1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * uvc_video.c -- USB Video Class driver - Video handling
5 * Copyright (C) 2005-2010
6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <linux/unaligned.h>
23 #include <media/v4l2-common.h>
27 /* ------------------------------------------------------------------------
31 static int __uvc_query_ctrl(struct uvc_device
*dev
, u8 query
, u8 unit
,
32 u8 intfnum
, u8 cs
, void *data
, u16 size
,
35 u8 type
= USB_TYPE_CLASS
| USB_RECIP_INTERFACE
;
38 pipe
= (query
& 0x80) ? usb_rcvctrlpipe(dev
->udev
, 0)
39 : usb_sndctrlpipe(dev
->udev
, 0);
40 type
|= (query
& 0x80) ? USB_DIR_IN
: USB_DIR_OUT
;
42 return usb_control_msg(dev
->udev
, pipe
, query
, type
, cs
<< 8,
43 unit
<< 8 | intfnum
, data
, size
, timeout
);
46 static const char *uvc_query_name(u8 query
)
70 int uvc_query_ctrl(struct uvc_device
*dev
, u8 query
, u8 unit
,
71 u8 intfnum
, u8 cs
, void *data
, u16 size
)
77 ret
= __uvc_query_ctrl(dev
, query
, unit
, intfnum
, cs
, data
, size
,
78 UVC_CTRL_CONTROL_TIMEOUT
);
79 if (likely(ret
== size
))
83 dev_err(&dev
->udev
->dev
,
84 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
85 uvc_query_name(query
), cs
, unit
, ret
, size
);
86 return ret
< 0 ? ret
: -EPIPE
;
89 /* Reuse data[0] to request the error code. */
92 ret
= __uvc_query_ctrl(dev
, UVC_GET_CUR
, 0, intfnum
,
93 UVC_VC_REQUEST_ERROR_CODE_CONTROL
, data
, 1,
94 UVC_CTRL_CONTROL_TIMEOUT
);
100 return ret
< 0 ? ret
: -EPIPE
;
102 uvc_dbg(dev
, CONTROL
, "Control error %u\n", error
);
106 /* Cannot happen - we received a STALL */
108 case 1: /* Not ready */
110 case 2: /* Wrong state */
114 case 4: /* Out of range */
116 case 5: /* Invalid unit */
117 case 6: /* Invalid control */
118 case 7: /* Invalid Request */
120 * The firmware has not properly implemented
121 * the control or there has been a HW error.
124 case 8: /* Invalid value within range */
126 default: /* reserved or unknown */
133 static const struct usb_device_id elgato_cam_link_4k
= {
134 USB_DEVICE(0x0fd9, 0x0066)
137 static void uvc_fixup_video_ctrl(struct uvc_streaming
*stream
,
138 struct uvc_streaming_control
*ctrl
)
140 const struct uvc_format
*format
= NULL
;
141 const struct uvc_frame
*frame
= NULL
;
145 * The response of the Elgato Cam Link 4K is incorrect: The second byte
146 * contains bFormatIndex (instead of being the second byte of bmHint).
147 * The first byte is always zero. The third byte is always 1.
149 * The UVC 1.5 class specification defines the first five bits in the
150 * bmHint bitfield. The remaining bits are reserved and should be zero.
151 * Therefore a valid bmHint will be less than 32.
153 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
154 * MCU: 20.02.19, FPGA: 67
156 if (usb_match_one_id(stream
->dev
->intf
, &elgato_cam_link_4k
) &&
157 ctrl
->bmHint
> 255) {
158 u8 corrected_format_index
= ctrl
->bmHint
>> 8;
160 uvc_dbg(stream
->dev
, VIDEO
,
161 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
162 ctrl
->bmHint
, ctrl
->bFormatIndex
,
163 1, corrected_format_index
);
165 ctrl
->bFormatIndex
= corrected_format_index
;
168 for (i
= 0; i
< stream
->nformats
; ++i
) {
169 if (stream
->formats
[i
].index
== ctrl
->bFormatIndex
) {
170 format
= &stream
->formats
[i
];
178 for (i
= 0; i
< format
->nframes
; ++i
) {
179 if (format
->frames
[i
].bFrameIndex
== ctrl
->bFrameIndex
) {
180 frame
= &format
->frames
[i
];
188 if (!(format
->flags
& UVC_FMT_FLAG_COMPRESSED
) ||
189 (ctrl
->dwMaxVideoFrameSize
== 0 &&
190 stream
->dev
->uvc_version
< 0x0110))
191 ctrl
->dwMaxVideoFrameSize
=
192 frame
->dwMaxVideoFrameBufferSize
;
195 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
196 * compute the bandwidth on 16 bits and erroneously sign-extend it to
197 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
198 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
200 if ((ctrl
->dwMaxPayloadTransferSize
& 0xffff0000) == 0xffff0000)
201 ctrl
->dwMaxPayloadTransferSize
&= ~0xffff0000;
203 if (!(format
->flags
& UVC_FMT_FLAG_COMPRESSED
) &&
204 stream
->dev
->quirks
& UVC_QUIRK_FIX_BANDWIDTH
&&
205 stream
->intf
->num_altsetting
> 1) {
209 interval
= (ctrl
->dwFrameInterval
> 100000)
210 ? ctrl
->dwFrameInterval
211 : frame
->dwFrameInterval
[0];
214 * Compute a bandwidth estimation by multiplying the frame
215 * size by the number of video frames per second, divide the
216 * result by the number of USB frames (or micro-frames for
217 * high- and super-speed devices) per second and add the UVC
218 * header size (assumed to be 12 bytes long).
220 bandwidth
= frame
->wWidth
* frame
->wHeight
/ 8 * format
->bpp
;
221 bandwidth
*= 10000000 / interval
+ 1;
223 if (stream
->dev
->udev
->speed
>= USB_SPEED_HIGH
)
228 * The bandwidth estimate is too low for many cameras. Don't use
229 * maximum packet sizes lower than 1024 bytes to try and work
230 * around the problem. According to measurements done on two
231 * different camera models, the value is high enough to get most
232 * resolutions working while not preventing two simultaneous
233 * VGA streams at 15 fps.
235 bandwidth
= max_t(u32
, bandwidth
, 1024);
237 ctrl
->dwMaxPayloadTransferSize
= bandwidth
;
241 static size_t uvc_video_ctrl_size(struct uvc_streaming
*stream
)
244 * Return the size of the video probe and commit controls, which depends
245 * on the protocol version.
247 if (stream
->dev
->uvc_version
< 0x0110)
249 else if (stream
->dev
->uvc_version
< 0x0150)
255 static int uvc_get_video_ctrl(struct uvc_streaming
*stream
,
256 struct uvc_streaming_control
*ctrl
, int probe
, u8 query
)
258 u16 size
= uvc_video_ctrl_size(stream
);
262 if ((stream
->dev
->quirks
& UVC_QUIRK_PROBE_DEF
) &&
263 query
== UVC_GET_DEF
)
266 data
= kmalloc(size
, GFP_KERNEL
);
270 ret
= __uvc_query_ctrl(stream
->dev
, query
, 0, stream
->intfnum
,
271 probe
? UVC_VS_PROBE_CONTROL
: UVC_VS_COMMIT_CONTROL
, data
,
272 size
, uvc_timeout_param
);
274 if ((query
== UVC_GET_MIN
|| query
== UVC_GET_MAX
) && ret
== 2) {
276 * Some cameras, mostly based on Bison Electronics chipsets,
277 * answer a GET_MIN or GET_MAX request with the wCompQuality
280 uvc_warn_once(stream
->dev
, UVC_WARN_MINMAX
, "UVC non "
281 "compliance - GET_MIN/MAX(PROBE) incorrectly "
282 "supported. Enabling workaround.\n");
283 memset(ctrl
, 0, sizeof(*ctrl
));
284 ctrl
->wCompQuality
= le16_to_cpup((__le16
*)data
);
287 } else if (query
== UVC_GET_DEF
&& probe
== 1 && ret
!= size
) {
289 * Many cameras don't support the GET_DEF request on their
290 * video probe control. Warn once and return, the caller will
291 * fall back to GET_CUR.
293 uvc_warn_once(stream
->dev
, UVC_WARN_PROBE_DEF
, "UVC non "
294 "compliance - GET_DEF(PROBE) not supported. "
295 "Enabling workaround.\n");
298 } else if (ret
!= size
) {
299 dev_err(&stream
->intf
->dev
,
300 "Failed to query (%u) UVC %s control : %d (exp. %u).\n",
301 query
, probe
? "probe" : "commit", ret
, size
);
302 ret
= (ret
== -EPROTO
) ? -EPROTO
: -EIO
;
306 ctrl
->bmHint
= le16_to_cpup((__le16
*)&data
[0]);
307 ctrl
->bFormatIndex
= data
[2];
308 ctrl
->bFrameIndex
= data
[3];
309 ctrl
->dwFrameInterval
= le32_to_cpup((__le32
*)&data
[4]);
310 ctrl
->wKeyFrameRate
= le16_to_cpup((__le16
*)&data
[8]);
311 ctrl
->wPFrameRate
= le16_to_cpup((__le16
*)&data
[10]);
312 ctrl
->wCompQuality
= le16_to_cpup((__le16
*)&data
[12]);
313 ctrl
->wCompWindowSize
= le16_to_cpup((__le16
*)&data
[14]);
314 ctrl
->wDelay
= le16_to_cpup((__le16
*)&data
[16]);
315 ctrl
->dwMaxVideoFrameSize
= get_unaligned_le32(&data
[18]);
316 ctrl
->dwMaxPayloadTransferSize
= get_unaligned_le32(&data
[22]);
319 ctrl
->dwClockFrequency
= get_unaligned_le32(&data
[26]);
320 ctrl
->bmFramingInfo
= data
[30];
321 ctrl
->bPreferedVersion
= data
[31];
322 ctrl
->bMinVersion
= data
[32];
323 ctrl
->bMaxVersion
= data
[33];
325 ctrl
->dwClockFrequency
= stream
->dev
->clock_frequency
;
326 ctrl
->bmFramingInfo
= 0;
327 ctrl
->bPreferedVersion
= 0;
328 ctrl
->bMinVersion
= 0;
329 ctrl
->bMaxVersion
= 0;
333 * Some broken devices return null or wrong dwMaxVideoFrameSize and
334 * dwMaxPayloadTransferSize fields. Try to get the value from the
335 * format and frame descriptors.
337 uvc_fixup_video_ctrl(stream
, ctrl
);
345 static int uvc_set_video_ctrl(struct uvc_streaming
*stream
,
346 struct uvc_streaming_control
*ctrl
, int probe
)
348 u16 size
= uvc_video_ctrl_size(stream
);
352 data
= kzalloc(size
, GFP_KERNEL
);
356 *(__le16
*)&data
[0] = cpu_to_le16(ctrl
->bmHint
);
357 data
[2] = ctrl
->bFormatIndex
;
358 data
[3] = ctrl
->bFrameIndex
;
359 *(__le32
*)&data
[4] = cpu_to_le32(ctrl
->dwFrameInterval
);
360 *(__le16
*)&data
[8] = cpu_to_le16(ctrl
->wKeyFrameRate
);
361 *(__le16
*)&data
[10] = cpu_to_le16(ctrl
->wPFrameRate
);
362 *(__le16
*)&data
[12] = cpu_to_le16(ctrl
->wCompQuality
);
363 *(__le16
*)&data
[14] = cpu_to_le16(ctrl
->wCompWindowSize
);
364 *(__le16
*)&data
[16] = cpu_to_le16(ctrl
->wDelay
);
365 put_unaligned_le32(ctrl
->dwMaxVideoFrameSize
, &data
[18]);
366 put_unaligned_le32(ctrl
->dwMaxPayloadTransferSize
, &data
[22]);
369 put_unaligned_le32(ctrl
->dwClockFrequency
, &data
[26]);
370 data
[30] = ctrl
->bmFramingInfo
;
371 data
[31] = ctrl
->bPreferedVersion
;
372 data
[32] = ctrl
->bMinVersion
;
373 data
[33] = ctrl
->bMaxVersion
;
376 ret
= __uvc_query_ctrl(stream
->dev
, UVC_SET_CUR
, 0, stream
->intfnum
,
377 probe
? UVC_VS_PROBE_CONTROL
: UVC_VS_COMMIT_CONTROL
, data
,
378 size
, uvc_timeout_param
);
380 dev_err(&stream
->intf
->dev
,
381 "Failed to set UVC %s control : %d (exp. %u).\n",
382 probe
? "probe" : "commit", ret
, size
);
390 int uvc_probe_video(struct uvc_streaming
*stream
,
391 struct uvc_streaming_control
*probe
)
393 struct uvc_streaming_control probe_min
, probe_max
;
398 * Perform probing. The device should adjust the requested values
399 * according to its capabilities. However, some devices, namely the
400 * first generation UVC Logitech webcams, don't implement the Video
401 * Probe control properly, and just return the needed bandwidth. For
402 * that reason, if the needed bandwidth exceeds the maximum available
403 * bandwidth, try to lower the quality.
405 ret
= uvc_set_video_ctrl(stream
, probe
, 1);
409 /* Get the minimum and maximum values for compression settings. */
410 if (!(stream
->dev
->quirks
& UVC_QUIRK_PROBE_MINMAX
)) {
411 ret
= uvc_get_video_ctrl(stream
, &probe_min
, 1, UVC_GET_MIN
);
414 ret
= uvc_get_video_ctrl(stream
, &probe_max
, 1, UVC_GET_MAX
);
418 probe
->wCompQuality
= probe_max
.wCompQuality
;
421 for (i
= 0; i
< 2; ++i
) {
422 ret
= uvc_set_video_ctrl(stream
, probe
, 1);
425 ret
= uvc_get_video_ctrl(stream
, probe
, 1, UVC_GET_CUR
);
429 if (stream
->intf
->num_altsetting
== 1)
432 if (probe
->dwMaxPayloadTransferSize
<= stream
->maxpsize
)
435 if (stream
->dev
->quirks
& UVC_QUIRK_PROBE_MINMAX
) {
440 /* TODO: negotiate compression parameters */
441 probe
->wKeyFrameRate
= probe_min
.wKeyFrameRate
;
442 probe
->wPFrameRate
= probe_min
.wPFrameRate
;
443 probe
->wCompQuality
= probe_max
.wCompQuality
;
444 probe
->wCompWindowSize
= probe_min
.wCompWindowSize
;
451 static int uvc_commit_video(struct uvc_streaming
*stream
,
452 struct uvc_streaming_control
*probe
)
454 return uvc_set_video_ctrl(stream
, probe
, 0);
457 /* -----------------------------------------------------------------------------
458 * Clocks and timestamps
461 static inline ktime_t
uvc_video_get_time(void)
463 if (uvc_clock_param
== CLOCK_MONOTONIC
)
466 return ktime_get_real();
469 static void uvc_video_clock_add_sample(struct uvc_clock
*clock
,
470 const struct uvc_clock_sample
*sample
)
475 * If we write new data on the position where we had the last
476 * overflow, remove the overflow pointer. There is no SOF overflow
477 * in the whole circular buffer.
479 if (clock
->head
== clock
->last_sof_overflow
)
480 clock
->last_sof_overflow
= -1;
482 spin_lock_irqsave(&clock
->lock
, flags
);
484 if (clock
->count
> 0 && clock
->last_sof
> sample
->dev_sof
) {
486 * Remove data from the circular buffer that is older than the
487 * last SOF overflow. We only support one SOF overflow per
490 if (clock
->last_sof_overflow
!= -1)
491 clock
->count
= (clock
->head
- clock
->last_sof_overflow
492 + clock
->size
) % clock
->size
;
493 clock
->last_sof_overflow
= clock
->head
;
497 clock
->samples
[clock
->head
] = *sample
;
498 clock
->head
= (clock
->head
+ 1) % clock
->size
;
499 clock
->count
= min(clock
->count
+ 1, clock
->size
);
501 spin_unlock_irqrestore(&clock
->lock
, flags
);
505 uvc_video_clock_decode(struct uvc_streaming
*stream
, struct uvc_buffer
*buf
,
506 const u8
*data
, int len
)
508 struct uvc_clock_sample sample
;
509 unsigned int header_size
;
510 bool has_pts
= false;
511 bool has_scr
= false;
513 switch (data
[1] & (UVC_STREAM_PTS
| UVC_STREAM_SCR
)) {
514 case UVC_STREAM_PTS
| UVC_STREAM_SCR
:
532 /* Check for invalid headers. */
533 if (len
< header_size
)
537 * Extract the timestamps:
539 * - store the frame PTS in the buffer structure
540 * - if the SCR field is present, retrieve the host SOF counter and
541 * kernel timestamps and store them with the SCR STC and SOF fields
544 if (has_pts
&& buf
!= NULL
)
545 buf
->pts
= get_unaligned_le32(&data
[2]);
551 * To limit the amount of data, drop SCRs with an SOF identical to the
552 * previous one. This filtering is also needed to support UVC 1.5, where
553 * all the data packets of the same frame contains the same SOF. In that
554 * case only the first one will match the host_sof.
556 sample
.dev_sof
= get_unaligned_le16(&data
[header_size
- 2]);
557 if (sample
.dev_sof
== stream
->clock
.last_sof
)
560 sample
.dev_stc
= get_unaligned_le32(&data
[header_size
- 6]);
563 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5
564 * standard states that it "must be captured when the first video data
565 * of a video frame is put on the USB bus". This is generally understood
566 * as requiring devices to clear the payload header's SCR bit before
567 * the first packet containing video data.
569 * Most vendors follow that interpretation, but some (namely SunplusIT
570 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR
571 * field with 0's,and expect that the driver only processes the SCR if
572 * there is data in the packet.
574 * Ignore all the hardware timestamp information if we haven't received
575 * any data for this frame yet, the packet contains no data, and both
576 * STC and SOF are zero. This heuristics should be safe on compliant
577 * devices. This should be safe with compliant devices, as in the very
578 * unlikely case where a UVC 1.1 device would send timing information
579 * only before the first packet containing data, and both STC and SOF
580 * happen to be zero for a particular frame, we would only miss one
581 * clock sample from many and the clock recovery algorithm wouldn't
582 * suffer from this condition.
584 if (buf
&& buf
->bytesused
== 0 && len
== header_size
&&
585 sample
.dev_stc
== 0 && sample
.dev_sof
== 0)
588 sample
.host_sof
= usb_get_current_frame_number(stream
->dev
->udev
);
591 * On some devices, like the Logitech C922, the device SOF does not run
592 * at a stable rate of 1kHz. For those devices use the host SOF instead.
593 * In the tests performed so far, this improves the timestamp precision.
594 * This is probably explained by a small packet handling jitter from the
595 * host, but the exact reason hasn't been fully determined.
597 if (stream
->dev
->quirks
& UVC_QUIRK_INVALID_DEVICE_SOF
)
598 sample
.dev_sof
= sample
.host_sof
;
600 sample
.host_time
= uvc_video_get_time();
603 * The UVC specification allows device implementations that can't obtain
604 * the USB frame number to keep their own frame counters as long as they
605 * match the size and frequency of the frame number associated with USB
606 * SOF tokens. The SOF values sent by such devices differ from the USB
607 * SOF tokens by a fixed offset that needs to be estimated and accounted
608 * for to make timestamp recovery as accurate as possible.
610 * The offset is estimated the first time a device SOF value is received
611 * as the difference between the host and device SOF values. As the two
612 * SOF values can differ slightly due to transmission delays, consider
613 * that the offset is null if the difference is not higher than 10 ms
614 * (negative differences can not happen and are thus considered as an
615 * offset). The video commit control wDelay field should be used to
616 * compute a dynamic threshold instead of using a fixed 10 ms value, but
617 * devices don't report reliable wDelay values.
619 * See uvc_video_clock_host_sof() for an explanation regarding why only
620 * the 8 LSBs of the delta are kept.
622 if (stream
->clock
.sof_offset
== (u16
)-1) {
623 u16 delta_sof
= (sample
.host_sof
- sample
.dev_sof
) & 255;
625 stream
->clock
.sof_offset
= delta_sof
;
627 stream
->clock
.sof_offset
= 0;
630 sample
.dev_sof
= (sample
.dev_sof
+ stream
->clock
.sof_offset
) & 2047;
631 uvc_video_clock_add_sample(&stream
->clock
, &sample
);
632 stream
->clock
.last_sof
= sample
.dev_sof
;
635 static void uvc_video_clock_reset(struct uvc_clock
*clock
)
639 clock
->last_sof
= -1;
640 clock
->last_sof_overflow
= -1;
641 clock
->sof_offset
= -1;
644 static int uvc_video_clock_init(struct uvc_clock
*clock
)
646 spin_lock_init(&clock
->lock
);
649 clock
->samples
= kmalloc_array(clock
->size
, sizeof(*clock
->samples
),
651 if (clock
->samples
== NULL
)
654 uvc_video_clock_reset(clock
);
659 static void uvc_video_clock_cleanup(struct uvc_clock
*clock
)
661 kfree(clock
->samples
);
662 clock
->samples
= NULL
;
666 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
668 * Host SOF counters reported by usb_get_current_frame_number() usually don't
669 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
670 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
671 * controller and its configuration.
673 * We thus need to recover the SOF value corresponding to the host frame number.
674 * As the device and host frame numbers are sampled in a short interval, the
675 * difference between their values should be equal to a small delta plus an
676 * integer multiple of 256 caused by the host frame number limited precision.
678 * To obtain the recovered host SOF value, compute the small delta by masking
679 * the high bits of the host frame counter and device SOF difference and add it
680 * to the device SOF value.
682 static u16
uvc_video_clock_host_sof(const struct uvc_clock_sample
*sample
)
684 /* The delta value can be negative. */
687 delta_sof
= (sample
->host_sof
- sample
->dev_sof
) & 255;
689 return (sample
->dev_sof
+ delta_sof
) & 2047;
693 * uvc_video_clock_update - Update the buffer timestamp
695 * This function converts the buffer PTS timestamp to the host clock domain by
696 * going through the USB SOF clock domain and stores the result in the V4L2
697 * buffer timestamp field.
699 * The relationship between the device clock and the host clock isn't known.
700 * However, the device and the host share the common USB SOF clock which can be
701 * used to recover that relationship.
703 * The relationship between the device clock and the USB SOF clock is considered
704 * to be linear over the clock samples sliding window and is given by
708 * Several methods to compute the slope (m) and intercept (p) can be used. As
709 * the clock drift should be small compared to the sliding window size, we
710 * assume that the line that goes through the points at both ends of the window
711 * is a good approximation. Naming those points P1 and P2, we get
713 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
714 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
718 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
720 * to avoid losing precision in the division. Similarly, the host timestamp is
723 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
725 * SOF values are coded on 11 bits by USB. We extend their precision with 16
726 * decimal bits, leading to a 11.16 coding.
728 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
729 * be normalized using the nominal device clock frequency reported through the
732 * Both the PTS/STC and SOF counters roll over, after a fixed but device
733 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
734 * sliding window size is smaller than the rollover period, differences computed
735 * on unsigned integers will produce the correct result. However, the p term in
736 * the linear relations will be miscomputed.
738 * To fix the issue, we subtract a constant from the PTS and STC values to bring
739 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
740 * the 32 bit range without any rollover.
742 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
743 * computed by (1) will never be smaller than 0. This offset is then compensated
744 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
745 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
746 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
747 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
748 * SOF value at the end of the sliding window.
750 * Finally we subtract a constant from the host timestamps to bring the first
751 * timestamp of the sliding window to 1s.
753 void uvc_video_clock_update(struct uvc_streaming
*stream
,
754 struct vb2_v4l2_buffer
*vbuf
,
755 struct uvc_buffer
*buf
)
757 struct uvc_clock
*clock
= &stream
->clock
;
758 struct uvc_clock_sample
*first
;
759 struct uvc_clock_sample
*last
;
769 if (!uvc_hw_timestamps_param
)
773 * We will get called from __vb2_queue_cancel() if there are buffers
774 * done but not dequeued by the user, but the sample array has already
775 * been released at that time. Just bail out in that case.
780 spin_lock_irqsave(&clock
->lock
, flags
);
782 if (clock
->count
< 2)
785 first
= &clock
->samples
[(clock
->head
- clock
->count
+ clock
->size
) % clock
->size
];
786 last
= &clock
->samples
[(clock
->head
- 1 + clock
->size
) % clock
->size
];
788 /* First step, PTS to SOF conversion. */
789 delta_stc
= buf
->pts
- (1UL << 31);
790 x1
= first
->dev_stc
- delta_stc
;
791 x2
= last
->dev_stc
- delta_stc
;
795 y1
= (first
->dev_sof
+ 2048) << 16;
796 y2
= (last
->dev_sof
+ 2048) << 16;
801 * Have at least 1/4 of a second of timestamps before we
802 * try to do any calculation. Otherwise we do not have enough
803 * precision. This value was determined by running Android CTS
804 * on different devices.
806 * dev_sof runs at 1KHz, and we have a fixed point precision of
809 if ((y2
- y1
) < ((1000 / 4) << 16))
812 y
= (u64
)(y2
- y1
) * (1ULL << 31) + (u64
)y1
* (u64
)x2
814 y
= div_u64(y
, x2
- x1
);
818 uvc_dbg(stream
->dev
, CLOCK
,
819 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n",
820 stream
->dev
->name
, buf
->pts
,
821 y
>> 16, div_u64((y
& 0xffff) * 1000000, 65536),
822 sof
>> 16, div_u64(((u64
)sof
& 0xffff) * 1000000LLU, 65536),
823 x1
, x2
, y1
, y2
, clock
->sof_offset
);
825 /* Second step, SOF to host clock conversion. */
826 x1
= (uvc_video_clock_host_sof(first
) + 2048) << 16;
827 x2
= (uvc_video_clock_host_sof(last
) + 2048) << 16;
834 y2
= ktime_to_ns(ktime_sub(last
->host_time
, first
->host_time
)) + y1
;
837 * Interpolated and host SOF timestamps can wrap around at slightly
838 * different times. Handle this by adding or removing 2048 to or from
839 * the computed SOF value to keep it close to the SOF samples mean
842 mean
= (x1
+ x2
) / 2;
843 if (mean
- (1024 << 16) > sof
)
845 else if (sof
> mean
+ (1024 << 16))
848 y
= (u64
)(y2
- y1
) * (u64
)sof
+ (u64
)y1
* (u64
)x2
850 y
= div_u64(y
, x2
- x1
);
852 timestamp
= ktime_to_ns(first
->host_time
) + y
- y1
;
854 uvc_dbg(stream
->dev
, CLOCK
,
855 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n",
857 sof
>> 16, div_u64(((u64
)sof
& 0xffff) * 1000000LLU, 65536),
858 y
, timestamp
, vbuf
->vb2_buf
.timestamp
,
859 x1
, first
->host_sof
, first
->dev_sof
,
860 x2
, last
->host_sof
, last
->dev_sof
, y1
, y2
);
862 /* Update the V4L2 buffer. */
863 vbuf
->vb2_buf
.timestamp
= timestamp
;
866 spin_unlock_irqrestore(&clock
->lock
, flags
);
869 /* ------------------------------------------------------------------------
873 static void uvc_video_stats_decode(struct uvc_streaming
*stream
,
874 const u8
*data
, int len
)
876 unsigned int header_size
;
877 bool has_pts
= false;
878 bool has_scr
= false;
883 if (stream
->stats
.stream
.nb_frames
== 0 &&
884 stream
->stats
.frame
.nb_packets
== 0)
885 stream
->stats
.stream
.start_ts
= ktime_get();
887 switch (data
[1] & (UVC_STREAM_PTS
| UVC_STREAM_SCR
)) {
888 case UVC_STREAM_PTS
| UVC_STREAM_SCR
:
906 /* Check for invalid headers. */
907 if (len
< header_size
|| data
[0] < header_size
) {
908 stream
->stats
.frame
.nb_invalid
++;
912 /* Extract the timestamps. */
914 pts
= get_unaligned_le32(&data
[2]);
917 scr_stc
= get_unaligned_le32(&data
[header_size
- 6]);
918 scr_sof
= get_unaligned_le16(&data
[header_size
- 2]);
921 /* Is PTS constant through the whole frame ? */
922 if (has_pts
&& stream
->stats
.frame
.nb_pts
) {
923 if (stream
->stats
.frame
.pts
!= pts
) {
924 stream
->stats
.frame
.nb_pts_diffs
++;
925 stream
->stats
.frame
.last_pts_diff
=
926 stream
->stats
.frame
.nb_packets
;
931 stream
->stats
.frame
.nb_pts
++;
932 stream
->stats
.frame
.pts
= pts
;
936 * Do all frames have a PTS in their first non-empty packet, or before
937 * their first empty packet ?
939 if (stream
->stats
.frame
.size
== 0) {
940 if (len
> header_size
)
941 stream
->stats
.frame
.has_initial_pts
= has_pts
;
942 if (len
== header_size
&& has_pts
)
943 stream
->stats
.frame
.has_early_pts
= true;
946 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
947 if (has_scr
&& stream
->stats
.frame
.nb_scr
) {
948 if (stream
->stats
.frame
.scr_stc
!= scr_stc
)
949 stream
->stats
.frame
.nb_scr_diffs
++;
953 /* Expand the SOF counter to 32 bits and store its value. */
954 if (stream
->stats
.stream
.nb_frames
> 0 ||
955 stream
->stats
.frame
.nb_scr
> 0)
956 stream
->stats
.stream
.scr_sof_count
+=
957 (scr_sof
- stream
->stats
.stream
.scr_sof
) % 2048;
958 stream
->stats
.stream
.scr_sof
= scr_sof
;
960 stream
->stats
.frame
.nb_scr
++;
961 stream
->stats
.frame
.scr_stc
= scr_stc
;
962 stream
->stats
.frame
.scr_sof
= scr_sof
;
964 if (scr_sof
< stream
->stats
.stream
.min_sof
)
965 stream
->stats
.stream
.min_sof
= scr_sof
;
966 if (scr_sof
> stream
->stats
.stream
.max_sof
)
967 stream
->stats
.stream
.max_sof
= scr_sof
;
970 /* Record the first non-empty packet number. */
971 if (stream
->stats
.frame
.size
== 0 && len
> header_size
)
972 stream
->stats
.frame
.first_data
= stream
->stats
.frame
.nb_packets
;
974 /* Update the frame size. */
975 stream
->stats
.frame
.size
+= len
- header_size
;
977 /* Update the packets counters. */
978 stream
->stats
.frame
.nb_packets
++;
979 if (len
<= header_size
)
980 stream
->stats
.frame
.nb_empty
++;
982 if (data
[1] & UVC_STREAM_ERR
)
983 stream
->stats
.frame
.nb_errors
++;
986 static void uvc_video_stats_update(struct uvc_streaming
*stream
)
988 struct uvc_stats_frame
*frame
= &stream
->stats
.frame
;
990 uvc_dbg(stream
->dev
, STATS
,
991 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
992 stream
->sequence
, frame
->first_data
,
993 frame
->nb_packets
- frame
->nb_empty
, frame
->nb_packets
,
994 frame
->nb_pts_diffs
, frame
->last_pts_diff
, frame
->nb_pts
,
995 frame
->has_early_pts
? "" : "!",
996 frame
->has_initial_pts
? "" : "!",
997 frame
->nb_scr_diffs
, frame
->nb_scr
,
998 frame
->pts
, frame
->scr_stc
, frame
->scr_sof
);
1000 stream
->stats
.stream
.nb_frames
++;
1001 stream
->stats
.stream
.nb_packets
+= stream
->stats
.frame
.nb_packets
;
1002 stream
->stats
.stream
.nb_empty
+= stream
->stats
.frame
.nb_empty
;
1003 stream
->stats
.stream
.nb_errors
+= stream
->stats
.frame
.nb_errors
;
1004 stream
->stats
.stream
.nb_invalid
+= stream
->stats
.frame
.nb_invalid
;
1006 if (frame
->has_early_pts
)
1007 stream
->stats
.stream
.nb_pts_early
++;
1008 if (frame
->has_initial_pts
)
1009 stream
->stats
.stream
.nb_pts_initial
++;
1010 if (frame
->last_pts_diff
<= frame
->first_data
)
1011 stream
->stats
.stream
.nb_pts_constant
++;
1012 if (frame
->nb_scr
>= frame
->nb_packets
- frame
->nb_empty
)
1013 stream
->stats
.stream
.nb_scr_count_ok
++;
1014 if (frame
->nb_scr_diffs
+ 1 == frame
->nb_scr
)
1015 stream
->stats
.stream
.nb_scr_diffs_ok
++;
1017 memset(&stream
->stats
.frame
, 0, sizeof(stream
->stats
.frame
));
1020 size_t uvc_video_stats_dump(struct uvc_streaming
*stream
, char *buf
,
1023 unsigned int scr_sof_freq
;
1024 unsigned int duration
;
1028 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
1029 * frequency this will not overflow before more than 1h.
1031 duration
= ktime_ms_delta(stream
->stats
.stream
.stop_ts
,
1032 stream
->stats
.stream
.start_ts
);
1034 scr_sof_freq
= stream
->stats
.stream
.scr_sof_count
* 1000
1039 count
+= scnprintf(buf
+ count
, size
- count
,
1040 "frames: %u\npackets: %u\nempty: %u\n"
1041 "errors: %u\ninvalid: %u\n",
1042 stream
->stats
.stream
.nb_frames
,
1043 stream
->stats
.stream
.nb_packets
,
1044 stream
->stats
.stream
.nb_empty
,
1045 stream
->stats
.stream
.nb_errors
,
1046 stream
->stats
.stream
.nb_invalid
);
1047 count
+= scnprintf(buf
+ count
, size
- count
,
1048 "pts: %u early, %u initial, %u ok\n",
1049 stream
->stats
.stream
.nb_pts_early
,
1050 stream
->stats
.stream
.nb_pts_initial
,
1051 stream
->stats
.stream
.nb_pts_constant
);
1052 count
+= scnprintf(buf
+ count
, size
- count
,
1053 "scr: %u count ok, %u diff ok\n",
1054 stream
->stats
.stream
.nb_scr_count_ok
,
1055 stream
->stats
.stream
.nb_scr_diffs_ok
);
1056 count
+= scnprintf(buf
+ count
, size
- count
,
1057 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
1058 stream
->stats
.stream
.min_sof
,
1059 stream
->stats
.stream
.max_sof
,
1060 scr_sof_freq
/ 1000, scr_sof_freq
% 1000);
1065 static void uvc_video_stats_start(struct uvc_streaming
*stream
)
1067 memset(&stream
->stats
, 0, sizeof(stream
->stats
));
1068 stream
->stats
.stream
.min_sof
= 2048;
1071 static void uvc_video_stats_stop(struct uvc_streaming
*stream
)
1073 stream
->stats
.stream
.stop_ts
= ktime_get();
1076 /* ------------------------------------------------------------------------
1081 * Video payload decoding is handled by uvc_video_decode_start(),
1082 * uvc_video_decode_data() and uvc_video_decode_end().
1084 * uvc_video_decode_start is called with URB data at the start of a bulk or
1085 * isochronous payload. It processes header data and returns the header size
1086 * in bytes if successful. If an error occurs, it returns a negative error
1087 * code. The following error codes have special meanings.
1089 * - EAGAIN informs the caller that the current video buffer should be marked
1090 * as done, and that the function should be called again with the same data
1091 * and a new video buffer. This is used when end of frame conditions can be
1092 * reliably detected at the beginning of the next frame only.
1094 * If an error other than -EAGAIN is returned, the caller will drop the current
1095 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1096 * made until the next payload. -ENODATA can be used to drop the current
1097 * payload if no other error code is appropriate.
1099 * uvc_video_decode_data is called for every URB with URB data. It copies the
1100 * data to the video buffer.
1102 * uvc_video_decode_end is called with header data at the end of a bulk or
1103 * isochronous payload. It performs any additional header data processing and
1104 * returns 0 or a negative error code if an error occurred. As header data have
1105 * already been processed by uvc_video_decode_start, this functions isn't
1106 * required to perform sanity checks a second time.
1108 * For isochronous transfers where a payload is always transferred in a single
1109 * URB, the three functions will be called in a row.
1111 * To let the decoder process header data and update its internal state even
1112 * when no video buffer is available, uvc_video_decode_start must be prepared
1113 * to be called with a NULL buf parameter. uvc_video_decode_data and
1114 * uvc_video_decode_end will never be called with a NULL buffer.
1116 static int uvc_video_decode_start(struct uvc_streaming
*stream
,
1117 struct uvc_buffer
*buf
, const u8
*data
, int len
)
1123 * - packet must be at least 2 bytes long
1124 * - bHeaderLength value must be at least 2 bytes (see above)
1125 * - bHeaderLength value can't be larger than the packet size.
1127 if (len
< 2 || data
[0] < 2 || data
[0] > len
) {
1128 stream
->stats
.frame
.nb_invalid
++;
1132 fid
= data
[1] & UVC_STREAM_FID
;
1135 * Increase the sequence number regardless of any buffer states, so
1136 * that discontinuous sequence numbers always indicate lost frames.
1138 if (stream
->last_fid
!= fid
) {
1140 if (stream
->sequence
)
1141 uvc_video_stats_update(stream
);
1144 uvc_video_clock_decode(stream
, buf
, data
, len
);
1145 uvc_video_stats_decode(stream
, data
, len
);
1148 * Store the payload FID bit and return immediately when the buffer is
1152 stream
->last_fid
= fid
;
1156 /* Mark the buffer as bad if the error bit is set. */
1157 if (data
[1] & UVC_STREAM_ERR
) {
1158 uvc_dbg(stream
->dev
, FRAME
,
1159 "Marking buffer as bad (error bit set)\n");
1164 * Synchronize to the input stream by waiting for the FID bit to be
1165 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE.
1166 * stream->last_fid is initialized to -1, so the first isochronous
1167 * frame will always be in sync.
1169 * If the device doesn't toggle the FID bit, invert stream->last_fid
1170 * when the EOF bit is set to force synchronisation on the next packet.
1172 if (buf
->state
!= UVC_BUF_STATE_ACTIVE
) {
1173 if (fid
== stream
->last_fid
) {
1174 uvc_dbg(stream
->dev
, FRAME
,
1175 "Dropping payload (out of sync)\n");
1176 if ((stream
->dev
->quirks
& UVC_QUIRK_STREAM_NO_FID
) &&
1177 (data
[1] & UVC_STREAM_EOF
))
1178 stream
->last_fid
^= UVC_STREAM_FID
;
1182 buf
->buf
.field
= V4L2_FIELD_NONE
;
1183 buf
->buf
.sequence
= stream
->sequence
;
1184 buf
->buf
.vb2_buf
.timestamp
= ktime_to_ns(uvc_video_get_time());
1186 /* TODO: Handle PTS and SCR. */
1187 buf
->state
= UVC_BUF_STATE_ACTIVE
;
1191 * Mark the buffer as done if we're at the beginning of a new frame.
1192 * End of frame detection is better implemented by checking the EOF
1193 * bit (FID bit toggling is delayed by one frame compared to the EOF
1194 * bit), but some devices don't set the bit at end of frame (and the
1195 * last payload can be lost anyway). We thus must check if the FID has
1198 * stream->last_fid is initialized to -1, so the first isochronous
1199 * frame will never trigger an end of frame detection.
1201 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1202 * as it doesn't make sense to return an empty buffer. This also
1203 * avoids detecting end of frame conditions at FID toggling if the
1204 * previous payload had the EOF bit set.
1206 if (fid
!= stream
->last_fid
&& buf
->bytesused
!= 0) {
1207 uvc_dbg(stream
->dev
, FRAME
,
1208 "Frame complete (FID bit toggled)\n");
1209 buf
->state
= UVC_BUF_STATE_READY
;
1213 stream
->last_fid
= fid
;
1218 static inline enum dma_data_direction
uvc_stream_dir(
1219 struct uvc_streaming
*stream
)
1221 if (stream
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1222 return DMA_FROM_DEVICE
;
1224 return DMA_TO_DEVICE
;
1227 static inline struct device
*uvc_stream_to_dmadev(struct uvc_streaming
*stream
)
1229 return bus_to_hcd(stream
->dev
->udev
->bus
)->self
.sysdev
;
1232 static int uvc_submit_urb(struct uvc_urb
*uvc_urb
, gfp_t mem_flags
)
1235 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb
->stream
),
1237 uvc_stream_dir(uvc_urb
->stream
));
1238 return usb_submit_urb(uvc_urb
->urb
, mem_flags
);
1242 * uvc_video_decode_data_work: Asynchronous memcpy processing
1244 * Copy URB data to video buffers in process context, releasing buffer
1245 * references and requeuing the URB when done.
1247 static void uvc_video_copy_data_work(struct work_struct
*work
)
1249 struct uvc_urb
*uvc_urb
= container_of(work
, struct uvc_urb
, work
);
1253 for (i
= 0; i
< uvc_urb
->async_operations
; i
++) {
1254 struct uvc_copy_op
*op
= &uvc_urb
->copy_operations
[i
];
1256 memcpy(op
->dst
, op
->src
, op
->len
);
1258 /* Release reference taken on this buffer. */
1259 uvc_queue_buffer_release(op
->buf
);
1262 ret
= uvc_submit_urb(uvc_urb
, GFP_KERNEL
);
1264 dev_err(&uvc_urb
->stream
->intf
->dev
,
1265 "Failed to resubmit video URB (%d).\n", ret
);
1268 static void uvc_video_decode_data(struct uvc_urb
*uvc_urb
,
1269 struct uvc_buffer
*buf
, const u8
*data
, int len
)
1271 unsigned int active_op
= uvc_urb
->async_operations
;
1272 struct uvc_copy_op
*op
= &uvc_urb
->copy_operations
[active_op
];
1273 unsigned int maxlen
;
1278 maxlen
= buf
->length
- buf
->bytesused
;
1280 /* Take a buffer reference for async work. */
1281 kref_get(&buf
->ref
);
1285 op
->dst
= buf
->mem
+ buf
->bytesused
;
1286 op
->len
= min_t(unsigned int, len
, maxlen
);
1288 buf
->bytesused
+= op
->len
;
1290 /* Complete the current frame if the buffer size was exceeded. */
1292 uvc_dbg(uvc_urb
->stream
->dev
, FRAME
,
1293 "Frame complete (overflow)\n");
1295 buf
->state
= UVC_BUF_STATE_READY
;
1298 uvc_urb
->async_operations
++;
1301 static void uvc_video_decode_end(struct uvc_streaming
*stream
,
1302 struct uvc_buffer
*buf
, const u8
*data
, int len
)
1304 /* Mark the buffer as done if the EOF marker is set. */
1305 if (data
[1] & UVC_STREAM_EOF
&& buf
->bytesused
!= 0) {
1306 uvc_dbg(stream
->dev
, FRAME
, "Frame complete (EOF found)\n");
1308 uvc_dbg(stream
->dev
, FRAME
, "EOF in empty payload\n");
1309 buf
->state
= UVC_BUF_STATE_READY
;
1310 if (stream
->dev
->quirks
& UVC_QUIRK_STREAM_NO_FID
)
1311 stream
->last_fid
^= UVC_STREAM_FID
;
1316 * Video payload encoding is handled by uvc_video_encode_header() and
1317 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1319 * uvc_video_encode_header is called at the start of a payload. It adds header
1320 * data to the transfer buffer and returns the header size. As the only known
1321 * UVC output device transfers a whole frame in a single payload, the EOF bit
1322 * is always set in the header.
1324 * uvc_video_encode_data is called for every URB and copies the data from the
1325 * video buffer to the transfer buffer.
1327 static int uvc_video_encode_header(struct uvc_streaming
*stream
,
1328 struct uvc_buffer
*buf
, u8
*data
, int len
)
1330 data
[0] = 2; /* Header length */
1331 data
[1] = UVC_STREAM_EOH
| UVC_STREAM_EOF
1332 | (stream
->last_fid
& UVC_STREAM_FID
);
1336 static int uvc_video_encode_data(struct uvc_streaming
*stream
,
1337 struct uvc_buffer
*buf
, u8
*data
, int len
)
1339 struct uvc_video_queue
*queue
= &stream
->queue
;
1340 unsigned int nbytes
;
1343 /* Copy video data to the URB buffer. */
1344 mem
= buf
->mem
+ queue
->buf_used
;
1345 nbytes
= min((unsigned int)len
, buf
->bytesused
- queue
->buf_used
);
1346 nbytes
= min(stream
->bulk
.max_payload_size
- stream
->bulk
.payload_size
,
1348 memcpy(data
, mem
, nbytes
);
1350 queue
->buf_used
+= nbytes
;
1355 /* ------------------------------------------------------------------------
1360 * Additionally to the payload headers we also want to provide the user with USB
1361 * Frame Numbers and system time values. The resulting buffer is thus composed
1362 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame
1363 * Number, and a copy of the payload header.
1365 * Ideally we want to capture all payload headers for each frame. However, their
1366 * number is unknown and unbound. We thus drop headers that contain no vendor
1367 * data and that either contain no SCR value or an SCR value identical to the
1370 static void uvc_video_decode_meta(struct uvc_streaming
*stream
,
1371 struct uvc_buffer
*meta_buf
,
1372 const u8
*mem
, unsigned int length
)
1374 struct uvc_meta_buf
*meta
;
1376 bool has_pts
, has_scr
;
1377 unsigned long flags
;
1382 if (!meta_buf
|| length
== 2)
1385 if (meta_buf
->length
- meta_buf
->bytesused
<
1386 length
+ sizeof(meta
->ns
) + sizeof(meta
->sof
)) {
1387 meta_buf
->error
= 1;
1391 has_pts
= mem
[1] & UVC_STREAM_PTS
;
1392 has_scr
= mem
[1] & UVC_STREAM_SCR
;
1404 if (stream
->meta
.format
== V4L2_META_FMT_UVC
)
1407 if (length
== len_std
&& (!has_scr
||
1408 !memcmp(scr
, stream
->clock
.last_scr
, 6)))
1411 meta
= (struct uvc_meta_buf
*)((u8
*)meta_buf
->mem
+ meta_buf
->bytesused
);
1412 local_irq_save(flags
);
1413 time
= uvc_video_get_time();
1414 sof
= usb_get_current_frame_number(stream
->dev
->udev
);
1415 local_irq_restore(flags
);
1416 put_unaligned(ktime_to_ns(time
), &meta
->ns
);
1417 put_unaligned(sof
, &meta
->sof
);
1420 memcpy(stream
->clock
.last_scr
, scr
, 6);
1422 meta
->length
= mem
[0];
1423 meta
->flags
= mem
[1];
1424 memcpy(meta
->buf
, &mem
[2], length
- 2);
1425 meta_buf
->bytesused
+= length
+ sizeof(meta
->ns
) + sizeof(meta
->sof
);
1427 uvc_dbg(stream
->dev
, FRAME
,
1428 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1429 __func__
, ktime_to_ns(time
), meta
->sof
, meta
->length
,
1431 has_pts
? *(u32
*)meta
->buf
: 0,
1432 has_scr
? *(u32
*)scr
: 0,
1433 has_scr
? *(u32
*)(scr
+ 4) & 0x7ff : 0);
1436 /* ------------------------------------------------------------------------
1441 * Set error flag for incomplete buffer.
1443 static void uvc_video_validate_buffer(const struct uvc_streaming
*stream
,
1444 struct uvc_buffer
*buf
)
1446 if (stream
->ctrl
.dwMaxVideoFrameSize
!= buf
->bytesused
&&
1447 !(stream
->cur_format
->flags
& UVC_FMT_FLAG_COMPRESSED
))
1452 * Completion handler for video URBs.
1455 static void uvc_video_next_buffers(struct uvc_streaming
*stream
,
1456 struct uvc_buffer
**video_buf
, struct uvc_buffer
**meta_buf
)
1458 uvc_video_validate_buffer(stream
, *video_buf
);
1461 struct vb2_v4l2_buffer
*vb2_meta
= &(*meta_buf
)->buf
;
1462 const struct vb2_v4l2_buffer
*vb2_video
= &(*video_buf
)->buf
;
1464 vb2_meta
->sequence
= vb2_video
->sequence
;
1465 vb2_meta
->field
= vb2_video
->field
;
1466 vb2_meta
->vb2_buf
.timestamp
= vb2_video
->vb2_buf
.timestamp
;
1468 (*meta_buf
)->state
= UVC_BUF_STATE_READY
;
1469 if (!(*meta_buf
)->error
)
1470 (*meta_buf
)->error
= (*video_buf
)->error
;
1471 *meta_buf
= uvc_queue_next_buffer(&stream
->meta
.queue
,
1474 *video_buf
= uvc_queue_next_buffer(&stream
->queue
, *video_buf
);
1477 static void uvc_video_decode_isoc(struct uvc_urb
*uvc_urb
,
1478 struct uvc_buffer
*buf
, struct uvc_buffer
*meta_buf
)
1480 struct urb
*urb
= uvc_urb
->urb
;
1481 struct uvc_streaming
*stream
= uvc_urb
->stream
;
1485 for (i
= 0; i
< urb
->number_of_packets
; ++i
) {
1486 if (urb
->iso_frame_desc
[i
].status
< 0) {
1487 uvc_dbg(stream
->dev
, FRAME
,
1488 "USB isochronous frame lost (%d)\n",
1489 urb
->iso_frame_desc
[i
].status
);
1490 /* Mark the buffer as faulty. */
1496 /* Decode the payload header. */
1497 mem
= urb
->transfer_buffer
+ urb
->iso_frame_desc
[i
].offset
;
1499 ret
= uvc_video_decode_start(stream
, buf
, mem
,
1500 urb
->iso_frame_desc
[i
].actual_length
);
1502 uvc_video_next_buffers(stream
, &buf
, &meta_buf
);
1503 } while (ret
== -EAGAIN
);
1508 uvc_video_decode_meta(stream
, meta_buf
, mem
, ret
);
1510 /* Decode the payload data. */
1511 uvc_video_decode_data(uvc_urb
, buf
, mem
+ ret
,
1512 urb
->iso_frame_desc
[i
].actual_length
- ret
);
1514 /* Process the header again. */
1515 uvc_video_decode_end(stream
, buf
, mem
,
1516 urb
->iso_frame_desc
[i
].actual_length
);
1518 if (buf
->state
== UVC_BUF_STATE_READY
)
1519 uvc_video_next_buffers(stream
, &buf
, &meta_buf
);
1523 static void uvc_video_decode_bulk(struct uvc_urb
*uvc_urb
,
1524 struct uvc_buffer
*buf
, struct uvc_buffer
*meta_buf
)
1526 struct urb
*urb
= uvc_urb
->urb
;
1527 struct uvc_streaming
*stream
= uvc_urb
->stream
;
1532 * Ignore ZLPs if they're not part of a frame, otherwise process them
1533 * to trigger the end of payload detection.
1535 if (urb
->actual_length
== 0 && stream
->bulk
.header_size
== 0)
1538 mem
= urb
->transfer_buffer
;
1539 len
= urb
->actual_length
;
1540 stream
->bulk
.payload_size
+= len
;
1543 * If the URB is the first of its payload, decode and save the
1546 if (stream
->bulk
.header_size
== 0 && !stream
->bulk
.skip_payload
) {
1548 ret
= uvc_video_decode_start(stream
, buf
, mem
, len
);
1550 uvc_video_next_buffers(stream
, &buf
, &meta_buf
);
1551 } while (ret
== -EAGAIN
);
1553 /* If an error occurred skip the rest of the payload. */
1554 if (ret
< 0 || buf
== NULL
) {
1555 stream
->bulk
.skip_payload
= 1;
1557 memcpy(stream
->bulk
.header
, mem
, ret
);
1558 stream
->bulk
.header_size
= ret
;
1560 uvc_video_decode_meta(stream
, meta_buf
, mem
, ret
);
1568 * The buffer queue might have been cancelled while a bulk transfer
1569 * was in progress, so we can reach here with buf equal to NULL. Make
1570 * sure buf is never dereferenced if NULL.
1573 /* Prepare video data for processing. */
1574 if (!stream
->bulk
.skip_payload
&& buf
!= NULL
)
1575 uvc_video_decode_data(uvc_urb
, buf
, mem
, len
);
1578 * Detect the payload end by a URB smaller than the maximum size (or
1579 * a payload size equal to the maximum) and process the header again.
1581 if (urb
->actual_length
< urb
->transfer_buffer_length
||
1582 stream
->bulk
.payload_size
>= stream
->bulk
.max_payload_size
) {
1583 if (!stream
->bulk
.skip_payload
&& buf
!= NULL
) {
1584 uvc_video_decode_end(stream
, buf
, stream
->bulk
.header
,
1585 stream
->bulk
.payload_size
);
1586 if (buf
->state
== UVC_BUF_STATE_READY
)
1587 uvc_video_next_buffers(stream
, &buf
, &meta_buf
);
1590 stream
->bulk
.header_size
= 0;
1591 stream
->bulk
.skip_payload
= 0;
1592 stream
->bulk
.payload_size
= 0;
1596 static void uvc_video_encode_bulk(struct uvc_urb
*uvc_urb
,
1597 struct uvc_buffer
*buf
, struct uvc_buffer
*meta_buf
)
1599 struct urb
*urb
= uvc_urb
->urb
;
1600 struct uvc_streaming
*stream
= uvc_urb
->stream
;
1602 u8
*mem
= urb
->transfer_buffer
;
1603 int len
= stream
->urb_size
, ret
;
1606 urb
->transfer_buffer_length
= 0;
1610 /* If the URB is the first of its payload, add the header. */
1611 if (stream
->bulk
.header_size
== 0) {
1612 ret
= uvc_video_encode_header(stream
, buf
, mem
, len
);
1613 stream
->bulk
.header_size
= ret
;
1614 stream
->bulk
.payload_size
+= ret
;
1619 /* Process video data. */
1620 ret
= uvc_video_encode_data(stream
, buf
, mem
, len
);
1622 stream
->bulk
.payload_size
+= ret
;
1625 if (buf
->bytesused
== stream
->queue
.buf_used
||
1626 stream
->bulk
.payload_size
== stream
->bulk
.max_payload_size
) {
1627 if (buf
->bytesused
== stream
->queue
.buf_used
) {
1628 stream
->queue
.buf_used
= 0;
1629 buf
->state
= UVC_BUF_STATE_READY
;
1630 buf
->buf
.sequence
= ++stream
->sequence
;
1631 uvc_queue_next_buffer(&stream
->queue
, buf
);
1632 stream
->last_fid
^= UVC_STREAM_FID
;
1635 stream
->bulk
.header_size
= 0;
1636 stream
->bulk
.payload_size
= 0;
1639 urb
->transfer_buffer_length
= stream
->urb_size
- len
;
1642 static void uvc_video_complete(struct urb
*urb
)
1644 struct uvc_urb
*uvc_urb
= urb
->context
;
1645 struct uvc_streaming
*stream
= uvc_urb
->stream
;
1646 struct uvc_video_queue
*queue
= &stream
->queue
;
1647 struct uvc_video_queue
*qmeta
= &stream
->meta
.queue
;
1648 struct vb2_queue
*vb2_qmeta
= stream
->meta
.vdev
.queue
;
1649 struct uvc_buffer
*buf
= NULL
;
1650 struct uvc_buffer
*buf_meta
= NULL
;
1651 unsigned long flags
;
1654 switch (urb
->status
) {
1659 dev_warn(&stream
->intf
->dev
,
1660 "Non-zero status (%d) in video completion handler.\n",
1663 case -ENOENT
: /* usb_poison_urb() called. */
1667 case -ECONNRESET
: /* usb_unlink_urb() called. */
1668 case -ESHUTDOWN
: /* The endpoint is being disabled. */
1669 uvc_queue_cancel(queue
, urb
->status
== -ESHUTDOWN
);
1671 uvc_queue_cancel(qmeta
, urb
->status
== -ESHUTDOWN
);
1675 buf
= uvc_queue_get_current_buffer(queue
);
1678 spin_lock_irqsave(&qmeta
->irqlock
, flags
);
1679 if (!list_empty(&qmeta
->irqqueue
))
1680 buf_meta
= list_first_entry(&qmeta
->irqqueue
,
1681 struct uvc_buffer
, queue
);
1682 spin_unlock_irqrestore(&qmeta
->irqlock
, flags
);
1685 /* Re-initialise the URB async work. */
1686 uvc_urb
->async_operations
= 0;
1688 /* Sync DMA and invalidate vmap range. */
1689 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb
->stream
),
1690 uvc_urb
->sgt
, uvc_stream_dir(stream
));
1691 invalidate_kernel_vmap_range(uvc_urb
->buffer
,
1692 uvc_urb
->stream
->urb_size
);
1695 * Process the URB headers, and optionally queue expensive memcpy tasks
1696 * to be deferred to a work queue.
1698 stream
->decode(uvc_urb
, buf
, buf_meta
);
1700 /* If no async work is needed, resubmit the URB immediately. */
1701 if (!uvc_urb
->async_operations
) {
1702 ret
= uvc_submit_urb(uvc_urb
, GFP_ATOMIC
);
1704 dev_err(&stream
->intf
->dev
,
1705 "Failed to resubmit video URB (%d).\n", ret
);
1709 queue_work(stream
->async_wq
, &uvc_urb
->work
);
1713 * Free transfer buffers.
1715 static void uvc_free_urb_buffers(struct uvc_streaming
*stream
)
1717 struct device
*dma_dev
= uvc_stream_to_dmadev(stream
);
1718 struct uvc_urb
*uvc_urb
;
1720 for_each_uvc_urb(uvc_urb
, stream
) {
1721 if (!uvc_urb
->buffer
)
1724 dma_vunmap_noncontiguous(dma_dev
, uvc_urb
->buffer
);
1725 dma_free_noncontiguous(dma_dev
, stream
->urb_size
, uvc_urb
->sgt
,
1726 uvc_stream_dir(stream
));
1728 uvc_urb
->buffer
= NULL
;
1729 uvc_urb
->sgt
= NULL
;
1732 stream
->urb_size
= 0;
1735 static bool uvc_alloc_urb_buffer(struct uvc_streaming
*stream
,
1736 struct uvc_urb
*uvc_urb
, gfp_t gfp_flags
)
1738 struct device
*dma_dev
= uvc_stream_to_dmadev(stream
);
1740 uvc_urb
->sgt
= dma_alloc_noncontiguous(dma_dev
, stream
->urb_size
,
1741 uvc_stream_dir(stream
),
1745 uvc_urb
->dma
= uvc_urb
->sgt
->sgl
->dma_address
;
1747 uvc_urb
->buffer
= dma_vmap_noncontiguous(dma_dev
, stream
->urb_size
,
1749 if (!uvc_urb
->buffer
) {
1750 dma_free_noncontiguous(dma_dev
, stream
->urb_size
,
1752 uvc_stream_dir(stream
));
1753 uvc_urb
->sgt
= NULL
;
1761 * Allocate transfer buffers. This function can be called with buffers
1762 * already allocated when resuming from suspend, in which case it will
1763 * return without touching the buffers.
1765 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1766 * system is too low on memory try successively smaller numbers of packets
1767 * until allocation succeeds.
1769 * Return the number of allocated packets on success or 0 when out of memory.
1771 static int uvc_alloc_urb_buffers(struct uvc_streaming
*stream
,
1772 unsigned int size
, unsigned int psize
, gfp_t gfp_flags
)
1774 unsigned int npackets
;
1777 /* Buffers are already allocated, bail out. */
1778 if (stream
->urb_size
)
1779 return stream
->urb_size
/ psize
;
1782 * Compute the number of packets. Bulk endpoints might transfer UVC
1783 * payloads across multiple URBs.
1785 npackets
= DIV_ROUND_UP(size
, psize
);
1786 if (npackets
> UVC_MAX_PACKETS
)
1787 npackets
= UVC_MAX_PACKETS
;
1789 /* Retry allocations until one succeed. */
1790 for (; npackets
> 1; npackets
/= 2) {
1791 stream
->urb_size
= psize
* npackets
;
1793 for (i
= 0; i
< UVC_URBS
; ++i
) {
1794 struct uvc_urb
*uvc_urb
= &stream
->uvc_urb
[i
];
1796 if (!uvc_alloc_urb_buffer(stream
, uvc_urb
, gfp_flags
)) {
1797 uvc_free_urb_buffers(stream
);
1801 uvc_urb
->stream
= stream
;
1804 if (i
== UVC_URBS
) {
1805 uvc_dbg(stream
->dev
, VIDEO
,
1806 "Allocated %u URB buffers of %ux%u bytes each\n",
1807 UVC_URBS
, npackets
, psize
);
1812 uvc_dbg(stream
->dev
, VIDEO
,
1813 "Failed to allocate URB buffers (%u bytes per packet)\n",
1819 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1821 static void uvc_video_stop_transfer(struct uvc_streaming
*stream
,
1824 struct uvc_urb
*uvc_urb
;
1826 uvc_video_stats_stop(stream
);
1829 * We must poison the URBs rather than kill them to ensure that even
1830 * after the completion handler returns, any asynchronous workqueues
1831 * will be prevented from resubmitting the URBs.
1833 for_each_uvc_urb(uvc_urb
, stream
)
1834 usb_poison_urb(uvc_urb
->urb
);
1836 flush_workqueue(stream
->async_wq
);
1838 for_each_uvc_urb(uvc_urb
, stream
) {
1839 usb_free_urb(uvc_urb
->urb
);
1840 uvc_urb
->urb
= NULL
;
1844 uvc_free_urb_buffers(stream
);
1848 * Compute the maximum number of bytes per interval for an endpoint.
1850 u16
uvc_endpoint_max_bpi(struct usb_device
*dev
, struct usb_host_endpoint
*ep
)
1854 switch (dev
->speed
) {
1855 case USB_SPEED_SUPER
:
1856 case USB_SPEED_SUPER_PLUS
:
1857 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1859 psize
= usb_endpoint_maxp(&ep
->desc
);
1860 psize
*= usb_endpoint_maxp_mult(&ep
->desc
);
1866 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1867 * is given by the endpoint.
1869 static int uvc_init_video_isoc(struct uvc_streaming
*stream
,
1870 struct usb_host_endpoint
*ep
, gfp_t gfp_flags
)
1873 struct uvc_urb
*uvc_urb
;
1874 unsigned int npackets
, i
;
1878 psize
= uvc_endpoint_max_bpi(stream
->dev
->udev
, ep
);
1879 size
= stream
->ctrl
.dwMaxVideoFrameSize
;
1881 npackets
= uvc_alloc_urb_buffers(stream
, size
, psize
, gfp_flags
);
1885 size
= npackets
* psize
;
1887 for_each_uvc_urb(uvc_urb
, stream
) {
1888 urb
= usb_alloc_urb(npackets
, gfp_flags
);
1890 uvc_video_stop_transfer(stream
, 1);
1894 urb
->dev
= stream
->dev
->udev
;
1895 urb
->context
= uvc_urb
;
1896 urb
->pipe
= usb_rcvisocpipe(stream
->dev
->udev
,
1897 ep
->desc
.bEndpointAddress
);
1898 urb
->transfer_flags
= URB_ISO_ASAP
| URB_NO_TRANSFER_DMA_MAP
;
1899 urb
->transfer_dma
= uvc_urb
->dma
;
1900 urb
->interval
= ep
->desc
.bInterval
;
1901 urb
->transfer_buffer
= uvc_urb
->buffer
;
1902 urb
->complete
= uvc_video_complete
;
1903 urb
->number_of_packets
= npackets
;
1904 urb
->transfer_buffer_length
= size
;
1906 for (i
= 0; i
< npackets
; ++i
) {
1907 urb
->iso_frame_desc
[i
].offset
= i
* psize
;
1908 urb
->iso_frame_desc
[i
].length
= psize
;
1918 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1919 * given by the endpoint.
1921 static int uvc_init_video_bulk(struct uvc_streaming
*stream
,
1922 struct usb_host_endpoint
*ep
, gfp_t gfp_flags
)
1925 struct uvc_urb
*uvc_urb
;
1926 unsigned int npackets
, pipe
;
1930 psize
= usb_endpoint_maxp(&ep
->desc
);
1931 size
= stream
->ctrl
.dwMaxPayloadTransferSize
;
1932 stream
->bulk
.max_payload_size
= size
;
1934 npackets
= uvc_alloc_urb_buffers(stream
, size
, psize
, gfp_flags
);
1938 size
= npackets
* psize
;
1940 if (usb_endpoint_dir_in(&ep
->desc
))
1941 pipe
= usb_rcvbulkpipe(stream
->dev
->udev
,
1942 ep
->desc
.bEndpointAddress
);
1944 pipe
= usb_sndbulkpipe(stream
->dev
->udev
,
1945 ep
->desc
.bEndpointAddress
);
1947 if (stream
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1950 for_each_uvc_urb(uvc_urb
, stream
) {
1951 urb
= usb_alloc_urb(0, gfp_flags
);
1953 uvc_video_stop_transfer(stream
, 1);
1957 usb_fill_bulk_urb(urb
, stream
->dev
->udev
, pipe
, uvc_urb
->buffer
,
1958 size
, uvc_video_complete
, uvc_urb
);
1959 urb
->transfer_flags
= URB_NO_TRANSFER_DMA_MAP
;
1960 urb
->transfer_dma
= uvc_urb
->dma
;
1969 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1971 static int uvc_video_start_transfer(struct uvc_streaming
*stream
,
1974 struct usb_interface
*intf
= stream
->intf
;
1975 struct usb_host_endpoint
*ep
;
1976 struct uvc_urb
*uvc_urb
;
1980 stream
->sequence
= -1;
1981 stream
->last_fid
= -1;
1982 stream
->bulk
.header_size
= 0;
1983 stream
->bulk
.skip_payload
= 0;
1984 stream
->bulk
.payload_size
= 0;
1986 uvc_video_stats_start(stream
);
1988 if (intf
->num_altsetting
> 1) {
1989 struct usb_host_endpoint
*best_ep
= NULL
;
1990 unsigned int best_psize
= UINT_MAX
;
1991 unsigned int bandwidth
;
1992 unsigned int altsetting
;
1993 int intfnum
= stream
->intfnum
;
1995 /* Isochronous endpoint, select the alternate setting. */
1996 bandwidth
= stream
->ctrl
.dwMaxPayloadTransferSize
;
1998 if (bandwidth
== 0) {
1999 uvc_dbg(stream
->dev
, VIDEO
,
2000 "Device requested null bandwidth, defaulting to lowest\n");
2003 uvc_dbg(stream
->dev
, VIDEO
,
2004 "Device requested %u B/frame bandwidth\n",
2008 for (i
= 0; i
< intf
->num_altsetting
; ++i
) {
2009 struct usb_host_interface
*alts
;
2012 alts
= &intf
->altsetting
[i
];
2013 ep
= uvc_find_endpoint(alts
,
2014 stream
->header
.bEndpointAddress
);
2018 /* Check if the bandwidth is high enough. */
2019 psize
= uvc_endpoint_max_bpi(stream
->dev
->udev
, ep
);
2020 if (psize
>= bandwidth
&& psize
< best_psize
) {
2021 altsetting
= alts
->desc
.bAlternateSetting
;
2027 if (best_ep
== NULL
) {
2028 uvc_dbg(stream
->dev
, VIDEO
,
2029 "No fast enough alt setting for requested bandwidth\n");
2033 uvc_dbg(stream
->dev
, VIDEO
,
2034 "Selecting alternate setting %u (%u B/frame bandwidth)\n",
2035 altsetting
, best_psize
);
2038 * Some devices, namely the Logitech C910 and B910, are unable
2039 * to recover from a USB autosuspend, unless the alternate
2040 * setting of the streaming interface is toggled.
2042 if (stream
->dev
->quirks
& UVC_QUIRK_WAKE_AUTOSUSPEND
) {
2043 usb_set_interface(stream
->dev
->udev
, intfnum
,
2045 usb_set_interface(stream
->dev
->udev
, intfnum
, 0);
2048 ret
= usb_set_interface(stream
->dev
->udev
, intfnum
, altsetting
);
2052 ret
= uvc_init_video_isoc(stream
, best_ep
, gfp_flags
);
2054 /* Bulk endpoint, proceed to URB initialization. */
2055 ep
= uvc_find_endpoint(&intf
->altsetting
[0],
2056 stream
->header
.bEndpointAddress
);
2060 /* Reject broken descriptors. */
2061 if (usb_endpoint_maxp(&ep
->desc
) == 0)
2064 ret
= uvc_init_video_bulk(stream
, ep
, gfp_flags
);
2070 /* Submit the URBs. */
2071 for_each_uvc_urb(uvc_urb
, stream
) {
2072 ret
= uvc_submit_urb(uvc_urb
, gfp_flags
);
2074 dev_err(&stream
->intf
->dev
,
2075 "Failed to submit URB %u (%d).\n",
2076 uvc_urb_index(uvc_urb
), ret
);
2077 uvc_video_stop_transfer(stream
, 1);
2083 * The Logitech C920 temporarily forgets that it should not be adjusting
2084 * Exposure Absolute during init so restore controls to stored values.
2086 if (stream
->dev
->quirks
& UVC_QUIRK_RESTORE_CTRLS_ON_INIT
)
2087 uvc_ctrl_restore_values(stream
->dev
);
2092 /* --------------------------------------------------------------------------
2097 * Stop streaming without disabling the video queue.
2099 * To let userspace applications resume without trouble, we must not touch the
2100 * video buffers in any way. We mark the device as frozen to make sure the URB
2101 * completion handler won't try to cancel the queue when we kill the URBs.
2103 int uvc_video_suspend(struct uvc_streaming
*stream
)
2105 if (!uvc_queue_streaming(&stream
->queue
))
2109 uvc_video_stop_transfer(stream
, 0);
2110 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
2115 * Reconfigure the video interface and restart streaming if it was enabled
2118 * If an error occurs, disable the video queue. This will wake all pending
2119 * buffers, making sure userspace applications are notified of the problem
2120 * instead of waiting forever.
2122 int uvc_video_resume(struct uvc_streaming
*stream
, int reset
)
2127 * If the bus has been reset on resume, set the alternate setting to 0.
2128 * This should be the default value, but some devices crash or otherwise
2129 * misbehave if they don't receive a SET_INTERFACE request before any
2130 * other video control request.
2133 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
2137 uvc_video_clock_reset(&stream
->clock
);
2139 if (!uvc_queue_streaming(&stream
->queue
))
2142 ret
= uvc_commit_video(stream
, &stream
->ctrl
);
2146 return uvc_video_start_transfer(stream
, GFP_NOIO
);
2149 /* ------------------------------------------------------------------------
2154 * Initialize the UVC video device by switching to alternate setting 0 and
2155 * retrieve the default format.
2157 * Some cameras (namely the Fuji Finepix) set the format and frame
2158 * indexes to zero. The UVC standard doesn't clearly make this a spec
2159 * violation, so try to silently fix the values if possible.
2161 * This function is called before registering the device with V4L.
2163 int uvc_video_init(struct uvc_streaming
*stream
)
2165 struct uvc_streaming_control
*probe
= &stream
->ctrl
;
2166 const struct uvc_format
*format
= NULL
;
2167 const struct uvc_frame
*frame
= NULL
;
2168 struct uvc_urb
*uvc_urb
;
2172 if (stream
->nformats
== 0) {
2173 dev_info(&stream
->intf
->dev
,
2174 "No supported video formats found.\n");
2178 atomic_set(&stream
->active
, 0);
2181 * Alternate setting 0 should be the default, yet the XBox Live Vision
2182 * Cam (and possibly other devices) crash or otherwise misbehave if
2183 * they don't receive a SET_INTERFACE request before any other video
2186 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
2189 * Set the streaming probe control with default streaming parameters
2190 * retrieved from the device. Webcams that don't support GET_DEF
2191 * requests on the probe control will just keep their current streaming
2194 if (uvc_get_video_ctrl(stream
, probe
, 1, UVC_GET_DEF
) == 0)
2195 uvc_set_video_ctrl(stream
, probe
, 1);
2198 * Initialize the streaming parameters with the probe control current
2199 * value. This makes sure SET_CUR requests on the streaming commit
2200 * control will always use values retrieved from a successful GET_CUR
2201 * request on the probe control, as required by the UVC specification.
2203 ret
= uvc_get_video_ctrl(stream
, probe
, 1, UVC_GET_CUR
);
2206 * Elgato Cam Link 4k can be in a stalled state if the resolution of
2207 * the external source has changed while the firmware initializes.
2208 * Once in this state, the device is useless until it receives a
2209 * USB reset. It has even been observed that the stalled state will
2210 * continue even after unplugging the device.
2212 if (ret
== -EPROTO
&&
2213 usb_match_one_id(stream
->dev
->intf
, &elgato_cam_link_4k
)) {
2214 dev_err(&stream
->intf
->dev
, "Elgato Cam Link 4K firmware crash detected\n");
2215 dev_err(&stream
->intf
->dev
, "Resetting the device, unplug and replug to recover\n");
2216 usb_reset_device(stream
->dev
->udev
);
2223 * Check if the default format descriptor exists. Use the first
2224 * available format otherwise.
2226 for (i
= stream
->nformats
; i
> 0; --i
) {
2227 format
= &stream
->formats
[i
-1];
2228 if (format
->index
== probe
->bFormatIndex
)
2232 if (format
->nframes
== 0) {
2233 dev_info(&stream
->intf
->dev
,
2234 "No frame descriptor found for the default format.\n");
2239 * Zero bFrameIndex might be correct. Stream-based formats (including
2240 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2241 * descriptor with bFrameIndex set to zero. If the default frame
2242 * descriptor is not found, use the first available frame.
2244 for (i
= format
->nframes
; i
> 0; --i
) {
2245 frame
= &format
->frames
[i
-1];
2246 if (frame
->bFrameIndex
== probe
->bFrameIndex
)
2250 probe
->bFormatIndex
= format
->index
;
2251 probe
->bFrameIndex
= frame
->bFrameIndex
;
2253 stream
->def_format
= format
;
2254 stream
->cur_format
= format
;
2255 stream
->cur_frame
= frame
;
2257 /* Select the video decoding function */
2258 if (stream
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
) {
2259 if (stream
->dev
->quirks
& UVC_QUIRK_BUILTIN_ISIGHT
)
2260 stream
->decode
= uvc_video_decode_isight
;
2261 else if (stream
->intf
->num_altsetting
> 1)
2262 stream
->decode
= uvc_video_decode_isoc
;
2264 stream
->decode
= uvc_video_decode_bulk
;
2266 if (stream
->intf
->num_altsetting
== 1)
2267 stream
->decode
= uvc_video_encode_bulk
;
2269 dev_info(&stream
->intf
->dev
,
2270 "Isochronous endpoints are not supported for video output devices.\n");
2275 /* Prepare asynchronous work items. */
2276 for_each_uvc_urb(uvc_urb
, stream
)
2277 INIT_WORK(&uvc_urb
->work
, uvc_video_copy_data_work
);
2282 int uvc_video_start_streaming(struct uvc_streaming
*stream
)
2286 ret
= uvc_video_clock_init(&stream
->clock
);
2290 /* Commit the streaming parameters. */
2291 ret
= uvc_commit_video(stream
, &stream
->ctrl
);
2295 ret
= uvc_video_start_transfer(stream
, GFP_KERNEL
);
2302 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
2304 uvc_video_clock_cleanup(&stream
->clock
);
2309 void uvc_video_stop_streaming(struct uvc_streaming
*stream
)
2311 uvc_video_stop_transfer(stream
, 1);
2313 if (stream
->intf
->num_altsetting
> 1) {
2314 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
2317 * UVC doesn't specify how to inform a bulk-based device
2318 * when the video stream is stopped. Windows sends a
2319 * CLEAR_FEATURE(HALT) request to the video streaming
2320 * bulk endpoint, mimic the same behaviour.
2322 unsigned int epnum
= stream
->header
.bEndpointAddress
2323 & USB_ENDPOINT_NUMBER_MASK
;
2324 unsigned int dir
= stream
->header
.bEndpointAddress
2325 & USB_ENDPOINT_DIR_MASK
;
2328 pipe
= usb_sndbulkpipe(stream
->dev
->udev
, epnum
) | dir
;
2329 usb_clear_halt(stream
->dev
->udev
, pipe
);
2332 uvc_video_clock_cleanup(&stream
->clock
);