1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2009, Microsoft Corporation.
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/platform_device.h>
16 #include <linux/interrupt.h>
17 #include <linux/sysctl.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/completion.h>
21 #include <linux/hyperv.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/of_address.h>
24 #include <linux/clockchips.h>
25 #include <linux/cpu.h>
26 #include <linux/sched/isolation.h>
27 #include <linux/sched/task_stack.h>
29 #include <linux/delay.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/ptrace.h>
32 #include <linux/screen_info.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <linux/pci.h>
39 #include <clocksource/hyperv_timer.h>
40 #include <asm/mshyperv.h>
41 #include "hyperv_vmbus.h"
44 struct list_head node
;
45 struct hv_vmbus_device_id id
;
48 static struct device
*hv_dev
;
50 static int hyperv_cpuhp_online
;
52 static long __percpu
*vmbus_evt
;
54 /* Values parsed from ACPI DSDT */
59 * The panic notifier below is responsible solely for unloading the
60 * vmbus connection, which is necessary in a panic event.
62 * Notice an intrincate relation of this notifier with Hyper-V
63 * framebuffer panic notifier exists - we need vmbus connection alive
64 * there in order to succeed, so we need to order both with each other
65 * [see hvfb_on_panic()] - this is done using notifiers' priorities.
67 static int hv_panic_vmbus_unload(struct notifier_block
*nb
, unsigned long val
,
70 vmbus_initiate_unload(true);
73 static struct notifier_block hyperv_panic_vmbus_unload_block
= {
74 .notifier_call
= hv_panic_vmbus_unload
,
75 .priority
= INT_MIN
+ 1, /* almost the latest one to execute */
78 static const char *fb_mmio_name
= "fb_range";
79 static struct resource
*fb_mmio
;
80 static struct resource
*hyperv_mmio
;
81 static DEFINE_MUTEX(hyperv_mmio_lock
);
83 static int vmbus_exists(void)
91 static u8
channel_monitor_group(const struct vmbus_channel
*channel
)
93 return (u8
)channel
->offermsg
.monitorid
/ 32;
96 static u8
channel_monitor_offset(const struct vmbus_channel
*channel
)
98 return (u8
)channel
->offermsg
.monitorid
% 32;
101 static u32
channel_pending(const struct vmbus_channel
*channel
,
102 const struct hv_monitor_page
*monitor_page
)
104 u8 monitor_group
= channel_monitor_group(channel
);
106 return monitor_page
->trigger_group
[monitor_group
].pending
;
109 static u32
channel_latency(const struct vmbus_channel
*channel
,
110 const struct hv_monitor_page
*monitor_page
)
112 u8 monitor_group
= channel_monitor_group(channel
);
113 u8 monitor_offset
= channel_monitor_offset(channel
);
115 return monitor_page
->latency
[monitor_group
][monitor_offset
];
118 static u32
channel_conn_id(struct vmbus_channel
*channel
,
119 struct hv_monitor_page
*monitor_page
)
121 u8 monitor_group
= channel_monitor_group(channel
);
122 u8 monitor_offset
= channel_monitor_offset(channel
);
124 return monitor_page
->parameter
[monitor_group
][monitor_offset
].connectionid
.u
.id
;
127 static ssize_t
id_show(struct device
*dev
, struct device_attribute
*dev_attr
,
130 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
132 if (!hv_dev
->channel
)
134 return sysfs_emit(buf
, "%d\n", hv_dev
->channel
->offermsg
.child_relid
);
136 static DEVICE_ATTR_RO(id
);
138 static ssize_t
state_show(struct device
*dev
, struct device_attribute
*dev_attr
,
141 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
143 if (!hv_dev
->channel
)
145 return sysfs_emit(buf
, "%d\n", hv_dev
->channel
->state
);
147 static DEVICE_ATTR_RO(state
);
149 static ssize_t
monitor_id_show(struct device
*dev
,
150 struct device_attribute
*dev_attr
, char *buf
)
152 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
154 if (!hv_dev
->channel
)
156 return sysfs_emit(buf
, "%d\n", hv_dev
->channel
->offermsg
.monitorid
);
158 static DEVICE_ATTR_RO(monitor_id
);
160 static ssize_t
class_id_show(struct device
*dev
,
161 struct device_attribute
*dev_attr
, char *buf
)
163 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
165 if (!hv_dev
->channel
)
167 return sysfs_emit(buf
, "{%pUl}\n",
168 &hv_dev
->channel
->offermsg
.offer
.if_type
);
170 static DEVICE_ATTR_RO(class_id
);
172 static ssize_t
device_id_show(struct device
*dev
,
173 struct device_attribute
*dev_attr
, char *buf
)
175 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
177 if (!hv_dev
->channel
)
179 return sysfs_emit(buf
, "{%pUl}\n",
180 &hv_dev
->channel
->offermsg
.offer
.if_instance
);
182 static DEVICE_ATTR_RO(device_id
);
184 static ssize_t
modalias_show(struct device
*dev
,
185 struct device_attribute
*dev_attr
, char *buf
)
187 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
189 return sysfs_emit(buf
, "vmbus:%*phN\n", UUID_SIZE
, &hv_dev
->dev_type
);
191 static DEVICE_ATTR_RO(modalias
);
194 static ssize_t
numa_node_show(struct device
*dev
,
195 struct device_attribute
*attr
, char *buf
)
197 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
199 if (!hv_dev
->channel
)
202 return sysfs_emit(buf
, "%d\n", cpu_to_node(hv_dev
->channel
->target_cpu
));
204 static DEVICE_ATTR_RO(numa_node
);
207 static ssize_t
server_monitor_pending_show(struct device
*dev
,
208 struct device_attribute
*dev_attr
,
211 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
213 if (!hv_dev
->channel
)
215 return sysfs_emit(buf
, "%d\n", channel_pending(hv_dev
->channel
,
216 vmbus_connection
.monitor_pages
[0]));
218 static DEVICE_ATTR_RO(server_monitor_pending
);
220 static ssize_t
client_monitor_pending_show(struct device
*dev
,
221 struct device_attribute
*dev_attr
,
224 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
226 if (!hv_dev
->channel
)
228 return sysfs_emit(buf
, "%d\n", channel_pending(hv_dev
->channel
,
229 vmbus_connection
.monitor_pages
[1]));
231 static DEVICE_ATTR_RO(client_monitor_pending
);
233 static ssize_t
server_monitor_latency_show(struct device
*dev
,
234 struct device_attribute
*dev_attr
,
237 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
239 if (!hv_dev
->channel
)
241 return sysfs_emit(buf
, "%d\n", channel_latency(hv_dev
->channel
,
242 vmbus_connection
.monitor_pages
[0]));
244 static DEVICE_ATTR_RO(server_monitor_latency
);
246 static ssize_t
client_monitor_latency_show(struct device
*dev
,
247 struct device_attribute
*dev_attr
,
250 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
252 if (!hv_dev
->channel
)
254 return sysfs_emit(buf
, "%d\n", channel_latency(hv_dev
->channel
,
255 vmbus_connection
.monitor_pages
[1]));
257 static DEVICE_ATTR_RO(client_monitor_latency
);
259 static ssize_t
server_monitor_conn_id_show(struct device
*dev
,
260 struct device_attribute
*dev_attr
,
263 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
265 if (!hv_dev
->channel
)
267 return sysfs_emit(buf
, "%d\n", channel_conn_id(hv_dev
->channel
,
268 vmbus_connection
.monitor_pages
[0]));
270 static DEVICE_ATTR_RO(server_monitor_conn_id
);
272 static ssize_t
client_monitor_conn_id_show(struct device
*dev
,
273 struct device_attribute
*dev_attr
,
276 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
278 if (!hv_dev
->channel
)
280 return sysfs_emit(buf
, "%d\n", channel_conn_id(hv_dev
->channel
,
281 vmbus_connection
.monitor_pages
[1]));
283 static DEVICE_ATTR_RO(client_monitor_conn_id
);
285 static ssize_t
out_intr_mask_show(struct device
*dev
,
286 struct device_attribute
*dev_attr
, char *buf
)
288 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
289 struct hv_ring_buffer_debug_info outbound
;
292 if (!hv_dev
->channel
)
295 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
300 return sysfs_emit(buf
, "%d\n", outbound
.current_interrupt_mask
);
302 static DEVICE_ATTR_RO(out_intr_mask
);
304 static ssize_t
out_read_index_show(struct device
*dev
,
305 struct device_attribute
*dev_attr
, char *buf
)
307 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
308 struct hv_ring_buffer_debug_info outbound
;
311 if (!hv_dev
->channel
)
314 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
318 return sysfs_emit(buf
, "%d\n", outbound
.current_read_index
);
320 static DEVICE_ATTR_RO(out_read_index
);
322 static ssize_t
out_write_index_show(struct device
*dev
,
323 struct device_attribute
*dev_attr
,
326 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
327 struct hv_ring_buffer_debug_info outbound
;
330 if (!hv_dev
->channel
)
333 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
337 return sysfs_emit(buf
, "%d\n", outbound
.current_write_index
);
339 static DEVICE_ATTR_RO(out_write_index
);
341 static ssize_t
out_read_bytes_avail_show(struct device
*dev
,
342 struct device_attribute
*dev_attr
,
345 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
346 struct hv_ring_buffer_debug_info outbound
;
349 if (!hv_dev
->channel
)
352 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
356 return sysfs_emit(buf
, "%d\n", outbound
.bytes_avail_toread
);
358 static DEVICE_ATTR_RO(out_read_bytes_avail
);
360 static ssize_t
out_write_bytes_avail_show(struct device
*dev
,
361 struct device_attribute
*dev_attr
,
364 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
365 struct hv_ring_buffer_debug_info outbound
;
368 if (!hv_dev
->channel
)
371 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
375 return sysfs_emit(buf
, "%d\n", outbound
.bytes_avail_towrite
);
377 static DEVICE_ATTR_RO(out_write_bytes_avail
);
379 static ssize_t
in_intr_mask_show(struct device
*dev
,
380 struct device_attribute
*dev_attr
, char *buf
)
382 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
383 struct hv_ring_buffer_debug_info inbound
;
386 if (!hv_dev
->channel
)
389 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
393 return sysfs_emit(buf
, "%d\n", inbound
.current_interrupt_mask
);
395 static DEVICE_ATTR_RO(in_intr_mask
);
397 static ssize_t
in_read_index_show(struct device
*dev
,
398 struct device_attribute
*dev_attr
, char *buf
)
400 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
401 struct hv_ring_buffer_debug_info inbound
;
404 if (!hv_dev
->channel
)
407 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
411 return sysfs_emit(buf
, "%d\n", inbound
.current_read_index
);
413 static DEVICE_ATTR_RO(in_read_index
);
415 static ssize_t
in_write_index_show(struct device
*dev
,
416 struct device_attribute
*dev_attr
, char *buf
)
418 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
419 struct hv_ring_buffer_debug_info inbound
;
422 if (!hv_dev
->channel
)
425 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
429 return sysfs_emit(buf
, "%d\n", inbound
.current_write_index
);
431 static DEVICE_ATTR_RO(in_write_index
);
433 static ssize_t
in_read_bytes_avail_show(struct device
*dev
,
434 struct device_attribute
*dev_attr
,
437 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
438 struct hv_ring_buffer_debug_info inbound
;
441 if (!hv_dev
->channel
)
444 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
448 return sysfs_emit(buf
, "%d\n", inbound
.bytes_avail_toread
);
450 static DEVICE_ATTR_RO(in_read_bytes_avail
);
452 static ssize_t
in_write_bytes_avail_show(struct device
*dev
,
453 struct device_attribute
*dev_attr
,
456 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
457 struct hv_ring_buffer_debug_info inbound
;
460 if (!hv_dev
->channel
)
463 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
467 return sysfs_emit(buf
, "%d\n", inbound
.bytes_avail_towrite
);
469 static DEVICE_ATTR_RO(in_write_bytes_avail
);
471 static ssize_t
channel_vp_mapping_show(struct device
*dev
,
472 struct device_attribute
*dev_attr
,
475 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
476 struct vmbus_channel
*channel
= hv_dev
->channel
, *cur_sc
;
478 struct list_head
*cur
;
483 mutex_lock(&vmbus_connection
.channel_mutex
);
485 n_written
= sysfs_emit(buf
, "%u:%u\n",
486 channel
->offermsg
.child_relid
,
487 channel
->target_cpu
);
489 list_for_each(cur
, &channel
->sc_list
) {
491 cur_sc
= list_entry(cur
, struct vmbus_channel
, sc_list
);
492 n_written
+= sysfs_emit_at(buf
, n_written
, "%u:%u\n",
493 cur_sc
->offermsg
.child_relid
,
497 mutex_unlock(&vmbus_connection
.channel_mutex
);
501 static DEVICE_ATTR_RO(channel_vp_mapping
);
503 static ssize_t
vendor_show(struct device
*dev
,
504 struct device_attribute
*dev_attr
,
507 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
509 return sysfs_emit(buf
, "0x%x\n", hv_dev
->vendor_id
);
511 static DEVICE_ATTR_RO(vendor
);
513 static ssize_t
device_show(struct device
*dev
,
514 struct device_attribute
*dev_attr
,
517 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
519 return sysfs_emit(buf
, "0x%x\n", hv_dev
->device_id
);
521 static DEVICE_ATTR_RO(device
);
523 static ssize_t
driver_override_store(struct device
*dev
,
524 struct device_attribute
*attr
,
525 const char *buf
, size_t count
)
527 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
530 ret
= driver_set_override(dev
, &hv_dev
->driver_override
, buf
, count
);
537 static ssize_t
driver_override_show(struct device
*dev
,
538 struct device_attribute
*attr
, char *buf
)
540 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
544 len
= sysfs_emit(buf
, "%s\n", hv_dev
->driver_override
);
549 static DEVICE_ATTR_RW(driver_override
);
551 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
552 static struct attribute
*vmbus_dev_attrs
[] = {
554 &dev_attr_state
.attr
,
555 &dev_attr_monitor_id
.attr
,
556 &dev_attr_class_id
.attr
,
557 &dev_attr_device_id
.attr
,
558 &dev_attr_modalias
.attr
,
560 &dev_attr_numa_node
.attr
,
562 &dev_attr_server_monitor_pending
.attr
,
563 &dev_attr_client_monitor_pending
.attr
,
564 &dev_attr_server_monitor_latency
.attr
,
565 &dev_attr_client_monitor_latency
.attr
,
566 &dev_attr_server_monitor_conn_id
.attr
,
567 &dev_attr_client_monitor_conn_id
.attr
,
568 &dev_attr_out_intr_mask
.attr
,
569 &dev_attr_out_read_index
.attr
,
570 &dev_attr_out_write_index
.attr
,
571 &dev_attr_out_read_bytes_avail
.attr
,
572 &dev_attr_out_write_bytes_avail
.attr
,
573 &dev_attr_in_intr_mask
.attr
,
574 &dev_attr_in_read_index
.attr
,
575 &dev_attr_in_write_index
.attr
,
576 &dev_attr_in_read_bytes_avail
.attr
,
577 &dev_attr_in_write_bytes_avail
.attr
,
578 &dev_attr_channel_vp_mapping
.attr
,
579 &dev_attr_vendor
.attr
,
580 &dev_attr_device
.attr
,
581 &dev_attr_driver_override
.attr
,
586 * Device-level attribute_group callback function. Returns the permission for
587 * each attribute, and returns 0 if an attribute is not visible.
589 static umode_t
vmbus_dev_attr_is_visible(struct kobject
*kobj
,
590 struct attribute
*attr
, int idx
)
592 struct device
*dev
= kobj_to_dev(kobj
);
593 const struct hv_device
*hv_dev
= device_to_hv_device(dev
);
595 /* Hide the monitor attributes if the monitor mechanism is not used. */
596 if (!hv_dev
->channel
->offermsg
.monitor_allocated
&&
597 (attr
== &dev_attr_monitor_id
.attr
||
598 attr
== &dev_attr_server_monitor_pending
.attr
||
599 attr
== &dev_attr_client_monitor_pending
.attr
||
600 attr
== &dev_attr_server_monitor_latency
.attr
||
601 attr
== &dev_attr_client_monitor_latency
.attr
||
602 attr
== &dev_attr_server_monitor_conn_id
.attr
||
603 attr
== &dev_attr_client_monitor_conn_id
.attr
))
609 static const struct attribute_group vmbus_dev_group
= {
610 .attrs
= vmbus_dev_attrs
,
611 .is_visible
= vmbus_dev_attr_is_visible
613 __ATTRIBUTE_GROUPS(vmbus_dev
);
615 /* Set up the attribute for /sys/bus/vmbus/hibernation */
616 static ssize_t
hibernation_show(const struct bus_type
*bus
, char *buf
)
618 return sprintf(buf
, "%d\n", !!hv_is_hibernation_supported());
621 static BUS_ATTR_RO(hibernation
);
623 static struct attribute
*vmbus_bus_attrs
[] = {
624 &bus_attr_hibernation
.attr
,
627 static const struct attribute_group vmbus_bus_group
= {
628 .attrs
= vmbus_bus_attrs
,
630 __ATTRIBUTE_GROUPS(vmbus_bus
);
633 * vmbus_uevent - add uevent for our device
635 * This routine is invoked when a device is added or removed on the vmbus to
636 * generate a uevent to udev in the userspace. The udev will then look at its
637 * rule and the uevent generated here to load the appropriate driver
639 * The alias string will be of the form vmbus:guid where guid is the string
640 * representation of the device guid (each byte of the guid will be
641 * represented with two hex characters.
643 static int vmbus_uevent(const struct device
*device
, struct kobj_uevent_env
*env
)
645 const struct hv_device
*dev
= device_to_hv_device(device
);
646 const char *format
= "MODALIAS=vmbus:%*phN";
648 return add_uevent_var(env
, format
, UUID_SIZE
, &dev
->dev_type
);
651 static const struct hv_vmbus_device_id
*
652 hv_vmbus_dev_match(const struct hv_vmbus_device_id
*id
, const guid_t
*guid
)
655 return NULL
; /* empty device table */
657 for (; !guid_is_null(&id
->guid
); id
++)
658 if (guid_equal(&id
->guid
, guid
))
664 static const struct hv_vmbus_device_id
*
665 hv_vmbus_dynid_match(struct hv_driver
*drv
, const guid_t
*guid
)
667 const struct hv_vmbus_device_id
*id
= NULL
;
668 struct vmbus_dynid
*dynid
;
670 spin_lock(&drv
->dynids
.lock
);
671 list_for_each_entry(dynid
, &drv
->dynids
.list
, node
) {
672 if (guid_equal(&dynid
->id
.guid
, guid
)) {
677 spin_unlock(&drv
->dynids
.lock
);
682 static const struct hv_vmbus_device_id vmbus_device_null
;
685 * Return a matching hv_vmbus_device_id pointer.
686 * If there is no match, return NULL.
688 static const struct hv_vmbus_device_id
*hv_vmbus_get_id(const struct hv_driver
*drv
,
689 struct hv_device
*dev
)
691 const guid_t
*guid
= &dev
->dev_type
;
692 const struct hv_vmbus_device_id
*id
;
694 /* When driver_override is set, only bind to the matching driver */
695 if (dev
->driver_override
&& strcmp(dev
->driver_override
, drv
->name
))
698 /* Look at the dynamic ids first, before the static ones */
699 id
= hv_vmbus_dynid_match((struct hv_driver
*)drv
, guid
);
701 id
= hv_vmbus_dev_match(drv
->id_table
, guid
);
703 /* driver_override will always match, send a dummy id */
704 if (!id
&& dev
->driver_override
)
705 id
= &vmbus_device_null
;
710 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
711 static int vmbus_add_dynid(struct hv_driver
*drv
, guid_t
*guid
)
713 struct vmbus_dynid
*dynid
;
715 dynid
= kzalloc(sizeof(*dynid
), GFP_KERNEL
);
719 dynid
->id
.guid
= *guid
;
721 spin_lock(&drv
->dynids
.lock
);
722 list_add_tail(&dynid
->node
, &drv
->dynids
.list
);
723 spin_unlock(&drv
->dynids
.lock
);
725 return driver_attach(&drv
->driver
);
728 static void vmbus_free_dynids(struct hv_driver
*drv
)
730 struct vmbus_dynid
*dynid
, *n
;
732 spin_lock(&drv
->dynids
.lock
);
733 list_for_each_entry_safe(dynid
, n
, &drv
->dynids
.list
, node
) {
734 list_del(&dynid
->node
);
737 spin_unlock(&drv
->dynids
.lock
);
741 * store_new_id - sysfs frontend to vmbus_add_dynid()
743 * Allow GUIDs to be added to an existing driver via sysfs.
745 static ssize_t
new_id_store(struct device_driver
*driver
, const char *buf
,
748 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
752 retval
= guid_parse(buf
, &guid
);
756 if (hv_vmbus_dynid_match(drv
, &guid
))
759 retval
= vmbus_add_dynid(drv
, &guid
);
764 static DRIVER_ATTR_WO(new_id
);
767 * store_remove_id - remove a PCI device ID from this driver
769 * Removes a dynamic pci device ID to this driver.
771 static ssize_t
remove_id_store(struct device_driver
*driver
, const char *buf
,
774 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
775 struct vmbus_dynid
*dynid
, *n
;
779 retval
= guid_parse(buf
, &guid
);
784 spin_lock(&drv
->dynids
.lock
);
785 list_for_each_entry_safe(dynid
, n
, &drv
->dynids
.list
, node
) {
786 struct hv_vmbus_device_id
*id
= &dynid
->id
;
788 if (guid_equal(&id
->guid
, &guid
)) {
789 list_del(&dynid
->node
);
795 spin_unlock(&drv
->dynids
.lock
);
799 static DRIVER_ATTR_WO(remove_id
);
801 static struct attribute
*vmbus_drv_attrs
[] = {
802 &driver_attr_new_id
.attr
,
803 &driver_attr_remove_id
.attr
,
806 ATTRIBUTE_GROUPS(vmbus_drv
);
810 * vmbus_match - Attempt to match the specified device to the specified driver
812 static int vmbus_match(struct device
*device
, const struct device_driver
*driver
)
814 const struct hv_driver
*drv
= drv_to_hv_drv(driver
);
815 struct hv_device
*hv_dev
= device_to_hv_device(device
);
817 /* The hv_sock driver handles all hv_sock offers. */
818 if (is_hvsock_channel(hv_dev
->channel
))
821 if (hv_vmbus_get_id(drv
, hv_dev
))
828 * vmbus_probe - Add the new vmbus's child device
830 static int vmbus_probe(struct device
*child_device
)
833 struct hv_driver
*drv
=
834 drv_to_hv_drv(child_device
->driver
);
835 struct hv_device
*dev
= device_to_hv_device(child_device
);
836 const struct hv_vmbus_device_id
*dev_id
;
838 dev_id
= hv_vmbus_get_id(drv
, dev
);
840 ret
= drv
->probe(dev
, dev_id
);
842 pr_err("probe failed for device %s (%d)\n",
843 dev_name(child_device
), ret
);
846 pr_err("probe not set for driver %s\n",
847 dev_name(child_device
));
854 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
856 static int vmbus_dma_configure(struct device
*child_device
)
859 * On ARM64, propagate the DMA coherence setting from the top level
860 * VMbus ACPI device to the child VMbus device being added here.
861 * On x86/x64 coherence is assumed and these calls have no effect.
863 hv_setup_dma_ops(child_device
,
864 device_get_dma_attr(hv_dev
) == DEV_DMA_COHERENT
);
869 * vmbus_remove - Remove a vmbus device
871 static void vmbus_remove(struct device
*child_device
)
873 struct hv_driver
*drv
;
874 struct hv_device
*dev
= device_to_hv_device(child_device
);
876 if (child_device
->driver
) {
877 drv
= drv_to_hv_drv(child_device
->driver
);
884 * vmbus_shutdown - Shutdown a vmbus device
886 static void vmbus_shutdown(struct device
*child_device
)
888 struct hv_driver
*drv
;
889 struct hv_device
*dev
= device_to_hv_device(child_device
);
892 /* The device may not be attached yet */
893 if (!child_device
->driver
)
896 drv
= drv_to_hv_drv(child_device
->driver
);
902 #ifdef CONFIG_PM_SLEEP
904 * vmbus_suspend - Suspend a vmbus device
906 static int vmbus_suspend(struct device
*child_device
)
908 struct hv_driver
*drv
;
909 struct hv_device
*dev
= device_to_hv_device(child_device
);
911 /* The device may not be attached yet */
912 if (!child_device
->driver
)
915 drv
= drv_to_hv_drv(child_device
->driver
);
919 return drv
->suspend(dev
);
923 * vmbus_resume - Resume a vmbus device
925 static int vmbus_resume(struct device
*child_device
)
927 struct hv_driver
*drv
;
928 struct hv_device
*dev
= device_to_hv_device(child_device
);
930 /* The device may not be attached yet */
931 if (!child_device
->driver
)
934 drv
= drv_to_hv_drv(child_device
->driver
);
938 return drv
->resume(dev
);
941 #define vmbus_suspend NULL
942 #define vmbus_resume NULL
943 #endif /* CONFIG_PM_SLEEP */
946 * vmbus_device_release - Final callback release of the vmbus child device
948 static void vmbus_device_release(struct device
*device
)
950 struct hv_device
*hv_dev
= device_to_hv_device(device
);
951 struct vmbus_channel
*channel
= hv_dev
->channel
;
953 hv_debug_rm_dev_dir(hv_dev
);
955 mutex_lock(&vmbus_connection
.channel_mutex
);
956 hv_process_channel_removal(channel
);
957 mutex_unlock(&vmbus_connection
.channel_mutex
);
962 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
964 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
965 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
966 * is no way to wake up a Generation-2 VM.
968 * The other 4 ops are for hibernation.
971 static const struct dev_pm_ops vmbus_pm
= {
972 .suspend_noirq
= NULL
,
973 .resume_noirq
= NULL
,
974 .freeze_noirq
= vmbus_suspend
,
975 .thaw_noirq
= vmbus_resume
,
976 .poweroff_noirq
= vmbus_suspend
,
977 .restore_noirq
= vmbus_resume
,
980 /* The one and only one */
981 static const struct bus_type hv_bus
= {
983 .match
= vmbus_match
,
984 .shutdown
= vmbus_shutdown
,
985 .remove
= vmbus_remove
,
986 .probe
= vmbus_probe
,
987 .uevent
= vmbus_uevent
,
988 .dma_configure
= vmbus_dma_configure
,
989 .dev_groups
= vmbus_dev_groups
,
990 .drv_groups
= vmbus_drv_groups
,
991 .bus_groups
= vmbus_bus_groups
,
995 struct onmessage_work_context
{
996 struct work_struct work
;
998 struct hv_message_header header
;
1003 static void vmbus_onmessage_work(struct work_struct
*work
)
1005 struct onmessage_work_context
*ctx
;
1007 /* Do not process messages if we're in DISCONNECTED state */
1008 if (vmbus_connection
.conn_state
== DISCONNECTED
)
1011 ctx
= container_of(work
, struct onmessage_work_context
,
1013 vmbus_onmessage((struct vmbus_channel_message_header
*)
1018 void vmbus_on_msg_dpc(unsigned long data
)
1020 struct hv_per_cpu_context
*hv_cpu
= (void *)data
;
1021 void *page_addr
= hv_cpu
->synic_message_page
;
1022 struct hv_message msg_copy
, *msg
= (struct hv_message
*)page_addr
+
1024 struct vmbus_channel_message_header
*hdr
;
1025 enum vmbus_channel_message_type msgtype
;
1026 const struct vmbus_channel_message_table_entry
*entry
;
1027 struct onmessage_work_context
*ctx
;
1032 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1033 * it is being used in 'struct vmbus_channel_message_header' definition
1034 * which is supposed to match hypervisor ABI.
1036 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type
) != sizeof(u32
));
1039 * Since the message is in memory shared with the host, an erroneous or
1040 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1041 * or individual message handlers are executing; to prevent this, copy
1042 * the message into private memory.
1044 memcpy(&msg_copy
, msg
, sizeof(struct hv_message
));
1046 message_type
= msg_copy
.header
.message_type
;
1047 if (message_type
== HVMSG_NONE
)
1051 hdr
= (struct vmbus_channel_message_header
*)msg_copy
.u
.payload
;
1052 msgtype
= hdr
->msgtype
;
1054 trace_vmbus_on_msg_dpc(hdr
);
1056 if (msgtype
>= CHANNELMSG_COUNT
) {
1057 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype
);
1061 payload_size
= msg_copy
.header
.payload_size
;
1062 if (payload_size
> HV_MESSAGE_PAYLOAD_BYTE_COUNT
) {
1063 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size
);
1067 entry
= &channel_message_table
[msgtype
];
1069 if (!entry
->message_handler
)
1072 if (payload_size
< entry
->min_payload_len
) {
1073 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype
, payload_size
);
1077 if (entry
->handler_type
== VMHT_BLOCKING
) {
1078 ctx
= kmalloc(struct_size(ctx
, msg
.payload
, payload_size
), GFP_ATOMIC
);
1082 INIT_WORK(&ctx
->work
, vmbus_onmessage_work
);
1083 ctx
->msg
.header
= msg_copy
.header
;
1084 memcpy(&ctx
->msg
.payload
, msg_copy
.u
.payload
, payload_size
);
1087 * The host can generate a rescind message while we
1088 * may still be handling the original offer. We deal with
1089 * this condition by relying on the synchronization provided
1090 * by offer_in_progress and by channel_mutex. See also the
1091 * inline comments in vmbus_onoffer_rescind().
1094 case CHANNELMSG_RESCIND_CHANNELOFFER
:
1096 * If we are handling the rescind message;
1097 * schedule the work on the global work queue.
1099 * The OFFER message and the RESCIND message should
1100 * not be handled by the same serialized work queue,
1101 * because the OFFER handler may call vmbus_open(),
1102 * which tries to open the channel by sending an
1103 * OPEN_CHANNEL message to the host and waits for
1104 * the host's response; however, if the host has
1105 * rescinded the channel before it receives the
1106 * OPEN_CHANNEL message, the host just silently
1107 * ignores the OPEN_CHANNEL message; as a result,
1108 * the guest's OFFER handler hangs for ever, if we
1109 * handle the RESCIND message in the same serialized
1110 * work queue: the RESCIND handler can not start to
1111 * run before the OFFER handler finishes.
1113 if (vmbus_connection
.ignore_any_offer_msg
)
1115 queue_work(vmbus_connection
.rescind_work_queue
, &ctx
->work
);
1118 case CHANNELMSG_OFFERCHANNEL
:
1120 * The host sends the offer message of a given channel
1121 * before sending the rescind message of the same
1122 * channel. These messages are sent to the guest's
1123 * connect CPU; the guest then starts processing them
1124 * in the tasklet handler on this CPU:
1128 * [vmbus_on_msg_dpc()]
1129 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1132 * [vmbus_on_msg_dpc()]
1133 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1135 * We rely on the memory-ordering properties of the
1136 * queue_work() and schedule_work() primitives, which
1137 * guarantee that the atomic increment will be visible
1138 * to the CPUs which will execute the offer & rescind
1139 * works by the time these works will start execution.
1141 if (vmbus_connection
.ignore_any_offer_msg
)
1143 atomic_inc(&vmbus_connection
.offer_in_progress
);
1147 queue_work(vmbus_connection
.work_queue
, &ctx
->work
);
1150 entry
->message_handler(hdr
);
1153 vmbus_signal_eom(msg
, message_type
);
1156 #ifdef CONFIG_PM_SLEEP
1158 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1159 * hibernation, because hv_sock connections can not persist across hibernation.
1161 static void vmbus_force_channel_rescinded(struct vmbus_channel
*channel
)
1163 struct onmessage_work_context
*ctx
;
1164 struct vmbus_channel_rescind_offer
*rescind
;
1166 WARN_ON(!is_hvsock_channel(channel
));
1169 * Allocation size is small and the allocation should really not fail,
1170 * otherwise the state of the hv_sock connections ends up in limbo.
1172 ctx
= kzalloc(sizeof(*ctx
) + sizeof(*rescind
),
1173 GFP_KERNEL
| __GFP_NOFAIL
);
1176 * So far, these are not really used by Linux. Just set them to the
1177 * reasonable values conforming to the definitions of the fields.
1179 ctx
->msg
.header
.message_type
= 1;
1180 ctx
->msg
.header
.payload_size
= sizeof(*rescind
);
1182 /* These values are actually used by Linux. */
1183 rescind
= (struct vmbus_channel_rescind_offer
*)ctx
->msg
.payload
;
1184 rescind
->header
.msgtype
= CHANNELMSG_RESCIND_CHANNELOFFER
;
1185 rescind
->child_relid
= channel
->offermsg
.child_relid
;
1187 INIT_WORK(&ctx
->work
, vmbus_onmessage_work
);
1189 queue_work(vmbus_connection
.work_queue
, &ctx
->work
);
1191 #endif /* CONFIG_PM_SLEEP */
1194 * Schedule all channels with events pending
1196 static void vmbus_chan_sched(struct hv_per_cpu_context
*hv_cpu
)
1198 unsigned long *recv_int_page
;
1202 * The event page can be directly checked to get the id of
1203 * the channel that has the interrupt pending.
1205 void *page_addr
= hv_cpu
->synic_event_page
;
1206 union hv_synic_event_flags
*event
1207 = (union hv_synic_event_flags
*)page_addr
+
1210 maxbits
= HV_EVENT_FLAGS_COUNT
;
1211 recv_int_page
= event
->flags
;
1213 if (unlikely(!recv_int_page
))
1216 for_each_set_bit(relid
, recv_int_page
, maxbits
) {
1217 void (*callback_fn
)(void *context
);
1218 struct vmbus_channel
*channel
;
1220 if (!sync_test_and_clear_bit(relid
, recv_int_page
))
1223 /* Special case - vmbus channel protocol msg */
1228 * Pairs with the kfree_rcu() in vmbus_chan_release().
1229 * Guarantees that the channel data structure doesn't
1230 * get freed while the channel pointer below is being
1235 /* Find channel based on relid */
1236 channel
= relid2channel(relid
);
1237 if (channel
== NULL
)
1238 goto sched_unlock_rcu
;
1240 if (channel
->rescind
)
1241 goto sched_unlock_rcu
;
1244 * Make sure that the ring buffer data structure doesn't get
1245 * freed while we dereference the ring buffer pointer. Test
1246 * for the channel's onchannel_callback being NULL within a
1247 * sched_lock critical section. See also the inline comments
1248 * in vmbus_reset_channel_cb().
1250 spin_lock(&channel
->sched_lock
);
1252 callback_fn
= channel
->onchannel_callback
;
1253 if (unlikely(callback_fn
== NULL
))
1256 trace_vmbus_chan_sched(channel
);
1258 ++channel
->interrupts
;
1260 switch (channel
->callback_mode
) {
1262 (*callback_fn
)(channel
->channel_callback_context
);
1265 case HV_CALL_BATCHED
:
1266 hv_begin_read(&channel
->inbound
);
1268 case HV_CALL_DIRECT
:
1269 tasklet_schedule(&channel
->callback_event
);
1273 spin_unlock(&channel
->sched_lock
);
1279 static void vmbus_isr(void)
1281 struct hv_per_cpu_context
*hv_cpu
1282 = this_cpu_ptr(hv_context
.cpu_context
);
1284 struct hv_message
*msg
;
1286 vmbus_chan_sched(hv_cpu
);
1288 page_addr
= hv_cpu
->synic_message_page
;
1289 msg
= (struct hv_message
*)page_addr
+ VMBUS_MESSAGE_SINT
;
1291 /* Check if there are actual msgs to be processed */
1292 if (msg
->header
.message_type
!= HVMSG_NONE
) {
1293 if (msg
->header
.message_type
== HVMSG_TIMER_EXPIRED
) {
1295 vmbus_signal_eom(msg
, HVMSG_TIMER_EXPIRED
);
1297 tasklet_schedule(&hv_cpu
->msg_dpc
);
1300 add_interrupt_randomness(vmbus_interrupt
);
1303 static irqreturn_t
vmbus_percpu_isr(int irq
, void *dev_id
)
1309 static void vmbus_percpu_work(struct work_struct
*work
)
1311 unsigned int cpu
= smp_processor_id();
1317 * vmbus_bus_init -Main vmbus driver initialization routine.
1320 * - initialize the vmbus driver context
1321 * - invoke the vmbus hv main init routine
1322 * - retrieve the channel offers
1324 static int vmbus_bus_init(void)
1327 struct work_struct __percpu
*works
;
1331 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret
);
1335 ret
= bus_register(&hv_bus
);
1340 * VMbus interrupts are best modeled as per-cpu interrupts. If
1341 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1342 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1343 * If not on such an architecture (e.g., x86/x64), then rely on
1344 * code in the arch-specific portion of the code tree to connect
1345 * the VMbus interrupt handler.
1348 if (vmbus_irq
== -1) {
1349 hv_setup_vmbus_handler(vmbus_isr
);
1351 vmbus_evt
= alloc_percpu(long);
1352 ret
= request_percpu_irq(vmbus_irq
, vmbus_percpu_isr
,
1353 "Hyper-V VMbus", vmbus_evt
);
1355 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1357 free_percpu(vmbus_evt
);
1362 ret
= hv_synic_alloc();
1366 works
= alloc_percpu(struct work_struct
);
1373 * Initialize the per-cpu interrupt state and stimer state.
1374 * Then connect to the host.
1377 for_each_online_cpu(cpu
) {
1378 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
1380 INIT_WORK(work
, vmbus_percpu_work
);
1381 schedule_work_on(cpu
, work
);
1384 for_each_online_cpu(cpu
)
1385 flush_work(per_cpu_ptr(works
, cpu
));
1387 /* Register the callbacks for possible CPU online/offline'ing */
1388 ret
= cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN
, "hyperv/vmbus:online",
1389 hv_synic_init
, hv_synic_cleanup
);
1394 hyperv_cpuhp_online
= ret
;
1396 ret
= vmbus_connect();
1401 * Always register the vmbus unload panic notifier because we
1402 * need to shut the VMbus channel connection on panic.
1404 atomic_notifier_chain_register(&panic_notifier_list
,
1405 &hyperv_panic_vmbus_unload_block
);
1407 vmbus_request_offers();
1412 cpuhp_remove_state(hyperv_cpuhp_online
);
1415 if (vmbus_irq
== -1) {
1416 hv_remove_vmbus_handler();
1418 free_percpu_irq(vmbus_irq
, vmbus_evt
);
1419 free_percpu(vmbus_evt
);
1422 bus_unregister(&hv_bus
);
1427 * __vmbus_driver_register() - Register a vmbus's driver
1428 * @hv_driver: Pointer to driver structure you want to register
1429 * @owner: owner module of the drv
1430 * @mod_name: module name string
1432 * Registers the given driver with Linux through the 'driver_register()' call
1433 * and sets up the hyper-v vmbus handling for this driver.
1434 * It will return the state of the 'driver_register()' call.
1437 int __vmbus_driver_register(struct hv_driver
*hv_driver
, struct module
*owner
, const char *mod_name
)
1441 pr_info("registering driver %s\n", hv_driver
->name
);
1443 ret
= vmbus_exists();
1447 hv_driver
->driver
.name
= hv_driver
->name
;
1448 hv_driver
->driver
.owner
= owner
;
1449 hv_driver
->driver
.mod_name
= mod_name
;
1450 hv_driver
->driver
.bus
= &hv_bus
;
1452 spin_lock_init(&hv_driver
->dynids
.lock
);
1453 INIT_LIST_HEAD(&hv_driver
->dynids
.list
);
1455 ret
= driver_register(&hv_driver
->driver
);
1459 EXPORT_SYMBOL_GPL(__vmbus_driver_register
);
1462 * vmbus_driver_unregister() - Unregister a vmbus's driver
1463 * @hv_driver: Pointer to driver structure you want to
1466 * Un-register the given driver that was previous registered with a call to
1467 * vmbus_driver_register()
1469 void vmbus_driver_unregister(struct hv_driver
*hv_driver
)
1471 pr_info("unregistering driver %s\n", hv_driver
->name
);
1473 if (!vmbus_exists()) {
1474 driver_unregister(&hv_driver
->driver
);
1475 vmbus_free_dynids(hv_driver
);
1478 EXPORT_SYMBOL_GPL(vmbus_driver_unregister
);
1482 * Called when last reference to channel is gone.
1484 static void vmbus_chan_release(struct kobject
*kobj
)
1486 struct vmbus_channel
*channel
1487 = container_of(kobj
, struct vmbus_channel
, kobj
);
1489 kfree_rcu(channel
, rcu
);
1492 struct vmbus_chan_attribute
{
1493 struct attribute attr
;
1494 ssize_t (*show
)(struct vmbus_channel
*chan
, char *buf
);
1495 ssize_t (*store
)(struct vmbus_channel
*chan
,
1496 const char *buf
, size_t count
);
1498 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1499 struct vmbus_chan_attribute chan_attr_##_name \
1500 = __ATTR(_name, _mode, _show, _store)
1501 #define VMBUS_CHAN_ATTR_RW(_name) \
1502 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1503 #define VMBUS_CHAN_ATTR_RO(_name) \
1504 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1505 #define VMBUS_CHAN_ATTR_WO(_name) \
1506 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1508 static ssize_t
vmbus_chan_attr_show(struct kobject
*kobj
,
1509 struct attribute
*attr
, char *buf
)
1511 const struct vmbus_chan_attribute
*attribute
1512 = container_of(attr
, struct vmbus_chan_attribute
, attr
);
1513 struct vmbus_channel
*chan
1514 = container_of(kobj
, struct vmbus_channel
, kobj
);
1516 if (!attribute
->show
)
1519 return attribute
->show(chan
, buf
);
1522 static ssize_t
vmbus_chan_attr_store(struct kobject
*kobj
,
1523 struct attribute
*attr
, const char *buf
,
1526 const struct vmbus_chan_attribute
*attribute
1527 = container_of(attr
, struct vmbus_chan_attribute
, attr
);
1528 struct vmbus_channel
*chan
1529 = container_of(kobj
, struct vmbus_channel
, kobj
);
1531 if (!attribute
->store
)
1534 return attribute
->store(chan
, buf
, count
);
1537 static const struct sysfs_ops vmbus_chan_sysfs_ops
= {
1538 .show
= vmbus_chan_attr_show
,
1539 .store
= vmbus_chan_attr_store
,
1542 static ssize_t
out_mask_show(struct vmbus_channel
*channel
, char *buf
)
1544 struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
1547 mutex_lock(&rbi
->ring_buffer_mutex
);
1548 if (!rbi
->ring_buffer
) {
1549 mutex_unlock(&rbi
->ring_buffer_mutex
);
1553 ret
= sprintf(buf
, "%u\n", rbi
->ring_buffer
->interrupt_mask
);
1554 mutex_unlock(&rbi
->ring_buffer_mutex
);
1557 static VMBUS_CHAN_ATTR_RO(out_mask
);
1559 static ssize_t
in_mask_show(struct vmbus_channel
*channel
, char *buf
)
1561 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
1564 mutex_lock(&rbi
->ring_buffer_mutex
);
1565 if (!rbi
->ring_buffer
) {
1566 mutex_unlock(&rbi
->ring_buffer_mutex
);
1570 ret
= sprintf(buf
, "%u\n", rbi
->ring_buffer
->interrupt_mask
);
1571 mutex_unlock(&rbi
->ring_buffer_mutex
);
1574 static VMBUS_CHAN_ATTR_RO(in_mask
);
1576 static ssize_t
read_avail_show(struct vmbus_channel
*channel
, char *buf
)
1578 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
1581 mutex_lock(&rbi
->ring_buffer_mutex
);
1582 if (!rbi
->ring_buffer
) {
1583 mutex_unlock(&rbi
->ring_buffer_mutex
);
1587 ret
= sprintf(buf
, "%u\n", hv_get_bytes_to_read(rbi
));
1588 mutex_unlock(&rbi
->ring_buffer_mutex
);
1591 static VMBUS_CHAN_ATTR_RO(read_avail
);
1593 static ssize_t
write_avail_show(struct vmbus_channel
*channel
, char *buf
)
1595 struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
1598 mutex_lock(&rbi
->ring_buffer_mutex
);
1599 if (!rbi
->ring_buffer
) {
1600 mutex_unlock(&rbi
->ring_buffer_mutex
);
1604 ret
= sprintf(buf
, "%u\n", hv_get_bytes_to_write(rbi
));
1605 mutex_unlock(&rbi
->ring_buffer_mutex
);
1608 static VMBUS_CHAN_ATTR_RO(write_avail
);
1610 static ssize_t
target_cpu_show(struct vmbus_channel
*channel
, char *buf
)
1612 return sprintf(buf
, "%u\n", channel
->target_cpu
);
1614 static ssize_t
target_cpu_store(struct vmbus_channel
*channel
,
1615 const char *buf
, size_t count
)
1617 u32 target_cpu
, origin_cpu
;
1618 ssize_t ret
= count
;
1620 if (vmbus_proto_version
< VERSION_WIN10_V4_1
)
1623 if (sscanf(buf
, "%uu", &target_cpu
) != 1)
1626 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1627 if (target_cpu
>= nr_cpumask_bits
)
1630 if (!cpumask_test_cpu(target_cpu
, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ
)))
1633 /* No CPUs should come up or down during this. */
1636 if (!cpu_online(target_cpu
)) {
1642 * Synchronizes target_cpu_store() and channel closure:
1644 * { Initially: state = CHANNEL_OPENED }
1648 * [target_cpu_store()] [vmbus_disconnect_ring()]
1650 * LOCK channel_mutex LOCK channel_mutex
1651 * LOAD r1 = state LOAD r2 = state
1652 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1653 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1654 * [...] SEND CLOSECHANNEL
1655 * UNLOCK channel_mutex UNLOCK channel_mutex
1657 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1658 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1660 * Note. The host processes the channel messages "sequentially", in
1661 * the order in which they are received on a per-partition basis.
1663 mutex_lock(&vmbus_connection
.channel_mutex
);
1666 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1667 * avoid sending the message and fail here for such channels.
1669 if (channel
->state
!= CHANNEL_OPENED_STATE
) {
1671 goto cpu_store_unlock
;
1674 origin_cpu
= channel
->target_cpu
;
1675 if (target_cpu
== origin_cpu
)
1676 goto cpu_store_unlock
;
1678 if (vmbus_send_modifychannel(channel
,
1679 hv_cpu_number_to_vp_number(target_cpu
))) {
1681 goto cpu_store_unlock
;
1685 * For version before VERSION_WIN10_V5_3, the following warning holds:
1687 * Warning. At this point, there is *no* guarantee that the host will
1688 * have successfully processed the vmbus_send_modifychannel() request.
1689 * See the header comment of vmbus_send_modifychannel() for more info.
1691 * Lags in the processing of the above vmbus_send_modifychannel() can
1692 * result in missed interrupts if the "old" target CPU is taken offline
1693 * before Hyper-V starts sending interrupts to the "new" target CPU.
1694 * But apart from this offlining scenario, the code tolerates such
1695 * lags. It will function correctly even if a channel interrupt comes
1696 * in on a CPU that is different from the channel target_cpu value.
1699 channel
->target_cpu
= target_cpu
;
1701 /* See init_vp_index(). */
1702 if (hv_is_perf_channel(channel
))
1703 hv_update_allocated_cpus(origin_cpu
, target_cpu
);
1705 /* Currently set only for storvsc channels. */
1706 if (channel
->change_target_cpu_callback
) {
1707 (*channel
->change_target_cpu_callback
)(channel
,
1708 origin_cpu
, target_cpu
);
1712 mutex_unlock(&vmbus_connection
.channel_mutex
);
1716 static VMBUS_CHAN_ATTR(cpu
, 0644, target_cpu_show
, target_cpu_store
);
1718 static ssize_t
channel_pending_show(struct vmbus_channel
*channel
,
1721 return sprintf(buf
, "%d\n",
1722 channel_pending(channel
,
1723 vmbus_connection
.monitor_pages
[1]));
1725 static VMBUS_CHAN_ATTR(pending
, 0444, channel_pending_show
, NULL
);
1727 static ssize_t
channel_latency_show(struct vmbus_channel
*channel
,
1730 return sprintf(buf
, "%d\n",
1731 channel_latency(channel
,
1732 vmbus_connection
.monitor_pages
[1]));
1734 static VMBUS_CHAN_ATTR(latency
, 0444, channel_latency_show
, NULL
);
1736 static ssize_t
channel_interrupts_show(struct vmbus_channel
*channel
, char *buf
)
1738 return sprintf(buf
, "%llu\n", channel
->interrupts
);
1740 static VMBUS_CHAN_ATTR(interrupts
, 0444, channel_interrupts_show
, NULL
);
1742 static ssize_t
channel_events_show(struct vmbus_channel
*channel
, char *buf
)
1744 return sprintf(buf
, "%llu\n", channel
->sig_events
);
1746 static VMBUS_CHAN_ATTR(events
, 0444, channel_events_show
, NULL
);
1748 static ssize_t
channel_intr_in_full_show(struct vmbus_channel
*channel
,
1751 return sprintf(buf
, "%llu\n",
1752 (unsigned long long)channel
->intr_in_full
);
1754 static VMBUS_CHAN_ATTR(intr_in_full
, 0444, channel_intr_in_full_show
, NULL
);
1756 static ssize_t
channel_intr_out_empty_show(struct vmbus_channel
*channel
,
1759 return sprintf(buf
, "%llu\n",
1760 (unsigned long long)channel
->intr_out_empty
);
1762 static VMBUS_CHAN_ATTR(intr_out_empty
, 0444, channel_intr_out_empty_show
, NULL
);
1764 static ssize_t
channel_out_full_first_show(struct vmbus_channel
*channel
,
1767 return sprintf(buf
, "%llu\n",
1768 (unsigned long long)channel
->out_full_first
);
1770 static VMBUS_CHAN_ATTR(out_full_first
, 0444, channel_out_full_first_show
, NULL
);
1772 static ssize_t
channel_out_full_total_show(struct vmbus_channel
*channel
,
1775 return sprintf(buf
, "%llu\n",
1776 (unsigned long long)channel
->out_full_total
);
1778 static VMBUS_CHAN_ATTR(out_full_total
, 0444, channel_out_full_total_show
, NULL
);
1780 static ssize_t
subchannel_monitor_id_show(struct vmbus_channel
*channel
,
1783 return sprintf(buf
, "%u\n", channel
->offermsg
.monitorid
);
1785 static VMBUS_CHAN_ATTR(monitor_id
, 0444, subchannel_monitor_id_show
, NULL
);
1787 static ssize_t
subchannel_id_show(struct vmbus_channel
*channel
,
1790 return sprintf(buf
, "%u\n",
1791 channel
->offermsg
.offer
.sub_channel_index
);
1793 static VMBUS_CHAN_ATTR_RO(subchannel_id
);
1795 static struct attribute
*vmbus_chan_attrs
[] = {
1796 &chan_attr_out_mask
.attr
,
1797 &chan_attr_in_mask
.attr
,
1798 &chan_attr_read_avail
.attr
,
1799 &chan_attr_write_avail
.attr
,
1800 &chan_attr_cpu
.attr
,
1801 &chan_attr_pending
.attr
,
1802 &chan_attr_latency
.attr
,
1803 &chan_attr_interrupts
.attr
,
1804 &chan_attr_events
.attr
,
1805 &chan_attr_intr_in_full
.attr
,
1806 &chan_attr_intr_out_empty
.attr
,
1807 &chan_attr_out_full_first
.attr
,
1808 &chan_attr_out_full_total
.attr
,
1809 &chan_attr_monitor_id
.attr
,
1810 &chan_attr_subchannel_id
.attr
,
1815 * Channel-level attribute_group callback function. Returns the permission for
1816 * each attribute, and returns 0 if an attribute is not visible.
1818 static umode_t
vmbus_chan_attr_is_visible(struct kobject
*kobj
,
1819 struct attribute
*attr
, int idx
)
1821 const struct vmbus_channel
*channel
=
1822 container_of(kobj
, struct vmbus_channel
, kobj
);
1824 /* Hide the monitor attributes if the monitor mechanism is not used. */
1825 if (!channel
->offermsg
.monitor_allocated
&&
1826 (attr
== &chan_attr_pending
.attr
||
1827 attr
== &chan_attr_latency
.attr
||
1828 attr
== &chan_attr_monitor_id
.attr
))
1834 static const struct attribute_group vmbus_chan_group
= {
1835 .attrs
= vmbus_chan_attrs
,
1836 .is_visible
= vmbus_chan_attr_is_visible
1839 static const struct kobj_type vmbus_chan_ktype
= {
1840 .sysfs_ops
= &vmbus_chan_sysfs_ops
,
1841 .release
= vmbus_chan_release
,
1845 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1847 int vmbus_add_channel_kobj(struct hv_device
*dev
, struct vmbus_channel
*channel
)
1849 const struct device
*device
= &dev
->device
;
1850 struct kobject
*kobj
= &channel
->kobj
;
1851 u32 relid
= channel
->offermsg
.child_relid
;
1854 kobj
->kset
= dev
->channels_kset
;
1855 ret
= kobject_init_and_add(kobj
, &vmbus_chan_ktype
, NULL
,
1862 ret
= sysfs_create_group(kobj
, &vmbus_chan_group
);
1866 * The calling functions' error handling paths will cleanup the
1867 * empty channel directory.
1870 dev_err(device
, "Unable to set up channel sysfs files\n");
1874 kobject_uevent(kobj
, KOBJ_ADD
);
1880 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1882 void vmbus_remove_channel_attr_group(struct vmbus_channel
*channel
)
1884 sysfs_remove_group(&channel
->kobj
, &vmbus_chan_group
);
1888 * vmbus_device_create - Creates and registers a new child device
1891 struct hv_device
*vmbus_device_create(const guid_t
*type
,
1892 const guid_t
*instance
,
1893 struct vmbus_channel
*channel
)
1895 struct hv_device
*child_device_obj
;
1897 child_device_obj
= kzalloc(sizeof(struct hv_device
), GFP_KERNEL
);
1898 if (!child_device_obj
) {
1899 pr_err("Unable to allocate device object for child device\n");
1903 child_device_obj
->channel
= channel
;
1904 guid_copy(&child_device_obj
->dev_type
, type
);
1905 guid_copy(&child_device_obj
->dev_instance
, instance
);
1906 child_device_obj
->vendor_id
= PCI_VENDOR_ID_MICROSOFT
;
1908 return child_device_obj
;
1912 * vmbus_device_register - Register the child device
1914 int vmbus_device_register(struct hv_device
*child_device_obj
)
1916 struct kobject
*kobj
= &child_device_obj
->device
.kobj
;
1919 dev_set_name(&child_device_obj
->device
, "%pUl",
1920 &child_device_obj
->channel
->offermsg
.offer
.if_instance
);
1922 child_device_obj
->device
.bus
= &hv_bus
;
1923 child_device_obj
->device
.parent
= hv_dev
;
1924 child_device_obj
->device
.release
= vmbus_device_release
;
1926 child_device_obj
->device
.dma_parms
= &child_device_obj
->dma_parms
;
1927 child_device_obj
->device
.dma_mask
= &child_device_obj
->dma_mask
;
1928 dma_set_mask(&child_device_obj
->device
, DMA_BIT_MASK(64));
1931 * Register with the LDM. This will kick off the driver/device
1932 * binding...which will eventually call vmbus_match() and vmbus_probe()
1934 ret
= device_register(&child_device_obj
->device
);
1936 pr_err("Unable to register child device\n");
1937 put_device(&child_device_obj
->device
);
1941 child_device_obj
->channels_kset
= kset_create_and_add("channels",
1943 if (!child_device_obj
->channels_kset
) {
1945 goto err_dev_unregister
;
1948 ret
= vmbus_add_channel_kobj(child_device_obj
,
1949 child_device_obj
->channel
);
1951 pr_err("Unable to register primary channeln");
1952 goto err_kset_unregister
;
1954 hv_debug_add_dev_dir(child_device_obj
);
1958 err_kset_unregister
:
1959 kset_unregister(child_device_obj
->channels_kset
);
1962 device_unregister(&child_device_obj
->device
);
1967 * vmbus_device_unregister - Remove the specified child device
1970 void vmbus_device_unregister(struct hv_device
*device_obj
)
1972 pr_debug("child device %s unregistered\n",
1973 dev_name(&device_obj
->device
));
1975 kset_unregister(device_obj
->channels_kset
);
1978 * Kick off the process of unregistering the device.
1979 * This will call vmbus_remove() and eventually vmbus_device_release()
1981 device_unregister(&device_obj
->device
);
1983 EXPORT_SYMBOL_GPL(vmbus_device_unregister
);
1987 * VMBUS is an acpi enumerated device. Get the information we
1990 static acpi_status
vmbus_walk_resources(struct acpi_resource
*res
, void *ctx
)
1992 resource_size_t start
= 0;
1993 resource_size_t end
= 0;
1994 struct resource
*new_res
;
1995 struct resource
**old_res
= &hyperv_mmio
;
1996 struct resource
**prev_res
= NULL
;
1999 switch (res
->type
) {
2002 * "Address" descriptors are for bus windows. Ignore
2003 * "memory" descriptors, which are for registers on
2006 case ACPI_RESOURCE_TYPE_ADDRESS32
:
2007 start
= res
->data
.address32
.address
.minimum
;
2008 end
= res
->data
.address32
.address
.maximum
;
2011 case ACPI_RESOURCE_TYPE_ADDRESS64
:
2012 start
= res
->data
.address64
.address
.minimum
;
2013 end
= res
->data
.address64
.address
.maximum
;
2017 * The IRQ information is needed only on ARM64, which Hyper-V
2018 * sets up in the extended format. IRQ information is present
2019 * on x86/x64 in the non-extended format but it is not used by
2020 * Linux. So don't bother checking for the non-extended format.
2022 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ
:
2023 if (!acpi_dev_resource_interrupt(res
, 0, &r
)) {
2024 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2027 /* ARM64 INTID for VMbus */
2028 vmbus_interrupt
= res
->data
.extended_irq
.interrupts
[0];
2029 /* Linux IRQ number */
2030 vmbus_irq
= r
.start
;
2034 /* Unused resource type */
2039 * Ignore ranges that are below 1MB, as they're not
2040 * necessary or useful here.
2045 new_res
= kzalloc(sizeof(*new_res
), GFP_ATOMIC
);
2047 return AE_NO_MEMORY
;
2049 /* If this range overlaps the virtual TPM, truncate it. */
2050 if (end
> VTPM_BASE_ADDRESS
&& start
< VTPM_BASE_ADDRESS
)
2051 end
= VTPM_BASE_ADDRESS
;
2053 new_res
->name
= "hyperv mmio";
2054 new_res
->flags
= IORESOURCE_MEM
;
2055 new_res
->start
= start
;
2059 * If two ranges are adjacent, merge them.
2067 if (((*old_res
)->end
+ 1) == new_res
->start
) {
2068 (*old_res
)->end
= new_res
->end
;
2073 if ((*old_res
)->start
== new_res
->end
+ 1) {
2074 (*old_res
)->start
= new_res
->start
;
2079 if ((*old_res
)->start
> new_res
->end
) {
2080 new_res
->sibling
= *old_res
;
2082 (*prev_res
)->sibling
= new_res
;
2088 old_res
= &(*old_res
)->sibling
;
2096 static void vmbus_mmio_remove(void)
2098 struct resource
*cur_res
;
2099 struct resource
*next_res
;
2103 __release_region(hyperv_mmio
, fb_mmio
->start
,
2104 resource_size(fb_mmio
));
2108 for (cur_res
= hyperv_mmio
; cur_res
; cur_res
= next_res
) {
2109 next_res
= cur_res
->sibling
;
2115 static void __maybe_unused
vmbus_reserve_fb(void)
2117 resource_size_t start
= 0, size
;
2118 struct pci_dev
*pdev
;
2120 if (efi_enabled(EFI_BOOT
)) {
2121 /* Gen2 VM: get FB base from EFI framebuffer */
2122 if (IS_ENABLED(CONFIG_SYSFB
)) {
2123 start
= screen_info
.lfb_base
;
2124 size
= max_t(__u32
, screen_info
.lfb_size
, 0x800000);
2127 /* Gen1 VM: get FB base from PCI */
2128 pdev
= pci_get_device(PCI_VENDOR_ID_MICROSOFT
,
2129 PCI_DEVICE_ID_HYPERV_VIDEO
, NULL
);
2133 if (pdev
->resource
[0].flags
& IORESOURCE_MEM
) {
2134 start
= pci_resource_start(pdev
, 0);
2135 size
= pci_resource_len(pdev
, 0);
2139 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2149 * Make a claim for the frame buffer in the resource tree under the
2150 * first node, which will be the one below 4GB. The length seems to
2151 * be underreported, particularly in a Generation 1 VM. So start out
2152 * reserving a larger area and make it smaller until it succeeds.
2154 for (; !fb_mmio
&& (size
>= 0x100000); size
>>= 1)
2155 fb_mmio
= __request_region(hyperv_mmio
, start
, size
, fb_mmio_name
, 0);
2159 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2160 * @new: If successful, supplied a pointer to the
2161 * allocated MMIO space.
2162 * @device_obj: Identifies the caller
2163 * @min: Minimum guest physical address of the
2165 * @max: Maximum guest physical address
2166 * @size: Size of the range to be allocated
2167 * @align: Alignment of the range to be allocated
2168 * @fb_overlap_ok: Whether this allocation can be allowed
2169 * to overlap the video frame buffer.
2171 * This function walks the resources granted to VMBus by the
2172 * _CRS object in the ACPI namespace underneath the parent
2173 * "bridge" whether that's a root PCI bus in the Generation 1
2174 * case or a Module Device in the Generation 2 case. It then
2175 * attempts to allocate from the global MMIO pool in a way that
2176 * matches the constraints supplied in these parameters and by
2179 * Return: 0 on success, -errno on failure
2181 int vmbus_allocate_mmio(struct resource
**new, struct hv_device
*device_obj
,
2182 resource_size_t min
, resource_size_t max
,
2183 resource_size_t size
, resource_size_t align
,
2186 struct resource
*iter
, *shadow
;
2187 resource_size_t range_min
, range_max
, start
, end
;
2188 const char *dev_n
= dev_name(&device_obj
->device
);
2192 mutex_lock(&hyperv_mmio_lock
);
2195 * If overlaps with frame buffers are allowed, then first attempt to
2196 * make the allocation from within the reserved region. Because it
2197 * is already reserved, no shadow allocation is necessary.
2199 if (fb_overlap_ok
&& fb_mmio
&& !(min
> fb_mmio
->end
) &&
2200 !(max
< fb_mmio
->start
)) {
2202 range_min
= fb_mmio
->start
;
2203 range_max
= fb_mmio
->end
;
2204 start
= (range_min
+ align
- 1) & ~(align
- 1);
2205 for (; start
+ size
- 1 <= range_max
; start
+= align
) {
2206 *new = request_mem_region_exclusive(start
, size
, dev_n
);
2214 for (iter
= hyperv_mmio
; iter
; iter
= iter
->sibling
) {
2215 if ((iter
->start
>= max
) || (iter
->end
<= min
))
2218 range_min
= iter
->start
;
2219 range_max
= iter
->end
;
2220 start
= (range_min
+ align
- 1) & ~(align
- 1);
2221 for (; start
+ size
- 1 <= range_max
; start
+= align
) {
2222 end
= start
+ size
- 1;
2224 /* Skip the whole fb_mmio region if not fb_overlap_ok */
2225 if (!fb_overlap_ok
&& fb_mmio
&&
2226 (((start
>= fb_mmio
->start
) && (start
<= fb_mmio
->end
)) ||
2227 ((end
>= fb_mmio
->start
) && (end
<= fb_mmio
->end
))))
2230 shadow
= __request_region(iter
, start
, size
, NULL
,
2235 *new = request_mem_region_exclusive(start
, size
, dev_n
);
2237 shadow
->name
= (char *)*new;
2242 __release_region(iter
, start
, size
);
2247 mutex_unlock(&hyperv_mmio_lock
);
2250 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio
);
2253 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2254 * @start: Base address of region to release.
2255 * @size: Size of the range to be allocated
2257 * This function releases anything requested by
2258 * vmbus_mmio_allocate().
2260 void vmbus_free_mmio(resource_size_t start
, resource_size_t size
)
2262 struct resource
*iter
;
2264 mutex_lock(&hyperv_mmio_lock
);
2265 for (iter
= hyperv_mmio
; iter
; iter
= iter
->sibling
) {
2266 if ((iter
->start
>= start
+ size
) || (iter
->end
<= start
))
2269 __release_region(iter
, start
, size
);
2271 release_mem_region(start
, size
);
2272 mutex_unlock(&hyperv_mmio_lock
);
2275 EXPORT_SYMBOL_GPL(vmbus_free_mmio
);
2278 static int vmbus_acpi_add(struct platform_device
*pdev
)
2281 int ret_val
= -ENODEV
;
2282 struct acpi_device
*ancestor
;
2283 struct acpi_device
*device
= ACPI_COMPANION(&pdev
->dev
);
2285 hv_dev
= &device
->dev
;
2288 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2289 * method on the top level VMbus device in the DSDT. But devices
2290 * are hardware coherent in all current Hyper-V use cases, so fix
2291 * up the ACPI device to behave as if _CCA is present and indicates
2292 * hardware coherence.
2294 ACPI_COMPANION_SET(&device
->dev
, device
);
2295 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED
) &&
2296 device_get_dma_attr(&device
->dev
) == DEV_DMA_NOT_SUPPORTED
) {
2297 pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2298 device
->flags
.cca_seen
= true;
2299 device
->flags
.coherent_dma
= true;
2302 result
= acpi_walk_resources(device
->handle
, METHOD_NAME__CRS
,
2303 vmbus_walk_resources
, NULL
);
2305 if (ACPI_FAILURE(result
))
2308 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2309 * firmware) is the VMOD that has the mmio ranges. Get that.
2311 for (ancestor
= acpi_dev_parent(device
);
2312 ancestor
&& ancestor
->handle
!= ACPI_ROOT_OBJECT
;
2313 ancestor
= acpi_dev_parent(ancestor
)) {
2314 result
= acpi_walk_resources(ancestor
->handle
, METHOD_NAME__CRS
,
2315 vmbus_walk_resources
, NULL
);
2317 if (ACPI_FAILURE(result
))
2328 vmbus_mmio_remove();
2332 static int vmbus_acpi_add(struct platform_device
*pdev
)
2338 static int vmbus_device_add(struct platform_device
*pdev
)
2340 struct resource
**cur_res
= &hyperv_mmio
;
2341 struct of_range range
;
2342 struct of_range_parser parser
;
2343 struct device_node
*np
= pdev
->dev
.of_node
;
2346 hv_dev
= &pdev
->dev
;
2348 ret
= of_range_parser_init(&parser
, np
);
2352 for_each_of_range(&parser
, &range
) {
2353 struct resource
*res
;
2355 res
= kzalloc(sizeof(*res
), GFP_KERNEL
);
2357 vmbus_mmio_remove();
2361 res
->name
= "hyperv mmio";
2362 res
->flags
= range
.flags
;
2363 res
->start
= range
.cpu_addr
;
2364 res
->end
= range
.cpu_addr
+ range
.size
;
2367 cur_res
= &res
->sibling
;
2373 static int vmbus_platform_driver_probe(struct platform_device
*pdev
)
2376 return vmbus_device_add(pdev
);
2378 return vmbus_acpi_add(pdev
);
2381 static void vmbus_platform_driver_remove(struct platform_device
*pdev
)
2383 vmbus_mmio_remove();
2386 #ifdef CONFIG_PM_SLEEP
2387 static int vmbus_bus_suspend(struct device
*dev
)
2389 struct hv_per_cpu_context
*hv_cpu
= per_cpu_ptr(
2390 hv_context
.cpu_context
, VMBUS_CONNECT_CPU
);
2391 struct vmbus_channel
*channel
, *sc
;
2393 tasklet_disable(&hv_cpu
->msg_dpc
);
2394 vmbus_connection
.ignore_any_offer_msg
= true;
2395 /* The tasklet_enable() takes care of providing a memory barrier */
2396 tasklet_enable(&hv_cpu
->msg_dpc
);
2398 /* Drain all the workqueues as we are in suspend */
2399 drain_workqueue(vmbus_connection
.rescind_work_queue
);
2400 drain_workqueue(vmbus_connection
.work_queue
);
2401 drain_workqueue(vmbus_connection
.handle_primary_chan_wq
);
2402 drain_workqueue(vmbus_connection
.handle_sub_chan_wq
);
2404 mutex_lock(&vmbus_connection
.channel_mutex
);
2405 list_for_each_entry(channel
, &vmbus_connection
.chn_list
, listentry
) {
2406 if (!is_hvsock_channel(channel
))
2409 vmbus_force_channel_rescinded(channel
);
2411 mutex_unlock(&vmbus_connection
.channel_mutex
);
2414 * Wait until all the sub-channels and hv_sock channels have been
2415 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2416 * they would conflict with the new sub-channels that will be created
2417 * in the resume path. hv_sock channels should also be destroyed, but
2418 * a hv_sock channel of an established hv_sock connection can not be
2419 * really destroyed since it may still be referenced by the userspace
2420 * application, so we just force the hv_sock channel to be rescinded
2421 * by vmbus_force_channel_rescinded(), and the userspace application
2422 * will thoroughly destroy the channel after hibernation.
2424 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2425 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2427 if (atomic_read(&vmbus_connection
.nr_chan_close_on_suspend
) > 0)
2428 wait_for_completion(&vmbus_connection
.ready_for_suspend_event
);
2430 if (atomic_read(&vmbus_connection
.nr_chan_fixup_on_resume
) != 0) {
2431 pr_err("Can not suspend due to a previous failed resuming\n");
2435 mutex_lock(&vmbus_connection
.channel_mutex
);
2437 list_for_each_entry(channel
, &vmbus_connection
.chn_list
, listentry
) {
2439 * Remove the channel from the array of channels and invalidate
2440 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2441 * up the relid (and other fields, if necessary) and add the
2442 * channel back to the array.
2444 vmbus_channel_unmap_relid(channel
);
2445 channel
->offermsg
.child_relid
= INVALID_RELID
;
2447 if (is_hvsock_channel(channel
)) {
2448 if (!channel
->rescind
) {
2449 pr_err("hv_sock channel not rescinded!\n");
2455 list_for_each_entry(sc
, &channel
->sc_list
, sc_list
) {
2456 pr_err("Sub-channel not deleted!\n");
2460 atomic_inc(&vmbus_connection
.nr_chan_fixup_on_resume
);
2463 mutex_unlock(&vmbus_connection
.channel_mutex
);
2465 vmbus_initiate_unload(false);
2467 /* Reset the event for the next resume. */
2468 reinit_completion(&vmbus_connection
.ready_for_resume_event
);
2473 static int vmbus_bus_resume(struct device
*dev
)
2475 struct vmbus_channel_msginfo
*msginfo
;
2479 vmbus_connection
.ignore_any_offer_msg
= false;
2482 * We only use the 'vmbus_proto_version', which was in use before
2483 * hibernation, to re-negotiate with the host.
2485 if (!vmbus_proto_version
) {
2486 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version
);
2490 msgsize
= sizeof(*msginfo
) +
2491 sizeof(struct vmbus_channel_initiate_contact
);
2493 msginfo
= kzalloc(msgsize
, GFP_KERNEL
);
2495 if (msginfo
== NULL
)
2498 ret
= vmbus_negotiate_version(msginfo
, vmbus_proto_version
);
2505 WARN_ON(atomic_read(&vmbus_connection
.nr_chan_fixup_on_resume
) == 0);
2507 vmbus_request_offers();
2509 if (wait_for_completion_timeout(
2510 &vmbus_connection
.ready_for_resume_event
, 10 * HZ
) == 0)
2511 pr_err("Some vmbus device is missing after suspending?\n");
2513 /* Reset the event for the next suspend. */
2514 reinit_completion(&vmbus_connection
.ready_for_suspend_event
);
2519 #define vmbus_bus_suspend NULL
2520 #define vmbus_bus_resume NULL
2521 #endif /* CONFIG_PM_SLEEP */
2523 static const __maybe_unused
struct of_device_id vmbus_of_match
[] = {
2525 .compatible
= "microsoft,vmbus",
2531 MODULE_DEVICE_TABLE(of
, vmbus_of_match
);
2533 static const __maybe_unused
struct acpi_device_id vmbus_acpi_device_ids
[] = {
2538 MODULE_DEVICE_TABLE(acpi
, vmbus_acpi_device_ids
);
2541 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2542 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2543 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2544 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2545 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2546 * resume callback must also run via the "noirq" ops.
2548 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2549 * earlier in this file before vmbus_pm.
2552 static const struct dev_pm_ops vmbus_bus_pm
= {
2553 .suspend_noirq
= NULL
,
2554 .resume_noirq
= NULL
,
2555 .freeze_noirq
= vmbus_bus_suspend
,
2556 .thaw_noirq
= vmbus_bus_resume
,
2557 .poweroff_noirq
= vmbus_bus_suspend
,
2558 .restore_noirq
= vmbus_bus_resume
2561 static struct platform_driver vmbus_platform_driver
= {
2562 .probe
= vmbus_platform_driver_probe
,
2563 .remove_new
= vmbus_platform_driver_remove
,
2566 .acpi_match_table
= ACPI_PTR(vmbus_acpi_device_ids
),
2567 .of_match_table
= of_match_ptr(vmbus_of_match
),
2568 .pm
= &vmbus_bus_pm
,
2569 .probe_type
= PROBE_FORCE_SYNCHRONOUS
,
2573 static void hv_kexec_handler(void)
2575 hv_stimer_global_cleanup();
2576 vmbus_initiate_unload(false);
2577 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2579 cpuhp_remove_state(hyperv_cpuhp_online
);
2582 static void hv_crash_handler(struct pt_regs
*regs
)
2586 vmbus_initiate_unload(true);
2588 * In crash handler we can't schedule synic cleanup for all CPUs,
2589 * doing the cleanup for current CPU only. This should be sufficient
2592 cpu
= smp_processor_id();
2593 hv_stimer_cleanup(cpu
);
2594 hv_synic_disable_regs(cpu
);
2597 static int hv_synic_suspend(void)
2600 * When we reach here, all the non-boot CPUs have been offlined.
2601 * If we're in a legacy configuration where stimer Direct Mode is
2602 * not enabled, the stimers on the non-boot CPUs have been unbound
2603 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2604 * hv_stimer_cleanup() -> clockevents_unbind_device().
2606 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2607 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2608 * 1) it's unnecessary as interrupts remain disabled between
2609 * syscore_suspend() and syscore_resume(): see create_image() and
2610 * resume_target_kernel()
2611 * 2) the stimer on CPU0 is automatically disabled later by
2612 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2613 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2614 * 3) a warning would be triggered if we call
2615 * clockevents_unbind_device(), which may sleep, in an
2616 * interrupts-disabled context.
2619 hv_synic_disable_regs(0);
2624 static void hv_synic_resume(void)
2626 hv_synic_enable_regs(0);
2629 * Note: we don't need to call hv_stimer_init(0), because the timer
2630 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2631 * automatically re-enabled in timekeeping_resume().
2635 /* The callbacks run only on CPU0, with irqs_disabled. */
2636 static struct syscore_ops hv_synic_syscore_ops
= {
2637 .suspend
= hv_synic_suspend
,
2638 .resume
= hv_synic_resume
,
2641 static int __init
hv_acpi_init(void)
2645 if (!hv_is_hyperv_initialized())
2648 if (hv_root_partition
&& !hv_nested
)
2652 * Get ACPI resources first.
2654 ret
= platform_driver_register(&vmbus_platform_driver
);
2664 * If we're on an architecture with a hardcoded hypervisor
2665 * vector (i.e. x86/x64), override the VMbus interrupt found
2666 * in the ACPI tables. Ensure vmbus_irq is not set since the
2667 * normal Linux IRQ mechanism is not used in this case.
2669 #ifdef HYPERVISOR_CALLBACK_VECTOR
2670 vmbus_interrupt
= HYPERVISOR_CALLBACK_VECTOR
;
2676 ret
= vmbus_bus_init();
2680 hv_setup_kexec_handler(hv_kexec_handler
);
2681 hv_setup_crash_handler(hv_crash_handler
);
2683 register_syscore_ops(&hv_synic_syscore_ops
);
2688 platform_driver_unregister(&vmbus_platform_driver
);
2693 static void __exit
vmbus_exit(void)
2697 unregister_syscore_ops(&hv_synic_syscore_ops
);
2699 hv_remove_kexec_handler();
2700 hv_remove_crash_handler();
2701 vmbus_connection
.conn_state
= DISCONNECTED
;
2702 hv_stimer_global_cleanup();
2704 if (vmbus_irq
== -1) {
2705 hv_remove_vmbus_handler();
2707 free_percpu_irq(vmbus_irq
, vmbus_evt
);
2708 free_percpu(vmbus_evt
);
2710 for_each_online_cpu(cpu
) {
2711 struct hv_per_cpu_context
*hv_cpu
2712 = per_cpu_ptr(hv_context
.cpu_context
, cpu
);
2714 tasklet_kill(&hv_cpu
->msg_dpc
);
2716 hv_debug_rm_all_dir();
2718 vmbus_free_channels();
2719 kfree(vmbus_connection
.channels
);
2722 * The vmbus panic notifier is always registered, hence we should
2723 * also unconditionally unregister it here as well.
2725 atomic_notifier_chain_unregister(&panic_notifier_list
,
2726 &hyperv_panic_vmbus_unload_block
);
2728 bus_unregister(&hv_bus
);
2730 cpuhp_remove_state(hyperv_cpuhp_online
);
2732 platform_driver_unregister(&vmbus_platform_driver
);
2736 MODULE_LICENSE("GPL");
2737 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2739 subsys_initcall(hv_acpi_init
);
2740 module_exit(vmbus_exit
);