printf: Remove unused 'bprintf'
[drm/drm-misc.git] / drivers / md / raid1.c
bloba5adf08ee174199531575b9deb9f34577bbb72bc
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 START, LAST, static inline, raid1_rb);
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 struct serial_info *si, int idx)
60 unsigned long flags;
61 int ret = 0;
62 sector_t lo = r1_bio->sector;
63 sector_t hi = lo + r1_bio->sectors;
64 struct serial_in_rdev *serial = &rdev->serial[idx];
66 spin_lock_irqsave(&serial->serial_lock, flags);
67 /* collision happened */
68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 ret = -EBUSY;
70 else {
71 si->start = lo;
72 si->last = hi;
73 raid1_rb_insert(si, &serial->serial_rb);
75 spin_unlock_irqrestore(&serial->serial_lock, flags);
77 return ret;
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
82 struct mddev *mddev = rdev->mddev;
83 struct serial_info *si;
84 int idx = sector_to_idx(r1_bio->sector);
85 struct serial_in_rdev *serial = &rdev->serial[idx];
87 if (WARN_ON(!mddev->serial_info_pool))
88 return;
89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 wait_event(serial->serial_io_wait,
91 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
96 struct serial_info *si;
97 unsigned long flags;
98 int found = 0;
99 struct mddev *mddev = rdev->mddev;
100 int idx = sector_to_idx(lo);
101 struct serial_in_rdev *serial = &rdev->serial[idx];
103 spin_lock_irqsave(&serial->serial_lock, flags);
104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 si; si = raid1_rb_iter_next(si, lo, hi)) {
106 if (si->start == lo && si->last == hi) {
107 raid1_rb_remove(si, &serial->serial_rb);
108 mempool_free(si, mddev->serial_info_pool);
109 found = 1;
110 break;
113 if (!found)
114 WARN(1, "The write IO is not recorded for serialization\n");
115 spin_unlock_irqrestore(&serial->serial_lock, flags);
116 wake_up(&serial->serial_io_wait);
120 * for resync bio, r1bio pointer can be retrieved from the per-bio
121 * 'struct resync_pages'.
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
125 return get_resync_pages(bio)->raid_bio;
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
130 struct pool_info *pi = data;
131 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
133 /* allocate a r1bio with room for raid_disks entries in the bios array */
134 return kzalloc(size, gfp_flags);
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
146 struct pool_info *pi = data;
147 struct r1bio *r1_bio;
148 struct bio *bio;
149 int need_pages;
150 int j;
151 struct resync_pages *rps;
153 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 if (!r1_bio)
155 return NULL;
157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 gfp_flags);
159 if (!rps)
160 goto out_free_r1bio;
163 * Allocate bios : 1 for reading, n-1 for writing
165 for (j = pi->raid_disks ; j-- ; ) {
166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 if (!bio)
168 goto out_free_bio;
169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 r1_bio->bios[j] = bio;
173 * Allocate RESYNC_PAGES data pages and attach them to
174 * the first bio.
175 * If this is a user-requested check/repair, allocate
176 * RESYNC_PAGES for each bio.
178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 need_pages = pi->raid_disks;
180 else
181 need_pages = 1;
182 for (j = 0; j < pi->raid_disks; j++) {
183 struct resync_pages *rp = &rps[j];
185 bio = r1_bio->bios[j];
187 if (j < need_pages) {
188 if (resync_alloc_pages(rp, gfp_flags))
189 goto out_free_pages;
190 } else {
191 memcpy(rp, &rps[0], sizeof(*rp));
192 resync_get_all_pages(rp);
195 rp->raid_bio = r1_bio;
196 bio->bi_private = rp;
199 r1_bio->master_bio = NULL;
201 return r1_bio;
203 out_free_pages:
204 while (--j >= 0)
205 resync_free_pages(&rps[j]);
207 out_free_bio:
208 while (++j < pi->raid_disks) {
209 bio_uninit(r1_bio->bios[j]);
210 kfree(r1_bio->bios[j]);
212 kfree(rps);
214 out_free_r1bio:
215 rbio_pool_free(r1_bio, data);
216 return NULL;
219 static void r1buf_pool_free(void *__r1_bio, void *data)
221 struct pool_info *pi = data;
222 int i;
223 struct r1bio *r1bio = __r1_bio;
224 struct resync_pages *rp = NULL;
226 for (i = pi->raid_disks; i--; ) {
227 rp = get_resync_pages(r1bio->bios[i]);
228 resync_free_pages(rp);
229 bio_uninit(r1bio->bios[i]);
230 kfree(r1bio->bios[i]);
233 /* resync pages array stored in the 1st bio's .bi_private */
234 kfree(rp);
236 rbio_pool_free(r1bio, data);
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
241 int i;
243 for (i = 0; i < conf->raid_disks * 2; i++) {
244 struct bio **bio = r1_bio->bios + i;
245 if (!BIO_SPECIAL(*bio))
246 bio_put(*bio);
247 *bio = NULL;
251 static void free_r1bio(struct r1bio *r1_bio)
253 struct r1conf *conf = r1_bio->mddev->private;
255 put_all_bios(conf, r1_bio);
256 mempool_free(r1_bio, &conf->r1bio_pool);
259 static void put_buf(struct r1bio *r1_bio)
261 struct r1conf *conf = r1_bio->mddev->private;
262 sector_t sect = r1_bio->sector;
263 int i;
265 for (i = 0; i < conf->raid_disks * 2; i++) {
266 struct bio *bio = r1_bio->bios[i];
267 if (bio->bi_end_io)
268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 mempool_free(r1_bio, &conf->r1buf_pool);
273 lower_barrier(conf, sect);
276 static void reschedule_retry(struct r1bio *r1_bio)
278 unsigned long flags;
279 struct mddev *mddev = r1_bio->mddev;
280 struct r1conf *conf = mddev->private;
281 int idx;
283 idx = sector_to_idx(r1_bio->sector);
284 spin_lock_irqsave(&conf->device_lock, flags);
285 list_add(&r1_bio->retry_list, &conf->retry_list);
286 atomic_inc(&conf->nr_queued[idx]);
287 spin_unlock_irqrestore(&conf->device_lock, flags);
289 wake_up(&conf->wait_barrier);
290 md_wakeup_thread(mddev->thread);
294 * raid_end_bio_io() is called when we have finished servicing a mirrored
295 * operation and are ready to return a success/failure code to the buffer
296 * cache layer.
298 static void call_bio_endio(struct r1bio *r1_bio)
300 struct bio *bio = r1_bio->master_bio;
302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 bio->bi_status = BLK_STS_IOERR;
305 bio_endio(bio);
308 static void raid_end_bio_io(struct r1bio *r1_bio)
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312 sector_t sector = r1_bio->sector;
314 /* if nobody has done the final endio yet, do it now */
315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 (unsigned long long) bio->bi_iter.bi_sector,
319 (unsigned long long) bio_end_sector(bio) - 1);
321 call_bio_endio(r1_bio);
324 free_r1bio(r1_bio);
326 * Wake up any possible resync thread that waits for the device
327 * to go idle. All I/Os, even write-behind writes, are done.
329 allow_barrier(conf, sector);
333 * Update disk head position estimator based on IRQ completion info.
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
337 struct r1conf *conf = r1_bio->mddev->private;
339 conf->mirrors[disk].head_position =
340 r1_bio->sector + (r1_bio->sectors);
344 * Find the disk number which triggered given bio
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
348 int mirror;
349 struct r1conf *conf = r1_bio->mddev->private;
350 int raid_disks = conf->raid_disks;
352 for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 if (r1_bio->bios[mirror] == bio)
354 break;
356 BUG_ON(mirror == raid_disks * 2);
357 update_head_pos(mirror, r1_bio);
359 return mirror;
362 static void raid1_end_read_request(struct bio *bio)
364 int uptodate = !bio->bi_status;
365 struct r1bio *r1_bio = bio->bi_private;
366 struct r1conf *conf = r1_bio->mddev->private;
367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370 * this branch is our 'one mirror IO has finished' event handler:
372 update_head_pos(r1_bio->read_disk, r1_bio);
374 if (uptodate)
375 set_bit(R1BIO_Uptodate, &r1_bio->state);
376 else if (test_bit(FailFast, &rdev->flags) &&
377 test_bit(R1BIO_FailFast, &r1_bio->state))
378 /* This was a fail-fast read so we definitely
379 * want to retry */
381 else {
382 /* If all other devices have failed, we want to return
383 * the error upwards rather than fail the last device.
384 * Here we redefine "uptodate" to mean "Don't want to retry"
386 unsigned long flags;
387 spin_lock_irqsave(&conf->device_lock, flags);
388 if (r1_bio->mddev->degraded == conf->raid_disks ||
389 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 test_bit(In_sync, &rdev->flags)))
391 uptodate = 1;
392 spin_unlock_irqrestore(&conf->device_lock, flags);
395 if (uptodate) {
396 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(rdev, conf->mddev);
398 } else {
400 * oops, read error:
402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 rdev->bdev,
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
412 static void close_write(struct r1bio *r1_bio)
414 struct mddev *mddev = r1_bio->mddev;
416 /* it really is the end of this request */
417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 bio_free_pages(r1_bio->behind_master_bio);
419 bio_put(r1_bio->behind_master_bio);
420 r1_bio->behind_master_bio = NULL;
423 /* clear the bitmap if all writes complete successfully */
424 mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors,
425 !test_bit(R1BIO_Degraded, &r1_bio->state),
426 test_bit(R1BIO_BehindIO, &r1_bio->state));
427 md_write_end(mddev);
430 static void r1_bio_write_done(struct r1bio *r1_bio)
432 if (!atomic_dec_and_test(&r1_bio->remaining))
433 return;
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
446 static void raid1_end_write_request(struct bio *bio)
448 struct r1bio *r1_bio = bio->bi_private;
449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 struct r1conf *conf = r1_bio->mddev->private;
451 struct bio *to_put = NULL;
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 bool discard_error;
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
461 * 'one mirror IO has finished' event handler:
463 if (bio->bi_status && !discard_error) {
464 set_bit(WriteErrorSeen, &rdev->flags);
465 if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 set_bit(MD_RECOVERY_NEEDED, &
467 conf->mddev->recovery);
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(r1_bio->mddev, rdev);
477 * When the device is faulty, it is not necessary to
478 * handle write error.
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(R1BIO_WriteError, &r1_bio->state);
482 else {
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
489 } else {
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
500 r1_bio->bios[mirror] = NULL;
501 to_put = bio;
503 * Do not set R1BIO_Uptodate if the current device is
504 * rebuilding or Faulty. This is because we cannot use
505 * such device for properly reading the data back (we could
506 * potentially use it, if the current write would have felt
507 * before rdev->recovery_offset, but for simplicity we don't
508 * check this here.
510 if (test_bit(In_sync, &rdev->flags) &&
511 !test_bit(Faulty, &rdev->flags))
512 set_bit(R1BIO_Uptodate, &r1_bio->state);
514 /* Maybe we can clear some bad blocks. */
515 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
516 !discard_error) {
517 r1_bio->bios[mirror] = IO_MADE_GOOD;
518 set_bit(R1BIO_MadeGood, &r1_bio->state);
522 if (behind) {
523 if (test_bit(CollisionCheck, &rdev->flags))
524 remove_serial(rdev, lo, hi);
525 if (test_bit(WriteMostly, &rdev->flags))
526 atomic_dec(&r1_bio->behind_remaining);
529 * In behind mode, we ACK the master bio once the I/O
530 * has safely reached all non-writemostly
531 * disks. Setting the Returned bit ensures that this
532 * gets done only once -- we don't ever want to return
533 * -EIO here, instead we'll wait
535 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
536 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
537 /* Maybe we can return now */
538 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
539 struct bio *mbio = r1_bio->master_bio;
540 pr_debug("raid1: behind end write sectors"
541 " %llu-%llu\n",
542 (unsigned long long) mbio->bi_iter.bi_sector,
543 (unsigned long long) bio_end_sector(mbio) - 1);
544 call_bio_endio(r1_bio);
547 } else if (rdev->mddev->serialize_policy)
548 remove_serial(rdev, lo, hi);
549 if (r1_bio->bios[mirror] == NULL)
550 rdev_dec_pending(rdev, conf->mddev);
553 * Let's see if all mirrored write operations have finished
554 * already.
556 r1_bio_write_done(r1_bio);
558 if (to_put)
559 bio_put(to_put);
562 static sector_t align_to_barrier_unit_end(sector_t start_sector,
563 sector_t sectors)
565 sector_t len;
567 WARN_ON(sectors == 0);
569 * len is the number of sectors from start_sector to end of the
570 * barrier unit which start_sector belongs to.
572 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
573 start_sector;
575 if (len > sectors)
576 len = sectors;
578 return len;
581 static void update_read_sectors(struct r1conf *conf, int disk,
582 sector_t this_sector, int len)
584 struct raid1_info *info = &conf->mirrors[disk];
586 atomic_inc(&info->rdev->nr_pending);
587 if (info->next_seq_sect != this_sector)
588 info->seq_start = this_sector;
589 info->next_seq_sect = this_sector + len;
592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 int *max_sectors)
595 sector_t this_sector = r1_bio->sector;
596 int len = r1_bio->sectors;
597 int disk;
599 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
600 struct md_rdev *rdev;
601 int read_len;
603 if (r1_bio->bios[disk] == IO_BLOCKED)
604 continue;
606 rdev = conf->mirrors[disk].rdev;
607 if (!rdev || test_bit(Faulty, &rdev->flags))
608 continue;
610 /* choose the first disk even if it has some bad blocks. */
611 read_len = raid1_check_read_range(rdev, this_sector, &len);
612 if (read_len > 0) {
613 update_read_sectors(conf, disk, this_sector, read_len);
614 *max_sectors = read_len;
615 return disk;
619 return -1;
622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
624 return !test_bit(In_sync, &rdev->flags) &&
625 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
629 int *max_sectors)
631 sector_t this_sector = r1_bio->sector;
632 int best_disk = -1;
633 int best_len = 0;
634 int disk;
636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 struct md_rdev *rdev;
638 int len;
639 int read_len;
641 if (r1_bio->bios[disk] == IO_BLOCKED)
642 continue;
644 rdev = conf->mirrors[disk].rdev;
645 if (!rdev || test_bit(Faulty, &rdev->flags) ||
646 rdev_in_recovery(rdev, r1_bio) ||
647 test_bit(WriteMostly, &rdev->flags))
648 continue;
650 /* keep track of the disk with the most readable sectors. */
651 len = r1_bio->sectors;
652 read_len = raid1_check_read_range(rdev, this_sector, &len);
653 if (read_len > best_len) {
654 best_disk = disk;
655 best_len = read_len;
659 if (best_disk != -1) {
660 *max_sectors = best_len;
661 update_read_sectors(conf, best_disk, this_sector, best_len);
664 return best_disk;
667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
668 int *max_sectors)
670 sector_t this_sector = r1_bio->sector;
671 int bb_disk = -1;
672 int bb_read_len = 0;
673 int disk;
675 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
676 struct md_rdev *rdev;
677 int len;
678 int read_len;
680 if (r1_bio->bios[disk] == IO_BLOCKED)
681 continue;
683 rdev = conf->mirrors[disk].rdev;
684 if (!rdev || test_bit(Faulty, &rdev->flags) ||
685 !test_bit(WriteMostly, &rdev->flags) ||
686 rdev_in_recovery(rdev, r1_bio))
687 continue;
689 /* there are no bad blocks, we can use this disk */
690 len = r1_bio->sectors;
691 read_len = raid1_check_read_range(rdev, this_sector, &len);
692 if (read_len == r1_bio->sectors) {
693 *max_sectors = read_len;
694 update_read_sectors(conf, disk, this_sector, read_len);
695 return disk;
699 * there are partial bad blocks, choose the rdev with largest
700 * read length.
702 if (read_len > bb_read_len) {
703 bb_disk = disk;
704 bb_read_len = read_len;
708 if (bb_disk != -1) {
709 *max_sectors = bb_read_len;
710 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
713 return bb_disk;
716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
718 /* TODO: address issues with this check and concurrency. */
719 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
720 conf->mirrors[disk].head_position == r1_bio->sector;
724 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
725 * disk. If yes, choose the idle disk.
727 static bool should_choose_next(struct r1conf *conf, int disk)
729 struct raid1_info *mirror = &conf->mirrors[disk];
730 int opt_iosize;
732 if (!test_bit(Nonrot, &mirror->rdev->flags))
733 return false;
735 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
736 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
737 mirror->next_seq_sect > opt_iosize &&
738 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
743 if (!rdev || test_bit(Faulty, &rdev->flags))
744 return false;
746 if (rdev_in_recovery(rdev, r1_bio))
747 return false;
749 /* don't read from slow disk unless have to */
750 if (test_bit(WriteMostly, &rdev->flags))
751 return false;
753 /* don't split IO for bad blocks unless have to */
754 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
755 return false;
757 return true;
760 struct read_balance_ctl {
761 sector_t closest_dist;
762 int closest_dist_disk;
763 int min_pending;
764 int min_pending_disk;
765 int sequential_disk;
766 int readable_disks;
769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
771 int disk;
772 struct read_balance_ctl ctl = {
773 .closest_dist_disk = -1,
774 .closest_dist = MaxSector,
775 .min_pending_disk = -1,
776 .min_pending = UINT_MAX,
777 .sequential_disk = -1,
780 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
781 struct md_rdev *rdev;
782 sector_t dist;
783 unsigned int pending;
785 if (r1_bio->bios[disk] == IO_BLOCKED)
786 continue;
788 rdev = conf->mirrors[disk].rdev;
789 if (!rdev_readable(rdev, r1_bio))
790 continue;
792 /* At least two disks to choose from so failfast is OK */
793 if (ctl.readable_disks++ == 1)
794 set_bit(R1BIO_FailFast, &r1_bio->state);
796 pending = atomic_read(&rdev->nr_pending);
797 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
799 /* Don't change to another disk for sequential reads */
800 if (is_sequential(conf, disk, r1_bio)) {
801 if (!should_choose_next(conf, disk))
802 return disk;
805 * Add 'pending' to avoid choosing this disk if
806 * there is other idle disk.
808 pending++;
810 * If there is no other idle disk, this disk
811 * will be chosen.
813 ctl.sequential_disk = disk;
816 if (ctl.min_pending > pending) {
817 ctl.min_pending = pending;
818 ctl.min_pending_disk = disk;
821 if (ctl.closest_dist > dist) {
822 ctl.closest_dist = dist;
823 ctl.closest_dist_disk = disk;
828 * sequential IO size exceeds optimal iosize, however, there is no other
829 * idle disk, so choose the sequential disk.
831 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
832 return ctl.sequential_disk;
835 * If all disks are rotational, choose the closest disk. If any disk is
836 * non-rotational, choose the disk with less pending request even the
837 * disk is rotational, which might/might not be optimal for raids with
838 * mixed ratation/non-rotational disks depending on workload.
840 if (ctl.min_pending_disk != -1 &&
841 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
842 return ctl.min_pending_disk;
843 else
844 return ctl.closest_dist_disk;
848 * This routine returns the disk from which the requested read should be done.
850 * 1) If resync is in progress, find the first usable disk and use it even if it
851 * has some bad blocks.
853 * 2) Now that there is no resync, loop through all disks and skipping slow
854 * disks and disks with bad blocks for now. Only pay attention to key disk
855 * choice.
857 * 3) If we've made it this far, now look for disks with bad blocks and choose
858 * the one with most number of sectors.
860 * 4) If we are all the way at the end, we have no choice but to use a disk even
861 * if it is write mostly.
863 * The rdev for the device selected will have nr_pending incremented.
865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
866 int *max_sectors)
868 int disk;
870 clear_bit(R1BIO_FailFast, &r1_bio->state);
872 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
873 r1_bio->sectors))
874 return choose_first_rdev(conf, r1_bio, max_sectors);
876 disk = choose_best_rdev(conf, r1_bio);
877 if (disk >= 0) {
878 *max_sectors = r1_bio->sectors;
879 update_read_sectors(conf, disk, r1_bio->sector,
880 r1_bio->sectors);
881 return disk;
885 * If we are here it means we didn't find a perfectly good disk so
886 * now spend a bit more time trying to find one with the most good
887 * sectors.
889 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
890 if (disk >= 0)
891 return disk;
893 return choose_slow_rdev(conf, r1_bio, max_sectors);
896 static void wake_up_barrier(struct r1conf *conf)
898 if (wq_has_sleeper(&conf->wait_barrier))
899 wake_up(&conf->wait_barrier);
902 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
904 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
905 raid1_prepare_flush_writes(conf->mddev);
906 wake_up_barrier(conf);
908 while (bio) { /* submit pending writes */
909 struct bio *next = bio->bi_next;
911 raid1_submit_write(bio);
912 bio = next;
913 cond_resched();
917 static void flush_pending_writes(struct r1conf *conf)
919 /* Any writes that have been queued but are awaiting
920 * bitmap updates get flushed here.
922 spin_lock_irq(&conf->device_lock);
924 if (conf->pending_bio_list.head) {
925 struct blk_plug plug;
926 struct bio *bio;
928 bio = bio_list_get(&conf->pending_bio_list);
929 spin_unlock_irq(&conf->device_lock);
932 * As this is called in a wait_event() loop (see freeze_array),
933 * current->state might be TASK_UNINTERRUPTIBLE which will
934 * cause a warning when we prepare to wait again. As it is
935 * rare that this path is taken, it is perfectly safe to force
936 * us to go around the wait_event() loop again, so the warning
937 * is a false-positive. Silence the warning by resetting
938 * thread state
940 __set_current_state(TASK_RUNNING);
941 blk_start_plug(&plug);
942 flush_bio_list(conf, bio);
943 blk_finish_plug(&plug);
944 } else
945 spin_unlock_irq(&conf->device_lock);
948 /* Barriers....
949 * Sometimes we need to suspend IO while we do something else,
950 * either some resync/recovery, or reconfigure the array.
951 * To do this we raise a 'barrier'.
952 * The 'barrier' is a counter that can be raised multiple times
953 * to count how many activities are happening which preclude
954 * normal IO.
955 * We can only raise the barrier if there is no pending IO.
956 * i.e. if nr_pending == 0.
957 * We choose only to raise the barrier if no-one is waiting for the
958 * barrier to go down. This means that as soon as an IO request
959 * is ready, no other operations which require a barrier will start
960 * until the IO request has had a chance.
962 * So: regular IO calls 'wait_barrier'. When that returns there
963 * is no backgroup IO happening, It must arrange to call
964 * allow_barrier when it has finished its IO.
965 * backgroup IO calls must call raise_barrier. Once that returns
966 * there is no normal IO happeing. It must arrange to call
967 * lower_barrier when the particular background IO completes.
969 * If resync/recovery is interrupted, returns -EINTR;
970 * Otherwise, returns 0.
972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
974 int idx = sector_to_idx(sector_nr);
976 spin_lock_irq(&conf->resync_lock);
978 /* Wait until no block IO is waiting */
979 wait_event_lock_irq(conf->wait_barrier,
980 !atomic_read(&conf->nr_waiting[idx]),
981 conf->resync_lock);
983 /* block any new IO from starting */
984 atomic_inc(&conf->barrier[idx]);
986 * In raise_barrier() we firstly increase conf->barrier[idx] then
987 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
988 * increase conf->nr_pending[idx] then check conf->barrier[idx].
989 * A memory barrier here to make sure conf->nr_pending[idx] won't
990 * be fetched before conf->barrier[idx] is increased. Otherwise
991 * there will be a race between raise_barrier() and _wait_barrier().
993 smp_mb__after_atomic();
995 /* For these conditions we must wait:
996 * A: while the array is in frozen state
997 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
998 * existing in corresponding I/O barrier bucket.
999 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
1000 * max resync count which allowed on current I/O barrier bucket.
1002 wait_event_lock_irq(conf->wait_barrier,
1003 (!conf->array_frozen &&
1004 !atomic_read(&conf->nr_pending[idx]) &&
1005 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1006 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1007 conf->resync_lock);
1009 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1010 atomic_dec(&conf->barrier[idx]);
1011 spin_unlock_irq(&conf->resync_lock);
1012 wake_up(&conf->wait_barrier);
1013 return -EINTR;
1016 atomic_inc(&conf->nr_sync_pending);
1017 spin_unlock_irq(&conf->resync_lock);
1019 return 0;
1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1024 int idx = sector_to_idx(sector_nr);
1026 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1028 atomic_dec(&conf->barrier[idx]);
1029 atomic_dec(&conf->nr_sync_pending);
1030 wake_up(&conf->wait_barrier);
1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1035 bool ret = true;
1038 * We need to increase conf->nr_pending[idx] very early here,
1039 * then raise_barrier() can be blocked when it waits for
1040 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1041 * conf->resync_lock when there is no barrier raised in same
1042 * barrier unit bucket. Also if the array is frozen, I/O
1043 * should be blocked until array is unfrozen.
1045 atomic_inc(&conf->nr_pending[idx]);
1047 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1048 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1049 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1050 * barrier is necessary here to make sure conf->barrier[idx] won't be
1051 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1052 * will be a race between _wait_barrier() and raise_barrier().
1054 smp_mb__after_atomic();
1057 * Don't worry about checking two atomic_t variables at same time
1058 * here. If during we check conf->barrier[idx], the array is
1059 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1060 * 0, it is safe to return and make the I/O continue. Because the
1061 * array is frozen, all I/O returned here will eventually complete
1062 * or be queued, no race will happen. See code comment in
1063 * frozen_array().
1065 if (!READ_ONCE(conf->array_frozen) &&
1066 !atomic_read(&conf->barrier[idx]))
1067 return ret;
1070 * After holding conf->resync_lock, conf->nr_pending[idx]
1071 * should be decreased before waiting for barrier to drop.
1072 * Otherwise, we may encounter a race condition because
1073 * raise_barrer() might be waiting for conf->nr_pending[idx]
1074 * to be 0 at same time.
1076 spin_lock_irq(&conf->resync_lock);
1077 atomic_inc(&conf->nr_waiting[idx]);
1078 atomic_dec(&conf->nr_pending[idx]);
1080 * In case freeze_array() is waiting for
1081 * get_unqueued_pending() == extra
1083 wake_up_barrier(conf);
1084 /* Wait for the barrier in same barrier unit bucket to drop. */
1086 /* Return false when nowait flag is set */
1087 if (nowait) {
1088 ret = false;
1089 } else {
1090 wait_event_lock_irq(conf->wait_barrier,
1091 !conf->array_frozen &&
1092 !atomic_read(&conf->barrier[idx]),
1093 conf->resync_lock);
1094 atomic_inc(&conf->nr_pending[idx]);
1097 atomic_dec(&conf->nr_waiting[idx]);
1098 spin_unlock_irq(&conf->resync_lock);
1099 return ret;
1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1104 int idx = sector_to_idx(sector_nr);
1105 bool ret = true;
1108 * Very similar to _wait_barrier(). The difference is, for read
1109 * I/O we don't need wait for sync I/O, but if the whole array
1110 * is frozen, the read I/O still has to wait until the array is
1111 * unfrozen. Since there is no ordering requirement with
1112 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1114 atomic_inc(&conf->nr_pending[idx]);
1116 if (!READ_ONCE(conf->array_frozen))
1117 return ret;
1119 spin_lock_irq(&conf->resync_lock);
1120 atomic_inc(&conf->nr_waiting[idx]);
1121 atomic_dec(&conf->nr_pending[idx]);
1123 * In case freeze_array() is waiting for
1124 * get_unqueued_pending() == extra
1126 wake_up_barrier(conf);
1127 /* Wait for array to be unfrozen */
1129 /* Return false when nowait flag is set */
1130 if (nowait) {
1131 /* Return false when nowait flag is set */
1132 ret = false;
1133 } else {
1134 wait_event_lock_irq(conf->wait_barrier,
1135 !conf->array_frozen,
1136 conf->resync_lock);
1137 atomic_inc(&conf->nr_pending[idx]);
1140 atomic_dec(&conf->nr_waiting[idx]);
1141 spin_unlock_irq(&conf->resync_lock);
1142 return ret;
1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1147 int idx = sector_to_idx(sector_nr);
1149 return _wait_barrier(conf, idx, nowait);
1152 static void _allow_barrier(struct r1conf *conf, int idx)
1154 atomic_dec(&conf->nr_pending[idx]);
1155 wake_up_barrier(conf);
1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1160 int idx = sector_to_idx(sector_nr);
1162 _allow_barrier(conf, idx);
1165 /* conf->resync_lock should be held */
1166 static int get_unqueued_pending(struct r1conf *conf)
1168 int idx, ret;
1170 ret = atomic_read(&conf->nr_sync_pending);
1171 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1172 ret += atomic_read(&conf->nr_pending[idx]) -
1173 atomic_read(&conf->nr_queued[idx]);
1175 return ret;
1178 static void freeze_array(struct r1conf *conf, int extra)
1180 /* Stop sync I/O and normal I/O and wait for everything to
1181 * go quiet.
1182 * This is called in two situations:
1183 * 1) management command handlers (reshape, remove disk, quiesce).
1184 * 2) one normal I/O request failed.
1186 * After array_frozen is set to 1, new sync IO will be blocked at
1187 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1188 * or wait_read_barrier(). The flying I/Os will either complete or be
1189 * queued. When everything goes quite, there are only queued I/Os left.
1191 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1192 * barrier bucket index which this I/O request hits. When all sync and
1193 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1194 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1195 * in handle_read_error(), we may call freeze_array() before trying to
1196 * fix the read error. In this case, the error read I/O is not queued,
1197 * so get_unqueued_pending() == 1.
1199 * Therefore before this function returns, we need to wait until
1200 * get_unqueued_pendings(conf) gets equal to extra. For
1201 * normal I/O context, extra is 1, in rested situations extra is 0.
1203 spin_lock_irq(&conf->resync_lock);
1204 conf->array_frozen = 1;
1205 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1206 wait_event_lock_irq_cmd(
1207 conf->wait_barrier,
1208 get_unqueued_pending(conf) == extra,
1209 conf->resync_lock,
1210 flush_pending_writes(conf));
1211 spin_unlock_irq(&conf->resync_lock);
1213 static void unfreeze_array(struct r1conf *conf)
1215 /* reverse the effect of the freeze */
1216 spin_lock_irq(&conf->resync_lock);
1217 conf->array_frozen = 0;
1218 spin_unlock_irq(&conf->resync_lock);
1219 wake_up(&conf->wait_barrier);
1222 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1223 struct bio *bio)
1225 int size = bio->bi_iter.bi_size;
1226 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 int i = 0;
1228 struct bio *behind_bio = NULL;
1230 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1231 &r1_bio->mddev->bio_set);
1233 /* discard op, we don't support writezero/writesame yet */
1234 if (!bio_has_data(bio)) {
1235 behind_bio->bi_iter.bi_size = size;
1236 goto skip_copy;
1239 while (i < vcnt && size) {
1240 struct page *page;
1241 int len = min_t(int, PAGE_SIZE, size);
1243 page = alloc_page(GFP_NOIO);
1244 if (unlikely(!page))
1245 goto free_pages;
1247 if (!bio_add_page(behind_bio, page, len, 0)) {
1248 put_page(page);
1249 goto free_pages;
1252 size -= len;
1253 i++;
1256 bio_copy_data(behind_bio, bio);
1257 skip_copy:
1258 r1_bio->behind_master_bio = behind_bio;
1259 set_bit(R1BIO_BehindIO, &r1_bio->state);
1261 return;
1263 free_pages:
1264 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1265 bio->bi_iter.bi_size);
1266 bio_free_pages(behind_bio);
1267 bio_put(behind_bio);
1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1272 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1273 cb);
1274 struct mddev *mddev = plug->cb.data;
1275 struct r1conf *conf = mddev->private;
1276 struct bio *bio;
1278 if (from_schedule) {
1279 spin_lock_irq(&conf->device_lock);
1280 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1281 spin_unlock_irq(&conf->device_lock);
1282 wake_up_barrier(conf);
1283 md_wakeup_thread(mddev->thread);
1284 kfree(plug);
1285 return;
1288 /* we aren't scheduling, so we can do the write-out directly. */
1289 bio = bio_list_get(&plug->pending);
1290 flush_bio_list(conf, bio);
1291 kfree(plug);
1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1296 r1_bio->master_bio = bio;
1297 r1_bio->sectors = bio_sectors(bio);
1298 r1_bio->state = 0;
1299 r1_bio->mddev = mddev;
1300 r1_bio->sector = bio->bi_iter.bi_sector;
1303 static inline struct r1bio *
1304 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1306 struct r1conf *conf = mddev->private;
1307 struct r1bio *r1_bio;
1309 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1310 /* Ensure no bio records IO_BLOCKED */
1311 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1312 init_r1bio(r1_bio, mddev, bio);
1313 return r1_bio;
1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1317 int max_read_sectors, struct r1bio *r1_bio)
1319 struct r1conf *conf = mddev->private;
1320 struct raid1_info *mirror;
1321 struct bio *read_bio;
1322 const enum req_op op = bio_op(bio);
1323 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1324 int max_sectors;
1325 int rdisk, error;
1326 bool r1bio_existed = !!r1_bio;
1329 * If r1_bio is set, we are blocking the raid1d thread
1330 * so there is a tiny risk of deadlock. So ask for
1331 * emergency memory if needed.
1333 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1336 * Still need barrier for READ in case that whole
1337 * array is frozen.
1339 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1340 bio->bi_opf & REQ_NOWAIT)) {
1341 bio_wouldblock_error(bio);
1342 return;
1345 if (!r1_bio)
1346 r1_bio = alloc_r1bio(mddev, bio);
1347 else
1348 init_r1bio(r1_bio, mddev, bio);
1349 r1_bio->sectors = max_read_sectors;
1352 * make_request() can abort the operation when read-ahead is being
1353 * used and no empty request is available.
1355 rdisk = read_balance(conf, r1_bio, &max_sectors);
1356 if (rdisk < 0) {
1357 /* couldn't find anywhere to read from */
1358 if (r1bio_existed)
1359 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1360 mdname(mddev),
1361 conf->mirrors[r1_bio->read_disk].rdev->bdev,
1362 r1_bio->sector);
1363 raid_end_bio_io(r1_bio);
1364 return;
1366 mirror = conf->mirrors + rdisk;
1368 if (r1bio_existed)
1369 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1370 mdname(mddev),
1371 (unsigned long long)r1_bio->sector,
1372 mirror->rdev->bdev);
1374 if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1376 * Reading from a write-mostly device must take care not to
1377 * over-take any writes that are 'behind'
1379 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1380 mddev->bitmap_ops->wait_behind_writes(mddev);
1383 if (max_sectors < bio_sectors(bio)) {
1384 struct bio *split = bio_split(bio, max_sectors,
1385 gfp, &conf->bio_split);
1387 if (IS_ERR(split)) {
1388 error = PTR_ERR(split);
1389 goto err_handle;
1391 bio_chain(split, bio);
1392 submit_bio_noacct(bio);
1393 bio = split;
1394 r1_bio->master_bio = bio;
1395 r1_bio->sectors = max_sectors;
1398 r1_bio->read_disk = rdisk;
1399 if (!r1bio_existed) {
1400 md_account_bio(mddev, &bio);
1401 r1_bio->master_bio = bio;
1403 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1404 &mddev->bio_set);
1406 r1_bio->bios[rdisk] = read_bio;
1408 read_bio->bi_iter.bi_sector = r1_bio->sector +
1409 mirror->rdev->data_offset;
1410 read_bio->bi_end_io = raid1_end_read_request;
1411 read_bio->bi_opf = op | do_sync;
1412 if (test_bit(FailFast, &mirror->rdev->flags) &&
1413 test_bit(R1BIO_FailFast, &r1_bio->state))
1414 read_bio->bi_opf |= MD_FAILFAST;
1415 read_bio->bi_private = r1_bio;
1416 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1417 submit_bio_noacct(read_bio);
1418 return;
1420 err_handle:
1421 atomic_dec(&mirror->rdev->nr_pending);
1422 bio->bi_status = errno_to_blk_status(error);
1423 set_bit(R1BIO_Uptodate, &r1_bio->state);
1424 raid_end_bio_io(r1_bio);
1427 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1429 struct r1conf *conf = mddev->private;
1430 int disks = conf->raid_disks * 2;
1431 int i;
1433 retry:
1434 for (i = 0; i < disks; i++) {
1435 struct md_rdev *rdev = conf->mirrors[i].rdev;
1437 if (!rdev)
1438 continue;
1440 /* don't write here until the bad block is acknowledged */
1441 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1442 rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1443 bio_sectors(bio)) < 0)
1444 set_bit(BlockedBadBlocks, &rdev->flags);
1446 if (rdev_blocked(rdev)) {
1447 if (bio->bi_opf & REQ_NOWAIT)
1448 return false;
1450 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1451 rdev->raid_disk);
1452 atomic_inc(&rdev->nr_pending);
1453 md_wait_for_blocked_rdev(rdev, rdev->mddev);
1454 goto retry;
1458 return true;
1461 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1462 int max_write_sectors)
1464 struct r1conf *conf = mddev->private;
1465 struct r1bio *r1_bio;
1466 int i, disks, k, error;
1467 unsigned long flags;
1468 int first_clone;
1469 int max_sectors;
1470 bool write_behind = false;
1471 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1473 if (mddev_is_clustered(mddev) &&
1474 md_cluster_ops->area_resyncing(mddev, WRITE,
1475 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1477 DEFINE_WAIT(w);
1478 if (bio->bi_opf & REQ_NOWAIT) {
1479 bio_wouldblock_error(bio);
1480 return;
1482 for (;;) {
1483 prepare_to_wait(&conf->wait_barrier,
1484 &w, TASK_IDLE);
1485 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1486 bio->bi_iter.bi_sector,
1487 bio_end_sector(bio)))
1488 break;
1489 schedule();
1491 finish_wait(&conf->wait_barrier, &w);
1495 * Register the new request and wait if the reconstruction
1496 * thread has put up a bar for new requests.
1497 * Continue immediately if no resync is active currently.
1499 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1500 bio->bi_opf & REQ_NOWAIT)) {
1501 bio_wouldblock_error(bio);
1502 return;
1505 if (!wait_blocked_rdev(mddev, bio)) {
1506 bio_wouldblock_error(bio);
1507 return;
1510 r1_bio = alloc_r1bio(mddev, bio);
1511 r1_bio->sectors = max_write_sectors;
1513 /* first select target devices under rcu_lock and
1514 * inc refcount on their rdev. Record them by setting
1515 * bios[x] to bio
1516 * If there are known/acknowledged bad blocks on any device on
1517 * which we have seen a write error, we want to avoid writing those
1518 * blocks.
1519 * This potentially requires several writes to write around
1520 * the bad blocks. Each set of writes gets it's own r1bio
1521 * with a set of bios attached.
1524 disks = conf->raid_disks * 2;
1525 max_sectors = r1_bio->sectors;
1526 for (i = 0; i < disks; i++) {
1527 struct md_rdev *rdev = conf->mirrors[i].rdev;
1530 * The write-behind io is only attempted on drives marked as
1531 * write-mostly, which means we could allocate write behind
1532 * bio later.
1534 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1535 write_behind = true;
1537 r1_bio->bios[i] = NULL;
1538 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1539 if (i < conf->raid_disks)
1540 set_bit(R1BIO_Degraded, &r1_bio->state);
1541 continue;
1544 atomic_inc(&rdev->nr_pending);
1545 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1546 sector_t first_bad;
1547 int bad_sectors;
1548 int is_bad;
1550 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1551 &first_bad, &bad_sectors);
1552 if (is_bad && first_bad <= r1_bio->sector) {
1553 /* Cannot write here at all */
1554 bad_sectors -= (r1_bio->sector - first_bad);
1555 if (bad_sectors < max_sectors)
1556 /* mustn't write more than bad_sectors
1557 * to other devices yet
1559 max_sectors = bad_sectors;
1560 rdev_dec_pending(rdev, mddev);
1561 /* We don't set R1BIO_Degraded as that
1562 * only applies if the disk is
1563 * missing, so it might be re-added,
1564 * and we want to know to recover this
1565 * chunk.
1566 * In this case the device is here,
1567 * and the fact that this chunk is not
1568 * in-sync is recorded in the bad
1569 * block log
1571 continue;
1573 if (is_bad) {
1574 int good_sectors = first_bad - r1_bio->sector;
1575 if (good_sectors < max_sectors)
1576 max_sectors = good_sectors;
1579 r1_bio->bios[i] = bio;
1583 * When using a bitmap, we may call alloc_behind_master_bio below.
1584 * alloc_behind_master_bio allocates a copy of the data payload a page
1585 * at a time and thus needs a new bio that can fit the whole payload
1586 * this bio in page sized chunks.
1588 if (write_behind && mddev->bitmap)
1589 max_sectors = min_t(int, max_sectors,
1590 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1591 if (max_sectors < bio_sectors(bio)) {
1592 struct bio *split = bio_split(bio, max_sectors,
1593 GFP_NOIO, &conf->bio_split);
1595 if (IS_ERR(split)) {
1596 error = PTR_ERR(split);
1597 goto err_handle;
1599 bio_chain(split, bio);
1600 submit_bio_noacct(bio);
1601 bio = split;
1602 r1_bio->master_bio = bio;
1603 r1_bio->sectors = max_sectors;
1606 md_account_bio(mddev, &bio);
1607 r1_bio->master_bio = bio;
1608 atomic_set(&r1_bio->remaining, 1);
1609 atomic_set(&r1_bio->behind_remaining, 0);
1611 first_clone = 1;
1613 for (i = 0; i < disks; i++) {
1614 struct bio *mbio = NULL;
1615 struct md_rdev *rdev = conf->mirrors[i].rdev;
1616 if (!r1_bio->bios[i])
1617 continue;
1619 if (first_clone) {
1620 unsigned long max_write_behind =
1621 mddev->bitmap_info.max_write_behind;
1622 struct md_bitmap_stats stats;
1623 int err;
1625 /* do behind I/O ?
1626 * Not if there are too many, or cannot
1627 * allocate memory, or a reader on WriteMostly
1628 * is waiting for behind writes to flush */
1629 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1630 if (!err && write_behind && !stats.behind_wait &&
1631 stats.behind_writes < max_write_behind)
1632 alloc_behind_master_bio(r1_bio, bio);
1634 mddev->bitmap_ops->startwrite(
1635 mddev, r1_bio->sector, r1_bio->sectors,
1636 test_bit(R1BIO_BehindIO, &r1_bio->state));
1637 first_clone = 0;
1640 if (r1_bio->behind_master_bio) {
1641 mbio = bio_alloc_clone(rdev->bdev,
1642 r1_bio->behind_master_bio,
1643 GFP_NOIO, &mddev->bio_set);
1644 if (test_bit(CollisionCheck, &rdev->flags))
1645 wait_for_serialization(rdev, r1_bio);
1646 if (test_bit(WriteMostly, &rdev->flags))
1647 atomic_inc(&r1_bio->behind_remaining);
1648 } else {
1649 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1650 &mddev->bio_set);
1652 if (mddev->serialize_policy)
1653 wait_for_serialization(rdev, r1_bio);
1656 r1_bio->bios[i] = mbio;
1658 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1659 mbio->bi_end_io = raid1_end_write_request;
1660 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1661 if (test_bit(FailFast, &rdev->flags) &&
1662 !test_bit(WriteMostly, &rdev->flags) &&
1663 conf->raid_disks - mddev->degraded > 1)
1664 mbio->bi_opf |= MD_FAILFAST;
1665 mbio->bi_private = r1_bio;
1667 atomic_inc(&r1_bio->remaining);
1668 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1669 /* flush_pending_writes() needs access to the rdev so...*/
1670 mbio->bi_bdev = (void *)rdev;
1671 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1672 spin_lock_irqsave(&conf->device_lock, flags);
1673 bio_list_add(&conf->pending_bio_list, mbio);
1674 spin_unlock_irqrestore(&conf->device_lock, flags);
1675 md_wakeup_thread(mddev->thread);
1679 r1_bio_write_done(r1_bio);
1681 /* In case raid1d snuck in to freeze_array */
1682 wake_up_barrier(conf);
1683 return;
1684 err_handle:
1685 for (k = 0; k < i; k++) {
1686 if (r1_bio->bios[k]) {
1687 rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1688 r1_bio->bios[k] = NULL;
1692 bio->bi_status = errno_to_blk_status(error);
1693 set_bit(R1BIO_Uptodate, &r1_bio->state);
1694 raid_end_bio_io(r1_bio);
1697 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1699 sector_t sectors;
1701 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1702 && md_flush_request(mddev, bio))
1703 return true;
1706 * There is a limit to the maximum size, but
1707 * the read/write handler might find a lower limit
1708 * due to bad blocks. To avoid multiple splits,
1709 * we pass the maximum number of sectors down
1710 * and let the lower level perform the split.
1712 sectors = align_to_barrier_unit_end(
1713 bio->bi_iter.bi_sector, bio_sectors(bio));
1715 if (bio_data_dir(bio) == READ)
1716 raid1_read_request(mddev, bio, sectors, NULL);
1717 else {
1718 md_write_start(mddev,bio);
1719 raid1_write_request(mddev, bio, sectors);
1721 return true;
1724 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1726 struct r1conf *conf = mddev->private;
1727 int i;
1729 lockdep_assert_held(&mddev->lock);
1731 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1732 conf->raid_disks - mddev->degraded);
1733 for (i = 0; i < conf->raid_disks; i++) {
1734 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1736 seq_printf(seq, "%s",
1737 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1739 seq_printf(seq, "]");
1743 * raid1_error() - RAID1 error handler.
1744 * @mddev: affected md device.
1745 * @rdev: member device to fail.
1747 * The routine acknowledges &rdev failure and determines new @mddev state.
1748 * If it failed, then:
1749 * - &MD_BROKEN flag is set in &mddev->flags.
1750 * - recovery is disabled.
1751 * Otherwise, it must be degraded:
1752 * - recovery is interrupted.
1753 * - &mddev->degraded is bumped.
1755 * @rdev is marked as &Faulty excluding case when array is failed and
1756 * &mddev->fail_last_dev is off.
1758 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1760 struct r1conf *conf = mddev->private;
1761 unsigned long flags;
1763 spin_lock_irqsave(&conf->device_lock, flags);
1765 if (test_bit(In_sync, &rdev->flags) &&
1766 (conf->raid_disks - mddev->degraded) == 1) {
1767 set_bit(MD_BROKEN, &mddev->flags);
1769 if (!mddev->fail_last_dev) {
1770 conf->recovery_disabled = mddev->recovery_disabled;
1771 spin_unlock_irqrestore(&conf->device_lock, flags);
1772 return;
1775 set_bit(Blocked, &rdev->flags);
1776 if (test_and_clear_bit(In_sync, &rdev->flags))
1777 mddev->degraded++;
1778 set_bit(Faulty, &rdev->flags);
1779 spin_unlock_irqrestore(&conf->device_lock, flags);
1781 * if recovery is running, make sure it aborts.
1783 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1784 set_mask_bits(&mddev->sb_flags, 0,
1785 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1786 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1787 "md/raid1:%s: Operation continuing on %d devices.\n",
1788 mdname(mddev), rdev->bdev,
1789 mdname(mddev), conf->raid_disks - mddev->degraded);
1792 static void print_conf(struct r1conf *conf)
1794 int i;
1796 pr_debug("RAID1 conf printout:\n");
1797 if (!conf) {
1798 pr_debug("(!conf)\n");
1799 return;
1801 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1802 conf->raid_disks);
1804 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1805 for (i = 0; i < conf->raid_disks; i++) {
1806 struct md_rdev *rdev = conf->mirrors[i].rdev;
1807 if (rdev)
1808 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1809 i, !test_bit(In_sync, &rdev->flags),
1810 !test_bit(Faulty, &rdev->flags),
1811 rdev->bdev);
1815 static void close_sync(struct r1conf *conf)
1817 int idx;
1819 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1820 _wait_barrier(conf, idx, false);
1821 _allow_barrier(conf, idx);
1824 mempool_exit(&conf->r1buf_pool);
1827 static int raid1_spare_active(struct mddev *mddev)
1829 int i;
1830 struct r1conf *conf = mddev->private;
1831 int count = 0;
1832 unsigned long flags;
1835 * Find all failed disks within the RAID1 configuration
1836 * and mark them readable.
1837 * Called under mddev lock, so rcu protection not needed.
1838 * device_lock used to avoid races with raid1_end_read_request
1839 * which expects 'In_sync' flags and ->degraded to be consistent.
1841 spin_lock_irqsave(&conf->device_lock, flags);
1842 for (i = 0; i < conf->raid_disks; i++) {
1843 struct md_rdev *rdev = conf->mirrors[i].rdev;
1844 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1845 if (repl
1846 && !test_bit(Candidate, &repl->flags)
1847 && repl->recovery_offset == MaxSector
1848 && !test_bit(Faulty, &repl->flags)
1849 && !test_and_set_bit(In_sync, &repl->flags)) {
1850 /* replacement has just become active */
1851 if (!rdev ||
1852 !test_and_clear_bit(In_sync, &rdev->flags))
1853 count++;
1854 if (rdev) {
1855 /* Replaced device not technically
1856 * faulty, but we need to be sure
1857 * it gets removed and never re-added
1859 set_bit(Faulty, &rdev->flags);
1860 sysfs_notify_dirent_safe(
1861 rdev->sysfs_state);
1864 if (rdev
1865 && rdev->recovery_offset == MaxSector
1866 && !test_bit(Faulty, &rdev->flags)
1867 && !test_and_set_bit(In_sync, &rdev->flags)) {
1868 count++;
1869 sysfs_notify_dirent_safe(rdev->sysfs_state);
1872 mddev->degraded -= count;
1873 spin_unlock_irqrestore(&conf->device_lock, flags);
1875 print_conf(conf);
1876 return count;
1879 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1880 bool replacement)
1882 struct raid1_info *info = conf->mirrors + disk;
1884 if (replacement)
1885 info += conf->raid_disks;
1887 if (info->rdev)
1888 return false;
1890 if (bdev_nonrot(rdev->bdev)) {
1891 set_bit(Nonrot, &rdev->flags);
1892 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1895 rdev->raid_disk = disk;
1896 info->head_position = 0;
1897 info->seq_start = MaxSector;
1898 WRITE_ONCE(info->rdev, rdev);
1900 return true;
1903 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1905 struct raid1_info *info = conf->mirrors + disk;
1906 struct md_rdev *rdev = info->rdev;
1908 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1909 atomic_read(&rdev->nr_pending))
1910 return false;
1912 /* Only remove non-faulty devices if recovery is not possible. */
1913 if (!test_bit(Faulty, &rdev->flags) &&
1914 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1915 rdev->mddev->degraded < conf->raid_disks)
1916 return false;
1918 if (test_and_clear_bit(Nonrot, &rdev->flags))
1919 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1921 WRITE_ONCE(info->rdev, NULL);
1922 return true;
1925 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1927 struct r1conf *conf = mddev->private;
1928 int err = -EEXIST;
1929 int mirror = 0, repl_slot = -1;
1930 struct raid1_info *p;
1931 int first = 0;
1932 int last = conf->raid_disks - 1;
1934 if (mddev->recovery_disabled == conf->recovery_disabled)
1935 return -EBUSY;
1937 if (rdev->raid_disk >= 0)
1938 first = last = rdev->raid_disk;
1941 * find the disk ... but prefer rdev->saved_raid_disk
1942 * if possible.
1944 if (rdev->saved_raid_disk >= 0 &&
1945 rdev->saved_raid_disk >= first &&
1946 rdev->saved_raid_disk < conf->raid_disks &&
1947 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1948 first = last = rdev->saved_raid_disk;
1950 for (mirror = first; mirror <= last; mirror++) {
1951 p = conf->mirrors + mirror;
1952 if (!p->rdev) {
1953 err = mddev_stack_new_rdev(mddev, rdev);
1954 if (err)
1955 return err;
1957 raid1_add_conf(conf, rdev, mirror, false);
1958 /* As all devices are equivalent, we don't need a full recovery
1959 * if this was recently any drive of the array
1961 if (rdev->saved_raid_disk < 0)
1962 conf->fullsync = 1;
1963 break;
1965 if (test_bit(WantReplacement, &p->rdev->flags) &&
1966 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1967 repl_slot = mirror;
1970 if (err && repl_slot >= 0) {
1971 /* Add this device as a replacement */
1972 clear_bit(In_sync, &rdev->flags);
1973 set_bit(Replacement, &rdev->flags);
1974 raid1_add_conf(conf, rdev, repl_slot, true);
1975 err = 0;
1976 conf->fullsync = 1;
1979 print_conf(conf);
1980 return err;
1983 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1985 struct r1conf *conf = mddev->private;
1986 int err = 0;
1987 int number = rdev->raid_disk;
1988 struct raid1_info *p = conf->mirrors + number;
1990 if (unlikely(number >= conf->raid_disks))
1991 goto abort;
1993 if (rdev != p->rdev) {
1994 number += conf->raid_disks;
1995 p = conf->mirrors + number;
1998 print_conf(conf);
1999 if (rdev == p->rdev) {
2000 if (!raid1_remove_conf(conf, number)) {
2001 err = -EBUSY;
2002 goto abort;
2005 if (number < conf->raid_disks &&
2006 conf->mirrors[conf->raid_disks + number].rdev) {
2007 /* We just removed a device that is being replaced.
2008 * Move down the replacement. We drain all IO before
2009 * doing this to avoid confusion.
2011 struct md_rdev *repl =
2012 conf->mirrors[conf->raid_disks + number].rdev;
2013 freeze_array(conf, 0);
2014 if (atomic_read(&repl->nr_pending)) {
2015 /* It means that some queued IO of retry_list
2016 * hold repl. Thus, we cannot set replacement
2017 * as NULL, avoiding rdev NULL pointer
2018 * dereference in sync_request_write and
2019 * handle_write_finished.
2021 err = -EBUSY;
2022 unfreeze_array(conf);
2023 goto abort;
2025 clear_bit(Replacement, &repl->flags);
2026 WRITE_ONCE(p->rdev, repl);
2027 conf->mirrors[conf->raid_disks + number].rdev = NULL;
2028 unfreeze_array(conf);
2031 clear_bit(WantReplacement, &rdev->flags);
2032 err = md_integrity_register(mddev);
2034 abort:
2036 print_conf(conf);
2037 return err;
2040 static void end_sync_read(struct bio *bio)
2042 struct r1bio *r1_bio = get_resync_r1bio(bio);
2044 update_head_pos(r1_bio->read_disk, r1_bio);
2047 * we have read a block, now it needs to be re-written,
2048 * or re-read if the read failed.
2049 * We don't do much here, just schedule handling by raid1d
2051 if (!bio->bi_status)
2052 set_bit(R1BIO_Uptodate, &r1_bio->state);
2054 if (atomic_dec_and_test(&r1_bio->remaining))
2055 reschedule_retry(r1_bio);
2058 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2060 sector_t sync_blocks = 0;
2061 sector_t s = r1_bio->sector;
2062 long sectors_to_go = r1_bio->sectors;
2064 /* make sure these bits don't get cleared. */
2065 do {
2066 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2067 s += sync_blocks;
2068 sectors_to_go -= sync_blocks;
2069 } while (sectors_to_go > 0);
2072 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2074 if (atomic_dec_and_test(&r1_bio->remaining)) {
2075 struct mddev *mddev = r1_bio->mddev;
2076 int s = r1_bio->sectors;
2078 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2079 test_bit(R1BIO_WriteError, &r1_bio->state))
2080 reschedule_retry(r1_bio);
2081 else {
2082 put_buf(r1_bio);
2083 md_done_sync(mddev, s, uptodate);
2088 static void end_sync_write(struct bio *bio)
2090 int uptodate = !bio->bi_status;
2091 struct r1bio *r1_bio = get_resync_r1bio(bio);
2092 struct mddev *mddev = r1_bio->mddev;
2093 struct r1conf *conf = mddev->private;
2094 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2096 if (!uptodate) {
2097 abort_sync_write(mddev, r1_bio);
2098 set_bit(WriteErrorSeen, &rdev->flags);
2099 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2100 set_bit(MD_RECOVERY_NEEDED, &
2101 mddev->recovery);
2102 set_bit(R1BIO_WriteError, &r1_bio->state);
2103 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2104 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2105 r1_bio->sector, r1_bio->sectors)) {
2106 set_bit(R1BIO_MadeGood, &r1_bio->state);
2109 put_sync_write_buf(r1_bio, uptodate);
2112 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2113 int sectors, struct page *page, blk_opf_t rw)
2115 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2116 /* success */
2117 return 1;
2118 if (rw == REQ_OP_WRITE) {
2119 set_bit(WriteErrorSeen, &rdev->flags);
2120 if (!test_and_set_bit(WantReplacement,
2121 &rdev->flags))
2122 set_bit(MD_RECOVERY_NEEDED, &
2123 rdev->mddev->recovery);
2125 /* need to record an error - either for the block or the device */
2126 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2127 md_error(rdev->mddev, rdev);
2128 return 0;
2131 static int fix_sync_read_error(struct r1bio *r1_bio)
2133 /* Try some synchronous reads of other devices to get
2134 * good data, much like with normal read errors. Only
2135 * read into the pages we already have so we don't
2136 * need to re-issue the read request.
2137 * We don't need to freeze the array, because being in an
2138 * active sync request, there is no normal IO, and
2139 * no overlapping syncs.
2140 * We don't need to check is_badblock() again as we
2141 * made sure that anything with a bad block in range
2142 * will have bi_end_io clear.
2144 struct mddev *mddev = r1_bio->mddev;
2145 struct r1conf *conf = mddev->private;
2146 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2147 struct page **pages = get_resync_pages(bio)->pages;
2148 sector_t sect = r1_bio->sector;
2149 int sectors = r1_bio->sectors;
2150 int idx = 0;
2151 struct md_rdev *rdev;
2153 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2154 if (test_bit(FailFast, &rdev->flags)) {
2155 /* Don't try recovering from here - just fail it
2156 * ... unless it is the last working device of course */
2157 md_error(mddev, rdev);
2158 if (test_bit(Faulty, &rdev->flags))
2159 /* Don't try to read from here, but make sure
2160 * put_buf does it's thing
2162 bio->bi_end_io = end_sync_write;
2165 while(sectors) {
2166 int s = sectors;
2167 int d = r1_bio->read_disk;
2168 int success = 0;
2169 int start;
2171 if (s > (PAGE_SIZE>>9))
2172 s = PAGE_SIZE >> 9;
2173 do {
2174 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2175 /* No rcu protection needed here devices
2176 * can only be removed when no resync is
2177 * active, and resync is currently active
2179 rdev = conf->mirrors[d].rdev;
2180 if (sync_page_io(rdev, sect, s<<9,
2181 pages[idx],
2182 REQ_OP_READ, false)) {
2183 success = 1;
2184 break;
2187 d++;
2188 if (d == conf->raid_disks * 2)
2189 d = 0;
2190 } while (!success && d != r1_bio->read_disk);
2192 if (!success) {
2193 int abort = 0;
2194 /* Cannot read from anywhere, this block is lost.
2195 * Record a bad block on each device. If that doesn't
2196 * work just disable and interrupt the recovery.
2197 * Don't fail devices as that won't really help.
2199 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2200 mdname(mddev), bio->bi_bdev,
2201 (unsigned long long)r1_bio->sector);
2202 for (d = 0; d < conf->raid_disks * 2; d++) {
2203 rdev = conf->mirrors[d].rdev;
2204 if (!rdev || test_bit(Faulty, &rdev->flags))
2205 continue;
2206 if (!rdev_set_badblocks(rdev, sect, s, 0))
2207 abort = 1;
2209 if (abort) {
2210 conf->recovery_disabled =
2211 mddev->recovery_disabled;
2212 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2213 md_done_sync(mddev, r1_bio->sectors, 0);
2214 put_buf(r1_bio);
2215 return 0;
2217 /* Try next page */
2218 sectors -= s;
2219 sect += s;
2220 idx++;
2221 continue;
2224 start = d;
2225 /* write it back and re-read */
2226 while (d != r1_bio->read_disk) {
2227 if (d == 0)
2228 d = conf->raid_disks * 2;
2229 d--;
2230 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2231 continue;
2232 rdev = conf->mirrors[d].rdev;
2233 if (r1_sync_page_io(rdev, sect, s,
2234 pages[idx],
2235 REQ_OP_WRITE) == 0) {
2236 r1_bio->bios[d]->bi_end_io = NULL;
2237 rdev_dec_pending(rdev, mddev);
2240 d = start;
2241 while (d != r1_bio->read_disk) {
2242 if (d == 0)
2243 d = conf->raid_disks * 2;
2244 d--;
2245 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2246 continue;
2247 rdev = conf->mirrors[d].rdev;
2248 if (r1_sync_page_io(rdev, sect, s,
2249 pages[idx],
2250 REQ_OP_READ) != 0)
2251 atomic_add(s, &rdev->corrected_errors);
2253 sectors -= s;
2254 sect += s;
2255 idx ++;
2257 set_bit(R1BIO_Uptodate, &r1_bio->state);
2258 bio->bi_status = 0;
2259 return 1;
2262 static void process_checks(struct r1bio *r1_bio)
2264 /* We have read all readable devices. If we haven't
2265 * got the block, then there is no hope left.
2266 * If we have, then we want to do a comparison
2267 * and skip the write if everything is the same.
2268 * If any blocks failed to read, then we need to
2269 * attempt an over-write
2271 struct mddev *mddev = r1_bio->mddev;
2272 struct r1conf *conf = mddev->private;
2273 int primary;
2274 int i;
2275 int vcnt;
2277 /* Fix variable parts of all bios */
2278 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2279 for (i = 0; i < conf->raid_disks * 2; i++) {
2280 blk_status_t status;
2281 struct bio *b = r1_bio->bios[i];
2282 struct resync_pages *rp = get_resync_pages(b);
2283 if (b->bi_end_io != end_sync_read)
2284 continue;
2285 /* fixup the bio for reuse, but preserve errno */
2286 status = b->bi_status;
2287 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2288 b->bi_status = status;
2289 b->bi_iter.bi_sector = r1_bio->sector +
2290 conf->mirrors[i].rdev->data_offset;
2291 b->bi_end_io = end_sync_read;
2292 rp->raid_bio = r1_bio;
2293 b->bi_private = rp;
2295 /* initialize bvec table again */
2296 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2298 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2299 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2300 !r1_bio->bios[primary]->bi_status) {
2301 r1_bio->bios[primary]->bi_end_io = NULL;
2302 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2303 break;
2305 r1_bio->read_disk = primary;
2306 for (i = 0; i < conf->raid_disks * 2; i++) {
2307 int j = 0;
2308 struct bio *pbio = r1_bio->bios[primary];
2309 struct bio *sbio = r1_bio->bios[i];
2310 blk_status_t status = sbio->bi_status;
2311 struct page **ppages = get_resync_pages(pbio)->pages;
2312 struct page **spages = get_resync_pages(sbio)->pages;
2313 struct bio_vec *bi;
2314 int page_len[RESYNC_PAGES] = { 0 };
2315 struct bvec_iter_all iter_all;
2317 if (sbio->bi_end_io != end_sync_read)
2318 continue;
2319 /* Now we can 'fixup' the error value */
2320 sbio->bi_status = 0;
2322 bio_for_each_segment_all(bi, sbio, iter_all)
2323 page_len[j++] = bi->bv_len;
2325 if (!status) {
2326 for (j = vcnt; j-- ; ) {
2327 if (memcmp(page_address(ppages[j]),
2328 page_address(spages[j]),
2329 page_len[j]))
2330 break;
2332 } else
2333 j = 0;
2334 if (j >= 0)
2335 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2336 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2337 && !status)) {
2338 /* No need to write to this device. */
2339 sbio->bi_end_io = NULL;
2340 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2341 continue;
2344 bio_copy_data(sbio, pbio);
2348 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2350 struct r1conf *conf = mddev->private;
2351 int i;
2352 int disks = conf->raid_disks * 2;
2353 struct bio *wbio;
2355 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2356 /* ouch - failed to read all of that. */
2357 if (!fix_sync_read_error(r1_bio))
2358 return;
2360 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2361 process_checks(r1_bio);
2364 * schedule writes
2366 atomic_set(&r1_bio->remaining, 1);
2367 for (i = 0; i < disks ; i++) {
2368 wbio = r1_bio->bios[i];
2369 if (wbio->bi_end_io == NULL ||
2370 (wbio->bi_end_io == end_sync_read &&
2371 (i == r1_bio->read_disk ||
2372 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2373 continue;
2374 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2375 abort_sync_write(mddev, r1_bio);
2376 continue;
2379 wbio->bi_opf = REQ_OP_WRITE;
2380 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2381 wbio->bi_opf |= MD_FAILFAST;
2383 wbio->bi_end_io = end_sync_write;
2384 atomic_inc(&r1_bio->remaining);
2385 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2387 submit_bio_noacct(wbio);
2390 put_sync_write_buf(r1_bio, 1);
2394 * This is a kernel thread which:
2396 * 1. Retries failed read operations on working mirrors.
2397 * 2. Updates the raid superblock when problems encounter.
2398 * 3. Performs writes following reads for array synchronising.
2401 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2403 sector_t sect = r1_bio->sector;
2404 int sectors = r1_bio->sectors;
2405 int read_disk = r1_bio->read_disk;
2406 struct mddev *mddev = conf->mddev;
2407 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2409 if (exceed_read_errors(mddev, rdev)) {
2410 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2411 return;
2414 while(sectors) {
2415 int s = sectors;
2416 int d = read_disk;
2417 int success = 0;
2418 int start;
2420 if (s > (PAGE_SIZE>>9))
2421 s = PAGE_SIZE >> 9;
2423 do {
2424 rdev = conf->mirrors[d].rdev;
2425 if (rdev &&
2426 (test_bit(In_sync, &rdev->flags) ||
2427 (!test_bit(Faulty, &rdev->flags) &&
2428 rdev->recovery_offset >= sect + s)) &&
2429 rdev_has_badblock(rdev, sect, s) == 0) {
2430 atomic_inc(&rdev->nr_pending);
2431 if (sync_page_io(rdev, sect, s<<9,
2432 conf->tmppage, REQ_OP_READ, false))
2433 success = 1;
2434 rdev_dec_pending(rdev, mddev);
2435 if (success)
2436 break;
2439 d++;
2440 if (d == conf->raid_disks * 2)
2441 d = 0;
2442 } while (d != read_disk);
2444 if (!success) {
2445 /* Cannot read from anywhere - mark it bad */
2446 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2447 if (!rdev_set_badblocks(rdev, sect, s, 0))
2448 md_error(mddev, rdev);
2449 break;
2451 /* write it back and re-read */
2452 start = d;
2453 while (d != read_disk) {
2454 if (d==0)
2455 d = conf->raid_disks * 2;
2456 d--;
2457 rdev = conf->mirrors[d].rdev;
2458 if (rdev &&
2459 !test_bit(Faulty, &rdev->flags)) {
2460 atomic_inc(&rdev->nr_pending);
2461 r1_sync_page_io(rdev, sect, s,
2462 conf->tmppage, REQ_OP_WRITE);
2463 rdev_dec_pending(rdev, mddev);
2466 d = start;
2467 while (d != read_disk) {
2468 if (d==0)
2469 d = conf->raid_disks * 2;
2470 d--;
2471 rdev = conf->mirrors[d].rdev;
2472 if (rdev &&
2473 !test_bit(Faulty, &rdev->flags)) {
2474 atomic_inc(&rdev->nr_pending);
2475 if (r1_sync_page_io(rdev, sect, s,
2476 conf->tmppage, REQ_OP_READ)) {
2477 atomic_add(s, &rdev->corrected_errors);
2478 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2479 mdname(mddev), s,
2480 (unsigned long long)(sect +
2481 rdev->data_offset),
2482 rdev->bdev);
2484 rdev_dec_pending(rdev, mddev);
2487 sectors -= s;
2488 sect += s;
2492 static int narrow_write_error(struct r1bio *r1_bio, int i)
2494 struct mddev *mddev = r1_bio->mddev;
2495 struct r1conf *conf = mddev->private;
2496 struct md_rdev *rdev = conf->mirrors[i].rdev;
2498 /* bio has the data to be written to device 'i' where
2499 * we just recently had a write error.
2500 * We repeatedly clone the bio and trim down to one block,
2501 * then try the write. Where the write fails we record
2502 * a bad block.
2503 * It is conceivable that the bio doesn't exactly align with
2504 * blocks. We must handle this somehow.
2506 * We currently own a reference on the rdev.
2509 int block_sectors;
2510 sector_t sector;
2511 int sectors;
2512 int sect_to_write = r1_bio->sectors;
2513 int ok = 1;
2515 if (rdev->badblocks.shift < 0)
2516 return 0;
2518 block_sectors = roundup(1 << rdev->badblocks.shift,
2519 bdev_logical_block_size(rdev->bdev) >> 9);
2520 sector = r1_bio->sector;
2521 sectors = ((sector + block_sectors)
2522 & ~(sector_t)(block_sectors - 1))
2523 - sector;
2525 while (sect_to_write) {
2526 struct bio *wbio;
2527 if (sectors > sect_to_write)
2528 sectors = sect_to_write;
2529 /* Write at 'sector' for 'sectors'*/
2531 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2532 wbio = bio_alloc_clone(rdev->bdev,
2533 r1_bio->behind_master_bio,
2534 GFP_NOIO, &mddev->bio_set);
2535 } else {
2536 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2537 GFP_NOIO, &mddev->bio_set);
2540 wbio->bi_opf = REQ_OP_WRITE;
2541 wbio->bi_iter.bi_sector = r1_bio->sector;
2542 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2544 bio_trim(wbio, sector - r1_bio->sector, sectors);
2545 wbio->bi_iter.bi_sector += rdev->data_offset;
2547 if (submit_bio_wait(wbio) < 0)
2548 /* failure! */
2549 ok = rdev_set_badblocks(rdev, sector,
2550 sectors, 0)
2551 && ok;
2553 bio_put(wbio);
2554 sect_to_write -= sectors;
2555 sector += sectors;
2556 sectors = block_sectors;
2558 return ok;
2561 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2563 int m;
2564 int s = r1_bio->sectors;
2565 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2566 struct md_rdev *rdev = conf->mirrors[m].rdev;
2567 struct bio *bio = r1_bio->bios[m];
2568 if (bio->bi_end_io == NULL)
2569 continue;
2570 if (!bio->bi_status &&
2571 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2572 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2574 if (bio->bi_status &&
2575 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2576 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2577 md_error(conf->mddev, rdev);
2580 put_buf(r1_bio);
2581 md_done_sync(conf->mddev, s, 1);
2584 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2586 int m, idx;
2587 bool fail = false;
2589 for (m = 0; m < conf->raid_disks * 2 ; m++)
2590 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2591 struct md_rdev *rdev = conf->mirrors[m].rdev;
2592 rdev_clear_badblocks(rdev,
2593 r1_bio->sector,
2594 r1_bio->sectors, 0);
2595 rdev_dec_pending(rdev, conf->mddev);
2596 } else if (r1_bio->bios[m] != NULL) {
2597 /* This drive got a write error. We need to
2598 * narrow down and record precise write
2599 * errors.
2601 fail = true;
2602 if (!narrow_write_error(r1_bio, m)) {
2603 md_error(conf->mddev,
2604 conf->mirrors[m].rdev);
2605 /* an I/O failed, we can't clear the bitmap */
2606 set_bit(R1BIO_Degraded, &r1_bio->state);
2608 rdev_dec_pending(conf->mirrors[m].rdev,
2609 conf->mddev);
2611 if (fail) {
2612 spin_lock_irq(&conf->device_lock);
2613 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2614 idx = sector_to_idx(r1_bio->sector);
2615 atomic_inc(&conf->nr_queued[idx]);
2616 spin_unlock_irq(&conf->device_lock);
2618 * In case freeze_array() is waiting for condition
2619 * get_unqueued_pending() == extra to be true.
2621 wake_up(&conf->wait_barrier);
2622 md_wakeup_thread(conf->mddev->thread);
2623 } else {
2624 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2625 close_write(r1_bio);
2626 raid_end_bio_io(r1_bio);
2630 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2632 struct mddev *mddev = conf->mddev;
2633 struct bio *bio;
2634 struct md_rdev *rdev;
2635 sector_t sector;
2637 clear_bit(R1BIO_ReadError, &r1_bio->state);
2638 /* we got a read error. Maybe the drive is bad. Maybe just
2639 * the block and we can fix it.
2640 * We freeze all other IO, and try reading the block from
2641 * other devices. When we find one, we re-write
2642 * and check it that fixes the read error.
2643 * This is all done synchronously while the array is
2644 * frozen
2647 bio = r1_bio->bios[r1_bio->read_disk];
2648 bio_put(bio);
2649 r1_bio->bios[r1_bio->read_disk] = NULL;
2651 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2652 if (mddev->ro == 0
2653 && !test_bit(FailFast, &rdev->flags)) {
2654 freeze_array(conf, 1);
2655 fix_read_error(conf, r1_bio);
2656 unfreeze_array(conf);
2657 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2658 md_error(mddev, rdev);
2659 } else {
2660 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2663 rdev_dec_pending(rdev, conf->mddev);
2664 sector = r1_bio->sector;
2665 bio = r1_bio->master_bio;
2667 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2668 r1_bio->state = 0;
2669 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2670 allow_barrier(conf, sector);
2673 static void raid1d(struct md_thread *thread)
2675 struct mddev *mddev = thread->mddev;
2676 struct r1bio *r1_bio;
2677 unsigned long flags;
2678 struct r1conf *conf = mddev->private;
2679 struct list_head *head = &conf->retry_list;
2680 struct blk_plug plug;
2681 int idx;
2683 md_check_recovery(mddev);
2685 if (!list_empty_careful(&conf->bio_end_io_list) &&
2686 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2687 LIST_HEAD(tmp);
2688 spin_lock_irqsave(&conf->device_lock, flags);
2689 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2690 list_splice_init(&conf->bio_end_io_list, &tmp);
2691 spin_unlock_irqrestore(&conf->device_lock, flags);
2692 while (!list_empty(&tmp)) {
2693 r1_bio = list_first_entry(&tmp, struct r1bio,
2694 retry_list);
2695 list_del(&r1_bio->retry_list);
2696 idx = sector_to_idx(r1_bio->sector);
2697 atomic_dec(&conf->nr_queued[idx]);
2698 if (mddev->degraded)
2699 set_bit(R1BIO_Degraded, &r1_bio->state);
2700 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2701 close_write(r1_bio);
2702 raid_end_bio_io(r1_bio);
2706 blk_start_plug(&plug);
2707 for (;;) {
2709 flush_pending_writes(conf);
2711 spin_lock_irqsave(&conf->device_lock, flags);
2712 if (list_empty(head)) {
2713 spin_unlock_irqrestore(&conf->device_lock, flags);
2714 break;
2716 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2717 list_del(head->prev);
2718 idx = sector_to_idx(r1_bio->sector);
2719 atomic_dec(&conf->nr_queued[idx]);
2720 spin_unlock_irqrestore(&conf->device_lock, flags);
2722 mddev = r1_bio->mddev;
2723 conf = mddev->private;
2724 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2725 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2726 test_bit(R1BIO_WriteError, &r1_bio->state))
2727 handle_sync_write_finished(conf, r1_bio);
2728 else
2729 sync_request_write(mddev, r1_bio);
2730 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2731 test_bit(R1BIO_WriteError, &r1_bio->state))
2732 handle_write_finished(conf, r1_bio);
2733 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2734 handle_read_error(conf, r1_bio);
2735 else
2736 WARN_ON_ONCE(1);
2738 cond_resched();
2739 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2740 md_check_recovery(mddev);
2742 blk_finish_plug(&plug);
2745 static int init_resync(struct r1conf *conf)
2747 int buffs;
2749 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2750 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2752 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2753 r1buf_pool_free, conf->poolinfo);
2756 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2758 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2759 struct resync_pages *rps;
2760 struct bio *bio;
2761 int i;
2763 for (i = conf->poolinfo->raid_disks; i--; ) {
2764 bio = r1bio->bios[i];
2765 rps = bio->bi_private;
2766 bio_reset(bio, NULL, 0);
2767 bio->bi_private = rps;
2769 r1bio->master_bio = NULL;
2770 return r1bio;
2774 * perform a "sync" on one "block"
2776 * We need to make sure that no normal I/O request - particularly write
2777 * requests - conflict with active sync requests.
2779 * This is achieved by tracking pending requests and a 'barrier' concept
2780 * that can be installed to exclude normal IO requests.
2783 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2784 sector_t max_sector, int *skipped)
2786 struct r1conf *conf = mddev->private;
2787 struct r1bio *r1_bio;
2788 struct bio *bio;
2789 sector_t nr_sectors;
2790 int disk = -1;
2791 int i;
2792 int wonly = -1;
2793 int write_targets = 0, read_targets = 0;
2794 sector_t sync_blocks;
2795 bool still_degraded = false;
2796 int good_sectors = RESYNC_SECTORS;
2797 int min_bad = 0; /* number of sectors that are bad in all devices */
2798 int idx = sector_to_idx(sector_nr);
2799 int page_idx = 0;
2801 if (!mempool_initialized(&conf->r1buf_pool))
2802 if (init_resync(conf))
2803 return 0;
2805 if (sector_nr >= max_sector) {
2806 /* If we aborted, we need to abort the
2807 * sync on the 'current' bitmap chunk (there will
2808 * only be one in raid1 resync.
2809 * We can find the current addess in mddev->curr_resync
2811 if (mddev->curr_resync < max_sector) /* aborted */
2812 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2813 &sync_blocks);
2814 else /* completed sync */
2815 conf->fullsync = 0;
2817 mddev->bitmap_ops->close_sync(mddev);
2818 close_sync(conf);
2820 if (mddev_is_clustered(mddev)) {
2821 conf->cluster_sync_low = 0;
2822 conf->cluster_sync_high = 0;
2824 return 0;
2827 if (mddev->bitmap == NULL &&
2828 mddev->recovery_cp == MaxSector &&
2829 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2830 conf->fullsync == 0) {
2831 *skipped = 1;
2832 return max_sector - sector_nr;
2834 /* before building a request, check if we can skip these blocks..
2835 * This call the bitmap_start_sync doesn't actually record anything
2837 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2838 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2839 /* We can skip this block, and probably several more */
2840 *skipped = 1;
2841 return sync_blocks;
2845 * If there is non-resync activity waiting for a turn, then let it
2846 * though before starting on this new sync request.
2848 if (atomic_read(&conf->nr_waiting[idx]))
2849 schedule_timeout_uninterruptible(1);
2851 /* we are incrementing sector_nr below. To be safe, we check against
2852 * sector_nr + two times RESYNC_SECTORS
2855 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2856 mddev_is_clustered(mddev) &&
2857 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2859 if (raise_barrier(conf, sector_nr))
2860 return 0;
2862 r1_bio = raid1_alloc_init_r1buf(conf);
2865 * If we get a correctably read error during resync or recovery,
2866 * we might want to read from a different device. So we
2867 * flag all drives that could conceivably be read from for READ,
2868 * and any others (which will be non-In_sync devices) for WRITE.
2869 * If a read fails, we try reading from something else for which READ
2870 * is OK.
2873 r1_bio->mddev = mddev;
2874 r1_bio->sector = sector_nr;
2875 r1_bio->state = 0;
2876 set_bit(R1BIO_IsSync, &r1_bio->state);
2877 /* make sure good_sectors won't go across barrier unit boundary */
2878 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2880 for (i = 0; i < conf->raid_disks * 2; i++) {
2881 struct md_rdev *rdev;
2882 bio = r1_bio->bios[i];
2884 rdev = conf->mirrors[i].rdev;
2885 if (rdev == NULL ||
2886 test_bit(Faulty, &rdev->flags)) {
2887 if (i < conf->raid_disks)
2888 still_degraded = true;
2889 } else if (!test_bit(In_sync, &rdev->flags)) {
2890 bio->bi_opf = REQ_OP_WRITE;
2891 bio->bi_end_io = end_sync_write;
2892 write_targets ++;
2893 } else {
2894 /* may need to read from here */
2895 sector_t first_bad = MaxSector;
2896 int bad_sectors;
2898 if (is_badblock(rdev, sector_nr, good_sectors,
2899 &first_bad, &bad_sectors)) {
2900 if (first_bad > sector_nr)
2901 good_sectors = first_bad - sector_nr;
2902 else {
2903 bad_sectors -= (sector_nr - first_bad);
2904 if (min_bad == 0 ||
2905 min_bad > bad_sectors)
2906 min_bad = bad_sectors;
2909 if (sector_nr < first_bad) {
2910 if (test_bit(WriteMostly, &rdev->flags)) {
2911 if (wonly < 0)
2912 wonly = i;
2913 } else {
2914 if (disk < 0)
2915 disk = i;
2917 bio->bi_opf = REQ_OP_READ;
2918 bio->bi_end_io = end_sync_read;
2919 read_targets++;
2920 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2921 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2922 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2924 * The device is suitable for reading (InSync),
2925 * but has bad block(s) here. Let's try to correct them,
2926 * if we are doing resync or repair. Otherwise, leave
2927 * this device alone for this sync request.
2929 bio->bi_opf = REQ_OP_WRITE;
2930 bio->bi_end_io = end_sync_write;
2931 write_targets++;
2934 if (rdev && bio->bi_end_io) {
2935 atomic_inc(&rdev->nr_pending);
2936 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2937 bio_set_dev(bio, rdev->bdev);
2938 if (test_bit(FailFast, &rdev->flags))
2939 bio->bi_opf |= MD_FAILFAST;
2942 if (disk < 0)
2943 disk = wonly;
2944 r1_bio->read_disk = disk;
2946 if (read_targets == 0 && min_bad > 0) {
2947 /* These sectors are bad on all InSync devices, so we
2948 * need to mark them bad on all write targets
2950 int ok = 1;
2951 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2952 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2953 struct md_rdev *rdev = conf->mirrors[i].rdev;
2954 ok = rdev_set_badblocks(rdev, sector_nr,
2955 min_bad, 0
2956 ) && ok;
2958 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2959 *skipped = 1;
2960 put_buf(r1_bio);
2962 if (!ok) {
2963 /* Cannot record the badblocks, so need to
2964 * abort the resync.
2965 * If there are multiple read targets, could just
2966 * fail the really bad ones ???
2968 conf->recovery_disabled = mddev->recovery_disabled;
2969 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2970 return 0;
2971 } else
2972 return min_bad;
2975 if (min_bad > 0 && min_bad < good_sectors) {
2976 /* only resync enough to reach the next bad->good
2977 * transition */
2978 good_sectors = min_bad;
2981 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2982 /* extra read targets are also write targets */
2983 write_targets += read_targets-1;
2985 if (write_targets == 0 || read_targets == 0) {
2986 /* There is nowhere to write, so all non-sync
2987 * drives must be failed - so we are finished
2989 sector_t rv;
2990 if (min_bad > 0)
2991 max_sector = sector_nr + min_bad;
2992 rv = max_sector - sector_nr;
2993 *skipped = 1;
2994 put_buf(r1_bio);
2995 return rv;
2998 if (max_sector > mddev->resync_max)
2999 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3000 if (max_sector > sector_nr + good_sectors)
3001 max_sector = sector_nr + good_sectors;
3002 nr_sectors = 0;
3003 sync_blocks = 0;
3004 do {
3005 struct page *page;
3006 int len = PAGE_SIZE;
3007 if (sector_nr + (len>>9) > max_sector)
3008 len = (max_sector - sector_nr) << 9;
3009 if (len == 0)
3010 break;
3011 if (sync_blocks == 0) {
3012 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3013 &sync_blocks, still_degraded) &&
3014 !conf->fullsync &&
3015 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3016 break;
3017 if ((len >> 9) > sync_blocks)
3018 len = sync_blocks<<9;
3021 for (i = 0 ; i < conf->raid_disks * 2; i++) {
3022 struct resync_pages *rp;
3024 bio = r1_bio->bios[i];
3025 rp = get_resync_pages(bio);
3026 if (bio->bi_end_io) {
3027 page = resync_fetch_page(rp, page_idx);
3030 * won't fail because the vec table is big
3031 * enough to hold all these pages
3033 __bio_add_page(bio, page, len, 0);
3036 nr_sectors += len>>9;
3037 sector_nr += len>>9;
3038 sync_blocks -= (len>>9);
3039 } while (++page_idx < RESYNC_PAGES);
3041 r1_bio->sectors = nr_sectors;
3043 if (mddev_is_clustered(mddev) &&
3044 conf->cluster_sync_high < sector_nr + nr_sectors) {
3045 conf->cluster_sync_low = mddev->curr_resync_completed;
3046 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3047 /* Send resync message */
3048 md_cluster_ops->resync_info_update(mddev,
3049 conf->cluster_sync_low,
3050 conf->cluster_sync_high);
3053 /* For a user-requested sync, we read all readable devices and do a
3054 * compare
3056 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3057 atomic_set(&r1_bio->remaining, read_targets);
3058 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3059 bio = r1_bio->bios[i];
3060 if (bio->bi_end_io == end_sync_read) {
3061 read_targets--;
3062 md_sync_acct_bio(bio, nr_sectors);
3063 if (read_targets == 1)
3064 bio->bi_opf &= ~MD_FAILFAST;
3065 submit_bio_noacct(bio);
3068 } else {
3069 atomic_set(&r1_bio->remaining, 1);
3070 bio = r1_bio->bios[r1_bio->read_disk];
3071 md_sync_acct_bio(bio, nr_sectors);
3072 if (read_targets == 1)
3073 bio->bi_opf &= ~MD_FAILFAST;
3074 submit_bio_noacct(bio);
3076 return nr_sectors;
3079 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3081 if (sectors)
3082 return sectors;
3084 return mddev->dev_sectors;
3087 static struct r1conf *setup_conf(struct mddev *mddev)
3089 struct r1conf *conf;
3090 int i;
3091 struct raid1_info *disk;
3092 struct md_rdev *rdev;
3093 int err = -ENOMEM;
3095 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3096 if (!conf)
3097 goto abort;
3099 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3100 sizeof(atomic_t), GFP_KERNEL);
3101 if (!conf->nr_pending)
3102 goto abort;
3104 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3105 sizeof(atomic_t), GFP_KERNEL);
3106 if (!conf->nr_waiting)
3107 goto abort;
3109 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3110 sizeof(atomic_t), GFP_KERNEL);
3111 if (!conf->nr_queued)
3112 goto abort;
3114 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3115 sizeof(atomic_t), GFP_KERNEL);
3116 if (!conf->barrier)
3117 goto abort;
3119 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3120 mddev->raid_disks, 2),
3121 GFP_KERNEL);
3122 if (!conf->mirrors)
3123 goto abort;
3125 conf->tmppage = alloc_page(GFP_KERNEL);
3126 if (!conf->tmppage)
3127 goto abort;
3129 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3130 if (!conf->poolinfo)
3131 goto abort;
3132 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3133 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3134 rbio_pool_free, conf->poolinfo);
3135 if (err)
3136 goto abort;
3138 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3139 if (err)
3140 goto abort;
3142 conf->poolinfo->mddev = mddev;
3144 err = -EINVAL;
3145 spin_lock_init(&conf->device_lock);
3146 conf->raid_disks = mddev->raid_disks;
3147 rdev_for_each(rdev, mddev) {
3148 int disk_idx = rdev->raid_disk;
3150 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3151 continue;
3153 if (!raid1_add_conf(conf, rdev, disk_idx,
3154 test_bit(Replacement, &rdev->flags)))
3155 goto abort;
3157 conf->mddev = mddev;
3158 INIT_LIST_HEAD(&conf->retry_list);
3159 INIT_LIST_HEAD(&conf->bio_end_io_list);
3161 spin_lock_init(&conf->resync_lock);
3162 init_waitqueue_head(&conf->wait_barrier);
3164 bio_list_init(&conf->pending_bio_list);
3165 conf->recovery_disabled = mddev->recovery_disabled - 1;
3167 err = -EIO;
3168 for (i = 0; i < conf->raid_disks * 2; i++) {
3170 disk = conf->mirrors + i;
3172 if (i < conf->raid_disks &&
3173 disk[conf->raid_disks].rdev) {
3174 /* This slot has a replacement. */
3175 if (!disk->rdev) {
3176 /* No original, just make the replacement
3177 * a recovering spare
3179 disk->rdev =
3180 disk[conf->raid_disks].rdev;
3181 disk[conf->raid_disks].rdev = NULL;
3182 } else if (!test_bit(In_sync, &disk->rdev->flags))
3183 /* Original is not in_sync - bad */
3184 goto abort;
3187 if (!disk->rdev ||
3188 !test_bit(In_sync, &disk->rdev->flags)) {
3189 disk->head_position = 0;
3190 if (disk->rdev &&
3191 (disk->rdev->saved_raid_disk < 0))
3192 conf->fullsync = 1;
3196 err = -ENOMEM;
3197 rcu_assign_pointer(conf->thread,
3198 md_register_thread(raid1d, mddev, "raid1"));
3199 if (!conf->thread)
3200 goto abort;
3202 return conf;
3204 abort:
3205 if (conf) {
3206 mempool_exit(&conf->r1bio_pool);
3207 kfree(conf->mirrors);
3208 safe_put_page(conf->tmppage);
3209 kfree(conf->poolinfo);
3210 kfree(conf->nr_pending);
3211 kfree(conf->nr_waiting);
3212 kfree(conf->nr_queued);
3213 kfree(conf->barrier);
3214 bioset_exit(&conf->bio_split);
3215 kfree(conf);
3217 return ERR_PTR(err);
3220 static int raid1_set_limits(struct mddev *mddev)
3222 struct queue_limits lim;
3223 int err;
3225 md_init_stacking_limits(&lim);
3226 lim.max_write_zeroes_sectors = 0;
3227 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3228 if (err) {
3229 queue_limits_cancel_update(mddev->gendisk->queue);
3230 return err;
3232 return queue_limits_set(mddev->gendisk->queue, &lim);
3235 static int raid1_run(struct mddev *mddev)
3237 struct r1conf *conf;
3238 int i;
3239 int ret;
3241 if (mddev->level != 1) {
3242 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3243 mdname(mddev), mddev->level);
3244 return -EIO;
3246 if (mddev->reshape_position != MaxSector) {
3247 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3248 mdname(mddev));
3249 return -EIO;
3253 * copy the already verified devices into our private RAID1
3254 * bookkeeping area. [whatever we allocate in run(),
3255 * should be freed in raid1_free()]
3257 if (mddev->private == NULL)
3258 conf = setup_conf(mddev);
3259 else
3260 conf = mddev->private;
3262 if (IS_ERR(conf))
3263 return PTR_ERR(conf);
3265 if (!mddev_is_dm(mddev)) {
3266 ret = raid1_set_limits(mddev);
3267 if (ret)
3268 return ret;
3271 mddev->degraded = 0;
3272 for (i = 0; i < conf->raid_disks; i++)
3273 if (conf->mirrors[i].rdev == NULL ||
3274 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3275 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3276 mddev->degraded++;
3278 * RAID1 needs at least one disk in active
3280 if (conf->raid_disks - mddev->degraded < 1) {
3281 md_unregister_thread(mddev, &conf->thread);
3282 return -EINVAL;
3285 if (conf->raid_disks - mddev->degraded == 1)
3286 mddev->recovery_cp = MaxSector;
3288 if (mddev->recovery_cp != MaxSector)
3289 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3290 mdname(mddev));
3291 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3292 mdname(mddev), mddev->raid_disks - mddev->degraded,
3293 mddev->raid_disks);
3296 * Ok, everything is just fine now
3298 rcu_assign_pointer(mddev->thread, conf->thread);
3299 rcu_assign_pointer(conf->thread, NULL);
3300 mddev->private = conf;
3301 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3303 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3305 ret = md_integrity_register(mddev);
3306 if (ret)
3307 md_unregister_thread(mddev, &mddev->thread);
3308 return ret;
3311 static void raid1_free(struct mddev *mddev, void *priv)
3313 struct r1conf *conf = priv;
3315 mempool_exit(&conf->r1bio_pool);
3316 kfree(conf->mirrors);
3317 safe_put_page(conf->tmppage);
3318 kfree(conf->poolinfo);
3319 kfree(conf->nr_pending);
3320 kfree(conf->nr_waiting);
3321 kfree(conf->nr_queued);
3322 kfree(conf->barrier);
3323 bioset_exit(&conf->bio_split);
3324 kfree(conf);
3327 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3329 /* no resync is happening, and there is enough space
3330 * on all devices, so we can resize.
3331 * We need to make sure resync covers any new space.
3332 * If the array is shrinking we should possibly wait until
3333 * any io in the removed space completes, but it hardly seems
3334 * worth it.
3336 sector_t newsize = raid1_size(mddev, sectors, 0);
3337 int ret;
3339 if (mddev->external_size &&
3340 mddev->array_sectors > newsize)
3341 return -EINVAL;
3343 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3344 if (ret)
3345 return ret;
3347 md_set_array_sectors(mddev, newsize);
3348 if (sectors > mddev->dev_sectors &&
3349 mddev->recovery_cp > mddev->dev_sectors) {
3350 mddev->recovery_cp = mddev->dev_sectors;
3351 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3353 mddev->dev_sectors = sectors;
3354 mddev->resync_max_sectors = sectors;
3355 return 0;
3358 static int raid1_reshape(struct mddev *mddev)
3360 /* We need to:
3361 * 1/ resize the r1bio_pool
3362 * 2/ resize conf->mirrors
3364 * We allocate a new r1bio_pool if we can.
3365 * Then raise a device barrier and wait until all IO stops.
3366 * Then resize conf->mirrors and swap in the new r1bio pool.
3368 * At the same time, we "pack" the devices so that all the missing
3369 * devices have the higher raid_disk numbers.
3371 mempool_t newpool, oldpool;
3372 struct pool_info *newpoolinfo;
3373 struct raid1_info *newmirrors;
3374 struct r1conf *conf = mddev->private;
3375 int cnt, raid_disks;
3376 unsigned long flags;
3377 int d, d2;
3378 int ret;
3380 memset(&newpool, 0, sizeof(newpool));
3381 memset(&oldpool, 0, sizeof(oldpool));
3383 /* Cannot change chunk_size, layout, or level */
3384 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3385 mddev->layout != mddev->new_layout ||
3386 mddev->level != mddev->new_level) {
3387 mddev->new_chunk_sectors = mddev->chunk_sectors;
3388 mddev->new_layout = mddev->layout;
3389 mddev->new_level = mddev->level;
3390 return -EINVAL;
3393 if (!mddev_is_clustered(mddev))
3394 md_allow_write(mddev);
3396 raid_disks = mddev->raid_disks + mddev->delta_disks;
3398 if (raid_disks < conf->raid_disks) {
3399 cnt=0;
3400 for (d= 0; d < conf->raid_disks; d++)
3401 if (conf->mirrors[d].rdev)
3402 cnt++;
3403 if (cnt > raid_disks)
3404 return -EBUSY;
3407 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3408 if (!newpoolinfo)
3409 return -ENOMEM;
3410 newpoolinfo->mddev = mddev;
3411 newpoolinfo->raid_disks = raid_disks * 2;
3413 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3414 rbio_pool_free, newpoolinfo);
3415 if (ret) {
3416 kfree(newpoolinfo);
3417 return ret;
3419 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3420 raid_disks, 2),
3421 GFP_KERNEL);
3422 if (!newmirrors) {
3423 kfree(newpoolinfo);
3424 mempool_exit(&newpool);
3425 return -ENOMEM;
3428 freeze_array(conf, 0);
3430 /* ok, everything is stopped */
3431 oldpool = conf->r1bio_pool;
3432 conf->r1bio_pool = newpool;
3434 for (d = d2 = 0; d < conf->raid_disks; d++) {
3435 struct md_rdev *rdev = conf->mirrors[d].rdev;
3436 if (rdev && rdev->raid_disk != d2) {
3437 sysfs_unlink_rdev(mddev, rdev);
3438 rdev->raid_disk = d2;
3439 sysfs_unlink_rdev(mddev, rdev);
3440 if (sysfs_link_rdev(mddev, rdev))
3441 pr_warn("md/raid1:%s: cannot register rd%d\n",
3442 mdname(mddev), rdev->raid_disk);
3444 if (rdev)
3445 newmirrors[d2++].rdev = rdev;
3447 kfree(conf->mirrors);
3448 conf->mirrors = newmirrors;
3449 kfree(conf->poolinfo);
3450 conf->poolinfo = newpoolinfo;
3452 spin_lock_irqsave(&conf->device_lock, flags);
3453 mddev->degraded += (raid_disks - conf->raid_disks);
3454 spin_unlock_irqrestore(&conf->device_lock, flags);
3455 conf->raid_disks = mddev->raid_disks = raid_disks;
3456 mddev->delta_disks = 0;
3458 unfreeze_array(conf);
3460 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3461 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3462 md_wakeup_thread(mddev->thread);
3464 mempool_exit(&oldpool);
3465 return 0;
3468 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3470 struct r1conf *conf = mddev->private;
3472 if (quiesce)
3473 freeze_array(conf, 0);
3474 else
3475 unfreeze_array(conf);
3478 static void *raid1_takeover(struct mddev *mddev)
3480 /* raid1 can take over:
3481 * raid5 with 2 devices, any layout or chunk size
3483 if (mddev->level == 5 && mddev->raid_disks == 2) {
3484 struct r1conf *conf;
3485 mddev->new_level = 1;
3486 mddev->new_layout = 0;
3487 mddev->new_chunk_sectors = 0;
3488 conf = setup_conf(mddev);
3489 if (!IS_ERR(conf)) {
3490 /* Array must appear to be quiesced */
3491 conf->array_frozen = 1;
3492 mddev_clear_unsupported_flags(mddev,
3493 UNSUPPORTED_MDDEV_FLAGS);
3495 return conf;
3497 return ERR_PTR(-EINVAL);
3500 static struct md_personality raid1_personality =
3502 .name = "raid1",
3503 .level = 1,
3504 .owner = THIS_MODULE,
3505 .make_request = raid1_make_request,
3506 .run = raid1_run,
3507 .free = raid1_free,
3508 .status = raid1_status,
3509 .error_handler = raid1_error,
3510 .hot_add_disk = raid1_add_disk,
3511 .hot_remove_disk= raid1_remove_disk,
3512 .spare_active = raid1_spare_active,
3513 .sync_request = raid1_sync_request,
3514 .resize = raid1_resize,
3515 .size = raid1_size,
3516 .check_reshape = raid1_reshape,
3517 .quiesce = raid1_quiesce,
3518 .takeover = raid1_takeover,
3521 static int __init raid_init(void)
3523 return register_md_personality(&raid1_personality);
3526 static void raid_exit(void)
3528 unregister_md_personality(&raid1_personality);
3531 module_init(raid_init);
3532 module_exit(raid_exit);
3533 MODULE_LICENSE("GPL");
3534 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3535 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3536 MODULE_ALIAS("md-raid1");
3537 MODULE_ALIAS("md-level-1");