1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
33 #include <trace/events/block.h>
35 #include <linux/t10-pi.h>
38 #include "blk-mq-debugfs.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
44 static DEFINE_PER_CPU(struct llist_head
, blk_cpu_done
);
45 static DEFINE_PER_CPU(call_single_data_t
, blk_cpu_csd
);
47 static void blk_mq_insert_request(struct request
*rq
, blk_insert_t flags
);
48 static void blk_mq_request_bypass_insert(struct request
*rq
,
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
51 struct list_head
*list
);
52 static int blk_hctx_poll(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
53 struct io_comp_batch
*iob
, unsigned int flags
);
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
61 return !list_empty_careful(&hctx
->dispatch
) ||
62 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
63 blk_mq_sched_has_work(hctx
);
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
70 struct blk_mq_ctx
*ctx
)
72 const int bit
= ctx
->index_hw
[hctx
->type
];
74 if (!sbitmap_test_bit(&hctx
->ctx_map
, bit
))
75 sbitmap_set_bit(&hctx
->ctx_map
, bit
);
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
79 struct blk_mq_ctx
*ctx
)
81 const int bit
= ctx
->index_hw
[hctx
->type
];
83 sbitmap_clear_bit(&hctx
->ctx_map
, bit
);
87 struct block_device
*part
;
88 unsigned int inflight
[2];
91 static bool blk_mq_check_inflight(struct request
*rq
, void *priv
)
93 struct mq_inflight
*mi
= priv
;
95 if (rq
->rq_flags
& RQF_IO_STAT
&&
96 (!bdev_is_partition(mi
->part
) || rq
->part
== mi
->part
) &&
97 blk_mq_rq_state(rq
) == MQ_RQ_IN_FLIGHT
)
98 mi
->inflight
[rq_data_dir(rq
)]++;
103 unsigned int blk_mq_in_flight(struct request_queue
*q
,
104 struct block_device
*part
)
106 struct mq_inflight mi
= { .part
= part
};
108 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
110 return mi
.inflight
[0] + mi
.inflight
[1];
113 void blk_mq_in_flight_rw(struct request_queue
*q
, struct block_device
*part
,
114 unsigned int inflight
[2])
116 struct mq_inflight mi
= { .part
= part
};
118 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
119 inflight
[0] = mi
.inflight
[0];
120 inflight
[1] = mi
.inflight
[1];
123 #ifdef CONFIG_LOCKDEP
124 static bool blk_freeze_set_owner(struct request_queue
*q
,
125 struct task_struct
*owner
)
130 if (!q
->mq_freeze_depth
) {
131 q
->mq_freeze_owner
= owner
;
132 q
->mq_freeze_owner_depth
= 1;
136 if (owner
== q
->mq_freeze_owner
)
137 q
->mq_freeze_owner_depth
+= 1;
141 /* verify the last unfreeze in owner context */
142 static bool blk_unfreeze_check_owner(struct request_queue
*q
)
144 if (!q
->mq_freeze_owner
)
146 if (q
->mq_freeze_owner
!= current
)
148 if (--q
->mq_freeze_owner_depth
== 0) {
149 q
->mq_freeze_owner
= NULL
;
157 static bool blk_freeze_set_owner(struct request_queue
*q
,
158 struct task_struct
*owner
)
163 static bool blk_unfreeze_check_owner(struct request_queue
*q
)
169 bool __blk_freeze_queue_start(struct request_queue
*q
,
170 struct task_struct
*owner
)
174 mutex_lock(&q
->mq_freeze_lock
);
175 freeze
= blk_freeze_set_owner(q
, owner
);
176 if (++q
->mq_freeze_depth
== 1) {
177 percpu_ref_kill(&q
->q_usage_counter
);
178 mutex_unlock(&q
->mq_freeze_lock
);
180 blk_mq_run_hw_queues(q
, false);
182 mutex_unlock(&q
->mq_freeze_lock
);
188 void blk_freeze_queue_start(struct request_queue
*q
)
190 if (__blk_freeze_queue_start(q
, current
))
191 blk_freeze_acquire_lock(q
, false, false);
193 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
195 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
197 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
201 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
202 unsigned long timeout
)
204 return wait_event_timeout(q
->mq_freeze_wq
,
205 percpu_ref_is_zero(&q
->q_usage_counter
),
208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
210 void blk_mq_freeze_queue(struct request_queue
*q
)
212 blk_freeze_queue_start(q
);
213 blk_mq_freeze_queue_wait(q
);
215 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
217 bool __blk_mq_unfreeze_queue(struct request_queue
*q
, bool force_atomic
)
221 mutex_lock(&q
->mq_freeze_lock
);
223 q
->q_usage_counter
.data
->force_atomic
= true;
224 q
->mq_freeze_depth
--;
225 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
226 if (!q
->mq_freeze_depth
) {
227 percpu_ref_resurrect(&q
->q_usage_counter
);
228 wake_up_all(&q
->mq_freeze_wq
);
230 unfreeze
= blk_unfreeze_check_owner(q
);
231 mutex_unlock(&q
->mq_freeze_lock
);
236 void blk_mq_unfreeze_queue(struct request_queue
*q
)
238 if (__blk_mq_unfreeze_queue(q
, false))
239 blk_unfreeze_release_lock(q
, false, false);
241 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
244 * non_owner variant of blk_freeze_queue_start
246 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
247 * by the same task. This is fragile and should not be used if at all
250 void blk_freeze_queue_start_non_owner(struct request_queue
*q
)
252 __blk_freeze_queue_start(q
, NULL
);
254 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner
);
256 /* non_owner variant of blk_mq_unfreeze_queue */
257 void blk_mq_unfreeze_queue_non_owner(struct request_queue
*q
)
259 __blk_mq_unfreeze_queue(q
, false);
261 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner
);
264 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
265 * mpt3sas driver such that this function can be removed.
267 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
271 spin_lock_irqsave(&q
->queue_lock
, flags
);
272 if (!q
->quiesce_depth
++)
273 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
274 spin_unlock_irqrestore(&q
->queue_lock
, flags
);
276 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
279 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
280 * @set: tag_set to wait on
282 * Note: it is driver's responsibility for making sure that quiesce has
283 * been started on or more of the request_queues of the tag_set. This
284 * function only waits for the quiesce on those request_queues that had
285 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
287 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set
*set
)
289 if (set
->flags
& BLK_MQ_F_BLOCKING
)
290 synchronize_srcu(set
->srcu
);
294 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done
);
297 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
300 * Note: this function does not prevent that the struct request end_io()
301 * callback function is invoked. Once this function is returned, we make
302 * sure no dispatch can happen until the queue is unquiesced via
303 * blk_mq_unquiesce_queue().
305 void blk_mq_quiesce_queue(struct request_queue
*q
)
307 blk_mq_quiesce_queue_nowait(q
);
308 /* nothing to wait for non-mq queues */
310 blk_mq_wait_quiesce_done(q
->tag_set
);
312 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
315 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
318 * This function recovers queue into the state before quiescing
319 * which is done by blk_mq_quiesce_queue.
321 void blk_mq_unquiesce_queue(struct request_queue
*q
)
324 bool run_queue
= false;
326 spin_lock_irqsave(&q
->queue_lock
, flags
);
327 if (WARN_ON_ONCE(q
->quiesce_depth
<= 0)) {
329 } else if (!--q
->quiesce_depth
) {
330 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
333 spin_unlock_irqrestore(&q
->queue_lock
, flags
);
335 /* dispatch requests which are inserted during quiescing */
337 blk_mq_run_hw_queues(q
, true);
339 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
341 void blk_mq_quiesce_tagset(struct blk_mq_tag_set
*set
)
343 struct request_queue
*q
;
345 mutex_lock(&set
->tag_list_lock
);
346 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
347 if (!blk_queue_skip_tagset_quiesce(q
))
348 blk_mq_quiesce_queue_nowait(q
);
350 mutex_unlock(&set
->tag_list_lock
);
352 blk_mq_wait_quiesce_done(set
);
354 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset
);
356 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set
*set
)
358 struct request_queue
*q
;
360 mutex_lock(&set
->tag_list_lock
);
361 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
362 if (!blk_queue_skip_tagset_quiesce(q
))
363 blk_mq_unquiesce_queue(q
);
365 mutex_unlock(&set
->tag_list_lock
);
367 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset
);
369 void blk_mq_wake_waiters(struct request_queue
*q
)
371 struct blk_mq_hw_ctx
*hctx
;
374 queue_for_each_hw_ctx(q
, hctx
, i
)
375 if (blk_mq_hw_queue_mapped(hctx
))
376 blk_mq_tag_wakeup_all(hctx
->tags
, true);
379 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
381 memset(rq
, 0, sizeof(*rq
));
383 INIT_LIST_HEAD(&rq
->queuelist
);
385 rq
->__sector
= (sector_t
) -1;
386 INIT_HLIST_NODE(&rq
->hash
);
387 RB_CLEAR_NODE(&rq
->rb_node
);
388 rq
->tag
= BLK_MQ_NO_TAG
;
389 rq
->internal_tag
= BLK_MQ_NO_TAG
;
390 rq
->start_time_ns
= blk_time_get_ns();
392 blk_crypto_rq_set_defaults(rq
);
394 EXPORT_SYMBOL(blk_rq_init
);
396 /* Set start and alloc time when the allocated request is actually used */
397 static inline void blk_mq_rq_time_init(struct request
*rq
, u64 alloc_time_ns
)
399 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
400 if (blk_queue_rq_alloc_time(rq
->q
))
401 rq
->alloc_time_ns
= alloc_time_ns
;
403 rq
->alloc_time_ns
= 0;
407 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
408 struct blk_mq_tags
*tags
, unsigned int tag
)
410 struct blk_mq_ctx
*ctx
= data
->ctx
;
411 struct blk_mq_hw_ctx
*hctx
= data
->hctx
;
412 struct request_queue
*q
= data
->q
;
413 struct request
*rq
= tags
->static_rqs
[tag
];
418 rq
->cmd_flags
= data
->cmd_flags
;
420 if (data
->flags
& BLK_MQ_REQ_PM
)
421 data
->rq_flags
|= RQF_PM
;
422 rq
->rq_flags
= data
->rq_flags
;
424 if (data
->rq_flags
& RQF_SCHED_TAGS
) {
425 rq
->tag
= BLK_MQ_NO_TAG
;
426 rq
->internal_tag
= tag
;
429 rq
->internal_tag
= BLK_MQ_NO_TAG
;
434 rq
->io_start_time_ns
= 0;
435 rq
->stats_sectors
= 0;
436 rq
->nr_phys_segments
= 0;
437 rq
->nr_integrity_segments
= 0;
439 rq
->end_io_data
= NULL
;
441 blk_crypto_rq_set_defaults(rq
);
442 INIT_LIST_HEAD(&rq
->queuelist
);
443 /* tag was already set */
444 WRITE_ONCE(rq
->deadline
, 0);
447 if (rq
->rq_flags
& RQF_USE_SCHED
) {
448 struct elevator_queue
*e
= data
->q
->elevator
;
450 INIT_HLIST_NODE(&rq
->hash
);
451 RB_CLEAR_NODE(&rq
->rb_node
);
453 if (e
->type
->ops
.prepare_request
)
454 e
->type
->ops
.prepare_request(rq
);
460 static inline struct request
*
461 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data
*data
)
463 unsigned int tag
, tag_offset
;
464 struct blk_mq_tags
*tags
;
466 unsigned long tag_mask
;
469 tag_mask
= blk_mq_get_tags(data
, data
->nr_tags
, &tag_offset
);
470 if (unlikely(!tag_mask
))
473 tags
= blk_mq_tags_from_data(data
);
474 for (i
= 0; tag_mask
; i
++) {
475 if (!(tag_mask
& (1UL << i
)))
477 tag
= tag_offset
+ i
;
478 prefetch(tags
->static_rqs
[tag
]);
479 tag_mask
&= ~(1UL << i
);
480 rq
= blk_mq_rq_ctx_init(data
, tags
, tag
);
481 rq_list_add_head(data
->cached_rqs
, rq
);
484 if (!(data
->rq_flags
& RQF_SCHED_TAGS
))
485 blk_mq_add_active_requests(data
->hctx
, nr
);
486 /* caller already holds a reference, add for remainder */
487 percpu_ref_get_many(&data
->q
->q_usage_counter
, nr
- 1);
490 return rq_list_pop(data
->cached_rqs
);
493 static struct request
*__blk_mq_alloc_requests(struct blk_mq_alloc_data
*data
)
495 struct request_queue
*q
= data
->q
;
496 u64 alloc_time_ns
= 0;
500 /* alloc_time includes depth and tag waits */
501 if (blk_queue_rq_alloc_time(q
))
502 alloc_time_ns
= blk_time_get_ns();
504 if (data
->cmd_flags
& REQ_NOWAIT
)
505 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
508 data
->ctx
= blk_mq_get_ctx(q
);
509 data
->hctx
= blk_mq_map_queue(q
, data
->cmd_flags
, data
->ctx
);
513 * All requests use scheduler tags when an I/O scheduler is
514 * enabled for the queue.
516 data
->rq_flags
|= RQF_SCHED_TAGS
;
519 * Flush/passthrough requests are special and go directly to the
522 if ((data
->cmd_flags
& REQ_OP_MASK
) != REQ_OP_FLUSH
&&
523 !blk_op_is_passthrough(data
->cmd_flags
)) {
524 struct elevator_mq_ops
*ops
= &q
->elevator
->type
->ops
;
526 WARN_ON_ONCE(data
->flags
& BLK_MQ_REQ_RESERVED
);
528 data
->rq_flags
|= RQF_USE_SCHED
;
529 if (ops
->limit_depth
)
530 ops
->limit_depth(data
->cmd_flags
, data
);
533 blk_mq_tag_busy(data
->hctx
);
536 if (data
->flags
& BLK_MQ_REQ_RESERVED
)
537 data
->rq_flags
|= RQF_RESV
;
540 * Try batched alloc if we want more than 1 tag.
542 if (data
->nr_tags
> 1) {
543 rq
= __blk_mq_alloc_requests_batch(data
);
545 blk_mq_rq_time_init(rq
, alloc_time_ns
);
552 * Waiting allocations only fail because of an inactive hctx. In that
553 * case just retry the hctx assignment and tag allocation as CPU hotplug
554 * should have migrated us to an online CPU by now.
556 tag
= blk_mq_get_tag(data
);
557 if (tag
== BLK_MQ_NO_TAG
) {
558 if (data
->flags
& BLK_MQ_REQ_NOWAIT
)
561 * Give up the CPU and sleep for a random short time to
562 * ensure that thread using a realtime scheduling class
563 * are migrated off the CPU, and thus off the hctx that
570 if (!(data
->rq_flags
& RQF_SCHED_TAGS
))
571 blk_mq_inc_active_requests(data
->hctx
);
572 rq
= blk_mq_rq_ctx_init(data
, blk_mq_tags_from_data(data
), tag
);
573 blk_mq_rq_time_init(rq
, alloc_time_ns
);
577 static struct request
*blk_mq_rq_cache_fill(struct request_queue
*q
,
578 struct blk_plug
*plug
,
580 blk_mq_req_flags_t flags
)
582 struct blk_mq_alloc_data data
= {
586 .nr_tags
= plug
->nr_ios
,
587 .cached_rqs
= &plug
->cached_rqs
,
591 if (blk_queue_enter(q
, flags
))
596 rq
= __blk_mq_alloc_requests(&data
);
602 static struct request
*blk_mq_alloc_cached_request(struct request_queue
*q
,
604 blk_mq_req_flags_t flags
)
606 struct blk_plug
*plug
= current
->plug
;
612 if (rq_list_empty(&plug
->cached_rqs
)) {
613 if (plug
->nr_ios
== 1)
615 rq
= blk_mq_rq_cache_fill(q
, plug
, opf
, flags
);
619 rq
= rq_list_peek(&plug
->cached_rqs
);
620 if (!rq
|| rq
->q
!= q
)
623 if (blk_mq_get_hctx_type(opf
) != rq
->mq_hctx
->type
)
625 if (op_is_flush(rq
->cmd_flags
) != op_is_flush(opf
))
628 rq_list_pop(&plug
->cached_rqs
);
629 blk_mq_rq_time_init(rq
, blk_time_get_ns());
633 INIT_LIST_HEAD(&rq
->queuelist
);
637 struct request
*blk_mq_alloc_request(struct request_queue
*q
, blk_opf_t opf
,
638 blk_mq_req_flags_t flags
)
642 rq
= blk_mq_alloc_cached_request(q
, opf
, flags
);
644 struct blk_mq_alloc_data data
= {
652 ret
= blk_queue_enter(q
, flags
);
656 rq
= __blk_mq_alloc_requests(&data
);
661 rq
->__sector
= (sector_t
) -1;
662 rq
->bio
= rq
->biotail
= NULL
;
666 return ERR_PTR(-EWOULDBLOCK
);
668 EXPORT_SYMBOL(blk_mq_alloc_request
);
670 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
671 blk_opf_t opf
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
673 struct blk_mq_alloc_data data
= {
679 u64 alloc_time_ns
= 0;
685 /* alloc_time includes depth and tag waits */
686 if (blk_queue_rq_alloc_time(q
))
687 alloc_time_ns
= blk_time_get_ns();
690 * If the tag allocator sleeps we could get an allocation for a
691 * different hardware context. No need to complicate the low level
692 * allocator for this for the rare use case of a command tied to
695 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)) ||
696 WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_RESERVED
)))
697 return ERR_PTR(-EINVAL
);
699 if (hctx_idx
>= q
->nr_hw_queues
)
700 return ERR_PTR(-EIO
);
702 ret
= blk_queue_enter(q
, flags
);
707 * Check if the hardware context is actually mapped to anything.
708 * If not tell the caller that it should skip this queue.
711 data
.hctx
= xa_load(&q
->hctx_table
, hctx_idx
);
712 if (!blk_mq_hw_queue_mapped(data
.hctx
))
714 cpu
= cpumask_first_and(data
.hctx
->cpumask
, cpu_online_mask
);
715 if (cpu
>= nr_cpu_ids
)
717 data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
720 data
.rq_flags
|= RQF_SCHED_TAGS
;
722 blk_mq_tag_busy(data
.hctx
);
724 if (flags
& BLK_MQ_REQ_RESERVED
)
725 data
.rq_flags
|= RQF_RESV
;
728 tag
= blk_mq_get_tag(&data
);
729 if (tag
== BLK_MQ_NO_TAG
)
731 if (!(data
.rq_flags
& RQF_SCHED_TAGS
))
732 blk_mq_inc_active_requests(data
.hctx
);
733 rq
= blk_mq_rq_ctx_init(&data
, blk_mq_tags_from_data(&data
), tag
);
734 blk_mq_rq_time_init(rq
, alloc_time_ns
);
736 rq
->__sector
= (sector_t
) -1;
737 rq
->bio
= rq
->biotail
= NULL
;
744 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
746 static void blk_mq_finish_request(struct request
*rq
)
748 struct request_queue
*q
= rq
->q
;
750 blk_zone_finish_request(rq
);
752 if (rq
->rq_flags
& RQF_USE_SCHED
) {
753 q
->elevator
->type
->ops
.finish_request(rq
);
755 * For postflush request that may need to be
756 * completed twice, we should clear this flag
757 * to avoid double finish_request() on the rq.
759 rq
->rq_flags
&= ~RQF_USE_SCHED
;
763 static void __blk_mq_free_request(struct request
*rq
)
765 struct request_queue
*q
= rq
->q
;
766 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
767 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
768 const int sched_tag
= rq
->internal_tag
;
770 blk_crypto_free_request(rq
);
771 blk_pm_mark_last_busy(rq
);
774 if (rq
->tag
!= BLK_MQ_NO_TAG
) {
775 blk_mq_dec_active_requests(hctx
);
776 blk_mq_put_tag(hctx
->tags
, ctx
, rq
->tag
);
778 if (sched_tag
!= BLK_MQ_NO_TAG
)
779 blk_mq_put_tag(hctx
->sched_tags
, ctx
, sched_tag
);
780 blk_mq_sched_restart(hctx
);
784 void blk_mq_free_request(struct request
*rq
)
786 struct request_queue
*q
= rq
->q
;
788 blk_mq_finish_request(rq
);
790 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
791 laptop_io_completion(q
->disk
->bdi
);
795 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
796 if (req_ref_put_and_test(rq
))
797 __blk_mq_free_request(rq
);
799 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
801 void blk_mq_free_plug_rqs(struct blk_plug
*plug
)
805 while ((rq
= rq_list_pop(&plug
->cached_rqs
)) != NULL
)
806 blk_mq_free_request(rq
);
809 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
811 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
812 rq
->q
->disk
? rq
->q
->disk
->disk_name
: "?",
813 (__force
unsigned long long) rq
->cmd_flags
);
815 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
816 (unsigned long long)blk_rq_pos(rq
),
817 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
818 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
819 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
821 EXPORT_SYMBOL(blk_dump_rq_flags
);
823 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
825 if (req
->rq_flags
& RQF_IO_STAT
) {
826 const int sgrp
= op_stat_group(req_op(req
));
829 part_stat_add(req
->part
, sectors
[sgrp
], bytes
>> 9);
834 static void blk_print_req_error(struct request
*req
, blk_status_t status
)
836 printk_ratelimited(KERN_ERR
837 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
838 "phys_seg %u prio class %u\n",
839 blk_status_to_str(status
),
840 req
->q
->disk
? req
->q
->disk
->disk_name
: "?",
841 blk_rq_pos(req
), (__force u32
)req_op(req
),
842 blk_op_str(req_op(req
)),
843 (__force u32
)(req
->cmd_flags
& ~REQ_OP_MASK
),
844 req
->nr_phys_segments
,
845 IOPRIO_PRIO_CLASS(req_get_ioprio(req
)));
849 * Fully end IO on a request. Does not support partial completions, or
852 static void blk_complete_request(struct request
*req
)
854 const bool is_flush
= (req
->rq_flags
& RQF_FLUSH_SEQ
) != 0;
855 int total_bytes
= blk_rq_bytes(req
);
856 struct bio
*bio
= req
->bio
;
858 trace_block_rq_complete(req
, BLK_STS_OK
, total_bytes
);
863 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
)
864 blk_integrity_complete(req
, total_bytes
);
867 * Upper layers may call blk_crypto_evict_key() anytime after the last
868 * bio_endio(). Therefore, the keyslot must be released before that.
870 blk_crypto_rq_put_keyslot(req
);
872 blk_account_io_completion(req
, total_bytes
);
875 struct bio
*next
= bio
->bi_next
;
877 /* Completion has already been traced */
878 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
880 blk_zone_update_request_bio(req
, bio
);
888 * Reset counters so that the request stacking driver
889 * can find how many bytes remain in the request
899 * blk_update_request - Complete multiple bytes without completing the request
900 * @req: the request being processed
901 * @error: block status code
902 * @nr_bytes: number of bytes to complete for @req
905 * Ends I/O on a number of bytes attached to @req, but doesn't complete
906 * the request structure even if @req doesn't have leftover.
907 * If @req has leftover, sets it up for the next range of segments.
909 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
910 * %false return from this function.
913 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
914 * except in the consistency check at the end of this function.
917 * %false - this request doesn't have any more data
918 * %true - this request has more data
920 bool blk_update_request(struct request
*req
, blk_status_t error
,
921 unsigned int nr_bytes
)
923 bool is_flush
= req
->rq_flags
& RQF_FLUSH_SEQ
;
924 bool quiet
= req
->rq_flags
& RQF_QUIET
;
927 trace_block_rq_complete(req
, error
, nr_bytes
);
932 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
&&
934 blk_integrity_complete(req
, nr_bytes
);
937 * Upper layers may call blk_crypto_evict_key() anytime after the last
938 * bio_endio(). Therefore, the keyslot must be released before that.
940 if (blk_crypto_rq_has_keyslot(req
) && nr_bytes
>= blk_rq_bytes(req
))
941 __blk_crypto_rq_put_keyslot(req
);
943 if (unlikely(error
&& !blk_rq_is_passthrough(req
) && !quiet
) &&
944 !test_bit(GD_DEAD
, &req
->q
->disk
->state
)) {
945 blk_print_req_error(req
, error
);
946 trace_block_rq_error(req
, error
, nr_bytes
);
949 blk_account_io_completion(req
, nr_bytes
);
953 struct bio
*bio
= req
->bio
;
954 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
957 bio
->bi_status
= error
;
959 if (bio_bytes
== bio
->bi_iter
.bi_size
) {
960 req
->bio
= bio
->bi_next
;
961 } else if (bio_is_zone_append(bio
) && error
== BLK_STS_OK
) {
963 * Partial zone append completions cannot be supported
964 * as the BIO fragments may end up not being written
967 bio
->bi_status
= BLK_STS_IOERR
;
970 /* Completion has already been traced */
971 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
973 bio_set_flag(bio
, BIO_QUIET
);
975 bio_advance(bio
, bio_bytes
);
977 /* Don't actually finish bio if it's part of flush sequence */
978 if (!bio
->bi_iter
.bi_size
) {
979 blk_zone_update_request_bio(req
, bio
);
984 total_bytes
+= bio_bytes
;
985 nr_bytes
-= bio_bytes
;
996 * Reset counters so that the request stacking driver
997 * can find how many bytes remain in the request
1000 req
->__data_len
= 0;
1004 req
->__data_len
-= total_bytes
;
1006 /* update sector only for requests with clear definition of sector */
1007 if (!blk_rq_is_passthrough(req
))
1008 req
->__sector
+= total_bytes
>> 9;
1010 /* mixed attributes always follow the first bio */
1011 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
1012 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
1013 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
1016 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
1018 * If total number of sectors is less than the first segment
1019 * size, something has gone terribly wrong.
1021 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
1022 blk_dump_rq_flags(req
, "request botched");
1023 req
->__data_len
= blk_rq_cur_bytes(req
);
1026 /* recalculate the number of segments */
1027 req
->nr_phys_segments
= blk_recalc_rq_segments(req
);
1032 EXPORT_SYMBOL_GPL(blk_update_request
);
1034 static inline void blk_account_io_done(struct request
*req
, u64 now
)
1036 trace_block_io_done(req
);
1039 * Account IO completion. flush_rq isn't accounted as a
1040 * normal IO on queueing nor completion. Accounting the
1041 * containing request is enough.
1043 if ((req
->rq_flags
& (RQF_IO_STAT
|RQF_FLUSH_SEQ
)) == RQF_IO_STAT
) {
1044 const int sgrp
= op_stat_group(req_op(req
));
1047 update_io_ticks(req
->part
, jiffies
, true);
1048 part_stat_inc(req
->part
, ios
[sgrp
]);
1049 part_stat_add(req
->part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
1050 part_stat_local_dec(req
->part
,
1051 in_flight
[op_is_write(req_op(req
))]);
1056 static inline bool blk_rq_passthrough_stats(struct request
*req
)
1058 struct bio
*bio
= req
->bio
;
1060 if (!blk_queue_passthrough_stat(req
->q
))
1063 /* Requests without a bio do not transfer data. */
1068 * Stats are accumulated in the bdev, so must have one attached to a
1069 * bio to track stats. Most drivers do not set the bdev for passthrough
1070 * requests, but nvme is one that will set it.
1076 * We don't know what a passthrough command does, but we know the
1077 * payload size and data direction. Ensuring the size is aligned to the
1078 * block size filters out most commands with payloads that don't
1079 * represent sector access.
1081 if (blk_rq_bytes(req
) & (bdev_logical_block_size(bio
->bi_bdev
) - 1))
1086 static inline void blk_account_io_start(struct request
*req
)
1088 trace_block_io_start(req
);
1090 if (!blk_queue_io_stat(req
->q
))
1092 if (blk_rq_is_passthrough(req
) && !blk_rq_passthrough_stats(req
))
1095 req
->rq_flags
|= RQF_IO_STAT
;
1096 req
->start_time_ns
= blk_time_get_ns();
1099 * All non-passthrough requests are created from a bio with one
1100 * exception: when a flush command that is part of a flush sequence
1101 * generated by the state machine in blk-flush.c is cloned onto the
1102 * lower device by dm-multipath we can get here without a bio.
1105 req
->part
= req
->bio
->bi_bdev
;
1107 req
->part
= req
->q
->disk
->part0
;
1110 update_io_ticks(req
->part
, jiffies
, false);
1111 part_stat_local_inc(req
->part
, in_flight
[op_is_write(req_op(req
))]);
1115 static inline void __blk_mq_end_request_acct(struct request
*rq
, u64 now
)
1117 if (rq
->rq_flags
& RQF_STATS
)
1118 blk_stat_add(rq
, now
);
1120 blk_mq_sched_completed_request(rq
, now
);
1121 blk_account_io_done(rq
, now
);
1124 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
1126 if (blk_mq_need_time_stamp(rq
))
1127 __blk_mq_end_request_acct(rq
, blk_time_get_ns());
1129 blk_mq_finish_request(rq
);
1132 rq_qos_done(rq
->q
, rq
);
1133 if (rq
->end_io(rq
, error
) == RQ_END_IO_FREE
)
1134 blk_mq_free_request(rq
);
1136 blk_mq_free_request(rq
);
1139 EXPORT_SYMBOL(__blk_mq_end_request
);
1141 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
1143 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
1145 __blk_mq_end_request(rq
, error
);
1147 EXPORT_SYMBOL(blk_mq_end_request
);
1149 #define TAG_COMP_BATCH 32
1151 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx
*hctx
,
1152 int *tag_array
, int nr_tags
)
1154 struct request_queue
*q
= hctx
->queue
;
1156 blk_mq_sub_active_requests(hctx
, nr_tags
);
1158 blk_mq_put_tags(hctx
->tags
, tag_array
, nr_tags
);
1159 percpu_ref_put_many(&q
->q_usage_counter
, nr_tags
);
1162 void blk_mq_end_request_batch(struct io_comp_batch
*iob
)
1164 int tags
[TAG_COMP_BATCH
], nr_tags
= 0;
1165 struct blk_mq_hw_ctx
*cur_hctx
= NULL
;
1170 now
= blk_time_get_ns();
1172 while ((rq
= rq_list_pop(&iob
->req_list
)) != NULL
) {
1174 prefetch(rq
->rq_next
);
1176 blk_complete_request(rq
);
1178 __blk_mq_end_request_acct(rq
, now
);
1180 blk_mq_finish_request(rq
);
1182 rq_qos_done(rq
->q
, rq
);
1185 * If end_io handler returns NONE, then it still has
1186 * ownership of the request.
1188 if (rq
->end_io
&& rq
->end_io(rq
, 0) == RQ_END_IO_NONE
)
1191 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
1192 if (!req_ref_put_and_test(rq
))
1195 blk_crypto_free_request(rq
);
1196 blk_pm_mark_last_busy(rq
);
1198 if (nr_tags
== TAG_COMP_BATCH
|| cur_hctx
!= rq
->mq_hctx
) {
1200 blk_mq_flush_tag_batch(cur_hctx
, tags
, nr_tags
);
1202 cur_hctx
= rq
->mq_hctx
;
1204 tags
[nr_tags
++] = rq
->tag
;
1208 blk_mq_flush_tag_batch(cur_hctx
, tags
, nr_tags
);
1210 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch
);
1212 static void blk_complete_reqs(struct llist_head
*list
)
1214 struct llist_node
*entry
= llist_reverse_order(llist_del_all(list
));
1215 struct request
*rq
, *next
;
1217 llist_for_each_entry_safe(rq
, next
, entry
, ipi_list
)
1218 rq
->q
->mq_ops
->complete(rq
);
1221 static __latent_entropy
void blk_done_softirq(void)
1223 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done
));
1226 static int blk_softirq_cpu_dead(unsigned int cpu
)
1228 blk_complete_reqs(&per_cpu(blk_cpu_done
, cpu
));
1232 static void __blk_mq_complete_request_remote(void *data
)
1234 __raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1237 static inline bool blk_mq_complete_need_ipi(struct request
*rq
)
1239 int cpu
= raw_smp_processor_id();
1241 if (!IS_ENABLED(CONFIG_SMP
) ||
1242 !test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
))
1245 * With force threaded interrupts enabled, raising softirq from an SMP
1246 * function call will always result in waking the ksoftirqd thread.
1247 * This is probably worse than completing the request on a different
1250 if (force_irqthreads())
1253 /* same CPU or cache domain and capacity? Complete locally */
1254 if (cpu
== rq
->mq_ctx
->cpu
||
1255 (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
) &&
1256 cpus_share_cache(cpu
, rq
->mq_ctx
->cpu
) &&
1257 cpus_equal_capacity(cpu
, rq
->mq_ctx
->cpu
)))
1260 /* don't try to IPI to an offline CPU */
1261 return cpu_online(rq
->mq_ctx
->cpu
);
1264 static void blk_mq_complete_send_ipi(struct request
*rq
)
1268 cpu
= rq
->mq_ctx
->cpu
;
1269 if (llist_add(&rq
->ipi_list
, &per_cpu(blk_cpu_done
, cpu
)))
1270 smp_call_function_single_async(cpu
, &per_cpu(blk_cpu_csd
, cpu
));
1273 static void blk_mq_raise_softirq(struct request
*rq
)
1275 struct llist_head
*list
;
1278 list
= this_cpu_ptr(&blk_cpu_done
);
1279 if (llist_add(&rq
->ipi_list
, list
))
1280 raise_softirq(BLOCK_SOFTIRQ
);
1284 bool blk_mq_complete_request_remote(struct request
*rq
)
1286 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
1289 * For request which hctx has only one ctx mapping,
1290 * or a polled request, always complete locally,
1291 * it's pointless to redirect the completion.
1293 if ((rq
->mq_hctx
->nr_ctx
== 1 &&
1294 rq
->mq_ctx
->cpu
== raw_smp_processor_id()) ||
1295 rq
->cmd_flags
& REQ_POLLED
)
1298 if (blk_mq_complete_need_ipi(rq
)) {
1299 blk_mq_complete_send_ipi(rq
);
1303 if (rq
->q
->nr_hw_queues
== 1) {
1304 blk_mq_raise_softirq(rq
);
1309 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote
);
1312 * blk_mq_complete_request - end I/O on a request
1313 * @rq: the request being processed
1316 * Complete a request by scheduling the ->complete_rq operation.
1318 void blk_mq_complete_request(struct request
*rq
)
1320 if (!blk_mq_complete_request_remote(rq
))
1321 rq
->q
->mq_ops
->complete(rq
);
1323 EXPORT_SYMBOL(blk_mq_complete_request
);
1326 * blk_mq_start_request - Start processing a request
1327 * @rq: Pointer to request to be started
1329 * Function used by device drivers to notify the block layer that a request
1330 * is going to be processed now, so blk layer can do proper initializations
1331 * such as starting the timeout timer.
1333 void blk_mq_start_request(struct request
*rq
)
1335 struct request_queue
*q
= rq
->q
;
1337 trace_block_rq_issue(rq
);
1339 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
) &&
1340 !blk_rq_is_passthrough(rq
)) {
1341 rq
->io_start_time_ns
= blk_time_get_ns();
1342 rq
->stats_sectors
= blk_rq_sectors(rq
);
1343 rq
->rq_flags
|= RQF_STATS
;
1344 rq_qos_issue(q
, rq
);
1347 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
1350 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
1351 rq
->mq_hctx
->tags
->rqs
[rq
->tag
] = rq
;
1353 if (blk_integrity_rq(rq
) && req_op(rq
) == REQ_OP_WRITE
)
1354 blk_integrity_prepare(rq
);
1356 if (rq
->bio
&& rq
->bio
->bi_opf
& REQ_POLLED
)
1357 WRITE_ONCE(rq
->bio
->bi_cookie
, rq
->mq_hctx
->queue_num
);
1359 EXPORT_SYMBOL(blk_mq_start_request
);
1362 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1363 * queues. This is important for md arrays to benefit from merging
1366 static inline unsigned short blk_plug_max_rq_count(struct blk_plug
*plug
)
1368 if (plug
->multiple_queues
)
1369 return BLK_MAX_REQUEST_COUNT
* 2;
1370 return BLK_MAX_REQUEST_COUNT
;
1373 static void blk_add_rq_to_plug(struct blk_plug
*plug
, struct request
*rq
)
1375 struct request
*last
= rq_list_peek(&plug
->mq_list
);
1377 if (!plug
->rq_count
) {
1378 trace_block_plug(rq
->q
);
1379 } else if (plug
->rq_count
>= blk_plug_max_rq_count(plug
) ||
1380 (!blk_queue_nomerges(rq
->q
) &&
1381 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1382 blk_mq_flush_plug_list(plug
, false);
1384 trace_block_plug(rq
->q
);
1387 if (!plug
->multiple_queues
&& last
&& last
->q
!= rq
->q
)
1388 plug
->multiple_queues
= true;
1390 * Any request allocated from sched tags can't be issued to
1391 * ->queue_rqs() directly
1393 if (!plug
->has_elevator
&& (rq
->rq_flags
& RQF_SCHED_TAGS
))
1394 plug
->has_elevator
= true;
1395 rq_list_add_tail(&plug
->mq_list
, rq
);
1400 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1401 * @rq: request to insert
1402 * @at_head: insert request at head or tail of queue
1405 * Insert a fully prepared request at the back of the I/O scheduler queue
1406 * for execution. Don't wait for completion.
1409 * This function will invoke @done directly if the queue is dead.
1411 void blk_execute_rq_nowait(struct request
*rq
, bool at_head
)
1413 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1415 WARN_ON(irqs_disabled());
1416 WARN_ON(!blk_rq_is_passthrough(rq
));
1418 blk_account_io_start(rq
);
1420 if (current
->plug
&& !at_head
) {
1421 blk_add_rq_to_plug(current
->plug
, rq
);
1425 blk_mq_insert_request(rq
, at_head
? BLK_MQ_INSERT_AT_HEAD
: 0);
1426 blk_mq_run_hw_queue(hctx
, hctx
->flags
& BLK_MQ_F_BLOCKING
);
1428 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
1430 struct blk_rq_wait
{
1431 struct completion done
;
1435 static enum rq_end_io_ret
blk_end_sync_rq(struct request
*rq
, blk_status_t ret
)
1437 struct blk_rq_wait
*wait
= rq
->end_io_data
;
1440 complete(&wait
->done
);
1441 return RQ_END_IO_NONE
;
1444 bool blk_rq_is_poll(struct request
*rq
)
1448 if (rq
->mq_hctx
->type
!= HCTX_TYPE_POLL
)
1452 EXPORT_SYMBOL_GPL(blk_rq_is_poll
);
1454 static void blk_rq_poll_completion(struct request
*rq
, struct completion
*wait
)
1457 blk_hctx_poll(rq
->q
, rq
->mq_hctx
, NULL
, 0);
1459 } while (!completion_done(wait
));
1463 * blk_execute_rq - insert a request into queue for execution
1464 * @rq: request to insert
1465 * @at_head: insert request at head or tail of queue
1468 * Insert a fully prepared request at the back of the I/O scheduler queue
1469 * for execution and wait for completion.
1470 * Return: The blk_status_t result provided to blk_mq_end_request().
1472 blk_status_t
blk_execute_rq(struct request
*rq
, bool at_head
)
1474 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1475 struct blk_rq_wait wait
= {
1476 .done
= COMPLETION_INITIALIZER_ONSTACK(wait
.done
),
1479 WARN_ON(irqs_disabled());
1480 WARN_ON(!blk_rq_is_passthrough(rq
));
1482 rq
->end_io_data
= &wait
;
1483 rq
->end_io
= blk_end_sync_rq
;
1485 blk_account_io_start(rq
);
1486 blk_mq_insert_request(rq
, at_head
? BLK_MQ_INSERT_AT_HEAD
: 0);
1487 blk_mq_run_hw_queue(hctx
, false);
1489 if (blk_rq_is_poll(rq
))
1490 blk_rq_poll_completion(rq
, &wait
.done
);
1492 blk_wait_io(&wait
.done
);
1496 EXPORT_SYMBOL(blk_execute_rq
);
1498 static void __blk_mq_requeue_request(struct request
*rq
)
1500 struct request_queue
*q
= rq
->q
;
1502 blk_mq_put_driver_tag(rq
);
1504 trace_block_rq_requeue(rq
);
1505 rq_qos_requeue(q
, rq
);
1507 if (blk_mq_request_started(rq
)) {
1508 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
1509 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
1513 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
1515 struct request_queue
*q
= rq
->q
;
1516 unsigned long flags
;
1518 __blk_mq_requeue_request(rq
);
1520 /* this request will be re-inserted to io scheduler queue */
1521 blk_mq_sched_requeue_request(rq
);
1523 spin_lock_irqsave(&q
->requeue_lock
, flags
);
1524 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
1525 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
1527 if (kick_requeue_list
)
1528 blk_mq_kick_requeue_list(q
);
1530 EXPORT_SYMBOL(blk_mq_requeue_request
);
1532 static void blk_mq_requeue_work(struct work_struct
*work
)
1534 struct request_queue
*q
=
1535 container_of(work
, struct request_queue
, requeue_work
.work
);
1537 LIST_HEAD(flush_list
);
1540 spin_lock_irq(&q
->requeue_lock
);
1541 list_splice_init(&q
->requeue_list
, &rq_list
);
1542 list_splice_init(&q
->flush_list
, &flush_list
);
1543 spin_unlock_irq(&q
->requeue_lock
);
1545 while (!list_empty(&rq_list
)) {
1546 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
1548 * If RQF_DONTPREP ist set, the request has been started by the
1549 * driver already and might have driver-specific data allocated
1550 * already. Insert it into the hctx dispatch list to avoid
1551 * block layer merges for the request.
1553 if (rq
->rq_flags
& RQF_DONTPREP
) {
1554 list_del_init(&rq
->queuelist
);
1555 blk_mq_request_bypass_insert(rq
, 0);
1557 list_del_init(&rq
->queuelist
);
1558 blk_mq_insert_request(rq
, BLK_MQ_INSERT_AT_HEAD
);
1562 while (!list_empty(&flush_list
)) {
1563 rq
= list_entry(flush_list
.next
, struct request
, queuelist
);
1564 list_del_init(&rq
->queuelist
);
1565 blk_mq_insert_request(rq
, 0);
1568 blk_mq_run_hw_queues(q
, false);
1571 void blk_mq_kick_requeue_list(struct request_queue
*q
)
1573 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
1575 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
1577 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
1578 unsigned long msecs
)
1580 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
1581 msecs_to_jiffies(msecs
));
1583 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
1585 static bool blk_is_flush_data_rq(struct request
*rq
)
1587 return (rq
->rq_flags
& RQF_FLUSH_SEQ
) && !is_flush_rq(rq
);
1590 static bool blk_mq_rq_inflight(struct request
*rq
, void *priv
)
1593 * If we find a request that isn't idle we know the queue is busy
1594 * as it's checked in the iter.
1595 * Return false to stop the iteration.
1597 * In case of queue quiesce, if one flush data request is completed,
1598 * don't count it as inflight given the flush sequence is suspended,
1599 * and the original flush data request is invisible to driver, just
1600 * like other pending requests because of quiesce
1602 if (blk_mq_request_started(rq
) && !(blk_queue_quiesced(rq
->q
) &&
1603 blk_is_flush_data_rq(rq
) &&
1604 blk_mq_request_completed(rq
))) {
1614 bool blk_mq_queue_inflight(struct request_queue
*q
)
1618 blk_mq_queue_tag_busy_iter(q
, blk_mq_rq_inflight
, &busy
);
1621 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight
);
1623 static void blk_mq_rq_timed_out(struct request
*req
)
1625 req
->rq_flags
|= RQF_TIMED_OUT
;
1626 if (req
->q
->mq_ops
->timeout
) {
1627 enum blk_eh_timer_return ret
;
1629 ret
= req
->q
->mq_ops
->timeout(req
);
1630 if (ret
== BLK_EH_DONE
)
1632 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
1638 struct blk_expired_data
{
1639 bool has_timedout_rq
;
1641 unsigned long timeout_start
;
1644 static bool blk_mq_req_expired(struct request
*rq
, struct blk_expired_data
*expired
)
1646 unsigned long deadline
;
1648 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
1650 if (rq
->rq_flags
& RQF_TIMED_OUT
)
1653 deadline
= READ_ONCE(rq
->deadline
);
1654 if (time_after_eq(expired
->timeout_start
, deadline
))
1657 if (expired
->next
== 0)
1658 expired
->next
= deadline
;
1659 else if (time_after(expired
->next
, deadline
))
1660 expired
->next
= deadline
;
1664 void blk_mq_put_rq_ref(struct request
*rq
)
1666 if (is_flush_rq(rq
)) {
1667 if (rq
->end_io(rq
, 0) == RQ_END_IO_FREE
)
1668 blk_mq_free_request(rq
);
1669 } else if (req_ref_put_and_test(rq
)) {
1670 __blk_mq_free_request(rq
);
1674 static bool blk_mq_check_expired(struct request
*rq
, void *priv
)
1676 struct blk_expired_data
*expired
= priv
;
1679 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1680 * be reallocated underneath the timeout handler's processing, then
1681 * the expire check is reliable. If the request is not expired, then
1682 * it was completed and reallocated as a new request after returning
1683 * from blk_mq_check_expired().
1685 if (blk_mq_req_expired(rq
, expired
)) {
1686 expired
->has_timedout_rq
= true;
1692 static bool blk_mq_handle_expired(struct request
*rq
, void *priv
)
1694 struct blk_expired_data
*expired
= priv
;
1696 if (blk_mq_req_expired(rq
, expired
))
1697 blk_mq_rq_timed_out(rq
);
1701 static void blk_mq_timeout_work(struct work_struct
*work
)
1703 struct request_queue
*q
=
1704 container_of(work
, struct request_queue
, timeout_work
);
1705 struct blk_expired_data expired
= {
1706 .timeout_start
= jiffies
,
1708 struct blk_mq_hw_ctx
*hctx
;
1711 /* A deadlock might occur if a request is stuck requiring a
1712 * timeout at the same time a queue freeze is waiting
1713 * completion, since the timeout code would not be able to
1714 * acquire the queue reference here.
1716 * That's why we don't use blk_queue_enter here; instead, we use
1717 * percpu_ref_tryget directly, because we need to be able to
1718 * obtain a reference even in the short window between the queue
1719 * starting to freeze, by dropping the first reference in
1720 * blk_freeze_queue_start, and the moment the last request is
1721 * consumed, marked by the instant q_usage_counter reaches
1724 if (!percpu_ref_tryget(&q
->q_usage_counter
))
1727 /* check if there is any timed-out request */
1728 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &expired
);
1729 if (expired
.has_timedout_rq
) {
1731 * Before walking tags, we must ensure any submit started
1732 * before the current time has finished. Since the submit
1733 * uses srcu or rcu, wait for a synchronization point to
1734 * ensure all running submits have finished
1736 blk_mq_wait_quiesce_done(q
->tag_set
);
1739 blk_mq_queue_tag_busy_iter(q
, blk_mq_handle_expired
, &expired
);
1742 if (expired
.next
!= 0) {
1743 mod_timer(&q
->timeout
, expired
.next
);
1746 * Request timeouts are handled as a forward rolling timer. If
1747 * we end up here it means that no requests are pending and
1748 * also that no request has been pending for a while. Mark
1749 * each hctx as idle.
1751 queue_for_each_hw_ctx(q
, hctx
, i
) {
1752 /* the hctx may be unmapped, so check it here */
1753 if (blk_mq_hw_queue_mapped(hctx
))
1754 blk_mq_tag_idle(hctx
);
1760 struct flush_busy_ctx_data
{
1761 struct blk_mq_hw_ctx
*hctx
;
1762 struct list_head
*list
;
1765 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
1767 struct flush_busy_ctx_data
*flush_data
= data
;
1768 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
1769 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1770 enum hctx_type type
= hctx
->type
;
1772 spin_lock(&ctx
->lock
);
1773 list_splice_tail_init(&ctx
->rq_lists
[type
], flush_data
->list
);
1774 sbitmap_clear_bit(sb
, bitnr
);
1775 spin_unlock(&ctx
->lock
);
1780 * Process software queues that have been marked busy, splicing them
1781 * to the for-dispatch
1783 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
1785 struct flush_busy_ctx_data data
= {
1790 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
1793 struct dispatch_rq_data
{
1794 struct blk_mq_hw_ctx
*hctx
;
1798 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1801 struct dispatch_rq_data
*dispatch_data
= data
;
1802 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1803 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1804 enum hctx_type type
= hctx
->type
;
1806 spin_lock(&ctx
->lock
);
1807 if (!list_empty(&ctx
->rq_lists
[type
])) {
1808 dispatch_data
->rq
= list_entry_rq(ctx
->rq_lists
[type
].next
);
1809 list_del_init(&dispatch_data
->rq
->queuelist
);
1810 if (list_empty(&ctx
->rq_lists
[type
]))
1811 sbitmap_clear_bit(sb
, bitnr
);
1813 spin_unlock(&ctx
->lock
);
1815 return !dispatch_data
->rq
;
1818 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1819 struct blk_mq_ctx
*start
)
1821 unsigned off
= start
? start
->index_hw
[hctx
->type
] : 0;
1822 struct dispatch_rq_data data
= {
1827 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1828 dispatch_rq_from_ctx
, &data
);
1833 bool __blk_mq_alloc_driver_tag(struct request
*rq
)
1835 struct sbitmap_queue
*bt
= &rq
->mq_hctx
->tags
->bitmap_tags
;
1836 unsigned int tag_offset
= rq
->mq_hctx
->tags
->nr_reserved_tags
;
1839 blk_mq_tag_busy(rq
->mq_hctx
);
1841 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
)) {
1842 bt
= &rq
->mq_hctx
->tags
->breserved_tags
;
1845 if (!hctx_may_queue(rq
->mq_hctx
, bt
))
1849 tag
= __sbitmap_queue_get(bt
);
1850 if (tag
== BLK_MQ_NO_TAG
)
1853 rq
->tag
= tag
+ tag_offset
;
1854 blk_mq_inc_active_requests(rq
->mq_hctx
);
1858 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1859 int flags
, void *key
)
1861 struct blk_mq_hw_ctx
*hctx
;
1863 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1865 spin_lock(&hctx
->dispatch_wait_lock
);
1866 if (!list_empty(&wait
->entry
)) {
1867 struct sbitmap_queue
*sbq
;
1869 list_del_init(&wait
->entry
);
1870 sbq
= &hctx
->tags
->bitmap_tags
;
1871 atomic_dec(&sbq
->ws_active
);
1873 spin_unlock(&hctx
->dispatch_wait_lock
);
1875 blk_mq_run_hw_queue(hctx
, true);
1880 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1881 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1882 * restart. For both cases, take care to check the condition again after
1883 * marking us as waiting.
1885 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1888 struct sbitmap_queue
*sbq
;
1889 struct wait_queue_head
*wq
;
1890 wait_queue_entry_t
*wait
;
1893 if (!(hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
) &&
1894 !(blk_mq_is_shared_tags(hctx
->flags
))) {
1895 blk_mq_sched_mark_restart_hctx(hctx
);
1898 * It's possible that a tag was freed in the window between the
1899 * allocation failure and adding the hardware queue to the wait
1902 * Don't clear RESTART here, someone else could have set it.
1903 * At most this will cost an extra queue run.
1905 return blk_mq_get_driver_tag(rq
);
1908 wait
= &hctx
->dispatch_wait
;
1909 if (!list_empty_careful(&wait
->entry
))
1912 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
))
1913 sbq
= &hctx
->tags
->breserved_tags
;
1915 sbq
= &hctx
->tags
->bitmap_tags
;
1916 wq
= &bt_wait_ptr(sbq
, hctx
)->wait
;
1918 spin_lock_irq(&wq
->lock
);
1919 spin_lock(&hctx
->dispatch_wait_lock
);
1920 if (!list_empty(&wait
->entry
)) {
1921 spin_unlock(&hctx
->dispatch_wait_lock
);
1922 spin_unlock_irq(&wq
->lock
);
1926 atomic_inc(&sbq
->ws_active
);
1927 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1928 __add_wait_queue(wq
, wait
);
1931 * Add one explicit barrier since blk_mq_get_driver_tag() may
1932 * not imply barrier in case of failure.
1934 * Order adding us to wait queue and allocating driver tag.
1936 * The pair is the one implied in sbitmap_queue_wake_up() which
1937 * orders clearing sbitmap tag bits and waitqueue_active() in
1938 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1940 * Otherwise, re-order of adding wait queue and getting driver tag
1941 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1942 * the waitqueue_active() may not observe us in wait queue.
1947 * It's possible that a tag was freed in the window between the
1948 * allocation failure and adding the hardware queue to the wait
1951 ret
= blk_mq_get_driver_tag(rq
);
1953 spin_unlock(&hctx
->dispatch_wait_lock
);
1954 spin_unlock_irq(&wq
->lock
);
1959 * We got a tag, remove ourselves from the wait queue to ensure
1960 * someone else gets the wakeup.
1962 list_del_init(&wait
->entry
);
1963 atomic_dec(&sbq
->ws_active
);
1964 spin_unlock(&hctx
->dispatch_wait_lock
);
1965 spin_unlock_irq(&wq
->lock
);
1970 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1971 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1973 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1974 * - EWMA is one simple way to compute running average value
1975 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1976 * - take 4 as factor for avoiding to get too small(0) result, and this
1977 * factor doesn't matter because EWMA decreases exponentially
1979 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1983 ewma
= hctx
->dispatch_busy
;
1988 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1990 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1991 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1993 hctx
->dispatch_busy
= ewma
;
1996 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1998 static void blk_mq_handle_dev_resource(struct request
*rq
,
1999 struct list_head
*list
)
2001 list_add(&rq
->queuelist
, list
);
2002 __blk_mq_requeue_request(rq
);
2005 enum prep_dispatch
{
2007 PREP_DISPATCH_NO_TAG
,
2008 PREP_DISPATCH_NO_BUDGET
,
2011 static enum prep_dispatch
blk_mq_prep_dispatch_rq(struct request
*rq
,
2014 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2015 int budget_token
= -1;
2018 budget_token
= blk_mq_get_dispatch_budget(rq
->q
);
2019 if (budget_token
< 0) {
2020 blk_mq_put_driver_tag(rq
);
2021 return PREP_DISPATCH_NO_BUDGET
;
2023 blk_mq_set_rq_budget_token(rq
, budget_token
);
2026 if (!blk_mq_get_driver_tag(rq
)) {
2028 * The initial allocation attempt failed, so we need to
2029 * rerun the hardware queue when a tag is freed. The
2030 * waitqueue takes care of that. If the queue is run
2031 * before we add this entry back on the dispatch list,
2032 * we'll re-run it below.
2034 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
2036 * All budgets not got from this function will be put
2037 * together during handling partial dispatch
2040 blk_mq_put_dispatch_budget(rq
->q
, budget_token
);
2041 return PREP_DISPATCH_NO_TAG
;
2045 return PREP_DISPATCH_OK
;
2048 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2049 static void blk_mq_release_budgets(struct request_queue
*q
,
2050 struct list_head
*list
)
2054 list_for_each_entry(rq
, list
, queuelist
) {
2055 int budget_token
= blk_mq_get_rq_budget_token(rq
);
2057 if (budget_token
>= 0)
2058 blk_mq_put_dispatch_budget(q
, budget_token
);
2063 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2064 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2066 * Attention, we should explicitly call this in unusual cases:
2067 * 1) did not queue everything initially scheduled to queue
2068 * 2) the last attempt to queue a request failed
2070 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx
*hctx
, int queued
,
2073 if (hctx
->queue
->mq_ops
->commit_rqs
&& queued
) {
2074 trace_block_unplug(hctx
->queue
, queued
, !from_schedule
);
2075 hctx
->queue
->mq_ops
->commit_rqs(hctx
);
2080 * Returns true if we did some work AND can potentially do more.
2082 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
,
2083 unsigned int nr_budgets
)
2085 enum prep_dispatch prep
;
2086 struct request_queue
*q
= hctx
->queue
;
2089 blk_status_t ret
= BLK_STS_OK
;
2090 bool needs_resource
= false;
2092 if (list_empty(list
))
2096 * Now process all the entries, sending them to the driver.
2100 struct blk_mq_queue_data bd
;
2102 rq
= list_first_entry(list
, struct request
, queuelist
);
2104 WARN_ON_ONCE(hctx
!= rq
->mq_hctx
);
2105 prep
= blk_mq_prep_dispatch_rq(rq
, !nr_budgets
);
2106 if (prep
!= PREP_DISPATCH_OK
)
2109 list_del_init(&rq
->queuelist
);
2112 bd
.last
= list_empty(list
);
2115 * once the request is queued to lld, no need to cover the
2120 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
2125 case BLK_STS_RESOURCE
:
2126 needs_resource
= true;
2128 case BLK_STS_DEV_RESOURCE
:
2129 blk_mq_handle_dev_resource(rq
, list
);
2132 blk_mq_end_request(rq
, ret
);
2134 } while (!list_empty(list
));
2136 /* If we didn't flush the entire list, we could have told the driver
2137 * there was more coming, but that turned out to be a lie.
2139 if (!list_empty(list
) || ret
!= BLK_STS_OK
)
2140 blk_mq_commit_rqs(hctx
, queued
, false);
2143 * Any items that need requeuing? Stuff them into hctx->dispatch,
2144 * that is where we will continue on next queue run.
2146 if (!list_empty(list
)) {
2148 /* For non-shared tags, the RESTART check will suffice */
2149 bool no_tag
= prep
== PREP_DISPATCH_NO_TAG
&&
2150 ((hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
) ||
2151 blk_mq_is_shared_tags(hctx
->flags
));
2154 blk_mq_release_budgets(q
, list
);
2156 spin_lock(&hctx
->lock
);
2157 list_splice_tail_init(list
, &hctx
->dispatch
);
2158 spin_unlock(&hctx
->lock
);
2161 * Order adding requests to hctx->dispatch and checking
2162 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2163 * in blk_mq_sched_restart(). Avoid restart code path to
2164 * miss the new added requests to hctx->dispatch, meantime
2165 * SCHED_RESTART is observed here.
2170 * If SCHED_RESTART was set by the caller of this function and
2171 * it is no longer set that means that it was cleared by another
2172 * thread and hence that a queue rerun is needed.
2174 * If 'no_tag' is set, that means that we failed getting
2175 * a driver tag with an I/O scheduler attached. If our dispatch
2176 * waitqueue is no longer active, ensure that we run the queue
2177 * AFTER adding our entries back to the list.
2179 * If no I/O scheduler has been configured it is possible that
2180 * the hardware queue got stopped and restarted before requests
2181 * were pushed back onto the dispatch list. Rerun the queue to
2182 * avoid starvation. Notes:
2183 * - blk_mq_run_hw_queue() checks whether or not a queue has
2184 * been stopped before rerunning a queue.
2185 * - Some but not all block drivers stop a queue before
2186 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2189 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2190 * bit is set, run queue after a delay to avoid IO stalls
2191 * that could otherwise occur if the queue is idle. We'll do
2192 * similar if we couldn't get budget or couldn't lock a zone
2193 * and SCHED_RESTART is set.
2195 needs_restart
= blk_mq_sched_needs_restart(hctx
);
2196 if (prep
== PREP_DISPATCH_NO_BUDGET
)
2197 needs_resource
= true;
2198 if (!needs_restart
||
2199 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
2200 blk_mq_run_hw_queue(hctx
, true);
2201 else if (needs_resource
)
2202 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
2204 blk_mq_update_dispatch_busy(hctx
, true);
2208 blk_mq_update_dispatch_busy(hctx
, false);
2212 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
2214 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
2216 if (cpu
>= nr_cpu_ids
)
2217 cpu
= cpumask_first(hctx
->cpumask
);
2222 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2223 * it for speeding up the check
2225 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx
*hctx
)
2227 return hctx
->next_cpu
>= nr_cpu_ids
;
2231 * It'd be great if the workqueue API had a way to pass
2232 * in a mask and had some smarts for more clever placement.
2233 * For now we just round-robin here, switching for every
2234 * BLK_MQ_CPU_WORK_BATCH queued items.
2236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
2239 int next_cpu
= hctx
->next_cpu
;
2241 /* Switch to unbound if no allowable CPUs in this hctx */
2242 if (hctx
->queue
->nr_hw_queues
== 1 || blk_mq_hctx_empty_cpumask(hctx
))
2243 return WORK_CPU_UNBOUND
;
2245 if (--hctx
->next_cpu_batch
<= 0) {
2247 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
2249 if (next_cpu
>= nr_cpu_ids
)
2250 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2251 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2255 * Do unbound schedule if we can't find a online CPU for this hctx,
2256 * and it should only happen in the path of handling CPU DEAD.
2258 if (!cpu_online(next_cpu
)) {
2265 * Make sure to re-select CPU next time once after CPUs
2266 * in hctx->cpumask become online again.
2268 hctx
->next_cpu
= next_cpu
;
2269 hctx
->next_cpu_batch
= 1;
2270 return WORK_CPU_UNBOUND
;
2273 hctx
->next_cpu
= next_cpu
;
2278 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2279 * @hctx: Pointer to the hardware queue to run.
2280 * @msecs: Milliseconds of delay to wait before running the queue.
2282 * Run a hardware queue asynchronously with a delay of @msecs.
2284 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
2286 if (unlikely(blk_mq_hctx_stopped(hctx
)))
2288 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
2289 msecs_to_jiffies(msecs
));
2291 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
2293 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx
*hctx
)
2298 * When queue is quiesced, we may be switching io scheduler, or
2299 * updating nr_hw_queues, or other things, and we can't run queue
2300 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2302 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2305 __blk_mq_run_dispatch_ops(hctx
->queue
, false,
2306 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
2307 blk_mq_hctx_has_pending(hctx
));
2312 * blk_mq_run_hw_queue - Start to run a hardware queue.
2313 * @hctx: Pointer to the hardware queue to run.
2314 * @async: If we want to run the queue asynchronously.
2316 * Check if the request queue is not in a quiesced state and if there are
2317 * pending requests to be sent. If this is true, run the queue to send requests
2320 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
2325 * We can't run the queue inline with interrupts disabled.
2327 WARN_ON_ONCE(!async
&& in_interrupt());
2329 might_sleep_if(!async
&& hctx
->flags
& BLK_MQ_F_BLOCKING
);
2331 need_run
= blk_mq_hw_queue_need_run(hctx
);
2333 unsigned long flags
;
2336 * Synchronize with blk_mq_unquiesce_queue(), because we check
2337 * if hw queue is quiesced locklessly above, we need the use
2338 * ->queue_lock to make sure we see the up-to-date status to
2339 * not miss rerunning the hw queue.
2341 spin_lock_irqsave(&hctx
->queue
->queue_lock
, flags
);
2342 need_run
= blk_mq_hw_queue_need_run(hctx
);
2343 spin_unlock_irqrestore(&hctx
->queue
->queue_lock
, flags
);
2349 if (async
|| !cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
)) {
2350 blk_mq_delay_run_hw_queue(hctx
, 0);
2354 blk_mq_run_dispatch_ops(hctx
->queue
,
2355 blk_mq_sched_dispatch_requests(hctx
));
2357 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
2360 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2363 static struct blk_mq_hw_ctx
*blk_mq_get_sq_hctx(struct request_queue
*q
)
2365 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
2367 * If the IO scheduler does not respect hardware queues when
2368 * dispatching, we just don't bother with multiple HW queues and
2369 * dispatch from hctx for the current CPU since running multiple queues
2370 * just causes lock contention inside the scheduler and pointless cache
2373 struct blk_mq_hw_ctx
*hctx
= ctx
->hctxs
[HCTX_TYPE_DEFAULT
];
2375 if (!blk_mq_hctx_stopped(hctx
))
2381 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2382 * @q: Pointer to the request queue to run.
2383 * @async: If we want to run the queue asynchronously.
2385 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
2387 struct blk_mq_hw_ctx
*hctx
, *sq_hctx
;
2391 if (blk_queue_sq_sched(q
))
2392 sq_hctx
= blk_mq_get_sq_hctx(q
);
2393 queue_for_each_hw_ctx(q
, hctx
, i
) {
2394 if (blk_mq_hctx_stopped(hctx
))
2397 * Dispatch from this hctx either if there's no hctx preferred
2398 * by IO scheduler or if it has requests that bypass the
2401 if (!sq_hctx
|| sq_hctx
== hctx
||
2402 !list_empty_careful(&hctx
->dispatch
))
2403 blk_mq_run_hw_queue(hctx
, async
);
2406 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
2409 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2410 * @q: Pointer to the request queue to run.
2411 * @msecs: Milliseconds of delay to wait before running the queues.
2413 void blk_mq_delay_run_hw_queues(struct request_queue
*q
, unsigned long msecs
)
2415 struct blk_mq_hw_ctx
*hctx
, *sq_hctx
;
2419 if (blk_queue_sq_sched(q
))
2420 sq_hctx
= blk_mq_get_sq_hctx(q
);
2421 queue_for_each_hw_ctx(q
, hctx
, i
) {
2422 if (blk_mq_hctx_stopped(hctx
))
2425 * If there is already a run_work pending, leave the
2426 * pending delay untouched. Otherwise, a hctx can stall
2427 * if another hctx is re-delaying the other's work
2428 * before the work executes.
2430 if (delayed_work_pending(&hctx
->run_work
))
2433 * Dispatch from this hctx either if there's no hctx preferred
2434 * by IO scheduler or if it has requests that bypass the
2437 if (!sq_hctx
|| sq_hctx
== hctx
||
2438 !list_empty_careful(&hctx
->dispatch
))
2439 blk_mq_delay_run_hw_queue(hctx
, msecs
);
2442 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues
);
2445 * This function is often used for pausing .queue_rq() by driver when
2446 * there isn't enough resource or some conditions aren't satisfied, and
2447 * BLK_STS_RESOURCE is usually returned.
2449 * We do not guarantee that dispatch can be drained or blocked
2450 * after blk_mq_stop_hw_queue() returns. Please use
2451 * blk_mq_quiesce_queue() for that requirement.
2453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
2455 cancel_delayed_work(&hctx
->run_work
);
2457 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2459 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
2462 * This function is often used for pausing .queue_rq() by driver when
2463 * there isn't enough resource or some conditions aren't satisfied, and
2464 * BLK_STS_RESOURCE is usually returned.
2466 * We do not guarantee that dispatch can be drained or blocked
2467 * after blk_mq_stop_hw_queues() returns. Please use
2468 * blk_mq_quiesce_queue() for that requirement.
2470 void blk_mq_stop_hw_queues(struct request_queue
*q
)
2472 struct blk_mq_hw_ctx
*hctx
;
2475 queue_for_each_hw_ctx(q
, hctx
, i
)
2476 blk_mq_stop_hw_queue(hctx
);
2478 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
2480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
2482 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2484 blk_mq_run_hw_queue(hctx
, hctx
->flags
& BLK_MQ_F_BLOCKING
);
2486 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
2488 void blk_mq_start_hw_queues(struct request_queue
*q
)
2490 struct blk_mq_hw_ctx
*hctx
;
2493 queue_for_each_hw_ctx(q
, hctx
, i
)
2494 blk_mq_start_hw_queue(hctx
);
2496 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
2498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
2500 if (!blk_mq_hctx_stopped(hctx
))
2503 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2505 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2506 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2507 * list in the subsequent routine.
2509 smp_mb__after_atomic();
2510 blk_mq_run_hw_queue(hctx
, async
);
2512 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
2514 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
2516 struct blk_mq_hw_ctx
*hctx
;
2519 queue_for_each_hw_ctx(q
, hctx
, i
)
2520 blk_mq_start_stopped_hw_queue(hctx
, async
||
2521 (hctx
->flags
& BLK_MQ_F_BLOCKING
));
2523 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
2525 static void blk_mq_run_work_fn(struct work_struct
*work
)
2527 struct blk_mq_hw_ctx
*hctx
=
2528 container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
2530 blk_mq_run_dispatch_ops(hctx
->queue
,
2531 blk_mq_sched_dispatch_requests(hctx
));
2535 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2536 * @rq: Pointer to request to be inserted.
2537 * @flags: BLK_MQ_INSERT_*
2539 * Should only be used carefully, when the caller knows we want to
2540 * bypass a potential IO scheduler on the target device.
2542 static void blk_mq_request_bypass_insert(struct request
*rq
, blk_insert_t flags
)
2544 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2546 spin_lock(&hctx
->lock
);
2547 if (flags
& BLK_MQ_INSERT_AT_HEAD
)
2548 list_add(&rq
->queuelist
, &hctx
->dispatch
);
2550 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
2551 spin_unlock(&hctx
->lock
);
2554 static void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
,
2555 struct blk_mq_ctx
*ctx
, struct list_head
*list
,
2556 bool run_queue_async
)
2559 enum hctx_type type
= hctx
->type
;
2562 * Try to issue requests directly if the hw queue isn't busy to save an
2563 * extra enqueue & dequeue to the sw queue.
2565 if (!hctx
->dispatch_busy
&& !run_queue_async
) {
2566 blk_mq_run_dispatch_ops(hctx
->queue
,
2567 blk_mq_try_issue_list_directly(hctx
, list
));
2568 if (list_empty(list
))
2573 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2576 list_for_each_entry(rq
, list
, queuelist
) {
2577 BUG_ON(rq
->mq_ctx
!= ctx
);
2578 trace_block_rq_insert(rq
);
2579 if (rq
->cmd_flags
& REQ_NOWAIT
)
2580 run_queue_async
= true;
2583 spin_lock(&ctx
->lock
);
2584 list_splice_tail_init(list
, &ctx
->rq_lists
[type
]);
2585 blk_mq_hctx_mark_pending(hctx
, ctx
);
2586 spin_unlock(&ctx
->lock
);
2588 blk_mq_run_hw_queue(hctx
, run_queue_async
);
2591 static void blk_mq_insert_request(struct request
*rq
, blk_insert_t flags
)
2593 struct request_queue
*q
= rq
->q
;
2594 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
2595 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2597 if (blk_rq_is_passthrough(rq
)) {
2599 * Passthrough request have to be added to hctx->dispatch
2600 * directly. The device may be in a situation where it can't
2601 * handle FS request, and always returns BLK_STS_RESOURCE for
2602 * them, which gets them added to hctx->dispatch.
2604 * If a passthrough request is required to unblock the queues,
2605 * and it is added to the scheduler queue, there is no chance to
2606 * dispatch it given we prioritize requests in hctx->dispatch.
2608 blk_mq_request_bypass_insert(rq
, flags
);
2609 } else if (req_op(rq
) == REQ_OP_FLUSH
) {
2611 * Firstly normal IO request is inserted to scheduler queue or
2612 * sw queue, meantime we add flush request to dispatch queue(
2613 * hctx->dispatch) directly and there is at most one in-flight
2614 * flush request for each hw queue, so it doesn't matter to add
2615 * flush request to tail or front of the dispatch queue.
2617 * Secondly in case of NCQ, flush request belongs to non-NCQ
2618 * command, and queueing it will fail when there is any
2619 * in-flight normal IO request(NCQ command). When adding flush
2620 * rq to the front of hctx->dispatch, it is easier to introduce
2621 * extra time to flush rq's latency because of S_SCHED_RESTART
2622 * compared with adding to the tail of dispatch queue, then
2623 * chance of flush merge is increased, and less flush requests
2624 * will be issued to controller. It is observed that ~10% time
2625 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2626 * drive when adding flush rq to the front of hctx->dispatch.
2628 * Simply queue flush rq to the front of hctx->dispatch so that
2629 * intensive flush workloads can benefit in case of NCQ HW.
2631 blk_mq_request_bypass_insert(rq
, BLK_MQ_INSERT_AT_HEAD
);
2632 } else if (q
->elevator
) {
2635 WARN_ON_ONCE(rq
->tag
!= BLK_MQ_NO_TAG
);
2637 list_add(&rq
->queuelist
, &list
);
2638 q
->elevator
->type
->ops
.insert_requests(hctx
, &list
, flags
);
2640 trace_block_rq_insert(rq
);
2642 spin_lock(&ctx
->lock
);
2643 if (flags
& BLK_MQ_INSERT_AT_HEAD
)
2644 list_add(&rq
->queuelist
, &ctx
->rq_lists
[hctx
->type
]);
2646 list_add_tail(&rq
->queuelist
,
2647 &ctx
->rq_lists
[hctx
->type
]);
2648 blk_mq_hctx_mark_pending(hctx
, ctx
);
2649 spin_unlock(&ctx
->lock
);
2653 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
,
2654 unsigned int nr_segs
)
2658 if (bio
->bi_opf
& REQ_RAHEAD
)
2659 rq
->cmd_flags
|= REQ_FAILFAST_MASK
;
2661 rq
->__sector
= bio
->bi_iter
.bi_sector
;
2662 blk_rq_bio_prep(rq
, bio
, nr_segs
);
2663 if (bio_integrity(bio
))
2664 rq
->nr_integrity_segments
= blk_rq_count_integrity_sg(rq
->q
,
2667 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2668 err
= blk_crypto_rq_bio_prep(rq
, bio
, GFP_NOIO
);
2671 blk_account_io_start(rq
);
2674 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
2675 struct request
*rq
, bool last
)
2677 struct request_queue
*q
= rq
->q
;
2678 struct blk_mq_queue_data bd
= {
2685 * For OK queue, we are done. For error, caller may kill it.
2686 * Any other error (busy), just add it to our list as we
2687 * previously would have done.
2689 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
2692 blk_mq_update_dispatch_busy(hctx
, false);
2694 case BLK_STS_RESOURCE
:
2695 case BLK_STS_DEV_RESOURCE
:
2696 blk_mq_update_dispatch_busy(hctx
, true);
2697 __blk_mq_requeue_request(rq
);
2700 blk_mq_update_dispatch_busy(hctx
, false);
2707 static bool blk_mq_get_budget_and_tag(struct request
*rq
)
2711 budget_token
= blk_mq_get_dispatch_budget(rq
->q
);
2712 if (budget_token
< 0)
2714 blk_mq_set_rq_budget_token(rq
, budget_token
);
2715 if (!blk_mq_get_driver_tag(rq
)) {
2716 blk_mq_put_dispatch_budget(rq
->q
, budget_token
);
2723 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2724 * @hctx: Pointer of the associated hardware queue.
2725 * @rq: Pointer to request to be sent.
2727 * If the device has enough resources to accept a new request now, send the
2728 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2729 * we can try send it another time in the future. Requests inserted at this
2730 * queue have higher priority.
2732 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
2737 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(rq
->q
)) {
2738 blk_mq_insert_request(rq
, 0);
2739 blk_mq_run_hw_queue(hctx
, false);
2743 if ((rq
->rq_flags
& RQF_USE_SCHED
) || !blk_mq_get_budget_and_tag(rq
)) {
2744 blk_mq_insert_request(rq
, 0);
2745 blk_mq_run_hw_queue(hctx
, rq
->cmd_flags
& REQ_NOWAIT
);
2749 ret
= __blk_mq_issue_directly(hctx
, rq
, true);
2753 case BLK_STS_RESOURCE
:
2754 case BLK_STS_DEV_RESOURCE
:
2755 blk_mq_request_bypass_insert(rq
, 0);
2756 blk_mq_run_hw_queue(hctx
, false);
2759 blk_mq_end_request(rq
, ret
);
2764 static blk_status_t
blk_mq_request_issue_directly(struct request
*rq
, bool last
)
2766 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2768 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(rq
->q
)) {
2769 blk_mq_insert_request(rq
, 0);
2770 blk_mq_run_hw_queue(hctx
, false);
2774 if (!blk_mq_get_budget_and_tag(rq
))
2775 return BLK_STS_RESOURCE
;
2776 return __blk_mq_issue_directly(hctx
, rq
, last
);
2779 static void blk_mq_plug_issue_direct(struct blk_plug
*plug
)
2781 struct blk_mq_hw_ctx
*hctx
= NULL
;
2784 blk_status_t ret
= BLK_STS_OK
;
2786 while ((rq
= rq_list_pop(&plug
->mq_list
))) {
2787 bool last
= rq_list_empty(&plug
->mq_list
);
2789 if (hctx
!= rq
->mq_hctx
) {
2791 blk_mq_commit_rqs(hctx
, queued
, false);
2797 ret
= blk_mq_request_issue_directly(rq
, last
);
2802 case BLK_STS_RESOURCE
:
2803 case BLK_STS_DEV_RESOURCE
:
2804 blk_mq_request_bypass_insert(rq
, 0);
2805 blk_mq_run_hw_queue(hctx
, false);
2808 blk_mq_end_request(rq
, ret
);
2814 if (ret
!= BLK_STS_OK
)
2815 blk_mq_commit_rqs(hctx
, queued
, false);
2818 static void __blk_mq_flush_plug_list(struct request_queue
*q
,
2819 struct blk_plug
*plug
)
2821 if (blk_queue_quiesced(q
))
2823 q
->mq_ops
->queue_rqs(&plug
->mq_list
);
2826 static void blk_mq_dispatch_plug_list(struct blk_plug
*plug
, bool from_sched
)
2828 struct blk_mq_hw_ctx
*this_hctx
= NULL
;
2829 struct blk_mq_ctx
*this_ctx
= NULL
;
2830 struct rq_list requeue_list
= {};
2831 unsigned int depth
= 0;
2832 bool is_passthrough
= false;
2836 struct request
*rq
= rq_list_pop(&plug
->mq_list
);
2839 this_hctx
= rq
->mq_hctx
;
2840 this_ctx
= rq
->mq_ctx
;
2841 is_passthrough
= blk_rq_is_passthrough(rq
);
2842 } else if (this_hctx
!= rq
->mq_hctx
|| this_ctx
!= rq
->mq_ctx
||
2843 is_passthrough
!= blk_rq_is_passthrough(rq
)) {
2844 rq_list_add_tail(&requeue_list
, rq
);
2847 list_add_tail(&rq
->queuelist
, &list
);
2849 } while (!rq_list_empty(&plug
->mq_list
));
2851 plug
->mq_list
= requeue_list
;
2852 trace_block_unplug(this_hctx
->queue
, depth
, !from_sched
);
2854 percpu_ref_get(&this_hctx
->queue
->q_usage_counter
);
2855 /* passthrough requests should never be issued to the I/O scheduler */
2856 if (is_passthrough
) {
2857 spin_lock(&this_hctx
->lock
);
2858 list_splice_tail_init(&list
, &this_hctx
->dispatch
);
2859 spin_unlock(&this_hctx
->lock
);
2860 blk_mq_run_hw_queue(this_hctx
, from_sched
);
2861 } else if (this_hctx
->queue
->elevator
) {
2862 this_hctx
->queue
->elevator
->type
->ops
.insert_requests(this_hctx
,
2864 blk_mq_run_hw_queue(this_hctx
, from_sched
);
2866 blk_mq_insert_requests(this_hctx
, this_ctx
, &list
, from_sched
);
2868 percpu_ref_put(&this_hctx
->queue
->q_usage_counter
);
2871 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2877 * We may have been called recursively midway through handling
2878 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2879 * To avoid mq_list changing under our feet, clear rq_count early and
2880 * bail out specifically if rq_count is 0 rather than checking
2881 * whether the mq_list is empty.
2883 if (plug
->rq_count
== 0)
2885 depth
= plug
->rq_count
;
2888 if (!plug
->multiple_queues
&& !plug
->has_elevator
&& !from_schedule
) {
2889 struct request_queue
*q
;
2891 rq
= rq_list_peek(&plug
->mq_list
);
2893 trace_block_unplug(q
, depth
, true);
2896 * Peek first request and see if we have a ->queue_rqs() hook.
2897 * If we do, we can dispatch the whole plug list in one go. We
2898 * already know at this point that all requests belong to the
2899 * same queue, caller must ensure that's the case.
2901 if (q
->mq_ops
->queue_rqs
) {
2902 blk_mq_run_dispatch_ops(q
,
2903 __blk_mq_flush_plug_list(q
, plug
));
2904 if (rq_list_empty(&plug
->mq_list
))
2908 blk_mq_run_dispatch_ops(q
,
2909 blk_mq_plug_issue_direct(plug
));
2910 if (rq_list_empty(&plug
->mq_list
))
2915 blk_mq_dispatch_plug_list(plug
, from_schedule
);
2916 } while (!rq_list_empty(&plug
->mq_list
));
2919 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
2920 struct list_head
*list
)
2923 blk_status_t ret
= BLK_STS_OK
;
2925 while (!list_empty(list
)) {
2926 struct request
*rq
= list_first_entry(list
, struct request
,
2929 list_del_init(&rq
->queuelist
);
2930 ret
= blk_mq_request_issue_directly(rq
, list_empty(list
));
2935 case BLK_STS_RESOURCE
:
2936 case BLK_STS_DEV_RESOURCE
:
2937 blk_mq_request_bypass_insert(rq
, 0);
2938 if (list_empty(list
))
2939 blk_mq_run_hw_queue(hctx
, false);
2942 blk_mq_end_request(rq
, ret
);
2948 if (ret
!= BLK_STS_OK
)
2949 blk_mq_commit_rqs(hctx
, queued
, false);
2952 static bool blk_mq_attempt_bio_merge(struct request_queue
*q
,
2953 struct bio
*bio
, unsigned int nr_segs
)
2955 if (!blk_queue_nomerges(q
) && bio_mergeable(bio
)) {
2956 if (blk_attempt_plug_merge(q
, bio
, nr_segs
))
2958 if (blk_mq_sched_bio_merge(q
, bio
, nr_segs
))
2964 static struct request
*blk_mq_get_new_requests(struct request_queue
*q
,
2965 struct blk_plug
*plug
,
2969 struct blk_mq_alloc_data data
= {
2972 .cmd_flags
= bio
->bi_opf
,
2976 rq_qos_throttle(q
, bio
);
2979 data
.nr_tags
= plug
->nr_ios
;
2981 data
.cached_rqs
= &plug
->cached_rqs
;
2984 rq
= __blk_mq_alloc_requests(&data
);
2987 rq_qos_cleanup(q
, bio
);
2988 if (bio
->bi_opf
& REQ_NOWAIT
)
2989 bio_wouldblock_error(bio
);
2994 * Check if there is a suitable cached request and return it.
2996 static struct request
*blk_mq_peek_cached_request(struct blk_plug
*plug
,
2997 struct request_queue
*q
, blk_opf_t opf
)
2999 enum hctx_type type
= blk_mq_get_hctx_type(opf
);
3004 rq
= rq_list_peek(&plug
->cached_rqs
);
3005 if (!rq
|| rq
->q
!= q
)
3007 if (type
!= rq
->mq_hctx
->type
&&
3008 (type
!= HCTX_TYPE_READ
|| rq
->mq_hctx
->type
!= HCTX_TYPE_DEFAULT
))
3010 if (op_is_flush(rq
->cmd_flags
) != op_is_flush(opf
))
3015 static void blk_mq_use_cached_rq(struct request
*rq
, struct blk_plug
*plug
,
3018 if (rq_list_pop(&plug
->cached_rqs
) != rq
)
3022 * If any qos ->throttle() end up blocking, we will have flushed the
3023 * plug and hence killed the cached_rq list as well. Pop this entry
3024 * before we throttle.
3026 rq_qos_throttle(rq
->q
, bio
);
3028 blk_mq_rq_time_init(rq
, blk_time_get_ns());
3029 rq
->cmd_flags
= bio
->bi_opf
;
3030 INIT_LIST_HEAD(&rq
->queuelist
);
3033 static bool bio_unaligned(const struct bio
*bio
, struct request_queue
*q
)
3035 unsigned int bs_mask
= queue_logical_block_size(q
) - 1;
3037 /* .bi_sector of any zero sized bio need to be initialized */
3038 if ((bio
->bi_iter
.bi_size
& bs_mask
) ||
3039 ((bio
->bi_iter
.bi_sector
<< SECTOR_SHIFT
) & bs_mask
))
3045 * blk_mq_submit_bio - Create and send a request to block device.
3046 * @bio: Bio pointer.
3048 * Builds up a request structure from @q and @bio and send to the device. The
3049 * request may not be queued directly to hardware if:
3050 * * This request can be merged with another one
3051 * * We want to place request at plug queue for possible future merging
3052 * * There is an IO scheduler active at this queue
3054 * It will not queue the request if there is an error with the bio, or at the
3057 void blk_mq_submit_bio(struct bio
*bio
)
3059 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
3060 struct blk_plug
*plug
= current
->plug
;
3061 const int is_sync
= op_is_sync(bio
->bi_opf
);
3062 struct blk_mq_hw_ctx
*hctx
;
3063 unsigned int nr_segs
;
3068 * If the plug has a cached request for this queue, try to use it.
3070 rq
= blk_mq_peek_cached_request(plug
, q
, bio
->bi_opf
);
3073 * A BIO that was released from a zone write plug has already been
3074 * through the preparation in this function, already holds a reference
3075 * on the queue usage counter, and is the only write BIO in-flight for
3076 * the target zone. Go straight to preparing a request for it.
3078 if (bio_zone_write_plugging(bio
)) {
3079 nr_segs
= bio
->__bi_nr_segments
;
3085 bio
= blk_queue_bounce(bio
, q
);
3088 * The cached request already holds a q_usage_counter reference and we
3089 * don't have to acquire a new one if we use it.
3092 if (unlikely(bio_queue_enter(bio
)))
3097 * Device reconfiguration may change logical block size, so alignment
3098 * check has to be done with queue usage counter held
3100 if (unlikely(bio_unaligned(bio
, q
))) {
3105 bio
= __bio_split_to_limits(bio
, &q
->limits
, &nr_segs
);
3109 if (!bio_integrity_prep(bio
))
3112 if (blk_mq_attempt_bio_merge(q
, bio
, nr_segs
))
3115 if (blk_queue_is_zoned(q
) && blk_zone_plug_bio(bio
, nr_segs
))
3120 rq
= blk_mq_get_new_requests(q
, plug
, bio
, nr_segs
);
3124 blk_mq_use_cached_rq(rq
, plug
, bio
);
3127 trace_block_getrq(bio
);
3129 rq_qos_track(q
, rq
, bio
);
3131 blk_mq_bio_to_request(rq
, bio
, nr_segs
);
3133 ret
= blk_crypto_rq_get_keyslot(rq
);
3134 if (ret
!= BLK_STS_OK
) {
3135 bio
->bi_status
= ret
;
3137 blk_mq_free_request(rq
);
3141 if (bio_zone_write_plugging(bio
))
3142 blk_zone_write_plug_init_request(rq
);
3144 if (op_is_flush(bio
->bi_opf
) && blk_insert_flush(rq
))
3148 blk_add_rq_to_plug(plug
, rq
);
3153 if ((rq
->rq_flags
& RQF_USE_SCHED
) ||
3154 (hctx
->dispatch_busy
&& (q
->nr_hw_queues
== 1 || !is_sync
))) {
3155 blk_mq_insert_request(rq
, 0);
3156 blk_mq_run_hw_queue(hctx
, true);
3158 blk_mq_run_dispatch_ops(q
, blk_mq_try_issue_directly(hctx
, rq
));
3164 * Don't drop the queue reference if we were trying to use a cached
3165 * request and thus didn't acquire one.
3171 #ifdef CONFIG_BLK_MQ_STACKING
3173 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3174 * @rq: the request being queued
3176 blk_status_t
blk_insert_cloned_request(struct request
*rq
)
3178 struct request_queue
*q
= rq
->q
;
3179 unsigned int max_sectors
= blk_queue_get_max_sectors(rq
);
3180 unsigned int max_segments
= blk_rq_get_max_segments(rq
);
3183 if (blk_rq_sectors(rq
) > max_sectors
) {
3185 * SCSI device does not have a good way to return if
3186 * Write Same/Zero is actually supported. If a device rejects
3187 * a non-read/write command (discard, write same,etc.) the
3188 * low-level device driver will set the relevant queue limit to
3189 * 0 to prevent blk-lib from issuing more of the offending
3190 * operations. Commands queued prior to the queue limit being
3191 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3192 * errors being propagated to upper layers.
3194 if (max_sectors
== 0)
3195 return BLK_STS_NOTSUPP
;
3197 printk(KERN_ERR
"%s: over max size limit. (%u > %u)\n",
3198 __func__
, blk_rq_sectors(rq
), max_sectors
);
3199 return BLK_STS_IOERR
;
3203 * The queue settings related to segment counting may differ from the
3206 rq
->nr_phys_segments
= blk_recalc_rq_segments(rq
);
3207 if (rq
->nr_phys_segments
> max_segments
) {
3208 printk(KERN_ERR
"%s: over max segments limit. (%u > %u)\n",
3209 __func__
, rq
->nr_phys_segments
, max_segments
);
3210 return BLK_STS_IOERR
;
3213 if (q
->disk
&& should_fail_request(q
->disk
->part0
, blk_rq_bytes(rq
)))
3214 return BLK_STS_IOERR
;
3216 ret
= blk_crypto_rq_get_keyslot(rq
);
3217 if (ret
!= BLK_STS_OK
)
3220 blk_account_io_start(rq
);
3223 * Since we have a scheduler attached on the top device,
3224 * bypass a potential scheduler on the bottom device for
3227 blk_mq_run_dispatch_ops(q
,
3228 ret
= blk_mq_request_issue_directly(rq
, true));
3230 blk_account_io_done(rq
, blk_time_get_ns());
3233 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
3236 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3237 * @rq: the clone request to be cleaned up
3240 * Free all bios in @rq for a cloned request.
3242 void blk_rq_unprep_clone(struct request
*rq
)
3246 while ((bio
= rq
->bio
) != NULL
) {
3247 rq
->bio
= bio
->bi_next
;
3252 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3255 * blk_rq_prep_clone - Helper function to setup clone request
3256 * @rq: the request to be setup
3257 * @rq_src: original request to be cloned
3258 * @bs: bio_set that bios for clone are allocated from
3259 * @gfp_mask: memory allocation mask for bio
3260 * @bio_ctr: setup function to be called for each clone bio.
3261 * Returns %0 for success, non %0 for failure.
3262 * @data: private data to be passed to @bio_ctr
3265 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3266 * Also, pages which the original bios are pointing to are not copied
3267 * and the cloned bios just point same pages.
3268 * So cloned bios must be completed before original bios, which means
3269 * the caller must complete @rq before @rq_src.
3271 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3272 struct bio_set
*bs
, gfp_t gfp_mask
,
3273 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3276 struct bio
*bio
, *bio_src
;
3281 __rq_for_each_bio(bio_src
, rq_src
) {
3282 bio
= bio_alloc_clone(rq
->q
->disk
->part0
, bio_src
, gfp_mask
,
3287 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3291 rq
->biotail
->bi_next
= bio
;
3294 rq
->bio
= rq
->biotail
= bio
;
3299 /* Copy attributes of the original request to the clone request. */
3300 rq
->__sector
= blk_rq_pos(rq_src
);
3301 rq
->__data_len
= blk_rq_bytes(rq_src
);
3302 if (rq_src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
3303 rq
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
3304 rq
->special_vec
= rq_src
->special_vec
;
3306 rq
->nr_phys_segments
= rq_src
->nr_phys_segments
;
3308 if (rq
->bio
&& blk_crypto_rq_bio_prep(rq
, rq
->bio
, gfp_mask
) < 0)
3316 blk_rq_unprep_clone(rq
);
3320 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3321 #endif /* CONFIG_BLK_MQ_STACKING */
3324 * Steal bios from a request and add them to a bio list.
3325 * The request must not have been partially completed before.
3327 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3331 list
->tail
->bi_next
= rq
->bio
;
3333 list
->head
= rq
->bio
;
3334 list
->tail
= rq
->biotail
;
3342 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3344 static size_t order_to_size(unsigned int order
)
3346 return (size_t)PAGE_SIZE
<< order
;
3349 /* called before freeing request pool in @tags */
3350 static void blk_mq_clear_rq_mapping(struct blk_mq_tags
*drv_tags
,
3351 struct blk_mq_tags
*tags
)
3354 unsigned long flags
;
3357 * There is no need to clear mapping if driver tags is not initialized
3358 * or the mapping belongs to the driver tags.
3360 if (!drv_tags
|| drv_tags
== tags
)
3363 list_for_each_entry(page
, &tags
->page_list
, lru
) {
3364 unsigned long start
= (unsigned long)page_address(page
);
3365 unsigned long end
= start
+ order_to_size(page
->private);
3368 for (i
= 0; i
< drv_tags
->nr_tags
; i
++) {
3369 struct request
*rq
= drv_tags
->rqs
[i
];
3370 unsigned long rq_addr
= (unsigned long)rq
;
3372 if (rq_addr
>= start
&& rq_addr
< end
) {
3373 WARN_ON_ONCE(req_ref_read(rq
) != 0);
3374 cmpxchg(&drv_tags
->rqs
[i
], rq
, NULL
);
3380 * Wait until all pending iteration is done.
3382 * Request reference is cleared and it is guaranteed to be observed
3383 * after the ->lock is released.
3385 spin_lock_irqsave(&drv_tags
->lock
, flags
);
3386 spin_unlock_irqrestore(&drv_tags
->lock
, flags
);
3389 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
3390 unsigned int hctx_idx
)
3392 struct blk_mq_tags
*drv_tags
;
3395 if (list_empty(&tags
->page_list
))
3398 if (blk_mq_is_shared_tags(set
->flags
))
3399 drv_tags
= set
->shared_tags
;
3401 drv_tags
= set
->tags
[hctx_idx
];
3403 if (tags
->static_rqs
&& set
->ops
->exit_request
) {
3406 for (i
= 0; i
< tags
->nr_tags
; i
++) {
3407 struct request
*rq
= tags
->static_rqs
[i
];
3411 set
->ops
->exit_request(set
, rq
, hctx_idx
);
3412 tags
->static_rqs
[i
] = NULL
;
3416 blk_mq_clear_rq_mapping(drv_tags
, tags
);
3418 while (!list_empty(&tags
->page_list
)) {
3419 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
3420 list_del_init(&page
->lru
);
3422 * Remove kmemleak object previously allocated in
3423 * blk_mq_alloc_rqs().
3425 kmemleak_free(page_address(page
));
3426 __free_pages(page
, page
->private);
3430 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
3434 kfree(tags
->static_rqs
);
3435 tags
->static_rqs
= NULL
;
3437 blk_mq_free_tags(tags
);
3440 static enum hctx_type
hctx_idx_to_type(struct blk_mq_tag_set
*set
,
3441 unsigned int hctx_idx
)
3445 for (i
= 0; i
< set
->nr_maps
; i
++) {
3446 unsigned int start
= set
->map
[i
].queue_offset
;
3447 unsigned int end
= start
+ set
->map
[i
].nr_queues
;
3449 if (hctx_idx
>= start
&& hctx_idx
< end
)
3453 if (i
>= set
->nr_maps
)
3454 i
= HCTX_TYPE_DEFAULT
;
3459 static int blk_mq_get_hctx_node(struct blk_mq_tag_set
*set
,
3460 unsigned int hctx_idx
)
3462 enum hctx_type type
= hctx_idx_to_type(set
, hctx_idx
);
3464 return blk_mq_hw_queue_to_node(&set
->map
[type
], hctx_idx
);
3467 static struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
3468 unsigned int hctx_idx
,
3469 unsigned int nr_tags
,
3470 unsigned int reserved_tags
)
3472 int node
= blk_mq_get_hctx_node(set
, hctx_idx
);
3473 struct blk_mq_tags
*tags
;
3475 if (node
== NUMA_NO_NODE
)
3476 node
= set
->numa_node
;
3478 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
3479 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
3483 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
3484 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
3489 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
3490 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
3492 if (!tags
->static_rqs
)
3500 blk_mq_free_tags(tags
);
3504 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
3505 unsigned int hctx_idx
, int node
)
3509 if (set
->ops
->init_request
) {
3510 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
3515 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
3519 static int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
,
3520 struct blk_mq_tags
*tags
,
3521 unsigned int hctx_idx
, unsigned int depth
)
3523 unsigned int i
, j
, entries_per_page
, max_order
= 4;
3524 int node
= blk_mq_get_hctx_node(set
, hctx_idx
);
3525 size_t rq_size
, left
;
3527 if (node
== NUMA_NO_NODE
)
3528 node
= set
->numa_node
;
3530 INIT_LIST_HEAD(&tags
->page_list
);
3533 * rq_size is the size of the request plus driver payload, rounded
3534 * to the cacheline size
3536 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
3538 left
= rq_size
* depth
;
3540 for (i
= 0; i
< depth
; ) {
3541 int this_order
= max_order
;
3546 while (this_order
&& left
< order_to_size(this_order
- 1))
3550 page
= alloc_pages_node(node
,
3551 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
3557 if (order_to_size(this_order
) < rq_size
)
3564 page
->private = this_order
;
3565 list_add_tail(&page
->lru
, &tags
->page_list
);
3567 p
= page_address(page
);
3569 * Allow kmemleak to scan these pages as they contain pointers
3570 * to additional allocations like via ops->init_request().
3572 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
3573 entries_per_page
= order_to_size(this_order
) / rq_size
;
3574 to_do
= min(entries_per_page
, depth
- i
);
3575 left
-= to_do
* rq_size
;
3576 for (j
= 0; j
< to_do
; j
++) {
3577 struct request
*rq
= p
;
3579 tags
->static_rqs
[i
] = rq
;
3580 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
3581 tags
->static_rqs
[i
] = NULL
;
3592 blk_mq_free_rqs(set
, tags
, hctx_idx
);
3596 struct rq_iter_data
{
3597 struct blk_mq_hw_ctx
*hctx
;
3601 static bool blk_mq_has_request(struct request
*rq
, void *data
)
3603 struct rq_iter_data
*iter_data
= data
;
3605 if (rq
->mq_hctx
!= iter_data
->hctx
)
3607 iter_data
->has_rq
= true;
3611 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx
*hctx
)
3613 struct blk_mq_tags
*tags
= hctx
->sched_tags
?
3614 hctx
->sched_tags
: hctx
->tags
;
3615 struct rq_iter_data data
= {
3619 blk_mq_all_tag_iter(tags
, blk_mq_has_request
, &data
);
3623 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx
*hctx
,
3624 unsigned int this_cpu
)
3626 enum hctx_type type
= hctx
->type
;
3630 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3631 * might submit IOs on these isolated CPUs, so use the queue map to
3632 * check if all CPUs mapped to this hctx are offline
3634 for_each_online_cpu(cpu
) {
3635 struct blk_mq_hw_ctx
*h
= blk_mq_map_queue_type(hctx
->queue
,
3641 /* this hctx has at least one online CPU */
3642 if (this_cpu
!= cpu
)
3649 static int blk_mq_hctx_notify_offline(unsigned int cpu
, struct hlist_node
*node
)
3651 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
3652 struct blk_mq_hw_ctx
, cpuhp_online
);
3654 if (blk_mq_hctx_has_online_cpu(hctx
, cpu
))
3658 * Prevent new request from being allocated on the current hctx.
3660 * The smp_mb__after_atomic() Pairs with the implied barrier in
3661 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3662 * seen once we return from the tag allocator.
3664 set_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
3665 smp_mb__after_atomic();
3668 * Try to grab a reference to the queue and wait for any outstanding
3669 * requests. If we could not grab a reference the queue has been
3670 * frozen and there are no requests.
3672 if (percpu_ref_tryget(&hctx
->queue
->q_usage_counter
)) {
3673 while (blk_mq_hctx_has_requests(hctx
))
3675 percpu_ref_put(&hctx
->queue
->q_usage_counter
);
3682 * Check if one CPU is mapped to the specified hctx
3684 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3685 * to be used for scheduling kworker only. For other usage, please call this
3686 * helper for checking if one CPU belongs to the specified hctx
3688 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu
,
3689 const struct blk_mq_hw_ctx
*hctx
)
3691 struct blk_mq_hw_ctx
*mapped_hctx
= blk_mq_map_queue_type(hctx
->queue
,
3694 return mapped_hctx
== hctx
;
3697 static int blk_mq_hctx_notify_online(unsigned int cpu
, struct hlist_node
*node
)
3699 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
3700 struct blk_mq_hw_ctx
, cpuhp_online
);
3702 if (blk_mq_cpu_mapped_to_hctx(cpu
, hctx
))
3703 clear_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
3708 * 'cpu' is going away. splice any existing rq_list entries from this
3709 * software queue to the hw queue dispatch list, and ensure that it
3712 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
3714 struct blk_mq_hw_ctx
*hctx
;
3715 struct blk_mq_ctx
*ctx
;
3717 enum hctx_type type
;
3719 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
3720 if (!blk_mq_cpu_mapped_to_hctx(cpu
, hctx
))
3723 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
3726 spin_lock(&ctx
->lock
);
3727 if (!list_empty(&ctx
->rq_lists
[type
])) {
3728 list_splice_init(&ctx
->rq_lists
[type
], &tmp
);
3729 blk_mq_hctx_clear_pending(hctx
, ctx
);
3731 spin_unlock(&ctx
->lock
);
3733 if (list_empty(&tmp
))
3736 spin_lock(&hctx
->lock
);
3737 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
3738 spin_unlock(&hctx
->lock
);
3740 blk_mq_run_hw_queue(hctx
, true);
3744 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
3746 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
3747 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
3748 &hctx
->cpuhp_online
);
3749 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
3754 * Before freeing hw queue, clearing the flush request reference in
3755 * tags->rqs[] for avoiding potential UAF.
3757 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags
*tags
,
3758 unsigned int queue_depth
, struct request
*flush_rq
)
3761 unsigned long flags
;
3763 /* The hw queue may not be mapped yet */
3767 WARN_ON_ONCE(req_ref_read(flush_rq
) != 0);
3769 for (i
= 0; i
< queue_depth
; i
++)
3770 cmpxchg(&tags
->rqs
[i
], flush_rq
, NULL
);
3773 * Wait until all pending iteration is done.
3775 * Request reference is cleared and it is guaranteed to be observed
3776 * after the ->lock is released.
3778 spin_lock_irqsave(&tags
->lock
, flags
);
3779 spin_unlock_irqrestore(&tags
->lock
, flags
);
3782 /* hctx->ctxs will be freed in queue's release handler */
3783 static void blk_mq_exit_hctx(struct request_queue
*q
,
3784 struct blk_mq_tag_set
*set
,
3785 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
3787 struct request
*flush_rq
= hctx
->fq
->flush_rq
;
3789 if (blk_mq_hw_queue_mapped(hctx
))
3790 blk_mq_tag_idle(hctx
);
3792 if (blk_queue_init_done(q
))
3793 blk_mq_clear_flush_rq_mapping(set
->tags
[hctx_idx
],
3794 set
->queue_depth
, flush_rq
);
3795 if (set
->ops
->exit_request
)
3796 set
->ops
->exit_request(set
, flush_rq
, hctx_idx
);
3798 if (set
->ops
->exit_hctx
)
3799 set
->ops
->exit_hctx(hctx
, hctx_idx
);
3801 blk_mq_remove_cpuhp(hctx
);
3803 xa_erase(&q
->hctx_table
, hctx_idx
);
3805 spin_lock(&q
->unused_hctx_lock
);
3806 list_add(&hctx
->hctx_list
, &q
->unused_hctx_list
);
3807 spin_unlock(&q
->unused_hctx_lock
);
3810 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
3811 struct blk_mq_tag_set
*set
, int nr_queue
)
3813 struct blk_mq_hw_ctx
*hctx
;
3816 queue_for_each_hw_ctx(q
, hctx
, i
) {
3819 blk_mq_exit_hctx(q
, set
, hctx
, i
);
3823 static int blk_mq_init_hctx(struct request_queue
*q
,
3824 struct blk_mq_tag_set
*set
,
3825 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
3827 hctx
->queue_num
= hctx_idx
;
3829 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
3830 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
3831 &hctx
->cpuhp_online
);
3832 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
3834 hctx
->tags
= set
->tags
[hctx_idx
];
3836 if (set
->ops
->init_hctx
&&
3837 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
3838 goto unregister_cpu_notifier
;
3840 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
3844 if (xa_insert(&q
->hctx_table
, hctx_idx
, hctx
, GFP_KERNEL
))
3850 if (set
->ops
->exit_request
)
3851 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
3853 if (set
->ops
->exit_hctx
)
3854 set
->ops
->exit_hctx(hctx
, hctx_idx
);
3855 unregister_cpu_notifier
:
3856 blk_mq_remove_cpuhp(hctx
);
3860 static struct blk_mq_hw_ctx
*
3861 blk_mq_alloc_hctx(struct request_queue
*q
, struct blk_mq_tag_set
*set
,
3864 struct blk_mq_hw_ctx
*hctx
;
3865 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
;
3867 hctx
= kzalloc_node(sizeof(struct blk_mq_hw_ctx
), gfp
, node
);
3869 goto fail_alloc_hctx
;
3871 if (!zalloc_cpumask_var_node(&hctx
->cpumask
, gfp
, node
))
3874 atomic_set(&hctx
->nr_active
, 0);
3875 if (node
== NUMA_NO_NODE
)
3876 node
= set
->numa_node
;
3877 hctx
->numa_node
= node
;
3879 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
3880 spin_lock_init(&hctx
->lock
);
3881 INIT_LIST_HEAD(&hctx
->dispatch
);
3883 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_QUEUE_SHARED
;
3885 INIT_LIST_HEAD(&hctx
->hctx_list
);
3888 * Allocate space for all possible cpus to avoid allocation at
3891 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
3896 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
3897 gfp
, node
, false, false))
3901 spin_lock_init(&hctx
->dispatch_wait_lock
);
3902 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
3903 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
3905 hctx
->fq
= blk_alloc_flush_queue(hctx
->numa_node
, set
->cmd_size
, gfp
);
3909 blk_mq_hctx_kobj_init(hctx
);
3914 sbitmap_free(&hctx
->ctx_map
);
3918 free_cpumask_var(hctx
->cpumask
);
3925 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
3926 unsigned int nr_hw_queues
)
3928 struct blk_mq_tag_set
*set
= q
->tag_set
;
3931 for_each_possible_cpu(i
) {
3932 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
3933 struct blk_mq_hw_ctx
*hctx
;
3937 spin_lock_init(&__ctx
->lock
);
3938 for (k
= HCTX_TYPE_DEFAULT
; k
< HCTX_MAX_TYPES
; k
++)
3939 INIT_LIST_HEAD(&__ctx
->rq_lists
[k
]);
3944 * Set local node, IFF we have more than one hw queue. If
3945 * not, we remain on the home node of the device
3947 for (j
= 0; j
< set
->nr_maps
; j
++) {
3948 hctx
= blk_mq_map_queue_type(q
, j
, i
);
3949 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
3950 hctx
->numa_node
= cpu_to_node(i
);
3955 struct blk_mq_tags
*blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set
*set
,
3956 unsigned int hctx_idx
,
3959 struct blk_mq_tags
*tags
;
3962 tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, depth
, set
->reserved_tags
);
3966 ret
= blk_mq_alloc_rqs(set
, tags
, hctx_idx
, depth
);
3968 blk_mq_free_rq_map(tags
);
3975 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set
*set
,
3978 if (blk_mq_is_shared_tags(set
->flags
)) {
3979 set
->tags
[hctx_idx
] = set
->shared_tags
;
3984 set
->tags
[hctx_idx
] = blk_mq_alloc_map_and_rqs(set
, hctx_idx
,
3987 return set
->tags
[hctx_idx
];
3990 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set
*set
,
3991 struct blk_mq_tags
*tags
,
3992 unsigned int hctx_idx
)
3995 blk_mq_free_rqs(set
, tags
, hctx_idx
);
3996 blk_mq_free_rq_map(tags
);
4000 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set
*set
,
4001 unsigned int hctx_idx
)
4003 if (!blk_mq_is_shared_tags(set
->flags
))
4004 blk_mq_free_map_and_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
4006 set
->tags
[hctx_idx
] = NULL
;
4009 static void blk_mq_map_swqueue(struct request_queue
*q
)
4011 unsigned int j
, hctx_idx
;
4013 struct blk_mq_hw_ctx
*hctx
;
4014 struct blk_mq_ctx
*ctx
;
4015 struct blk_mq_tag_set
*set
= q
->tag_set
;
4017 queue_for_each_hw_ctx(q
, hctx
, i
) {
4018 cpumask_clear(hctx
->cpumask
);
4020 hctx
->dispatch_from
= NULL
;
4024 * Map software to hardware queues.
4026 * If the cpu isn't present, the cpu is mapped to first hctx.
4028 for_each_possible_cpu(i
) {
4030 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
4031 for (j
= 0; j
< set
->nr_maps
; j
++) {
4032 if (!set
->map
[j
].nr_queues
) {
4033 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
4034 HCTX_TYPE_DEFAULT
, i
);
4037 hctx_idx
= set
->map
[j
].mq_map
[i
];
4038 /* unmapped hw queue can be remapped after CPU topo changed */
4039 if (!set
->tags
[hctx_idx
] &&
4040 !__blk_mq_alloc_map_and_rqs(set
, hctx_idx
)) {
4042 * If tags initialization fail for some hctx,
4043 * that hctx won't be brought online. In this
4044 * case, remap the current ctx to hctx[0] which
4045 * is guaranteed to always have tags allocated
4047 set
->map
[j
].mq_map
[i
] = 0;
4050 hctx
= blk_mq_map_queue_type(q
, j
, i
);
4051 ctx
->hctxs
[j
] = hctx
;
4053 * If the CPU is already set in the mask, then we've
4054 * mapped this one already. This can happen if
4055 * devices share queues across queue maps.
4057 if (cpumask_test_cpu(i
, hctx
->cpumask
))
4060 cpumask_set_cpu(i
, hctx
->cpumask
);
4062 ctx
->index_hw
[hctx
->type
] = hctx
->nr_ctx
;
4063 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
4066 * If the nr_ctx type overflows, we have exceeded the
4067 * amount of sw queues we can support.
4069 BUG_ON(!hctx
->nr_ctx
);
4072 for (; j
< HCTX_MAX_TYPES
; j
++)
4073 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
4074 HCTX_TYPE_DEFAULT
, i
);
4077 queue_for_each_hw_ctx(q
, hctx
, i
) {
4081 * If no software queues are mapped to this hardware queue,
4082 * disable it and free the request entries.
4084 if (!hctx
->nr_ctx
) {
4085 /* Never unmap queue 0. We need it as a
4086 * fallback in case of a new remap fails
4090 __blk_mq_free_map_and_rqs(set
, i
);
4096 hctx
->tags
= set
->tags
[i
];
4097 WARN_ON(!hctx
->tags
);
4100 * Set the map size to the number of mapped software queues.
4101 * This is more accurate and more efficient than looping
4102 * over all possibly mapped software queues.
4104 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
4107 * Rule out isolated CPUs from hctx->cpumask to avoid
4108 * running block kworker on isolated CPUs
4110 for_each_cpu(cpu
, hctx
->cpumask
) {
4111 if (cpu_is_isolated(cpu
))
4112 cpumask_clear_cpu(cpu
, hctx
->cpumask
);
4116 * Initialize batch roundrobin counts
4118 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
4119 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
4124 * Caller needs to ensure that we're either frozen/quiesced, or that
4125 * the queue isn't live yet.
4127 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
4129 struct blk_mq_hw_ctx
*hctx
;
4132 queue_for_each_hw_ctx(q
, hctx
, i
) {
4134 hctx
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
4136 blk_mq_tag_idle(hctx
);
4137 hctx
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
4142 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set
*set
,
4145 struct request_queue
*q
;
4147 lockdep_assert_held(&set
->tag_list_lock
);
4149 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4150 blk_mq_freeze_queue(q
);
4151 queue_set_hctx_shared(q
, shared
);
4152 blk_mq_unfreeze_queue(q
);
4156 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
4158 struct blk_mq_tag_set
*set
= q
->tag_set
;
4160 mutex_lock(&set
->tag_list_lock
);
4161 list_del(&q
->tag_set_list
);
4162 if (list_is_singular(&set
->tag_list
)) {
4163 /* just transitioned to unshared */
4164 set
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
4165 /* update existing queue */
4166 blk_mq_update_tag_set_shared(set
, false);
4168 mutex_unlock(&set
->tag_list_lock
);
4169 INIT_LIST_HEAD(&q
->tag_set_list
);
4172 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
4173 struct request_queue
*q
)
4175 mutex_lock(&set
->tag_list_lock
);
4178 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4180 if (!list_empty(&set
->tag_list
) &&
4181 !(set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)) {
4182 set
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
4183 /* update existing queue */
4184 blk_mq_update_tag_set_shared(set
, true);
4186 if (set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
4187 queue_set_hctx_shared(q
, true);
4188 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
4190 mutex_unlock(&set
->tag_list_lock
);
4193 /* All allocations will be freed in release handler of q->mq_kobj */
4194 static int blk_mq_alloc_ctxs(struct request_queue
*q
)
4196 struct blk_mq_ctxs
*ctxs
;
4199 ctxs
= kzalloc(sizeof(*ctxs
), GFP_KERNEL
);
4203 ctxs
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
4204 if (!ctxs
->queue_ctx
)
4207 for_each_possible_cpu(cpu
) {
4208 struct blk_mq_ctx
*ctx
= per_cpu_ptr(ctxs
->queue_ctx
, cpu
);
4212 q
->mq_kobj
= &ctxs
->kobj
;
4213 q
->queue_ctx
= ctxs
->queue_ctx
;
4222 * It is the actual release handler for mq, but we do it from
4223 * request queue's release handler for avoiding use-after-free
4224 * and headache because q->mq_kobj shouldn't have been introduced,
4225 * but we can't group ctx/kctx kobj without it.
4227 void blk_mq_release(struct request_queue
*q
)
4229 struct blk_mq_hw_ctx
*hctx
, *next
;
4232 queue_for_each_hw_ctx(q
, hctx
, i
)
4233 WARN_ON_ONCE(hctx
&& list_empty(&hctx
->hctx_list
));
4235 /* all hctx are in .unused_hctx_list now */
4236 list_for_each_entry_safe(hctx
, next
, &q
->unused_hctx_list
, hctx_list
) {
4237 list_del_init(&hctx
->hctx_list
);
4238 kobject_put(&hctx
->kobj
);
4241 xa_destroy(&q
->hctx_table
);
4244 * release .mq_kobj and sw queue's kobject now because
4245 * both share lifetime with request queue.
4247 blk_mq_sysfs_deinit(q
);
4250 static bool blk_mq_can_poll(struct blk_mq_tag_set
*set
)
4252 return set
->nr_maps
> HCTX_TYPE_POLL
&&
4253 set
->map
[HCTX_TYPE_POLL
].nr_queues
;
4256 struct request_queue
*blk_mq_alloc_queue(struct blk_mq_tag_set
*set
,
4257 struct queue_limits
*lim
, void *queuedata
)
4259 struct queue_limits default_lim
= { };
4260 struct request_queue
*q
;
4265 lim
->features
|= BLK_FEAT_IO_STAT
| BLK_FEAT_NOWAIT
;
4266 if (blk_mq_can_poll(set
))
4267 lim
->features
|= BLK_FEAT_POLL
;
4269 q
= blk_alloc_queue(lim
, set
->numa_node
);
4272 q
->queuedata
= queuedata
;
4273 ret
= blk_mq_init_allocated_queue(set
, q
);
4276 return ERR_PTR(ret
);
4280 EXPORT_SYMBOL(blk_mq_alloc_queue
);
4283 * blk_mq_destroy_queue - shutdown a request queue
4284 * @q: request queue to shutdown
4286 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4287 * requests will be failed with -ENODEV. The caller is responsible for dropping
4288 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4290 * Context: can sleep
4292 void blk_mq_destroy_queue(struct request_queue
*q
)
4294 WARN_ON_ONCE(!queue_is_mq(q
));
4295 WARN_ON_ONCE(blk_queue_registered(q
));
4299 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
4300 blk_queue_start_drain(q
);
4301 blk_mq_freeze_queue_wait(q
);
4304 blk_mq_cancel_work_sync(q
);
4305 blk_mq_exit_queue(q
);
4307 EXPORT_SYMBOL(blk_mq_destroy_queue
);
4309 struct gendisk
*__blk_mq_alloc_disk(struct blk_mq_tag_set
*set
,
4310 struct queue_limits
*lim
, void *queuedata
,
4311 struct lock_class_key
*lkclass
)
4313 struct request_queue
*q
;
4314 struct gendisk
*disk
;
4316 q
= blk_mq_alloc_queue(set
, lim
, queuedata
);
4320 disk
= __alloc_disk_node(q
, set
->numa_node
, lkclass
);
4322 blk_mq_destroy_queue(q
);
4324 return ERR_PTR(-ENOMEM
);
4326 set_bit(GD_OWNS_QUEUE
, &disk
->state
);
4329 EXPORT_SYMBOL(__blk_mq_alloc_disk
);
4331 struct gendisk
*blk_mq_alloc_disk_for_queue(struct request_queue
*q
,
4332 struct lock_class_key
*lkclass
)
4334 struct gendisk
*disk
;
4336 if (!blk_get_queue(q
))
4338 disk
= __alloc_disk_node(q
, NUMA_NO_NODE
, lkclass
);
4343 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue
);
4345 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
4346 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
4347 int hctx_idx
, int node
)
4349 struct blk_mq_hw_ctx
*hctx
= NULL
, *tmp
;
4351 /* reuse dead hctx first */
4352 spin_lock(&q
->unused_hctx_lock
);
4353 list_for_each_entry(tmp
, &q
->unused_hctx_list
, hctx_list
) {
4354 if (tmp
->numa_node
== node
) {
4360 list_del_init(&hctx
->hctx_list
);
4361 spin_unlock(&q
->unused_hctx_lock
);
4364 hctx
= blk_mq_alloc_hctx(q
, set
, node
);
4368 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
))
4374 kobject_put(&hctx
->kobj
);
4379 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
4380 struct request_queue
*q
)
4382 struct blk_mq_hw_ctx
*hctx
;
4385 /* protect against switching io scheduler */
4386 mutex_lock(&q
->sysfs_lock
);
4387 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
4389 int node
= blk_mq_get_hctx_node(set
, i
);
4390 struct blk_mq_hw_ctx
*old_hctx
= xa_load(&q
->hctx_table
, i
);
4393 old_node
= old_hctx
->numa_node
;
4394 blk_mq_exit_hctx(q
, set
, old_hctx
, i
);
4397 if (!blk_mq_alloc_and_init_hctx(set
, q
, i
, node
)) {
4400 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4402 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, old_node
);
4403 WARN_ON_ONCE(!hctx
);
4407 * Increasing nr_hw_queues fails. Free the newly allocated
4408 * hctxs and keep the previous q->nr_hw_queues.
4410 if (i
!= set
->nr_hw_queues
) {
4411 j
= q
->nr_hw_queues
;
4414 q
->nr_hw_queues
= set
->nr_hw_queues
;
4417 xa_for_each_start(&q
->hctx_table
, j
, hctx
, j
)
4418 blk_mq_exit_hctx(q
, set
, hctx
, j
);
4419 mutex_unlock(&q
->sysfs_lock
);
4422 int blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
4423 struct request_queue
*q
)
4425 /* mark the queue as mq asap */
4426 q
->mq_ops
= set
->ops
;
4429 * ->tag_set has to be setup before initialize hctx, which cpuphp
4430 * handler needs it for checking queue mapping
4434 if (blk_mq_alloc_ctxs(q
))
4437 /* init q->mq_kobj and sw queues' kobjects */
4438 blk_mq_sysfs_init(q
);
4440 INIT_LIST_HEAD(&q
->unused_hctx_list
);
4441 spin_lock_init(&q
->unused_hctx_lock
);
4443 xa_init(&q
->hctx_table
);
4445 blk_mq_realloc_hw_ctxs(set
, q
);
4446 if (!q
->nr_hw_queues
)
4449 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
4450 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
4452 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
4454 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
4455 INIT_LIST_HEAD(&q
->flush_list
);
4456 INIT_LIST_HEAD(&q
->requeue_list
);
4457 spin_lock_init(&q
->requeue_lock
);
4459 q
->nr_requests
= set
->queue_depth
;
4461 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
4462 blk_mq_add_queue_tag_set(set
, q
);
4463 blk_mq_map_swqueue(q
);
4472 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
4474 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4475 void blk_mq_exit_queue(struct request_queue
*q
)
4477 struct blk_mq_tag_set
*set
= q
->tag_set
;
4479 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4480 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
4481 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4482 blk_mq_del_queue_tag_set(q
);
4485 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
4489 if (blk_mq_is_shared_tags(set
->flags
)) {
4490 set
->shared_tags
= blk_mq_alloc_map_and_rqs(set
,
4493 if (!set
->shared_tags
)
4497 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
4498 if (!__blk_mq_alloc_map_and_rqs(set
, i
))
4507 __blk_mq_free_map_and_rqs(set
, i
);
4509 if (blk_mq_is_shared_tags(set
->flags
)) {
4510 blk_mq_free_map_and_rqs(set
, set
->shared_tags
,
4511 BLK_MQ_NO_HCTX_IDX
);
4518 * Allocate the request maps associated with this tag_set. Note that this
4519 * may reduce the depth asked for, if memory is tight. set->queue_depth
4520 * will be updated to reflect the allocated depth.
4522 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set
*set
)
4527 depth
= set
->queue_depth
;
4529 err
= __blk_mq_alloc_rq_maps(set
);
4533 set
->queue_depth
>>= 1;
4534 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
4538 } while (set
->queue_depth
);
4540 if (!set
->queue_depth
|| err
) {
4541 pr_err("blk-mq: failed to allocate request map\n");
4545 if (depth
!= set
->queue_depth
)
4546 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4547 depth
, set
->queue_depth
);
4552 static void blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
4555 * blk_mq_map_queues() and multiple .map_queues() implementations
4556 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4557 * number of hardware queues.
4559 if (set
->nr_maps
== 1)
4560 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
= set
->nr_hw_queues
;
4562 if (set
->ops
->map_queues
) {
4566 * transport .map_queues is usually done in the following
4569 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4570 * mask = get_cpu_mask(queue)
4571 * for_each_cpu(cpu, mask)
4572 * set->map[x].mq_map[cpu] = queue;
4575 * When we need to remap, the table has to be cleared for
4576 * killing stale mapping since one CPU may not be mapped
4579 for (i
= 0; i
< set
->nr_maps
; i
++)
4580 blk_mq_clear_mq_map(&set
->map
[i
]);
4582 set
->ops
->map_queues(set
);
4584 BUG_ON(set
->nr_maps
> 1);
4585 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
4589 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set
*set
,
4590 int new_nr_hw_queues
)
4592 struct blk_mq_tags
**new_tags
;
4595 if (set
->nr_hw_queues
>= new_nr_hw_queues
)
4598 new_tags
= kcalloc_node(new_nr_hw_queues
, sizeof(struct blk_mq_tags
*),
4599 GFP_KERNEL
, set
->numa_node
);
4604 memcpy(new_tags
, set
->tags
, set
->nr_hw_queues
*
4605 sizeof(*set
->tags
));
4607 set
->tags
= new_tags
;
4609 for (i
= set
->nr_hw_queues
; i
< new_nr_hw_queues
; i
++) {
4610 if (!__blk_mq_alloc_map_and_rqs(set
, i
)) {
4611 while (--i
>= set
->nr_hw_queues
)
4612 __blk_mq_free_map_and_rqs(set
, i
);
4619 set
->nr_hw_queues
= new_nr_hw_queues
;
4624 * Alloc a tag set to be associated with one or more request queues.
4625 * May fail with EINVAL for various error conditions. May adjust the
4626 * requested depth down, if it's too large. In that case, the set
4627 * value will be stored in set->queue_depth.
4629 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
4633 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
4635 if (!set
->nr_hw_queues
)
4637 if (!set
->queue_depth
)
4639 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
4642 if (!set
->ops
->queue_rq
)
4645 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
4648 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
4649 pr_info("blk-mq: reduced tag depth to %u\n",
4651 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
4656 else if (set
->nr_maps
> HCTX_MAX_TYPES
)
4660 * If a crashdump is active, then we are potentially in a very
4661 * memory constrained environment. Limit us to 64 tags to prevent
4662 * using too much memory.
4664 if (is_kdump_kernel())
4665 set
->queue_depth
= min(64U, set
->queue_depth
);
4668 * There is no use for more h/w queues than cpus if we just have
4671 if (set
->nr_maps
== 1 && set
->nr_hw_queues
> nr_cpu_ids
)
4672 set
->nr_hw_queues
= nr_cpu_ids
;
4674 if (set
->flags
& BLK_MQ_F_BLOCKING
) {
4675 set
->srcu
= kmalloc(sizeof(*set
->srcu
), GFP_KERNEL
);
4678 ret
= init_srcu_struct(set
->srcu
);
4684 set
->tags
= kcalloc_node(set
->nr_hw_queues
,
4685 sizeof(struct blk_mq_tags
*), GFP_KERNEL
,
4688 goto out_cleanup_srcu
;
4690 for (i
= 0; i
< set
->nr_maps
; i
++) {
4691 set
->map
[i
].mq_map
= kcalloc_node(nr_cpu_ids
,
4692 sizeof(set
->map
[i
].mq_map
[0]),
4693 GFP_KERNEL
, set
->numa_node
);
4694 if (!set
->map
[i
].mq_map
)
4695 goto out_free_mq_map
;
4696 set
->map
[i
].nr_queues
= set
->nr_hw_queues
;
4699 blk_mq_update_queue_map(set
);
4701 ret
= blk_mq_alloc_set_map_and_rqs(set
);
4703 goto out_free_mq_map
;
4705 mutex_init(&set
->tag_list_lock
);
4706 INIT_LIST_HEAD(&set
->tag_list
);
4711 for (i
= 0; i
< set
->nr_maps
; i
++) {
4712 kfree(set
->map
[i
].mq_map
);
4713 set
->map
[i
].mq_map
= NULL
;
4718 if (set
->flags
& BLK_MQ_F_BLOCKING
)
4719 cleanup_srcu_struct(set
->srcu
);
4721 if (set
->flags
& BLK_MQ_F_BLOCKING
)
4725 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
4727 /* allocate and initialize a tagset for a simple single-queue device */
4728 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set
*set
,
4729 const struct blk_mq_ops
*ops
, unsigned int queue_depth
,
4730 unsigned int set_flags
)
4732 memset(set
, 0, sizeof(*set
));
4734 set
->nr_hw_queues
= 1;
4736 set
->queue_depth
= queue_depth
;
4737 set
->numa_node
= NUMA_NO_NODE
;
4738 set
->flags
= set_flags
;
4739 return blk_mq_alloc_tag_set(set
);
4741 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set
);
4743 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
4747 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
4748 __blk_mq_free_map_and_rqs(set
, i
);
4750 if (blk_mq_is_shared_tags(set
->flags
)) {
4751 blk_mq_free_map_and_rqs(set
, set
->shared_tags
,
4752 BLK_MQ_NO_HCTX_IDX
);
4755 for (j
= 0; j
< set
->nr_maps
; j
++) {
4756 kfree(set
->map
[j
].mq_map
);
4757 set
->map
[j
].mq_map
= NULL
;
4762 if (set
->flags
& BLK_MQ_F_BLOCKING
) {
4763 cleanup_srcu_struct(set
->srcu
);
4767 EXPORT_SYMBOL(blk_mq_free_tag_set
);
4769 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
4771 struct blk_mq_tag_set
*set
= q
->tag_set
;
4772 struct blk_mq_hw_ctx
*hctx
;
4776 if (WARN_ON_ONCE(!q
->mq_freeze_depth
))
4782 if (q
->nr_requests
== nr
)
4785 blk_mq_quiesce_queue(q
);
4788 queue_for_each_hw_ctx(q
, hctx
, i
) {
4792 * If we're using an MQ scheduler, just update the scheduler
4793 * queue depth. This is similar to what the old code would do.
4795 if (hctx
->sched_tags
) {
4796 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
4799 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
4804 if (q
->elevator
&& q
->elevator
->type
->ops
.depth_updated
)
4805 q
->elevator
->type
->ops
.depth_updated(hctx
);
4808 q
->nr_requests
= nr
;
4809 if (blk_mq_is_shared_tags(set
->flags
)) {
4811 blk_mq_tag_update_sched_shared_tags(q
);
4813 blk_mq_tag_resize_shared_tags(set
, nr
);
4817 blk_mq_unquiesce_queue(q
);
4823 * request_queue and elevator_type pair.
4824 * It is just used by __blk_mq_update_nr_hw_queues to cache
4825 * the elevator_type associated with a request_queue.
4827 struct blk_mq_qe_pair
{
4828 struct list_head node
;
4829 struct request_queue
*q
;
4830 struct elevator_type
*type
;
4834 * Cache the elevator_type in qe pair list and switch the
4835 * io scheduler to 'none'
4837 static bool blk_mq_elv_switch_none(struct list_head
*head
,
4838 struct request_queue
*q
)
4840 struct blk_mq_qe_pair
*qe
;
4842 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
4846 /* q->elevator needs protection from ->sysfs_lock */
4847 mutex_lock(&q
->sysfs_lock
);
4849 /* the check has to be done with holding sysfs_lock */
4855 INIT_LIST_HEAD(&qe
->node
);
4857 qe
->type
= q
->elevator
->type
;
4858 /* keep a reference to the elevator module as we'll switch back */
4859 __elevator_get(qe
->type
);
4860 list_add(&qe
->node
, head
);
4861 elevator_disable(q
);
4863 mutex_unlock(&q
->sysfs_lock
);
4868 static struct blk_mq_qe_pair
*blk_lookup_qe_pair(struct list_head
*head
,
4869 struct request_queue
*q
)
4871 struct blk_mq_qe_pair
*qe
;
4873 list_for_each_entry(qe
, head
, node
)
4880 static void blk_mq_elv_switch_back(struct list_head
*head
,
4881 struct request_queue
*q
)
4883 struct blk_mq_qe_pair
*qe
;
4884 struct elevator_type
*t
;
4886 qe
= blk_lookup_qe_pair(head
, q
);
4890 list_del(&qe
->node
);
4893 mutex_lock(&q
->sysfs_lock
);
4894 elevator_switch(q
, t
);
4895 /* drop the reference acquired in blk_mq_elv_switch_none */
4897 mutex_unlock(&q
->sysfs_lock
);
4900 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
4903 struct request_queue
*q
;
4905 int prev_nr_hw_queues
= set
->nr_hw_queues
;
4908 lockdep_assert_held(&set
->tag_list_lock
);
4910 if (set
->nr_maps
== 1 && nr_hw_queues
> nr_cpu_ids
)
4911 nr_hw_queues
= nr_cpu_ids
;
4912 if (nr_hw_queues
< 1)
4914 if (set
->nr_maps
== 1 && nr_hw_queues
== set
->nr_hw_queues
)
4917 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4918 blk_mq_freeze_queue(q
);
4920 * Switch IO scheduler to 'none', cleaning up the data associated
4921 * with the previous scheduler. We will switch back once we are done
4922 * updating the new sw to hw queue mappings.
4924 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4925 if (!blk_mq_elv_switch_none(&head
, q
))
4928 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4929 blk_mq_debugfs_unregister_hctxs(q
);
4930 blk_mq_sysfs_unregister_hctxs(q
);
4933 if (blk_mq_realloc_tag_set_tags(set
, nr_hw_queues
) < 0)
4937 blk_mq_update_queue_map(set
);
4938 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4939 struct queue_limits lim
;
4941 blk_mq_realloc_hw_ctxs(set
, q
);
4943 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
4944 int i
= prev_nr_hw_queues
;
4946 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4947 nr_hw_queues
, prev_nr_hw_queues
);
4948 for (; i
< set
->nr_hw_queues
; i
++)
4949 __blk_mq_free_map_and_rqs(set
, i
);
4951 set
->nr_hw_queues
= prev_nr_hw_queues
;
4954 lim
= queue_limits_start_update(q
);
4955 if (blk_mq_can_poll(set
))
4956 lim
.features
|= BLK_FEAT_POLL
;
4958 lim
.features
&= ~BLK_FEAT_POLL
;
4959 if (queue_limits_commit_update(q
, &lim
) < 0)
4960 pr_warn("updating the poll flag failed\n");
4961 blk_mq_map_swqueue(q
);
4965 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4966 blk_mq_sysfs_register_hctxs(q
);
4967 blk_mq_debugfs_register_hctxs(q
);
4971 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4972 blk_mq_elv_switch_back(&head
, q
);
4974 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4975 blk_mq_unfreeze_queue(q
);
4977 /* Free the excess tags when nr_hw_queues shrink. */
4978 for (i
= set
->nr_hw_queues
; i
< prev_nr_hw_queues
; i
++)
4979 __blk_mq_free_map_and_rqs(set
, i
);
4982 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
4984 mutex_lock(&set
->tag_list_lock
);
4985 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
4986 mutex_unlock(&set
->tag_list_lock
);
4988 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
4990 static int blk_hctx_poll(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
4991 struct io_comp_batch
*iob
, unsigned int flags
)
4993 long state
= get_current_state();
4997 ret
= q
->mq_ops
->poll(hctx
, iob
);
4999 __set_current_state(TASK_RUNNING
);
5003 if (signal_pending_state(state
, current
))
5004 __set_current_state(TASK_RUNNING
);
5005 if (task_is_running(current
))
5008 if (ret
< 0 || (flags
& BLK_POLL_ONESHOT
))
5011 } while (!need_resched());
5013 __set_current_state(TASK_RUNNING
);
5017 int blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
,
5018 struct io_comp_batch
*iob
, unsigned int flags
)
5020 struct blk_mq_hw_ctx
*hctx
= xa_load(&q
->hctx_table
, cookie
);
5022 return blk_hctx_poll(q
, hctx
, iob
, flags
);
5025 int blk_rq_poll(struct request
*rq
, struct io_comp_batch
*iob
,
5026 unsigned int poll_flags
)
5028 struct request_queue
*q
= rq
->q
;
5031 if (!blk_rq_is_poll(rq
))
5033 if (!percpu_ref_tryget(&q
->q_usage_counter
))
5036 ret
= blk_hctx_poll(q
, rq
->mq_hctx
, iob
, poll_flags
);
5041 EXPORT_SYMBOL_GPL(blk_rq_poll
);
5043 unsigned int blk_mq_rq_cpu(struct request
*rq
)
5045 return rq
->mq_ctx
->cpu
;
5047 EXPORT_SYMBOL(blk_mq_rq_cpu
);
5049 void blk_mq_cancel_work_sync(struct request_queue
*q
)
5051 struct blk_mq_hw_ctx
*hctx
;
5054 cancel_delayed_work_sync(&q
->requeue_work
);
5056 queue_for_each_hw_ctx(q
, hctx
, i
)
5057 cancel_delayed_work_sync(&hctx
->run_work
);
5060 static int __init
blk_mq_init(void)
5064 for_each_possible_cpu(i
)
5065 init_llist_head(&per_cpu(blk_cpu_done
, i
));
5066 for_each_possible_cpu(i
)
5067 INIT_CSD(&per_cpu(blk_cpu_csd
, i
),
5068 __blk_mq_complete_request_remote
, NULL
);
5069 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
);
5071 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD
,
5072 "block/softirq:dead", NULL
,
5073 blk_softirq_cpu_dead
);
5074 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
5075 blk_mq_hctx_notify_dead
);
5076 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE
, "block/mq:online",
5077 blk_mq_hctx_notify_online
,
5078 blk_mq_hctx_notify_offline
);
5081 subsys_initcall(blk_mq_init
);