1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <linux/unaligned.h>
46 #include <acpi/cppc_acpi.h>
48 struct cppc_pcc_data
{
49 struct pcc_mbox_chan
*pcc_channel
;
50 void __iomem
*pcc_comm_addr
;
51 bool pcc_channel_acquired
;
52 unsigned int deadline_us
;
53 unsigned int pcc_mpar
, pcc_mrtt
, pcc_nominal
;
55 bool pending_pcc_write_cmd
; /* Any pending/batched PCC write cmds? */
56 bool platform_owns_pcc
; /* Ownership of PCC subspace */
57 unsigned int pcc_write_cnt
; /* Running count of PCC write commands */
60 * Lock to provide controlled access to the PCC channel.
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
73 struct rw_semaphore pcc_lock
;
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q
;
77 ktime_t last_cmd_cmpl_time
;
78 ktime_t last_mpar_reset
;
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data
*pcc_data
[MAX_PCC_SUBSPACES
];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx
);
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
95 static DEFINE_PER_CPU(struct cpc_desc
*, cpc_desc_ptr
);
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
106 /* Check if a CPC register is in FFH */
107 #define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
108 (cpc)->cpc_entry.reg.space_id == \
109 ACPI_ADR_SPACE_FIXED_HARDWARE)
111 /* Check if a CPC register is in SystemMemory */
112 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
113 (cpc)->cpc_entry.reg.space_id == \
114 ACPI_ADR_SPACE_SYSTEM_MEMORY)
116 /* Check if a CPC register is in SystemIo */
117 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
118 (cpc)->cpc_entry.reg.space_id == \
119 ACPI_ADR_SPACE_SYSTEM_IO)
121 /* Evaluates to True if reg is a NULL register descriptor */
122 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
123 (reg)->address == 0 && \
124 (reg)->bit_width == 0 && \
125 (reg)->bit_offset == 0 && \
126 (reg)->access_width == 0)
128 /* Evaluates to True if an optional cpc field is supported */
129 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
130 !!(cpc)->cpc_entry.int_value : \
131 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
133 * Arbitrary Retries in case the remote processor is slow to respond
134 * to PCC commands. Keeping it high enough to cover emulators where
135 * the processors run painfully slow.
137 #define NUM_RETRIES 500ULL
139 #define OVER_16BTS_MASK ~0xFFFFULL
141 #define define_one_cppc_ro(_name) \
142 static struct kobj_attribute _name = \
143 __ATTR(_name, 0444, show_##_name, NULL)
145 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
147 #define show_cppc_data(access_fn, struct_name, member_name) \
148 static ssize_t show_##member_name(struct kobject *kobj, \
149 struct kobj_attribute *attr, char *buf) \
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
152 struct struct_name st_name = {0}; \
155 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
159 return sysfs_emit(buf, "%llu\n", \
160 (u64)st_name.member_name); \
162 define_one_cppc_ro(member_name)
164 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, highest_perf
);
165 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_perf
);
166 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_perf
);
167 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_nonlinear_perf
);
168 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, guaranteed_perf
);
169 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_freq
);
170 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_freq
);
172 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, reference_perf
);
173 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, wraparound_time
);
175 /* Check for valid access_width, otherwise, fallback to using bit_width */
176 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
178 /* Shift and apply the mask for CPC reads/writes */
179 #define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) & \
180 GENMASK(((reg)->bit_width) - 1, 0))
181 #define MASK_VAL_WRITE(reg, prev_val, val) \
182 ((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) | \
183 ((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset))) \
185 static ssize_t show_feedback_ctrs(struct kobject *kobj,
186 struct kobj_attribute
*attr
, char *buf
)
188 struct cpc_desc
*cpc_ptr
= to_cpc_desc(kobj
);
189 struct cppc_perf_fb_ctrs fb_ctrs
= {0};
192 ret
= cppc_get_perf_ctrs(cpc_ptr
->cpu_id
, &fb_ctrs
);
196 return sysfs_emit(buf
, "ref:%llu del:%llu\n",
197 fb_ctrs
.reference
, fb_ctrs
.delivered
);
199 define_one_cppc_ro(feedback_ctrs
);
201 static struct attribute
*cppc_attrs
[] = {
203 &reference_perf
.attr
,
204 &wraparound_time
.attr
,
207 &lowest_nonlinear_perf
.attr
,
208 &guaranteed_perf
.attr
,
214 ATTRIBUTE_GROUPS(cppc
);
216 static const struct kobj_type cppc_ktype
= {
217 .sysfs_ops
= &kobj_sysfs_ops
,
218 .default_groups
= cppc_groups
,
221 static int check_pcc_chan(int pcc_ss_id
, bool chk_err_bit
)
224 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
225 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
=
226 pcc_ss_data
->pcc_comm_addr
;
228 if (!pcc_ss_data
->platform_owns_pcc
)
232 * Poll PCC status register every 3us(delay_us) for maximum of
233 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
235 ret
= readw_relaxed_poll_timeout(&generic_comm_base
->status
, status
,
236 status
& PCC_CMD_COMPLETE_MASK
, 3,
237 pcc_ss_data
->deadline_us
);
240 pcc_ss_data
->platform_owns_pcc
= false;
241 if (chk_err_bit
&& (status
& PCC_ERROR_MASK
))
246 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
253 * This function transfers the ownership of the PCC to the platform
254 * So it must be called while holding write_lock(pcc_lock)
256 static int send_pcc_cmd(int pcc_ss_id
, u16 cmd
)
259 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
260 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
=
261 pcc_ss_data
->pcc_comm_addr
;
262 unsigned int time_delta
;
265 * For CMD_WRITE we know for a fact the caller should have checked
266 * the channel before writing to PCC space
268 if (cmd
== CMD_READ
) {
270 * If there are pending cpc_writes, then we stole the channel
271 * before write completion, so first send a WRITE command to
274 if (pcc_ss_data
->pending_pcc_write_cmd
)
275 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
277 ret
= check_pcc_chan(pcc_ss_id
, false);
280 } else /* CMD_WRITE */
281 pcc_ss_data
->pending_pcc_write_cmd
= FALSE
;
284 * Handle the Minimum Request Turnaround Time(MRTT)
285 * "The minimum amount of time that OSPM must wait after the completion
286 * of a command before issuing the next command, in microseconds"
288 if (pcc_ss_data
->pcc_mrtt
) {
289 time_delta
= ktime_us_delta(ktime_get(),
290 pcc_ss_data
->last_cmd_cmpl_time
);
291 if (pcc_ss_data
->pcc_mrtt
> time_delta
)
292 udelay(pcc_ss_data
->pcc_mrtt
- time_delta
);
296 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
297 * "The maximum number of periodic requests that the subspace channel can
298 * support, reported in commands per minute. 0 indicates no limitation."
300 * This parameter should be ideally zero or large enough so that it can
301 * handle maximum number of requests that all the cores in the system can
302 * collectively generate. If it is not, we will follow the spec and just
303 * not send the request to the platform after hitting the MPAR limit in
306 if (pcc_ss_data
->pcc_mpar
) {
307 if (pcc_ss_data
->mpar_count
== 0) {
308 time_delta
= ktime_ms_delta(ktime_get(),
309 pcc_ss_data
->last_mpar_reset
);
310 if ((time_delta
< 60 * MSEC_PER_SEC
) && pcc_ss_data
->last_mpar_reset
) {
311 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
316 pcc_ss_data
->last_mpar_reset
= ktime_get();
317 pcc_ss_data
->mpar_count
= pcc_ss_data
->pcc_mpar
;
319 pcc_ss_data
->mpar_count
--;
322 /* Write to the shared comm region. */
323 writew_relaxed(cmd
, &generic_comm_base
->command
);
325 /* Flip CMD COMPLETE bit */
326 writew_relaxed(0, &generic_comm_base
->status
);
328 pcc_ss_data
->platform_owns_pcc
= true;
331 ret
= mbox_send_message(pcc_ss_data
->pcc_channel
->mchan
, &cmd
);
333 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
334 pcc_ss_id
, cmd
, ret
);
338 /* wait for completion and check for PCC error bit */
339 ret
= check_pcc_chan(pcc_ss_id
, true);
341 if (pcc_ss_data
->pcc_mrtt
)
342 pcc_ss_data
->last_cmd_cmpl_time
= ktime_get();
344 if (pcc_ss_data
->pcc_channel
->mchan
->mbox
->txdone_irq
)
345 mbox_chan_txdone(pcc_ss_data
->pcc_channel
->mchan
, ret
);
347 mbox_client_txdone(pcc_ss_data
->pcc_channel
->mchan
, ret
);
350 if (cmd
== CMD_WRITE
) {
352 for_each_possible_cpu(i
) {
353 struct cpc_desc
*desc
= per_cpu(cpc_desc_ptr
, i
);
358 if (desc
->write_cmd_id
== pcc_ss_data
->pcc_write_cnt
)
359 desc
->write_cmd_status
= ret
;
362 pcc_ss_data
->pcc_write_cnt
++;
363 wake_up_all(&pcc_ss_data
->pcc_write_wait_q
);
369 static void cppc_chan_tx_done(struct mbox_client
*cl
, void *msg
, int ret
)
372 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
375 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
379 static struct mbox_client cppc_mbox_cl
= {
380 .tx_done
= cppc_chan_tx_done
,
381 .knows_txdone
= true,
384 static int acpi_get_psd(struct cpc_desc
*cpc_ptr
, acpi_handle handle
)
386 int result
= -EFAULT
;
387 acpi_status status
= AE_OK
;
388 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
389 struct acpi_buffer format
= {sizeof("NNNNN"), "NNNNN"};
390 struct acpi_buffer state
= {0, NULL
};
391 union acpi_object
*psd
= NULL
;
392 struct acpi_psd_package
*pdomain
;
394 status
= acpi_evaluate_object_typed(handle
, "_PSD", NULL
,
395 &buffer
, ACPI_TYPE_PACKAGE
);
396 if (status
== AE_NOT_FOUND
) /* _PSD is optional */
398 if (ACPI_FAILURE(status
))
401 psd
= buffer
.pointer
;
402 if (!psd
|| psd
->package
.count
!= 1) {
403 pr_debug("Invalid _PSD data\n");
407 pdomain
= &(cpc_ptr
->domain_info
);
409 state
.length
= sizeof(struct acpi_psd_package
);
410 state
.pointer
= pdomain
;
412 status
= acpi_extract_package(&(psd
->package
.elements
[0]),
414 if (ACPI_FAILURE(status
)) {
415 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr
->cpu_id
);
419 if (pdomain
->num_entries
!= ACPI_PSD_REV0_ENTRIES
) {
420 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr
->cpu_id
);
424 if (pdomain
->revision
!= ACPI_PSD_REV0_REVISION
) {
425 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr
->cpu_id
);
429 if (pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ALL
&&
430 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ANY
&&
431 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_HW_ALL
) {
432 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr
->cpu_id
);
438 kfree(buffer
.pointer
);
442 bool acpi_cpc_valid(void)
444 struct cpc_desc
*cpc_ptr
;
450 for_each_present_cpu(cpu
) {
451 cpc_ptr
= per_cpu(cpc_desc_ptr
, cpu
);
458 EXPORT_SYMBOL_GPL(acpi_cpc_valid
);
460 bool cppc_allow_fast_switch(void)
462 struct cpc_register_resource
*desired_reg
;
463 struct cpc_desc
*cpc_ptr
;
466 for_each_possible_cpu(cpu
) {
467 cpc_ptr
= per_cpu(cpc_desc_ptr
, cpu
);
468 desired_reg
= &cpc_ptr
->cpc_regs
[DESIRED_PERF
];
469 if (!CPC_IN_SYSTEM_MEMORY(desired_reg
) &&
470 !CPC_IN_SYSTEM_IO(desired_reg
))
476 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch
);
479 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
480 * @cpu: Find all CPUs that share a domain with cpu.
481 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
483 * Return: 0 for success or negative value for err.
485 int acpi_get_psd_map(unsigned int cpu
, struct cppc_cpudata
*cpu_data
)
487 struct cpc_desc
*cpc_ptr
, *match_cpc_ptr
;
488 struct acpi_psd_package
*match_pdomain
;
489 struct acpi_psd_package
*pdomain
;
493 * Now that we have _PSD data from all CPUs, let's setup P-state
496 cpc_ptr
= per_cpu(cpc_desc_ptr
, cpu
);
500 pdomain
= &(cpc_ptr
->domain_info
);
501 cpumask_set_cpu(cpu
, cpu_data
->shared_cpu_map
);
502 if (pdomain
->num_processors
<= 1)
505 /* Validate the Domain info */
506 count_target
= pdomain
->num_processors
;
507 if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ALL
)
508 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
509 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_HW_ALL
)
510 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
511 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ANY
)
512 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_ANY
;
514 for_each_possible_cpu(i
) {
518 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, i
);
522 match_pdomain
= &(match_cpc_ptr
->domain_info
);
523 if (match_pdomain
->domain
!= pdomain
->domain
)
526 /* Here i and cpu are in the same domain */
527 if (match_pdomain
->num_processors
!= count_target
)
530 if (pdomain
->coord_type
!= match_pdomain
->coord_type
)
533 cpumask_set_cpu(i
, cpu_data
->shared_cpu_map
);
539 /* Assume no coordination on any error parsing domain info */
540 cpumask_clear(cpu_data
->shared_cpu_map
);
541 cpumask_set_cpu(cpu
, cpu_data
->shared_cpu_map
);
542 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_NONE
;
546 EXPORT_SYMBOL_GPL(acpi_get_psd_map
);
548 static int register_pcc_channel(int pcc_ss_idx
)
550 struct pcc_mbox_chan
*pcc_chan
;
553 if (pcc_ss_idx
>= 0) {
554 pcc_chan
= pcc_mbox_request_channel(&cppc_mbox_cl
, pcc_ss_idx
);
556 if (IS_ERR(pcc_chan
)) {
557 pr_err("Failed to find PCC channel for subspace %d\n",
562 pcc_data
[pcc_ss_idx
]->pcc_channel
= pcc_chan
;
564 * cppc_ss->latency is just a Nominal value. In reality
565 * the remote processor could be much slower to reply.
566 * So add an arbitrary amount of wait on top of Nominal.
568 usecs_lat
= NUM_RETRIES
* pcc_chan
->latency
;
569 pcc_data
[pcc_ss_idx
]->deadline_us
= usecs_lat
;
570 pcc_data
[pcc_ss_idx
]->pcc_mrtt
= pcc_chan
->min_turnaround_time
;
571 pcc_data
[pcc_ss_idx
]->pcc_mpar
= pcc_chan
->max_access_rate
;
572 pcc_data
[pcc_ss_idx
]->pcc_nominal
= pcc_chan
->latency
;
574 pcc_data
[pcc_ss_idx
]->pcc_comm_addr
=
575 acpi_os_ioremap(pcc_chan
->shmem_base_addr
,
576 pcc_chan
->shmem_size
);
577 if (!pcc_data
[pcc_ss_idx
]->pcc_comm_addr
) {
578 pr_err("Failed to ioremap PCC comm region mem for %d\n",
583 /* Set flag so that we don't come here for each CPU. */
584 pcc_data
[pcc_ss_idx
]->pcc_channel_acquired
= true;
591 * cpc_ffh_supported() - check if FFH reading supported
593 * Check if the architecture has support for functional fixed hardware
594 * read/write capability.
596 * Return: true for supported, false for not supported
598 bool __weak
cpc_ffh_supported(void)
604 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
606 * Check if the architectural support for CPPC is present even
607 * if the _OSC hasn't prescribed it
609 * Return: true for supported, false for not supported
611 bool __weak
cpc_supported_by_cpu(void)
617 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
618 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
620 * Check and allocate the cppc_pcc_data memory.
621 * In some processor configurations it is possible that same subspace
622 * is shared between multiple CPUs. This is seen especially in CPUs
623 * with hardware multi-threading support.
625 * Return: 0 for success, errno for failure
627 static int pcc_data_alloc(int pcc_ss_id
)
629 if (pcc_ss_id
< 0 || pcc_ss_id
>= MAX_PCC_SUBSPACES
)
632 if (pcc_data
[pcc_ss_id
]) {
633 pcc_data
[pcc_ss_id
]->refcount
++;
635 pcc_data
[pcc_ss_id
] = kzalloc(sizeof(struct cppc_pcc_data
),
637 if (!pcc_data
[pcc_ss_id
])
639 pcc_data
[pcc_ss_id
]->refcount
++;
646 * An example CPC table looks like the following.
648 * Name (_CPC, Package() {
651 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
652 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
653 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
654 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
655 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
656 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
657 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
662 * Each Register() encodes how to access that specific register.
663 * e.g. a sample PCC entry has the following encoding:
666 * PCC, // AddressSpaceKeyword
667 * 8, // RegisterBitWidth
668 * 8, // RegisterBitOffset
669 * 0x30, // RegisterAddress
670 * 9, // AccessSize (subspace ID)
675 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
676 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
678 * Return: 0 for success or negative value for err.
680 int acpi_cppc_processor_probe(struct acpi_processor
*pr
)
682 struct acpi_buffer output
= {ACPI_ALLOCATE_BUFFER
, NULL
};
683 union acpi_object
*out_obj
, *cpc_obj
;
684 struct cpc_desc
*cpc_ptr
;
685 struct cpc_reg
*gas_t
;
686 struct device
*cpu_dev
;
687 acpi_handle handle
= pr
->handle
;
688 unsigned int num_ent
, i
, cpc_rev
;
689 int pcc_subspace_id
= -1;
693 if (!osc_sb_cppc2_support_acked
) {
694 pr_debug("CPPC v2 _OSC not acked\n");
695 if (!cpc_supported_by_cpu()) {
696 pr_debug("CPPC is not supported by the CPU\n");
701 /* Parse the ACPI _CPC table for this CPU. */
702 status
= acpi_evaluate_object_typed(handle
, "_CPC", NULL
, &output
,
704 if (ACPI_FAILURE(status
)) {
709 out_obj
= (union acpi_object
*) output
.pointer
;
711 cpc_ptr
= kzalloc(sizeof(struct cpc_desc
), GFP_KERNEL
);
717 /* First entry is NumEntries. */
718 cpc_obj
= &out_obj
->package
.elements
[0];
719 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
720 num_ent
= cpc_obj
->integer
.value
;
722 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
727 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
728 cpc_obj
->type
, pr
->id
);
732 /* Second entry should be revision. */
733 cpc_obj
= &out_obj
->package
.elements
[1];
734 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
735 cpc_rev
= cpc_obj
->integer
.value
;
737 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
738 cpc_obj
->type
, pr
->id
);
742 if (cpc_rev
< CPPC_V2_REV
) {
743 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev
,
749 * Disregard _CPC if the number of entries in the return pachage is not
750 * as expected, but support future revisions being proper supersets of
751 * the v3 and only causing more entries to be returned by _CPC.
753 if ((cpc_rev
== CPPC_V2_REV
&& num_ent
!= CPPC_V2_NUM_ENT
) ||
754 (cpc_rev
== CPPC_V3_REV
&& num_ent
!= CPPC_V3_NUM_ENT
) ||
755 (cpc_rev
> CPPC_V3_REV
&& num_ent
<= CPPC_V3_NUM_ENT
)) {
756 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
760 if (cpc_rev
> CPPC_V3_REV
) {
761 num_ent
= CPPC_V3_NUM_ENT
;
762 cpc_rev
= CPPC_V3_REV
;
765 cpc_ptr
->num_entries
= num_ent
;
766 cpc_ptr
->version
= cpc_rev
;
768 /* Iterate through remaining entries in _CPC */
769 for (i
= 2; i
< num_ent
; i
++) {
770 cpc_obj
= &out_obj
->package
.elements
[i
];
772 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
773 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_INTEGER
;
774 cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.int_value
= cpc_obj
->integer
.value
;
775 } else if (cpc_obj
->type
== ACPI_TYPE_BUFFER
) {
776 gas_t
= (struct cpc_reg
*)
777 cpc_obj
->buffer
.pointer
;
780 * The PCC Subspace index is encoded inside
781 * the CPC table entries. The same PCC index
782 * will be used for all the PCC entries,
783 * so extract it only once.
785 if (gas_t
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
786 if (pcc_subspace_id
< 0) {
787 pcc_subspace_id
= gas_t
->access_width
;
788 if (pcc_data_alloc(pcc_subspace_id
))
790 } else if (pcc_subspace_id
!= gas_t
->access_width
) {
791 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
795 } else if (gas_t
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
796 if (gas_t
->address
) {
800 if (!osc_cpc_flexible_adr_space_confirmed
) {
801 pr_debug("Flexible address space capability not supported\n");
802 if (!cpc_supported_by_cpu())
806 access_width
= GET_BIT_WIDTH(gas_t
) / 8;
807 addr
= ioremap(gas_t
->address
, access_width
);
810 cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
= addr
;
812 } else if (gas_t
->space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
813 if (gas_t
->access_width
< 1 || gas_t
->access_width
> 3) {
815 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
816 * SystemIO doesn't implement 64-bit
819 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
820 gas_t
->access_width
);
823 if (gas_t
->address
& OVER_16BTS_MASK
) {
824 /* SystemIO registers use 16-bit integer addresses */
825 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
829 if (!osc_cpc_flexible_adr_space_confirmed
) {
830 pr_debug("Flexible address space capability not supported\n");
831 if (!cpc_supported_by_cpu())
835 if (gas_t
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
|| !cpc_ffh_supported()) {
836 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
837 pr_debug("Unsupported register type (%d) in _CPC\n",
843 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_BUFFER
;
844 memcpy(&cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.reg
, gas_t
, sizeof(*gas_t
));
846 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
851 per_cpu(cpu_pcc_subspace_idx
, pr
->id
) = pcc_subspace_id
;
854 * Initialize the remaining cpc_regs as unsupported.
855 * Example: In case FW exposes CPPC v2, the below loop will initialize
856 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
858 for (i
= num_ent
- 2; i
< MAX_CPC_REG_ENT
; i
++) {
859 cpc_ptr
->cpc_regs
[i
].type
= ACPI_TYPE_INTEGER
;
860 cpc_ptr
->cpc_regs
[i
].cpc_entry
.int_value
= 0;
864 /* Store CPU Logical ID */
865 cpc_ptr
->cpu_id
= pr
->id
;
866 raw_spin_lock_init(&cpc_ptr
->rmw_lock
);
868 /* Parse PSD data for this CPU */
869 ret
= acpi_get_psd(cpc_ptr
, handle
);
873 /* Register PCC channel once for all PCC subspace ID. */
874 if (pcc_subspace_id
>= 0 && !pcc_data
[pcc_subspace_id
]->pcc_channel_acquired
) {
875 ret
= register_pcc_channel(pcc_subspace_id
);
879 init_rwsem(&pcc_data
[pcc_subspace_id
]->pcc_lock
);
880 init_waitqueue_head(&pcc_data
[pcc_subspace_id
]->pcc_write_wait_q
);
883 /* Everything looks okay */
884 pr_debug("Parsed CPC struct for CPU: %d\n", pr
->id
);
886 /* Add per logical CPU nodes for reading its feedback counters. */
887 cpu_dev
= get_cpu_device(pr
->id
);
893 /* Plug PSD data into this CPU's CPC descriptor. */
894 per_cpu(cpc_desc_ptr
, pr
->id
) = cpc_ptr
;
896 ret
= kobject_init_and_add(&cpc_ptr
->kobj
, &cppc_ktype
, &cpu_dev
->kobj
,
899 per_cpu(cpc_desc_ptr
, pr
->id
) = NULL
;
900 kobject_put(&cpc_ptr
->kobj
);
904 kfree(output
.pointer
);
908 /* Free all the mapped sys mem areas for this CPU */
909 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
910 void __iomem
*addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
918 kfree(output
.pointer
);
921 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe
);
924 * acpi_cppc_processor_exit - Cleanup CPC structs.
925 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
929 void acpi_cppc_processor_exit(struct acpi_processor
*pr
)
931 struct cpc_desc
*cpc_ptr
;
934 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, pr
->id
);
936 if (pcc_ss_id
>= 0 && pcc_data
[pcc_ss_id
]) {
937 if (pcc_data
[pcc_ss_id
]->pcc_channel_acquired
) {
938 pcc_data
[pcc_ss_id
]->refcount
--;
939 if (!pcc_data
[pcc_ss_id
]->refcount
) {
940 pcc_mbox_free_channel(pcc_data
[pcc_ss_id
]->pcc_channel
);
941 kfree(pcc_data
[pcc_ss_id
]);
942 pcc_data
[pcc_ss_id
] = NULL
;
947 cpc_ptr
= per_cpu(cpc_desc_ptr
, pr
->id
);
951 /* Free all the mapped sys mem areas for this CPU */
952 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
953 addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
958 kobject_put(&cpc_ptr
->kobj
);
961 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit
);
964 * cpc_read_ffh() - Read FFH register
965 * @cpunum: CPU number to read
966 * @reg: cppc register information
967 * @val: place holder for return value
969 * Read bit_width bits from a specified address and bit_offset
971 * Return: 0 for success and error code
973 int __weak
cpc_read_ffh(int cpunum
, struct cpc_reg
*reg
, u64
*val
)
979 * cpc_write_ffh() - Write FFH register
980 * @cpunum: CPU number to write
981 * @reg: cppc register information
982 * @val: value to write
984 * Write value of bit_width bits to a specified address and bit_offset
986 * Return: 0 for success and error code
988 int __weak
cpc_write_ffh(int cpunum
, struct cpc_reg
*reg
, u64 val
)
994 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
995 * as fast as possible. We have already mapped the PCC subspace during init, so
996 * we can directly write to it.
999 static int cpc_read(int cpu
, struct cpc_register_resource
*reg_res
, u64
*val
)
1001 void __iomem
*vaddr
= NULL
;
1003 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1004 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
1006 if (reg_res
->type
== ACPI_TYPE_INTEGER
) {
1007 *val
= reg_res
->cpc_entry
.int_value
;
1012 size
= GET_BIT_WIDTH(reg
);
1014 if (IS_ENABLED(CONFIG_HAS_IOPORT
) &&
1015 reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
1019 status
= acpi_os_read_port((acpi_io_address
)reg
->address
,
1021 if (ACPI_FAILURE(status
)) {
1022 pr_debug("Error: Failed to read SystemIO port %llx\n",
1029 } else if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0) {
1031 * For registers in PCC space, the register size is determined
1032 * by the bit width field; the access size is used to indicate
1033 * the PCC subspace id.
1035 size
= reg
->bit_width
;
1036 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
1038 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1039 vaddr
= reg_res
->sys_mem_vaddr
;
1040 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
1041 return cpc_read_ffh(cpu
, reg
, val
);
1043 return acpi_os_read_memory((acpi_physical_address
)reg
->address
,
1048 *val
= readb_relaxed(vaddr
);
1051 *val
= readw_relaxed(vaddr
);
1054 *val
= readl_relaxed(vaddr
);
1057 *val
= readq_relaxed(vaddr
);
1060 if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
1061 pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1062 size
, reg
->address
);
1063 } else if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
1064 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1070 if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1071 *val
= MASK_VAL_READ(reg
, *val
);
1076 static int cpc_write(int cpu
, struct cpc_register_resource
*reg_res
, u64 val
)
1081 void __iomem
*vaddr
= NULL
;
1082 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1083 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
1084 struct cpc_desc
*cpc_desc
;
1085 unsigned long flags
;
1087 size
= GET_BIT_WIDTH(reg
);
1089 if (IS_ENABLED(CONFIG_HAS_IOPORT
) &&
1090 reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
1093 status
= acpi_os_write_port((acpi_io_address
)reg
->address
,
1095 if (ACPI_FAILURE(status
)) {
1096 pr_debug("Error: Failed to write SystemIO port %llx\n",
1102 } else if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0) {
1104 * For registers in PCC space, the register size is determined
1105 * by the bit width field; the access size is used to indicate
1106 * the PCC subspace id.
1108 size
= reg
->bit_width
;
1109 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
1111 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1112 vaddr
= reg_res
->sys_mem_vaddr
;
1113 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
1114 return cpc_write_ffh(cpu
, reg
, val
);
1116 return acpi_os_write_memory((acpi_physical_address
)reg
->address
,
1119 if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
1120 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1122 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1126 raw_spin_lock_irqsave(&cpc_desc
->rmw_lock
, flags
);
1129 prev_val
= readb_relaxed(vaddr
);
1132 prev_val
= readw_relaxed(vaddr
);
1135 prev_val
= readl_relaxed(vaddr
);
1138 prev_val
= readq_relaxed(vaddr
);
1141 raw_spin_unlock_irqrestore(&cpc_desc
->rmw_lock
, flags
);
1144 val
= MASK_VAL_WRITE(reg
, prev_val
, val
);
1149 writeb_relaxed(val
, vaddr
);
1152 writew_relaxed(val
, vaddr
);
1155 writel_relaxed(val
, vaddr
);
1158 writeq_relaxed(val
, vaddr
);
1161 if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
1162 pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1163 size
, reg
->address
);
1164 } else if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
1165 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1172 if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1173 raw_spin_unlock_irqrestore(&cpc_desc
->rmw_lock
, flags
);
1178 static int cppc_get_perf(int cpunum
, enum cppc_regs reg_idx
, u64
*perf
)
1180 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1181 struct cpc_register_resource
*reg
;
1184 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1188 reg
= &cpc_desc
->cpc_regs
[reg_idx
];
1190 if (CPC_IN_PCC(reg
)) {
1191 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1192 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1198 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1200 down_write(&pcc_ss_data
->pcc_lock
);
1202 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) >= 0)
1203 cpc_read(cpunum
, reg
, perf
);
1207 up_write(&pcc_ss_data
->pcc_lock
);
1212 cpc_read(cpunum
, reg
, perf
);
1218 * cppc_get_desired_perf - Get the desired performance register value.
1219 * @cpunum: CPU from which to get desired performance.
1220 * @desired_perf: Return address.
1222 * Return: 0 for success, -EIO otherwise.
1224 int cppc_get_desired_perf(int cpunum
, u64
*desired_perf
)
1226 return cppc_get_perf(cpunum
, DESIRED_PERF
, desired_perf
);
1228 EXPORT_SYMBOL_GPL(cppc_get_desired_perf
);
1231 * cppc_get_nominal_perf - Get the nominal performance register value.
1232 * @cpunum: CPU from which to get nominal performance.
1233 * @nominal_perf: Return address.
1235 * Return: 0 for success, -EIO otherwise.
1237 int cppc_get_nominal_perf(int cpunum
, u64
*nominal_perf
)
1239 return cppc_get_perf(cpunum
, NOMINAL_PERF
, nominal_perf
);
1243 * cppc_get_highest_perf - Get the highest performance register value.
1244 * @cpunum: CPU from which to get highest performance.
1245 * @highest_perf: Return address.
1247 * Return: 0 for success, -EIO otherwise.
1249 int cppc_get_highest_perf(int cpunum
, u64
*highest_perf
)
1251 return cppc_get_perf(cpunum
, HIGHEST_PERF
, highest_perf
);
1253 EXPORT_SYMBOL_GPL(cppc_get_highest_perf
);
1256 * cppc_get_epp_perf - Get the epp register value.
1257 * @cpunum: CPU from which to get epp preference value.
1258 * @epp_perf: Return address.
1260 * Return: 0 for success, -EIO otherwise.
1262 int cppc_get_epp_perf(int cpunum
, u64
*epp_perf
)
1264 return cppc_get_perf(cpunum
, ENERGY_PERF
, epp_perf
);
1266 EXPORT_SYMBOL_GPL(cppc_get_epp_perf
);
1269 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1270 * @cpunum: CPU from which to get capabilities info.
1271 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1273 * Return: 0 for success with perf_caps populated else -ERRNO.
1275 int cppc_get_perf_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
1277 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1278 struct cpc_register_resource
*highest_reg
, *lowest_reg
,
1279 *lowest_non_linear_reg
, *nominal_reg
, *guaranteed_reg
,
1280 *low_freq_reg
= NULL
, *nom_freq_reg
= NULL
;
1281 u64 high
, low
, guaranteed
, nom
, min_nonlinear
, low_f
= 0, nom_f
= 0;
1282 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1283 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1284 int ret
= 0, regs_in_pcc
= 0;
1287 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1291 highest_reg
= &cpc_desc
->cpc_regs
[HIGHEST_PERF
];
1292 lowest_reg
= &cpc_desc
->cpc_regs
[LOWEST_PERF
];
1293 lowest_non_linear_reg
= &cpc_desc
->cpc_regs
[LOW_NON_LINEAR_PERF
];
1294 nominal_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1295 low_freq_reg
= &cpc_desc
->cpc_regs
[LOWEST_FREQ
];
1296 nom_freq_reg
= &cpc_desc
->cpc_regs
[NOMINAL_FREQ
];
1297 guaranteed_reg
= &cpc_desc
->cpc_regs
[GUARANTEED_PERF
];
1299 /* Are any of the regs PCC ?*/
1300 if (CPC_IN_PCC(highest_reg
) || CPC_IN_PCC(lowest_reg
) ||
1301 CPC_IN_PCC(lowest_non_linear_reg
) || CPC_IN_PCC(nominal_reg
) ||
1302 CPC_IN_PCC(low_freq_reg
) || CPC_IN_PCC(nom_freq_reg
)) {
1303 if (pcc_ss_id
< 0) {
1304 pr_debug("Invalid pcc_ss_id\n");
1307 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1309 down_write(&pcc_ss_data
->pcc_lock
);
1310 /* Ring doorbell once to update PCC subspace */
1311 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1317 cpc_read(cpunum
, highest_reg
, &high
);
1318 perf_caps
->highest_perf
= high
;
1320 cpc_read(cpunum
, lowest_reg
, &low
);
1321 perf_caps
->lowest_perf
= low
;
1323 cpc_read(cpunum
, nominal_reg
, &nom
);
1324 perf_caps
->nominal_perf
= nom
;
1326 if (guaranteed_reg
->type
!= ACPI_TYPE_BUFFER
||
1327 IS_NULL_REG(&guaranteed_reg
->cpc_entry
.reg
)) {
1328 perf_caps
->guaranteed_perf
= 0;
1330 cpc_read(cpunum
, guaranteed_reg
, &guaranteed
);
1331 perf_caps
->guaranteed_perf
= guaranteed
;
1334 cpc_read(cpunum
, lowest_non_linear_reg
, &min_nonlinear
);
1335 perf_caps
->lowest_nonlinear_perf
= min_nonlinear
;
1337 if (!high
|| !low
|| !nom
|| !min_nonlinear
)
1340 /* Read optional lowest and nominal frequencies if present */
1341 if (CPC_SUPPORTED(low_freq_reg
))
1342 cpc_read(cpunum
, low_freq_reg
, &low_f
);
1344 if (CPC_SUPPORTED(nom_freq_reg
))
1345 cpc_read(cpunum
, nom_freq_reg
, &nom_f
);
1347 perf_caps
->lowest_freq
= low_f
;
1348 perf_caps
->nominal_freq
= nom_f
;
1353 up_write(&pcc_ss_data
->pcc_lock
);
1356 EXPORT_SYMBOL_GPL(cppc_get_perf_caps
);
1359 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1361 * CPPC has flexibility about how CPU performance counters are accessed.
1362 * One of the choices is PCC regions, which can have a high access latency. This
1363 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1365 * Return: true if any of the counters are in PCC regions, false otherwise
1367 bool cppc_perf_ctrs_in_pcc(void)
1371 for_each_present_cpu(cpu
) {
1372 struct cpc_register_resource
*ref_perf_reg
;
1373 struct cpc_desc
*cpc_desc
;
1375 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1377 if (CPC_IN_PCC(&cpc_desc
->cpc_regs
[DELIVERED_CTR
]) ||
1378 CPC_IN_PCC(&cpc_desc
->cpc_regs
[REFERENCE_CTR
]) ||
1379 CPC_IN_PCC(&cpc_desc
->cpc_regs
[CTR_WRAP_TIME
]))
1383 ref_perf_reg
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
1386 * If reference perf register is not supported then we should
1387 * use the nominal perf value
1389 if (!CPC_SUPPORTED(ref_perf_reg
))
1390 ref_perf_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1392 if (CPC_IN_PCC(ref_perf_reg
))
1398 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc
);
1401 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1402 * @cpunum: CPU from which to read counters.
1403 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1405 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1407 int cppc_get_perf_ctrs(int cpunum
, struct cppc_perf_fb_ctrs
*perf_fb_ctrs
)
1409 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1410 struct cpc_register_resource
*delivered_reg
, *reference_reg
,
1411 *ref_perf_reg
, *ctr_wrap_reg
;
1412 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1413 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1414 u64 delivered
, reference
, ref_perf
, ctr_wrap_time
;
1415 int ret
= 0, regs_in_pcc
= 0;
1418 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1422 delivered_reg
= &cpc_desc
->cpc_regs
[DELIVERED_CTR
];
1423 reference_reg
= &cpc_desc
->cpc_regs
[REFERENCE_CTR
];
1424 ref_perf_reg
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
1425 ctr_wrap_reg
= &cpc_desc
->cpc_regs
[CTR_WRAP_TIME
];
1428 * If reference perf register is not supported then we should
1429 * use the nominal perf value
1431 if (!CPC_SUPPORTED(ref_perf_reg
))
1432 ref_perf_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1434 /* Are any of the regs PCC ?*/
1435 if (CPC_IN_PCC(delivered_reg
) || CPC_IN_PCC(reference_reg
) ||
1436 CPC_IN_PCC(ctr_wrap_reg
) || CPC_IN_PCC(ref_perf_reg
)) {
1437 if (pcc_ss_id
< 0) {
1438 pr_debug("Invalid pcc_ss_id\n");
1441 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1442 down_write(&pcc_ss_data
->pcc_lock
);
1444 /* Ring doorbell once to update PCC subspace */
1445 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1451 cpc_read(cpunum
, delivered_reg
, &delivered
);
1452 cpc_read(cpunum
, reference_reg
, &reference
);
1453 cpc_read(cpunum
, ref_perf_reg
, &ref_perf
);
1456 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1457 * performance counters are assumed to never wrap during the lifetime of
1460 ctr_wrap_time
= (u64
)(~((u64
)0));
1461 if (CPC_SUPPORTED(ctr_wrap_reg
))
1462 cpc_read(cpunum
, ctr_wrap_reg
, &ctr_wrap_time
);
1464 if (!delivered
|| !reference
|| !ref_perf
) {
1469 perf_fb_ctrs
->delivered
= delivered
;
1470 perf_fb_ctrs
->reference
= reference
;
1471 perf_fb_ctrs
->reference_perf
= ref_perf
;
1472 perf_fb_ctrs
->wraparound_time
= ctr_wrap_time
;
1475 up_write(&pcc_ss_data
->pcc_lock
);
1478 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs
);
1481 * Set Energy Performance Preference Register value through
1482 * Performance Controls Interface
1484 int cppc_set_epp_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
, bool enable
)
1486 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1487 struct cpc_register_resource
*epp_set_reg
;
1488 struct cpc_register_resource
*auto_sel_reg
;
1489 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1490 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1494 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1498 auto_sel_reg
= &cpc_desc
->cpc_regs
[AUTO_SEL_ENABLE
];
1499 epp_set_reg
= &cpc_desc
->cpc_regs
[ENERGY_PERF
];
1501 if (CPC_IN_PCC(epp_set_reg
) || CPC_IN_PCC(auto_sel_reg
)) {
1502 if (pcc_ss_id
< 0) {
1503 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu
);
1507 if (CPC_SUPPORTED(auto_sel_reg
)) {
1508 ret
= cpc_write(cpu
, auto_sel_reg
, enable
);
1513 if (CPC_SUPPORTED(epp_set_reg
)) {
1514 ret
= cpc_write(cpu
, epp_set_reg
, perf_ctrls
->energy_perf
);
1519 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1521 down_write(&pcc_ss_data
->pcc_lock
);
1522 /* after writing CPC, transfer the ownership of PCC to platform */
1523 ret
= send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1524 up_write(&pcc_ss_data
->pcc_lock
);
1525 } else if (osc_cpc_flexible_adr_space_confirmed
&&
1526 CPC_SUPPORTED(epp_set_reg
) && CPC_IN_FFH(epp_set_reg
)) {
1527 ret
= cpc_write(cpu
, epp_set_reg
, perf_ctrls
->energy_perf
);
1530 pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
1535 EXPORT_SYMBOL_GPL(cppc_set_epp_perf
);
1538 * cppc_get_auto_sel_caps - Read autonomous selection register.
1539 * @cpunum : CPU from which to read register.
1540 * @perf_caps : struct where autonomous selection register value is updated.
1542 int cppc_get_auto_sel_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
1544 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1545 struct cpc_register_resource
*auto_sel_reg
;
1549 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1553 auto_sel_reg
= &cpc_desc
->cpc_regs
[AUTO_SEL_ENABLE
];
1555 if (!CPC_SUPPORTED(auto_sel_reg
))
1556 pr_warn_once("Autonomous mode is not unsupported!\n");
1558 if (CPC_IN_PCC(auto_sel_reg
)) {
1559 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1560 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1566 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1568 down_write(&pcc_ss_data
->pcc_lock
);
1570 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) >= 0) {
1571 cpc_read(cpunum
, auto_sel_reg
, &auto_sel
);
1572 perf_caps
->auto_sel
= (bool)auto_sel
;
1577 up_write(&pcc_ss_data
->pcc_lock
);
1584 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps
);
1587 * cppc_set_auto_sel - Write autonomous selection register.
1588 * @cpu : CPU to which to write register.
1589 * @enable : the desired value of autonomous selection resiter to be updated.
1591 int cppc_set_auto_sel(int cpu
, bool enable
)
1593 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1594 struct cpc_register_resource
*auto_sel_reg
;
1595 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1596 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1600 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1604 auto_sel_reg
= &cpc_desc
->cpc_regs
[AUTO_SEL_ENABLE
];
1606 if (CPC_IN_PCC(auto_sel_reg
)) {
1607 if (pcc_ss_id
< 0) {
1608 pr_debug("Invalid pcc_ss_id\n");
1612 if (CPC_SUPPORTED(auto_sel_reg
)) {
1613 ret
= cpc_write(cpu
, auto_sel_reg
, enable
);
1618 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1620 down_write(&pcc_ss_data
->pcc_lock
);
1621 /* after writing CPC, transfer the ownership of PCC to platform */
1622 ret
= send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1623 up_write(&pcc_ss_data
->pcc_lock
);
1626 pr_debug("_CPC in PCC is not supported\n");
1631 EXPORT_SYMBOL_GPL(cppc_set_auto_sel
);
1634 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1635 * Continuous Performance Control package EnableRegister field.
1636 * @cpu: CPU for which to enable CPPC register.
1637 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1639 * Return: 0 for success, -ERRNO or -EIO otherwise.
1641 int cppc_set_enable(int cpu
, bool enable
)
1643 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1644 struct cpc_register_resource
*enable_reg
;
1645 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1646 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1650 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1654 enable_reg
= &cpc_desc
->cpc_regs
[ENABLE
];
1656 if (CPC_IN_PCC(enable_reg
)) {
1661 ret
= cpc_write(cpu
, enable_reg
, enable
);
1665 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1667 down_write(&pcc_ss_data
->pcc_lock
);
1668 /* after writing CPC, transfer the ownership of PCC to platfrom */
1669 ret
= send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1670 up_write(&pcc_ss_data
->pcc_lock
);
1674 return cpc_write(cpu
, enable_reg
, enable
);
1676 EXPORT_SYMBOL_GPL(cppc_set_enable
);
1679 * cppc_set_perf - Set a CPU's performance controls.
1680 * @cpu: CPU for which to set performance controls.
1681 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1683 * Return: 0 for success, -ERRNO otherwise.
1685 int cppc_set_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
)
1687 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1688 struct cpc_register_resource
*desired_reg
, *min_perf_reg
, *max_perf_reg
;
1689 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1690 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1694 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1698 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1699 min_perf_reg
= &cpc_desc
->cpc_regs
[MIN_PERF
];
1700 max_perf_reg
= &cpc_desc
->cpc_regs
[MAX_PERF
];
1703 * This is Phase-I where we want to write to CPC registers
1704 * -> We want all CPUs to be able to execute this phase in parallel
1706 * Since read_lock can be acquired by multiple CPUs simultaneously we
1707 * achieve that goal here
1709 if (CPC_IN_PCC(desired_reg
) || CPC_IN_PCC(min_perf_reg
) || CPC_IN_PCC(max_perf_reg
)) {
1710 if (pcc_ss_id
< 0) {
1711 pr_debug("Invalid pcc_ss_id\n");
1714 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1715 down_read(&pcc_ss_data
->pcc_lock
); /* BEGIN Phase-I */
1716 if (pcc_ss_data
->platform_owns_pcc
) {
1717 ret
= check_pcc_chan(pcc_ss_id
, false);
1719 up_read(&pcc_ss_data
->pcc_lock
);
1724 * Update the pending_write to make sure a PCC CMD_READ will not
1725 * arrive and steal the channel during the switch to write lock
1727 pcc_ss_data
->pending_pcc_write_cmd
= true;
1728 cpc_desc
->write_cmd_id
= pcc_ss_data
->pcc_write_cnt
;
1729 cpc_desc
->write_cmd_status
= 0;
1732 cpc_write(cpu
, desired_reg
, perf_ctrls
->desired_perf
);
1735 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1736 * value to min and max perf, but they don't mean to set the zero value,
1737 * they just don't want to write to those registers.
1739 if (perf_ctrls
->min_perf
)
1740 cpc_write(cpu
, min_perf_reg
, perf_ctrls
->min_perf
);
1741 if (perf_ctrls
->max_perf
)
1742 cpc_write(cpu
, max_perf_reg
, perf_ctrls
->max_perf
);
1744 if (CPC_IN_PCC(desired_reg
) || CPC_IN_PCC(min_perf_reg
) || CPC_IN_PCC(max_perf_reg
))
1745 up_read(&pcc_ss_data
->pcc_lock
); /* END Phase-I */
1747 * This is Phase-II where we transfer the ownership of PCC to Platform
1749 * Short Summary: Basically if we think of a group of cppc_set_perf
1750 * requests that happened in short overlapping interval. The last CPU to
1751 * come out of Phase-I will enter Phase-II and ring the doorbell.
1753 * We have the following requirements for Phase-II:
1754 * 1. We want to execute Phase-II only when there are no CPUs
1755 * currently executing in Phase-I
1756 * 2. Once we start Phase-II we want to avoid all other CPUs from
1758 * 3. We want only one CPU among all those who went through Phase-I
1761 * If write_trylock fails to get the lock and doesn't transfer the
1762 * PCC ownership to the platform, then one of the following will be TRUE
1763 * 1. There is at-least one CPU in Phase-I which will later execute
1764 * write_trylock, so the CPUs in Phase-I will be responsible for
1765 * executing the Phase-II.
1766 * 2. Some other CPU has beaten this CPU to successfully execute the
1767 * write_trylock and has already acquired the write_lock. We know for a
1768 * fact it (other CPU acquiring the write_lock) couldn't have happened
1769 * before this CPU's Phase-I as we held the read_lock.
1770 * 3. Some other CPU executing pcc CMD_READ has stolen the
1771 * down_write, in which case, send_pcc_cmd will check for pending
1772 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1773 * So this CPU can be certain that its request will be delivered
1774 * So in all cases, this CPU knows that its request will be delivered
1775 * by another CPU and can return
1777 * After getting the down_write we still need to check for
1778 * pending_pcc_write_cmd to take care of the following scenario
1779 * The thread running this code could be scheduled out between
1780 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1781 * could have delivered the request to Platform by triggering the
1782 * doorbell and transferred the ownership of PCC to platform. So this
1783 * avoids triggering an unnecessary doorbell and more importantly before
1784 * triggering the doorbell it makes sure that the PCC channel ownership
1785 * is still with OSPM.
1786 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1787 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1788 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1789 * case during a CMD_READ and if there are pending writes it delivers
1790 * the write command before servicing the read command
1792 if (CPC_IN_PCC(desired_reg
) || CPC_IN_PCC(min_perf_reg
) || CPC_IN_PCC(max_perf_reg
)) {
1793 if (down_write_trylock(&pcc_ss_data
->pcc_lock
)) {/* BEGIN Phase-II */
1794 /* Update only if there are pending write commands */
1795 if (pcc_ss_data
->pending_pcc_write_cmd
)
1796 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1797 up_write(&pcc_ss_data
->pcc_lock
); /* END Phase-II */
1799 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1800 wait_event(pcc_ss_data
->pcc_write_wait_q
,
1801 cpc_desc
->write_cmd_id
!= pcc_ss_data
->pcc_write_cnt
);
1803 /* send_pcc_cmd updates the status in case of failure */
1804 ret
= cpc_desc
->write_cmd_status
;
1808 EXPORT_SYMBOL_GPL(cppc_set_perf
);
1811 * cppc_get_transition_latency - returns frequency transition latency in ns
1812 * @cpu_num: CPU number for per_cpu().
1814 * ACPI CPPC does not explicitly specify how a platform can specify the
1815 * transition latency for performance change requests. The closest we have
1816 * is the timing information from the PCCT tables which provides the info
1817 * on the number and frequency of PCC commands the platform can handle.
1819 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1820 * then assume there is no latency.
1822 unsigned int cppc_get_transition_latency(int cpu_num
)
1825 * Expected transition latency is based on the PCCT timing values
1826 * Below are definition from ACPI spec:
1827 * pcc_nominal- Expected latency to process a command, in microseconds
1828 * pcc_mpar - The maximum number of periodic requests that the subspace
1829 * channel can support, reported in commands per minute. 0
1830 * indicates no limitation.
1831 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1832 * completion of a command before issuing the next command,
1835 unsigned int latency_ns
= 0;
1836 struct cpc_desc
*cpc_desc
;
1837 struct cpc_register_resource
*desired_reg
;
1838 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu_num
);
1839 struct cppc_pcc_data
*pcc_ss_data
;
1841 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu_num
);
1843 return CPUFREQ_ETERNAL
;
1845 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1846 if (CPC_IN_SYSTEM_MEMORY(desired_reg
) || CPC_IN_SYSTEM_IO(desired_reg
))
1848 else if (!CPC_IN_PCC(desired_reg
))
1849 return CPUFREQ_ETERNAL
;
1852 return CPUFREQ_ETERNAL
;
1854 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1855 if (pcc_ss_data
->pcc_mpar
)
1856 latency_ns
= 60 * (1000 * 1000 * 1000 / pcc_ss_data
->pcc_mpar
);
1858 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_nominal
* 1000);
1859 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_mrtt
* 1000);
1863 EXPORT_SYMBOL_GPL(cppc_get_transition_latency
);
1865 /* Minimum struct length needed for the DMI processor entry we want */
1866 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
1868 /* Offset in the DMI processor structure for the max frequency */
1869 #define DMI_PROCESSOR_MAX_SPEED 0x14
1871 /* Callback function used to retrieve the max frequency from DMI */
1872 static void cppc_find_dmi_mhz(const struct dmi_header
*dm
, void *private)
1874 const u8
*dmi_data
= (const u8
*)dm
;
1875 u16
*mhz
= (u16
*)private;
1877 if (dm
->type
== DMI_ENTRY_PROCESSOR
&&
1878 dm
->length
>= DMI_ENTRY_PROCESSOR_MIN_LENGTH
) {
1879 u16 val
= (u16
)get_unaligned((const u16
*)
1880 (dmi_data
+ DMI_PROCESSOR_MAX_SPEED
));
1881 *mhz
= umax(val
, *mhz
);
1885 /* Look up the max frequency in DMI */
1886 static u64
cppc_get_dmi_max_khz(void)
1890 dmi_walk(cppc_find_dmi_mhz
, &mhz
);
1893 * Real stupid fallback value, just in case there is no
1896 mhz
= mhz
? mhz
: 1;
1898 return KHZ_PER_MHZ
* mhz
;
1902 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1903 * use them to convert perf to freq and vice versa. The conversion is
1904 * extrapolated as an affine function passing by the 2 points:
1905 * - (Low perf, Low freq)
1906 * - (Nominal perf, Nominal freq)
1908 unsigned int cppc_perf_to_khz(struct cppc_perf_caps
*caps
, unsigned int perf
)
1910 s64 retval
, offset
= 0;
1914 if (caps
->lowest_freq
&& caps
->nominal_freq
) {
1915 /* Avoid special case when nominal_freq is equal to lowest_freq */
1916 if (caps
->lowest_freq
== caps
->nominal_freq
) {
1917 mul
= caps
->nominal_freq
;
1918 div
= caps
->nominal_perf
;
1920 mul
= caps
->nominal_freq
- caps
->lowest_freq
;
1921 div
= caps
->nominal_perf
- caps
->lowest_perf
;
1924 offset
= caps
->nominal_freq
* KHZ_PER_MHZ
-
1925 div64_u64(caps
->nominal_perf
* mul
, div
);
1928 max_khz
= cppc_get_dmi_max_khz();
1930 div
= caps
->highest_perf
;
1933 retval
= offset
+ div64_u64(perf
* mul
, div
);
1938 EXPORT_SYMBOL_GPL(cppc_perf_to_khz
);
1940 unsigned int cppc_khz_to_perf(struct cppc_perf_caps
*caps
, unsigned int freq
)
1942 s64 retval
, offset
= 0;
1946 if (caps
->lowest_freq
&& caps
->nominal_freq
) {
1947 /* Avoid special case when nominal_freq is equal to lowest_freq */
1948 if (caps
->lowest_freq
== caps
->nominal_freq
) {
1949 mul
= caps
->nominal_perf
;
1950 div
= caps
->nominal_freq
;
1952 mul
= caps
->nominal_perf
- caps
->lowest_perf
;
1953 div
= caps
->nominal_freq
- caps
->lowest_freq
;
1956 * We don't need to convert to kHz for computing offset and can
1957 * directly use nominal_freq and lowest_freq as the div64_u64
1958 * will remove the frequency unit.
1960 offset
= caps
->nominal_perf
-
1961 div64_u64(caps
->nominal_freq
* mul
, div
);
1962 /* But we need it for computing the perf level. */
1966 max_khz
= cppc_get_dmi_max_khz();
1967 mul
= caps
->highest_perf
;
1971 retval
= offset
+ div64_u64(freq
* mul
, div
);
1976 EXPORT_SYMBOL_GPL(cppc_khz_to_perf
);