MATH_EMULATION
1326 if (!boot_cpu_has(X86_FEATURE_FPU
) && (cr0
& X86_CR0_EM
)) {
1327 struct math_emu_info info
= { };
1329 cond_local_irq_enable(regs
);
1332 math_emulate(&info
);
1334 cond_local_irq_disable(regs
);
1339 /* This should not happen. */
1340 if (WARN(cr0
& X86_CR0_TS
, "CR0.TS was set")) {
1341 /* Try to fix it up and carry on. */
1342 write_cr0(cr0
& ~X86_CR0_TS
);
1345 * Something terrible happened, and we're better off trying
1346 * to kill the task than getting stuck in a never-ending
1347 * loop of #NM faults.
1349 die("unexpected #NM exception", regs
, 0);
1353 #ifdef CONFIG_INTEL_TDX_GUEST
1355 #define VE_FAULT_STR "VE fault"
1357 static void ve_raise_fault(struct pt_regs
*regs
, long error_code
,
1358 unsigned long address
)
1360 if (user_mode(regs
)) {
1361 gp_user_force_sig_segv(regs
, X86_TRAP_VE
, error_code
, VE_FAULT_STR
);
1365 if (gp_try_fixup_and_notify(regs
, X86_TRAP_VE
, error_code
,
1366 VE_FAULT_STR
, address
)) {
1370 die_addr(VE_FAULT_STR
, regs
, error_code
, address
);
1374 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1375 * specific guest actions which may happen in either user space or the
1378 * * Specific instructions (WBINVD, for example)
1379 * * Specific MSR accesses
1380 * * Specific CPUID leaf accesses
1381 * * Access to specific guest physical addresses
1383 * In the settings that Linux will run in, virtualization exceptions are
1384 * never generated on accesses to normal, TD-private memory that has been
1385 * accepted (by BIOS or with tdx_enc_status_changed()).
1387 * Syscall entry code has a critical window where the kernel stack is not
1388 * yet set up. Any exception in this window leads to hard to debug issues
1389 * and can be exploited for privilege escalation. Exceptions in the NMI
1390 * entry code also cause issues. Returning from the exception handler with
1391 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1393 * For these reasons, the kernel avoids #VEs during the syscall gap and
1394 * the NMI entry code. Entry code paths do not access TD-shared memory,
1395 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1396 * that might generate #VE. VMM can remove memory from TD at any point,
1397 * but access to unaccepted (or missing) private memory leads to VM
1398 * termination, not to #VE.
1400 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1401 * handlers once the kernel is ready to deal with nested NMIs.
1403 * During #VE delivery, all interrupts, including NMIs, are blocked until
1404 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1407 * If a guest kernel action which would normally cause a #VE occurs in
1408 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1409 * exception) is delivered to the guest which will result in an oops.
1411 * The entry code has been audited carefully for following these expectations.
1412 * Changes in the entry code have to be audited for correctness vs. this
1413 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1414 * privilege escalation or may lead to random crashes.
1416 DEFINE_IDTENTRY(exc_virtualization_exception
)
1421 * NMIs/Machine-checks/Interrupts will be in a disabled state
1422 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1423 * info cannot be overwritten by a nested #VE.
1425 tdx_get_ve_info(&ve
);
1427 cond_local_irq_enable(regs
);
1430 * If tdx_handle_virt_exception() could not process
1431 * it successfully, treat it as #GP(0) and handle it.
1433 if (!tdx_handle_virt_exception(regs
, &ve
))
1434 ve_raise_fault(regs
, 0, ve
.gla
);
1436 cond_local_irq_disable(regs
);
1441 #ifdef CONFIG_X86_32
1442 DEFINE_IDTENTRY_SW(iret_error
)
1445 if (notify_die(DIE_TRAP
, "iret exception", regs
, 0,
1446 X86_TRAP_IRET
, SIGILL
) != NOTIFY_STOP
) {
1447 do_trap(X86_TRAP_IRET
, SIGILL
, "iret exception", regs
, 0,
1448 ILL_BADSTK
, (void __user
*)NULL
);
1450 local_irq_disable();
1454 void __init
trap_init(void)
1456 /* Init cpu_entry_area before IST entries are set up */
1457 setup_cpu_entry_areas();
1459 /* Init GHCB memory pages when running as an SEV-ES guest */
1460 sev_es_init_vc_handling();
1462 /* Initialize TSS before setting up traps so ISTs work */
1463 cpu_init_exception_handling(true);
1465 /* Setup traps as cpu_init() might #GP */
1466 if (!cpu_feature_enabled(X86_FEATURE_FRED
))