1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/workqueue.h>
42 #include <asm/div64.h>
47 #define DRIVER_NAME "mmci-pl18x"
49 static void mmci_variant_init(struct mmci_host
*host
);
50 static void ux500_variant_init(struct mmci_host
*host
);
51 static void ux500v2_variant_init(struct mmci_host
*host
);
53 static unsigned int fmax
= 515633;
55 static struct variant_data variant_arm
= {
57 .fifohalfsize
= 8 * 4,
58 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
59 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
60 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
61 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
62 .datalength_bits
= 16,
63 .datactrl_blocksz
= 11,
64 .pwrreg_powerup
= MCI_PWR_UP
,
66 .reversed_irq_handling
= true,
68 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
69 .start_err
= MCI_STARTBITERR
,
71 .init
= mmci_variant_init
,
74 static struct variant_data variant_arm_extended_fifo
= {
76 .fifohalfsize
= 64 * 4,
77 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
78 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
79 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
80 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
81 .datalength_bits
= 16,
82 .datactrl_blocksz
= 11,
83 .pwrreg_powerup
= MCI_PWR_UP
,
86 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
87 .start_err
= MCI_STARTBITERR
,
89 .init
= mmci_variant_init
,
92 static struct variant_data variant_arm_extended_fifo_hwfc
= {
94 .fifohalfsize
= 64 * 4,
95 .clkreg_enable
= MCI_ARM_HWFCEN
,
96 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
97 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
98 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
99 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
100 .datalength_bits
= 16,
101 .datactrl_blocksz
= 11,
102 .pwrreg_powerup
= MCI_PWR_UP
,
105 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
106 .start_err
= MCI_STARTBITERR
,
107 .opendrain
= MCI_ROD
,
108 .init
= mmci_variant_init
,
111 static struct variant_data variant_u300
= {
113 .fifohalfsize
= 8 * 4,
114 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
115 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
116 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
117 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
118 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
119 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
120 .datalength_bits
= 16,
121 .datactrl_blocksz
= 11,
122 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
124 .pwrreg_powerup
= MCI_PWR_ON
,
126 .signal_direction
= true,
127 .pwrreg_clkgate
= true,
128 .pwrreg_nopower
= true,
130 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
131 .start_err
= MCI_STARTBITERR
,
133 .init
= mmci_variant_init
,
136 static struct variant_data variant_nomadik
= {
138 .fifohalfsize
= 8 * 4,
139 .clkreg
= MCI_CLK_ENABLE
,
140 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
141 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
142 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
143 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
144 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
145 .datalength_bits
= 24,
146 .datactrl_blocksz
= 11,
147 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
150 .pwrreg_powerup
= MCI_PWR_ON
,
152 .signal_direction
= true,
153 .pwrreg_clkgate
= true,
154 .pwrreg_nopower
= true,
156 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
157 .start_err
= MCI_STARTBITERR
,
159 .init
= mmci_variant_init
,
162 static struct variant_data variant_ux500
= {
164 .fifohalfsize
= 8 * 4,
165 .clkreg
= MCI_CLK_ENABLE
,
166 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
167 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
168 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
169 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
170 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
171 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
172 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
173 .datalength_bits
= 24,
174 .datactrl_blocksz
= 11,
175 .datactrl_any_blocksz
= true,
176 .dma_power_of_2
= true,
177 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
180 .pwrreg_powerup
= MCI_PWR_ON
,
182 .signal_direction
= true,
183 .pwrreg_clkgate
= true,
185 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
186 .busy_detect_flag
= MCI_ST_CARDBUSY
,
187 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
188 .pwrreg_nopower
= true,
190 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
191 .start_err
= MCI_STARTBITERR
,
193 .init
= ux500_variant_init
,
196 static struct variant_data variant_ux500v2
= {
198 .fifohalfsize
= 8 * 4,
199 .clkreg
= MCI_CLK_ENABLE
,
200 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
201 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
202 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
203 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
204 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
205 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
206 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
207 .datactrl_mask_ddrmode
= MCI_DPSM_ST_DDRMODE
,
208 .datalength_bits
= 24,
209 .datactrl_blocksz
= 11,
210 .datactrl_any_blocksz
= true,
211 .dma_power_of_2
= true,
212 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
215 .pwrreg_powerup
= MCI_PWR_ON
,
217 .signal_direction
= true,
218 .pwrreg_clkgate
= true,
220 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
221 .busy_detect_flag
= MCI_ST_CARDBUSY
,
222 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
223 .pwrreg_nopower
= true,
225 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
226 .start_err
= MCI_STARTBITERR
,
228 .init
= ux500v2_variant_init
,
231 static struct variant_data variant_stm32
= {
233 .fifohalfsize
= 8 * 4,
234 .clkreg
= MCI_CLK_ENABLE
,
235 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
236 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
237 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
238 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
239 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
240 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
241 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
242 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
243 .datalength_bits
= 24,
244 .datactrl_blocksz
= 11,
245 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
248 .pwrreg_powerup
= MCI_PWR_ON
,
250 .pwrreg_clkgate
= true,
251 .pwrreg_nopower
= true,
252 .dma_flow_controller
= true,
253 .init
= mmci_variant_init
,
256 static struct variant_data variant_stm32_sdmmc
= {
258 .fifohalfsize
= 8 * 4,
260 .stm32_clkdiv
= true,
261 .cmdreg_cpsm_enable
= MCI_CPSM_STM32_ENABLE
,
262 .cmdreg_lrsp_crc
= MCI_CPSM_STM32_LRSP_CRC
,
263 .cmdreg_srsp_crc
= MCI_CPSM_STM32_SRSP_CRC
,
264 .cmdreg_srsp
= MCI_CPSM_STM32_SRSP
,
265 .cmdreg_stop
= MCI_CPSM_STM32_CMDSTOP
,
266 .data_cmd_enable
= MCI_CPSM_STM32_CMDTRANS
,
267 .irq_pio_mask
= MCI_IRQ_PIO_STM32_MASK
,
268 .datactrl_first
= true,
269 .datacnt_useless
= true,
270 .datalength_bits
= 25,
271 .datactrl_blocksz
= 14,
272 .datactrl_any_blocksz
= true,
273 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
274 .stm32_idmabsize_mask
= GENMASK(12, 5),
275 .stm32_idmabsize_align
= BIT(5),
276 .supports_sdio_irq
= true,
277 .busy_timeout
= true,
279 .busy_detect_flag
= MCI_STM32_BUSYD0
,
280 .busy_detect_mask
= MCI_STM32_BUSYD0ENDMASK
,
281 .init
= sdmmc_variant_init
,
284 static struct variant_data variant_stm32_sdmmcv2
= {
286 .fifohalfsize
= 8 * 4,
288 .stm32_clkdiv
= true,
289 .cmdreg_cpsm_enable
= MCI_CPSM_STM32_ENABLE
,
290 .cmdreg_lrsp_crc
= MCI_CPSM_STM32_LRSP_CRC
,
291 .cmdreg_srsp_crc
= MCI_CPSM_STM32_SRSP_CRC
,
292 .cmdreg_srsp
= MCI_CPSM_STM32_SRSP
,
293 .cmdreg_stop
= MCI_CPSM_STM32_CMDSTOP
,
294 .data_cmd_enable
= MCI_CPSM_STM32_CMDTRANS
,
295 .irq_pio_mask
= MCI_IRQ_PIO_STM32_MASK
,
296 .datactrl_first
= true,
297 .datacnt_useless
= true,
298 .datalength_bits
= 25,
299 .datactrl_blocksz
= 14,
300 .datactrl_any_blocksz
= true,
301 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
302 .stm32_idmabsize_mask
= GENMASK(16, 5),
303 .stm32_idmabsize_align
= BIT(5),
304 .supports_sdio_irq
= true,
306 .busy_timeout
= true,
308 .busy_detect_flag
= MCI_STM32_BUSYD0
,
309 .busy_detect_mask
= MCI_STM32_BUSYD0ENDMASK
,
310 .init
= sdmmc_variant_init
,
313 static struct variant_data variant_stm32_sdmmcv3
= {
315 .fifohalfsize
= 128 * 4,
317 .stm32_clkdiv
= true,
318 .cmdreg_cpsm_enable
= MCI_CPSM_STM32_ENABLE
,
319 .cmdreg_lrsp_crc
= MCI_CPSM_STM32_LRSP_CRC
,
320 .cmdreg_srsp_crc
= MCI_CPSM_STM32_SRSP_CRC
,
321 .cmdreg_srsp
= MCI_CPSM_STM32_SRSP
,
322 .cmdreg_stop
= MCI_CPSM_STM32_CMDSTOP
,
323 .data_cmd_enable
= MCI_CPSM_STM32_CMDTRANS
,
324 .irq_pio_mask
= MCI_IRQ_PIO_STM32_MASK
,
325 .datactrl_first
= true,
326 .datacnt_useless
= true,
327 .datalength_bits
= 25,
328 .datactrl_blocksz
= 14,
329 .datactrl_any_blocksz
= true,
330 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
331 .stm32_idmabsize_mask
= GENMASK(16, 6),
332 .stm32_idmabsize_align
= BIT(6),
333 .supports_sdio_irq
= true,
335 .busy_timeout
= true,
337 .busy_detect_flag
= MCI_STM32_BUSYD0
,
338 .busy_detect_mask
= MCI_STM32_BUSYD0ENDMASK
,
339 .init
= sdmmc_variant_init
,
342 static struct variant_data variant_qcom
= {
344 .fifohalfsize
= 8 * 4,
345 .clkreg
= MCI_CLK_ENABLE
,
346 .clkreg_enable
= MCI_QCOM_CLK_FLOWENA
|
347 MCI_QCOM_CLK_SELECT_IN_FBCLK
,
348 .clkreg_8bit_bus_enable
= MCI_QCOM_CLK_WIDEBUS_8
,
349 .datactrl_mask_ddrmode
= MCI_QCOM_CLK_SELECT_IN_DDR_MODE
,
350 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
351 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
352 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
353 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
354 .data_cmd_enable
= MCI_CPSM_QCOM_DATCMD
,
355 .datalength_bits
= 24,
356 .datactrl_blocksz
= 11,
357 .datactrl_any_blocksz
= true,
358 .pwrreg_powerup
= MCI_PWR_UP
,
360 .explicit_mclk_control
= true,
364 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
365 .start_err
= MCI_STARTBITERR
,
366 .opendrain
= MCI_ROD
,
367 .init
= qcom_variant_init
,
370 /* Busy detection for the ST Micro variant */
371 static int mmci_card_busy(struct mmc_host
*mmc
)
373 struct mmci_host
*host
= mmc_priv(mmc
);
377 spin_lock_irqsave(&host
->lock
, flags
);
378 if (readl(host
->base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)
380 spin_unlock_irqrestore(&host
->lock
, flags
);
385 static void mmci_reg_delay(struct mmci_host
*host
)
388 * According to the spec, at least three feedback clock cycles
389 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
390 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
391 * Worst delay time during card init is at 100 kHz => 30 us.
392 * Worst delay time when up and running is at 25 MHz => 120 ns.
394 if (host
->cclk
< 25000000)
401 * This must be called with host->lock held
403 void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
405 if (host
->clk_reg
!= clk
) {
407 writel(clk
, host
->base
+ MMCICLOCK
);
412 * This must be called with host->lock held
414 void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
416 if (host
->pwr_reg
!= pwr
) {
418 writel(pwr
, host
->base
+ MMCIPOWER
);
423 * This must be called with host->lock held
425 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
427 /* Keep busy mode in DPSM and SDIO mask if enabled */
428 datactrl
|= host
->datactrl_reg
& (host
->variant
->busy_dpsm_flag
|
429 host
->variant
->datactrl_mask_sdio
);
431 if (host
->datactrl_reg
!= datactrl
) {
432 host
->datactrl_reg
= datactrl
;
433 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
438 * This must be called with host->lock held
440 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
442 struct variant_data
*variant
= host
->variant
;
443 u32 clk
= variant
->clkreg
;
445 /* Make sure cclk reflects the current calculated clock */
449 if (variant
->explicit_mclk_control
) {
450 host
->cclk
= host
->mclk
;
451 } else if (desired
>= host
->mclk
) {
452 clk
= MCI_CLK_BYPASS
;
453 if (variant
->st_clkdiv
)
454 clk
|= MCI_ST_UX500_NEG_EDGE
;
455 host
->cclk
= host
->mclk
;
456 } else if (variant
->st_clkdiv
) {
458 * DB8500 TRM says f = mclk / (clkdiv + 2)
459 * => clkdiv = (mclk / f) - 2
460 * Round the divider up so we don't exceed the max
463 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
466 host
->cclk
= host
->mclk
/ (clk
+ 2);
469 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
470 * => clkdiv = mclk / (2 * f) - 1
472 clk
= host
->mclk
/ (2 * desired
) - 1;
475 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
478 clk
|= variant
->clkreg_enable
;
479 clk
|= MCI_CLK_ENABLE
;
480 /* This hasn't proven to be worthwhile */
481 /* clk |= MCI_CLK_PWRSAVE; */
484 /* Set actual clock for debug */
485 host
->mmc
->actual_clock
= host
->cclk
;
487 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
489 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
490 clk
|= variant
->clkreg_8bit_bus_enable
;
492 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
493 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
494 clk
|= variant
->clkreg_neg_edge_enable
;
496 mmci_write_clkreg(host
, clk
);
499 static void mmci_dma_release(struct mmci_host
*host
)
501 if (host
->ops
&& host
->ops
->dma_release
)
502 host
->ops
->dma_release(host
);
504 host
->use_dma
= false;
507 static void mmci_dma_setup(struct mmci_host
*host
)
509 if (!host
->ops
|| !host
->ops
->dma_setup
)
512 if (host
->ops
->dma_setup(host
))
515 /* initialize pre request cookie */
516 host
->next_cookie
= 1;
518 host
->use_dma
= true;
522 * Validate mmc prerequisites
524 static int mmci_validate_data(struct mmci_host
*host
,
525 struct mmc_data
*data
)
527 struct variant_data
*variant
= host
->variant
;
531 if (!is_power_of_2(data
->blksz
) && !variant
->datactrl_any_blocksz
) {
532 dev_err(mmc_dev(host
->mmc
),
533 "unsupported block size (%d bytes)\n", data
->blksz
);
537 if (host
->ops
&& host
->ops
->validate_data
)
538 return host
->ops
->validate_data(host
, data
);
543 static int mmci_prep_data(struct mmci_host
*host
, struct mmc_data
*data
, bool next
)
547 if (!host
->ops
|| !host
->ops
->prep_data
)
550 err
= host
->ops
->prep_data(host
, data
, next
);
553 data
->host_cookie
= ++host
->next_cookie
< 0 ?
554 1 : host
->next_cookie
;
559 static void mmci_unprep_data(struct mmci_host
*host
, struct mmc_data
*data
,
562 if (host
->ops
&& host
->ops
->unprep_data
)
563 host
->ops
->unprep_data(host
, data
, err
);
565 data
->host_cookie
= 0;
568 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
570 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= host
->next_cookie
);
572 if (host
->ops
&& host
->ops
->get_next_data
)
573 host
->ops
->get_next_data(host
, data
);
576 static int mmci_dma_start(struct mmci_host
*host
, unsigned int datactrl
)
578 struct mmc_data
*data
= host
->data
;
584 ret
= mmci_prep_data(host
, data
, false);
588 if (!host
->ops
|| !host
->ops
->dma_start
)
591 /* Okay, go for it. */
592 dev_vdbg(mmc_dev(host
->mmc
),
593 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
594 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
596 ret
= host
->ops
->dma_start(host
, &datactrl
);
600 /* Trigger the DMA transfer */
601 mmci_write_datactrlreg(host
, datactrl
);
604 * Let the MMCI say when the data is ended and it's time
605 * to fire next DMA request. When that happens, MMCI will
606 * call mmci_data_end()
608 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
609 host
->base
+ MMCIMASK0
);
613 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
618 if (host
->ops
&& host
->ops
->dma_finalize
)
619 host
->ops
->dma_finalize(host
, data
);
622 static void mmci_dma_error(struct mmci_host
*host
)
627 if (host
->ops
&& host
->ops
->dma_error
)
628 host
->ops
->dma_error(host
);
632 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
634 writel(0, host
->base
+ MMCICOMMAND
);
641 mmc_request_done(host
->mmc
, mrq
);
644 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
646 void __iomem
*base
= host
->base
;
647 struct variant_data
*variant
= host
->variant
;
649 if (host
->singleirq
) {
650 unsigned int mask0
= readl(base
+ MMCIMASK0
);
652 mask0
&= ~variant
->irq_pio_mask
;
655 writel(mask0
, base
+ MMCIMASK0
);
658 if (variant
->mmcimask1
)
659 writel(mask
, base
+ MMCIMASK1
);
661 host
->mask1_reg
= mask
;
664 static void mmci_stop_data(struct mmci_host
*host
)
666 mmci_write_datactrlreg(host
, 0);
667 mmci_set_mask1(host
, 0);
671 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
673 unsigned int flags
= SG_MITER_ATOMIC
;
675 if (data
->flags
& MMC_DATA_READ
)
676 flags
|= SG_MITER_TO_SG
;
678 flags
|= SG_MITER_FROM_SG
;
680 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
683 static u32
mmci_get_dctrl_cfg(struct mmci_host
*host
)
685 return MCI_DPSM_ENABLE
| mmci_dctrl_blksz(host
);
688 static u32
ux500v2_get_dctrl_cfg(struct mmci_host
*host
)
690 return MCI_DPSM_ENABLE
| (host
->data
->blksz
<< 16);
693 static void ux500_busy_clear_mask_done(struct mmci_host
*host
)
695 void __iomem
*base
= host
->base
;
697 writel(host
->variant
->busy_detect_mask
, base
+ MMCICLEAR
);
698 writel(readl(base
+ MMCIMASK0
) &
699 ~host
->variant
->busy_detect_mask
, base
+ MMCIMASK0
);
700 host
->busy_state
= MMCI_BUSY_DONE
;
701 host
->busy_status
= 0;
705 * ux500_busy_complete() - this will wait until the busy status
706 * goes off, saving any status that occur in the meantime into
707 * host->busy_status until we know the card is not busy any more.
708 * The function returns true when the busy detection is ended
709 * and we should continue processing the command.
711 * The Ux500 typically fires two IRQs over a busy cycle like this:
713 * DAT0 busy +-----------------+
715 * DAT0 not busy ----+ +--------
721 static bool ux500_busy_complete(struct mmci_host
*host
, struct mmc_command
*cmd
,
722 u32 status
, u32 err_msk
)
724 void __iomem
*base
= host
->base
;
727 if (status
& err_msk
) {
728 /* Stop any ongoing busy detection if an error occurs */
729 ux500_busy_clear_mask_done(host
);
734 * The state transitions are encoded in a state machine crossing
735 * the edges in this switch statement.
737 switch (host
->busy_state
) {
740 * Before unmasking for the busy end IRQ, confirm that the
741 * command was sent successfully. To keep track of having a
742 * command in-progress, waiting for busy signaling to end,
743 * store the status in host->busy_status.
745 * Note that, the card may need a couple of clock cycles before
746 * it starts signaling busy on DAT0, hence re-read the
747 * MMCISTATUS register here, to allow the busy bit to be set.
751 * Save the first status register read to be sure to catch
752 * all bits that may be lost will retrying. If the command
753 * is still busy this will result in assigning 0 to
754 * host->busy_status, which is what it should be in IDLE.
756 host
->busy_status
= status
& (MCI_CMDSENT
| MCI_CMDRESPEND
);
758 status
= readl(base
+ MMCISTATUS
);
759 /* Keep accumulating status bits */
760 host
->busy_status
|= status
& (MCI_CMDSENT
| MCI_CMDRESPEND
);
761 if (status
& host
->variant
->busy_detect_flag
) {
762 writel(readl(base
+ MMCIMASK0
) |
763 host
->variant
->busy_detect_mask
,
765 host
->busy_state
= MMCI_BUSY_WAITING_FOR_START_IRQ
;
766 schedule_delayed_work(&host
->ux500_busy_timeout_work
,
767 msecs_to_jiffies(cmd
->busy_timeout
));
772 dev_dbg(mmc_dev(host
->mmc
),
773 "no busy signalling in time CMD%02x\n", cmd
->opcode
);
774 ux500_busy_clear_mask_done(host
);
778 * If there is a command in-progress that has been successfully
779 * sent, then bail out if busy status is set and wait for the
782 * Note that, the HW triggers an IRQ on both edges while
783 * monitoring DAT0 for busy completion, but there is only one
784 * status bit in MMCISTATUS for the busy state. Therefore
785 * both the start and the end interrupts needs to be cleared,
786 * one after the other. So, clear the busy start IRQ here.
788 case MMCI_BUSY_WAITING_FOR_START_IRQ
:
789 if (status
& host
->variant
->busy_detect_flag
) {
790 host
->busy_status
|= status
& (MCI_CMDSENT
| MCI_CMDRESPEND
);
791 writel(host
->variant
->busy_detect_mask
, base
+ MMCICLEAR
);
792 host
->busy_state
= MMCI_BUSY_WAITING_FOR_END_IRQ
;
794 dev_dbg(mmc_dev(host
->mmc
),
795 "lost busy status when waiting for busy start IRQ CMD%02x\n",
797 cancel_delayed_work(&host
->ux500_busy_timeout_work
);
798 ux500_busy_clear_mask_done(host
);
802 case MMCI_BUSY_WAITING_FOR_END_IRQ
:
803 if (!(status
& host
->variant
->busy_detect_flag
)) {
804 host
->busy_status
|= status
& (MCI_CMDSENT
| MCI_CMDRESPEND
);
805 writel(host
->variant
->busy_detect_mask
, base
+ MMCICLEAR
);
806 cancel_delayed_work(&host
->ux500_busy_timeout_work
);
807 ux500_busy_clear_mask_done(host
);
809 dev_dbg(mmc_dev(host
->mmc
),
810 "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
816 dev_dbg(mmc_dev(host
->mmc
), "fell through on state %d, CMD%02x\n",
817 host
->busy_state
, cmd
->opcode
);
822 return (host
->busy_state
== MMCI_BUSY_DONE
);
826 * All the DMA operation mode stuff goes inside this ifdef.
827 * This assumes that you have a generic DMA device interface,
828 * no custom DMA interfaces are supported.
830 #ifdef CONFIG_DMA_ENGINE
831 struct mmci_dmae_next
{
832 struct dma_async_tx_descriptor
*desc
;
833 struct dma_chan
*chan
;
836 struct mmci_dmae_priv
{
837 struct dma_chan
*cur
;
838 struct dma_chan
*rx_channel
;
839 struct dma_chan
*tx_channel
;
840 struct dma_async_tx_descriptor
*desc_current
;
841 struct mmci_dmae_next next_data
;
844 int mmci_dmae_setup(struct mmci_host
*host
)
846 const char *rxname
, *txname
;
847 struct mmci_dmae_priv
*dmae
;
849 dmae
= devm_kzalloc(mmc_dev(host
->mmc
), sizeof(*dmae
), GFP_KERNEL
);
853 host
->dma_priv
= dmae
;
855 dmae
->rx_channel
= dma_request_chan(mmc_dev(host
->mmc
), "rx");
856 if (IS_ERR(dmae
->rx_channel
)) {
857 int ret
= PTR_ERR(dmae
->rx_channel
);
858 dmae
->rx_channel
= NULL
;
862 dmae
->tx_channel
= dma_request_chan(mmc_dev(host
->mmc
), "tx");
863 if (IS_ERR(dmae
->tx_channel
)) {
864 if (PTR_ERR(dmae
->tx_channel
) == -EPROBE_DEFER
)
865 dev_warn(mmc_dev(host
->mmc
),
866 "Deferred probe for TX channel ignored\n");
867 dmae
->tx_channel
= NULL
;
871 * If only an RX channel is specified, the driver will
872 * attempt to use it bidirectionally, however if it
873 * is specified but cannot be located, DMA will be disabled.
875 if (dmae
->rx_channel
&& !dmae
->tx_channel
)
876 dmae
->tx_channel
= dmae
->rx_channel
;
878 if (dmae
->rx_channel
)
879 rxname
= dma_chan_name(dmae
->rx_channel
);
883 if (dmae
->tx_channel
)
884 txname
= dma_chan_name(dmae
->tx_channel
);
888 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
892 * Limit the maximum segment size in any SG entry according to
893 * the parameters of the DMA engine device.
895 if (dmae
->tx_channel
) {
896 struct device
*dev
= dmae
->tx_channel
->device
->dev
;
897 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
899 if (max_seg_size
< host
->mmc
->max_seg_size
)
900 host
->mmc
->max_seg_size
= max_seg_size
;
902 if (dmae
->rx_channel
) {
903 struct device
*dev
= dmae
->rx_channel
->device
->dev
;
904 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
906 if (max_seg_size
< host
->mmc
->max_seg_size
)
907 host
->mmc
->max_seg_size
= max_seg_size
;
910 if (!dmae
->tx_channel
|| !dmae
->rx_channel
) {
911 mmci_dmae_release(host
);
919 * This is used in or so inline it
920 * so it can be discarded.
922 void mmci_dmae_release(struct mmci_host
*host
)
924 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
926 if (dmae
->rx_channel
)
927 dma_release_channel(dmae
->rx_channel
);
928 if (dmae
->tx_channel
)
929 dma_release_channel(dmae
->tx_channel
);
930 dmae
->rx_channel
= dmae
->tx_channel
= NULL
;
933 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
935 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
936 struct dma_chan
*chan
;
938 if (data
->flags
& MMC_DATA_READ
)
939 chan
= dmae
->rx_channel
;
941 chan
= dmae
->tx_channel
;
943 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
,
944 mmc_get_dma_dir(data
));
947 void mmci_dmae_error(struct mmci_host
*host
)
949 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
951 if (!dma_inprogress(host
))
954 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
955 dmaengine_terminate_all(dmae
->cur
);
956 host
->dma_in_progress
= false;
958 dmae
->desc_current
= NULL
;
959 host
->data
->host_cookie
= 0;
961 mmci_dma_unmap(host
, host
->data
);
964 void mmci_dmae_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
966 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
970 if (!dma_inprogress(host
))
973 /* Wait up to 1ms for the DMA to complete */
975 status
= readl(host
->base
+ MMCISTATUS
);
976 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
982 * Check to see whether we still have some data left in the FIFO -
983 * this catches DMA controllers which are unable to monitor the
984 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
985 * contiguous buffers. On TX, we'll get a FIFO underrun error.
987 if (status
& MCI_RXDATAAVLBLMASK
) {
988 mmci_dma_error(host
);
991 } else if (!data
->host_cookie
) {
992 mmci_dma_unmap(host
, data
);
996 * Use of DMA with scatter-gather is impossible.
997 * Give up with DMA and switch back to PIO mode.
999 if (status
& MCI_RXDATAAVLBLMASK
) {
1000 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
1001 mmci_dma_release(host
);
1004 host
->dma_in_progress
= false;
1006 dmae
->desc_current
= NULL
;
1009 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1010 static int _mmci_dmae_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
1011 struct dma_chan
**dma_chan
,
1012 struct dma_async_tx_descriptor
**dma_desc
)
1014 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1015 struct variant_data
*variant
= host
->variant
;
1016 struct dma_slave_config conf
= {
1017 .src_addr
= host
->phybase
+ MMCIFIFO
,
1018 .dst_addr
= host
->phybase
+ MMCIFIFO
,
1019 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
1020 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
1021 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
1022 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
1023 .device_fc
= variant
->dma_flow_controller
,
1025 struct dma_chan
*chan
;
1026 struct dma_device
*device
;
1027 struct dma_async_tx_descriptor
*desc
;
1029 unsigned long flags
= DMA_CTRL_ACK
;
1031 if (data
->flags
& MMC_DATA_READ
) {
1032 conf
.direction
= DMA_DEV_TO_MEM
;
1033 chan
= dmae
->rx_channel
;
1035 conf
.direction
= DMA_MEM_TO_DEV
;
1036 chan
= dmae
->tx_channel
;
1039 /* If there's no DMA channel, fall back to PIO */
1043 /* If less than or equal to the fifo size, don't bother with DMA */
1044 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
1048 * This is necessary to get SDIO working on the Ux500. We do not yet
1049 * know if this is a bug in:
1050 * - The Ux500 DMA controller (DMA40)
1051 * - The MMCI DMA interface on the Ux500
1052 * some power of two blocks (such as 64 bytes) are sent regularly
1053 * during SDIO traffic and those work fine so for these we enable DMA
1056 if (host
->variant
->dma_power_of_2
&& !is_power_of_2(data
->blksz
))
1059 device
= chan
->device
;
1060 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
,
1061 mmc_get_dma_dir(data
));
1065 if (host
->variant
->qcom_dml
)
1066 flags
|= DMA_PREP_INTERRUPT
;
1068 dmaengine_slave_config(chan
, &conf
);
1069 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
1070 conf
.direction
, flags
);
1080 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
,
1081 mmc_get_dma_dir(data
));
1085 int mmci_dmae_prep_data(struct mmci_host
*host
,
1086 struct mmc_data
*data
,
1089 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1090 struct mmci_dmae_next
*nd
= &dmae
->next_data
;
1096 return _mmci_dmae_prep_data(host
, data
, &nd
->chan
, &nd
->desc
);
1097 /* Check if next job is already prepared. */
1098 if (dmae
->cur
&& dmae
->desc_current
)
1101 /* No job were prepared thus do it now. */
1102 return _mmci_dmae_prep_data(host
, data
, &dmae
->cur
,
1103 &dmae
->desc_current
);
1106 int mmci_dmae_start(struct mmci_host
*host
, unsigned int *datactrl
)
1108 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1111 host
->dma_in_progress
= true;
1112 ret
= dma_submit_error(dmaengine_submit(dmae
->desc_current
));
1114 host
->dma_in_progress
= false;
1117 dma_async_issue_pending(dmae
->cur
);
1119 *datactrl
|= MCI_DPSM_DMAENABLE
;
1124 void mmci_dmae_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
1126 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1127 struct mmci_dmae_next
*next
= &dmae
->next_data
;
1132 WARN_ON(!data
->host_cookie
&& (next
->desc
|| next
->chan
));
1134 dmae
->desc_current
= next
->desc
;
1135 dmae
->cur
= next
->chan
;
1140 void mmci_dmae_unprep_data(struct mmci_host
*host
,
1141 struct mmc_data
*data
, int err
)
1144 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1149 mmci_dma_unmap(host
, data
);
1152 struct mmci_dmae_next
*next
= &dmae
->next_data
;
1153 struct dma_chan
*chan
;
1154 if (data
->flags
& MMC_DATA_READ
)
1155 chan
= dmae
->rx_channel
;
1157 chan
= dmae
->tx_channel
;
1158 dmaengine_terminate_all(chan
);
1160 if (dmae
->desc_current
== next
->desc
)
1161 dmae
->desc_current
= NULL
;
1163 if (dmae
->cur
== next
->chan
) {
1164 host
->dma_in_progress
= false;
1173 static struct mmci_host_ops mmci_variant_ops
= {
1174 .prep_data
= mmci_dmae_prep_data
,
1175 .unprep_data
= mmci_dmae_unprep_data
,
1176 .get_datactrl_cfg
= mmci_get_dctrl_cfg
,
1177 .get_next_data
= mmci_dmae_get_next_data
,
1178 .dma_setup
= mmci_dmae_setup
,
1179 .dma_release
= mmci_dmae_release
,
1180 .dma_start
= mmci_dmae_start
,
1181 .dma_finalize
= mmci_dmae_finalize
,
1182 .dma_error
= mmci_dmae_error
,
1185 static struct mmci_host_ops mmci_variant_ops
= {
1186 .get_datactrl_cfg
= mmci_get_dctrl_cfg
,
1190 static void mmci_variant_init(struct mmci_host
*host
)
1192 host
->ops
= &mmci_variant_ops
;
1195 static void ux500_variant_init(struct mmci_host
*host
)
1197 host
->ops
= &mmci_variant_ops
;
1198 host
->ops
->busy_complete
= ux500_busy_complete
;
1201 static void ux500v2_variant_init(struct mmci_host
*host
)
1203 host
->ops
= &mmci_variant_ops
;
1204 host
->ops
->busy_complete
= ux500_busy_complete
;
1205 host
->ops
->get_datactrl_cfg
= ux500v2_get_dctrl_cfg
;
1208 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1210 struct mmci_host
*host
= mmc_priv(mmc
);
1211 struct mmc_data
*data
= mrq
->data
;
1216 WARN_ON(data
->host_cookie
);
1218 if (mmci_validate_data(host
, data
))
1221 mmci_prep_data(host
, data
, true);
1224 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
1227 struct mmci_host
*host
= mmc_priv(mmc
);
1228 struct mmc_data
*data
= mrq
->data
;
1230 if (!data
|| !data
->host_cookie
)
1233 mmci_unprep_data(host
, data
, err
);
1236 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
1238 struct variant_data
*variant
= host
->variant
;
1239 unsigned int datactrl
, timeout
, irqmask
;
1240 unsigned long long clks
;
1243 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
1244 data
->blksz
, data
->blocks
, data
->flags
);
1247 host
->size
= data
->blksz
* data
->blocks
;
1248 data
->bytes_xfered
= 0;
1250 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
1251 do_div(clks
, NSEC_PER_SEC
);
1253 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
1256 writel(timeout
, base
+ MMCIDATATIMER
);
1257 writel(host
->size
, base
+ MMCIDATALENGTH
);
1259 datactrl
= host
->ops
->get_datactrl_cfg(host
);
1260 datactrl
|= host
->data
->flags
& MMC_DATA_READ
? MCI_DPSM_DIRECTION
: 0;
1262 if (host
->mmc
->card
&& mmc_card_sdio(host
->mmc
->card
)) {
1265 datactrl
|= variant
->datactrl_mask_sdio
;
1268 * The ST Micro variant for SDIO small write transfers
1269 * needs to have clock H/W flow control disabled,
1270 * otherwise the transfer will not start. The threshold
1271 * depends on the rate of MCLK.
1273 if (variant
->st_sdio
&& data
->flags
& MMC_DATA_WRITE
&&
1275 (host
->size
<= 8 && host
->mclk
> 50000000)))
1276 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
1278 clk
= host
->clk_reg
| variant
->clkreg_enable
;
1280 mmci_write_clkreg(host
, clk
);
1283 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
1284 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
1285 datactrl
|= variant
->datactrl_mask_ddrmode
;
1288 * Attempt to use DMA operation mode, if this
1289 * should fail, fall back to PIO mode
1291 if (!mmci_dma_start(host
, datactrl
))
1294 /* IRQ mode, map the SG list for CPU reading/writing */
1295 mmci_init_sg(host
, data
);
1297 if (data
->flags
& MMC_DATA_READ
) {
1298 irqmask
= MCI_RXFIFOHALFFULLMASK
;
1301 * If we have less than the fifo 'half-full' threshold to
1302 * transfer, trigger a PIO interrupt as soon as any data
1305 if (host
->size
< variant
->fifohalfsize
)
1306 irqmask
|= MCI_RXDATAAVLBLMASK
;
1309 * We don't actually need to include "FIFO empty" here
1310 * since its implicit in "FIFO half empty".
1312 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
1315 mmci_write_datactrlreg(host
, datactrl
);
1316 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1317 mmci_set_mask1(host
, irqmask
);
1321 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
1323 void __iomem
*base
= host
->base
;
1324 bool busy_resp
= cmd
->flags
& MMC_RSP_BUSY
;
1325 unsigned long long clks
;
1327 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
1328 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
1330 if (readl(base
+ MMCICOMMAND
) & host
->variant
->cmdreg_cpsm_enable
) {
1331 writel(0, base
+ MMCICOMMAND
);
1332 mmci_reg_delay(host
);
1335 if (host
->variant
->cmdreg_stop
&&
1336 cmd
->opcode
== MMC_STOP_TRANSMISSION
)
1337 c
|= host
->variant
->cmdreg_stop
;
1339 c
|= cmd
->opcode
| host
->variant
->cmdreg_cpsm_enable
;
1340 if (cmd
->flags
& MMC_RSP_PRESENT
) {
1341 if (cmd
->flags
& MMC_RSP_136
)
1342 c
|= host
->variant
->cmdreg_lrsp_crc
;
1343 else if (cmd
->flags
& MMC_RSP_CRC
)
1344 c
|= host
->variant
->cmdreg_srsp_crc
;
1346 c
|= host
->variant
->cmdreg_srsp
;
1349 host
->busy_status
= 0;
1350 host
->busy_state
= MMCI_BUSY_DONE
;
1352 /* Assign a default timeout if the core does not provide one */
1353 if (busy_resp
&& !cmd
->busy_timeout
)
1354 cmd
->busy_timeout
= 10 * MSEC_PER_SEC
;
1356 if (busy_resp
&& host
->variant
->busy_timeout
) {
1357 if (cmd
->busy_timeout
> host
->mmc
->max_busy_timeout
)
1358 clks
= (unsigned long long)host
->mmc
->max_busy_timeout
* host
->cclk
;
1360 clks
= (unsigned long long)cmd
->busy_timeout
* host
->cclk
;
1362 do_div(clks
, MSEC_PER_SEC
);
1363 writel_relaxed(clks
, host
->base
+ MMCIDATATIMER
);
1366 if (host
->ops
->pre_sig_volt_switch
&& cmd
->opcode
== SD_SWITCH_VOLTAGE
)
1367 host
->ops
->pre_sig_volt_switch(host
);
1370 c
|= MCI_CPSM_INTERRUPT
;
1372 if (mmc_cmd_type(cmd
) == MMC_CMD_ADTC
)
1373 c
|= host
->variant
->data_cmd_enable
;
1377 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
1378 writel(c
, base
+ MMCICOMMAND
);
1381 static void mmci_stop_command(struct mmci_host
*host
)
1383 host
->stop_abort
.error
= 0;
1384 mmci_start_command(host
, &host
->stop_abort
, 0);
1388 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
1389 unsigned int status
)
1391 unsigned int status_err
;
1393 /* Make sure we have data to handle */
1397 /* First check for errors */
1398 status_err
= status
& (host
->variant
->start_err
|
1399 MCI_DATACRCFAIL
| MCI_DATATIMEOUT
|
1400 MCI_TXUNDERRUN
| MCI_RXOVERRUN
);
1403 u32 remain
, success
;
1405 /* Terminate the DMA transfer */
1406 mmci_dma_error(host
);
1409 * Calculate how far we are into the transfer. Note that
1410 * the data counter gives the number of bytes transferred
1411 * on the MMC bus, not on the host side. On reads, this
1412 * can be as much as a FIFO-worth of data ahead. This
1413 * matters for FIFO overruns only.
1415 if (!host
->variant
->datacnt_useless
) {
1416 remain
= readl(host
->base
+ MMCIDATACNT
);
1417 success
= data
->blksz
* data
->blocks
- remain
;
1422 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1423 status_err
, success
);
1424 if (status_err
& MCI_DATACRCFAIL
) {
1425 /* Last block was not successful */
1427 data
->error
= -EILSEQ
;
1428 } else if (status_err
& MCI_DATATIMEOUT
) {
1429 data
->error
= -ETIMEDOUT
;
1430 } else if (status_err
& MCI_STARTBITERR
) {
1431 data
->error
= -ECOMM
;
1432 } else if (status_err
& MCI_TXUNDERRUN
) {
1434 } else if (status_err
& MCI_RXOVERRUN
) {
1435 if (success
> host
->variant
->fifosize
)
1436 success
-= host
->variant
->fifosize
;
1441 data
->bytes_xfered
= round_down(success
, data
->blksz
);
1444 if (status
& MCI_DATABLOCKEND
)
1445 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
1447 if (status
& MCI_DATAEND
|| data
->error
) {
1448 mmci_dma_finalize(host
, data
);
1450 mmci_stop_data(host
);
1453 /* The error clause is handled above, success! */
1454 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
1457 if (host
->variant
->cmdreg_stop
&& data
->error
)
1458 mmci_stop_command(host
);
1460 mmci_request_end(host
, data
->mrq
);
1461 } else if (host
->mrq
->sbc
&& !data
->error
) {
1462 mmci_request_end(host
, data
->mrq
);
1464 mmci_start_command(host
, data
->stop
, 0);
1470 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
1471 unsigned int status
)
1473 u32 err_msk
= MCI_CMDCRCFAIL
| MCI_CMDTIMEOUT
;
1474 void __iomem
*base
= host
->base
;
1475 bool sbc
, busy_resp
;
1480 sbc
= (cmd
== host
->mrq
->sbc
);
1481 busy_resp
= !!(cmd
->flags
& MMC_RSP_BUSY
);
1484 * We need to be one of these interrupts to be considered worth
1485 * handling. Note that we tag on any latent IRQs postponed
1486 * due to waiting for busy status.
1488 if (host
->variant
->busy_timeout
&& busy_resp
)
1489 err_msk
|= MCI_DATATIMEOUT
;
1491 if (!((status
| host
->busy_status
) &
1492 (err_msk
| MCI_CMDSENT
| MCI_CMDRESPEND
)))
1495 /* Handle busy detection on DAT0 if the variant supports it. */
1496 if (busy_resp
&& host
->variant
->busy_detect
)
1497 if (!host
->ops
->busy_complete(host
, cmd
, status
, err_msk
))
1502 if (status
& MCI_CMDTIMEOUT
) {
1503 cmd
->error
= -ETIMEDOUT
;
1504 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
1505 cmd
->error
= -EILSEQ
;
1506 } else if (host
->variant
->busy_timeout
&& busy_resp
&&
1507 status
& MCI_DATATIMEOUT
) {
1508 cmd
->error
= -ETIMEDOUT
;
1510 * This will wake up mmci_irq_thread() which will issue
1511 * a hardware reset of the MMCI block.
1513 host
->irq_action
= IRQ_WAKE_THREAD
;
1515 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
1516 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
1517 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
1518 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
1521 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
1523 /* Terminate the DMA transfer */
1524 mmci_dma_error(host
);
1526 mmci_stop_data(host
);
1527 if (host
->variant
->cmdreg_stop
&& cmd
->error
) {
1528 mmci_stop_command(host
);
1533 if (host
->irq_action
!= IRQ_WAKE_THREAD
)
1534 mmci_request_end(host
, host
->mrq
);
1537 mmci_start_command(host
, host
->mrq
->cmd
, 0);
1538 } else if (!host
->variant
->datactrl_first
&&
1539 !(cmd
->data
->flags
& MMC_DATA_READ
)) {
1540 mmci_start_data(host
, cmd
->data
);
1544 static char *ux500_state_str(struct mmci_host
*host
)
1546 switch (host
->busy_state
) {
1547 case MMCI_BUSY_WAITING_FOR_START_IRQ
:
1548 return "waiting for start IRQ";
1549 case MMCI_BUSY_WAITING_FOR_END_IRQ
:
1550 return "waiting for end IRQ";
1551 case MMCI_BUSY_DONE
:
1552 return "not waiting for IRQs";
1559 * This busy timeout worker is used to "kick" the command IRQ if a
1560 * busy detect IRQ fails to appear in reasonable time. Only used on
1561 * variants with busy detection IRQ delivery.
1563 static void ux500_busy_timeout_work(struct work_struct
*work
)
1565 struct mmci_host
*host
= container_of(work
, struct mmci_host
,
1566 ux500_busy_timeout_work
.work
);
1567 unsigned long flags
;
1570 spin_lock_irqsave(&host
->lock
, flags
);
1573 /* If we are still busy let's tag on a cmd-timeout error. */
1574 status
= readl(host
->base
+ MMCISTATUS
);
1575 if (status
& host
->variant
->busy_detect_flag
) {
1576 status
|= MCI_CMDTIMEOUT
;
1577 dev_err(mmc_dev(host
->mmc
),
1578 "timeout in state %s still busy with CMD%02x\n",
1579 ux500_state_str(host
), host
->cmd
->opcode
);
1581 dev_err(mmc_dev(host
->mmc
),
1582 "timeout in state %s waiting for busy CMD%02x\n",
1583 ux500_state_str(host
), host
->cmd
->opcode
);
1586 mmci_cmd_irq(host
, host
->cmd
, status
);
1589 spin_unlock_irqrestore(&host
->lock
, flags
);
1592 static int mmci_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int remain
)
1594 return remain
- (readl(host
->base
+ MMCIFIFOCNT
) << 2);
1597 static int mmci_qcom_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int r
)
1600 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1601 * from the fifo range should be used
1603 if (status
& MCI_RXFIFOHALFFULL
)
1604 return host
->variant
->fifohalfsize
;
1605 else if (status
& MCI_RXDATAAVLBL
)
1611 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
1613 void __iomem
*base
= host
->base
;
1615 u32 status
= readl(host
->base
+ MMCISTATUS
);
1616 int host_remain
= host
->size
;
1619 int count
= host
->get_rx_fifocnt(host
, status
, host_remain
);
1628 * SDIO especially may want to send something that is
1629 * not divisible by 4 (as opposed to card sectors
1630 * etc). Therefore make sure to always read the last bytes
1631 * while only doing full 32-bit reads towards the FIFO.
1633 if (unlikely(count
& 0x3)) {
1635 unsigned char buf
[4];
1636 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
1637 memcpy(ptr
, buf
, count
);
1639 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1643 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1648 host_remain
-= count
;
1653 status
= readl(base
+ MMCISTATUS
);
1654 } while (status
& MCI_RXDATAAVLBL
);
1656 return ptr
- buffer
;
1659 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1661 struct variant_data
*variant
= host
->variant
;
1662 void __iomem
*base
= host
->base
;
1666 unsigned int count
, maxcnt
;
1668 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1669 variant
->fifosize
: variant
->fifohalfsize
;
1670 count
= min(remain
, maxcnt
);
1673 * SDIO especially may want to send something that is
1674 * not divisible by 4 (as opposed to card sectors
1675 * etc), and the FIFO only accept full 32-bit writes.
1676 * So compensate by adding +3 on the count, a single
1677 * byte become a 32bit write, 7 bytes will be two
1680 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1688 status
= readl(base
+ MMCISTATUS
);
1689 } while (status
& MCI_TXFIFOHALFEMPTY
);
1691 return ptr
- buffer
;
1695 * PIO data transfer IRQ handler.
1697 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1699 struct mmci_host
*host
= dev_id
;
1700 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1701 struct variant_data
*variant
= host
->variant
;
1702 void __iomem
*base
= host
->base
;
1705 status
= readl(base
+ MMCISTATUS
);
1707 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1710 unsigned int remain
, len
;
1714 * For write, we only need to test the half-empty flag
1715 * here - if the FIFO is completely empty, then by
1716 * definition it is more than half empty.
1718 * For read, check for data available.
1720 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1723 if (!sg_miter_next(sg_miter
))
1726 buffer
= sg_miter
->addr
;
1727 remain
= sg_miter
->length
;
1730 if (status
& MCI_RXACTIVE
)
1731 len
= mmci_pio_read(host
, buffer
, remain
);
1732 if (status
& MCI_TXACTIVE
)
1733 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1735 sg_miter
->consumed
= len
;
1743 status
= readl(base
+ MMCISTATUS
);
1746 sg_miter_stop(sg_miter
);
1749 * If we have less than the fifo 'half-full' threshold to transfer,
1750 * trigger a PIO interrupt as soon as any data is available.
1752 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1753 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1756 * If we run out of data, disable the data IRQs; this
1757 * prevents a race where the FIFO becomes empty before
1758 * the chip itself has disabled the data path, and
1759 * stops us racing with our data end IRQ.
1761 if (host
->size
== 0) {
1762 mmci_set_mask1(host
, 0);
1763 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1769 static void mmci_write_sdio_irq_bit(struct mmci_host
*host
, int enable
)
1771 void __iomem
*base
= host
->base
;
1772 u32 mask
= readl_relaxed(base
+ MMCIMASK0
);
1775 writel_relaxed(mask
| MCI_ST_SDIOITMASK
, base
+ MMCIMASK0
);
1777 writel_relaxed(mask
& ~MCI_ST_SDIOITMASK
, base
+ MMCIMASK0
);
1780 static void mmci_signal_sdio_irq(struct mmci_host
*host
, u32 status
)
1782 if (status
& MCI_ST_SDIOIT
) {
1783 mmci_write_sdio_irq_bit(host
, 0);
1784 sdio_signal_irq(host
->mmc
);
1789 * Handle completion of command and data transfers.
1791 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1793 struct mmci_host
*host
= dev_id
;
1796 spin_lock(&host
->lock
);
1797 host
->irq_action
= IRQ_HANDLED
;
1800 status
= readl(host
->base
+ MMCISTATUS
);
1804 if (host
->singleirq
) {
1805 if (status
& host
->mask1_reg
)
1806 mmci_pio_irq(irq
, dev_id
);
1808 status
&= ~host
->variant
->irq_pio_mask
;
1812 * Busy detection is managed by mmci_cmd_irq(), including to
1813 * clear the corresponding IRQ.
1815 status
&= readl(host
->base
+ MMCIMASK0
);
1816 if (host
->variant
->busy_detect
)
1817 writel(status
& ~host
->variant
->busy_detect_mask
,
1818 host
->base
+ MMCICLEAR
);
1820 writel(status
, host
->base
+ MMCICLEAR
);
1822 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1824 if (host
->variant
->reversed_irq_handling
) {
1825 mmci_data_irq(host
, host
->data
, status
);
1826 mmci_cmd_irq(host
, host
->cmd
, status
);
1828 mmci_cmd_irq(host
, host
->cmd
, status
);
1829 mmci_data_irq(host
, host
->data
, status
);
1832 if (host
->variant
->supports_sdio_irq
)
1833 mmci_signal_sdio_irq(host
, status
);
1836 * Busy detection has been handled by mmci_cmd_irq() above.
1837 * Clear the status bit to prevent polling in IRQ context.
1839 if (host
->variant
->busy_detect_flag
)
1840 status
&= ~host
->variant
->busy_detect_flag
;
1844 spin_unlock(&host
->lock
);
1846 return host
->irq_action
;
1850 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1852 * A reset is needed for some variants, where a datatimeout for a R1B request
1853 * causes the DPSM to stay busy (non-functional).
1855 static irqreturn_t
mmci_irq_thread(int irq
, void *dev_id
)
1857 struct mmci_host
*host
= dev_id
;
1858 unsigned long flags
;
1861 reset_control_assert(host
->rst
);
1863 reset_control_deassert(host
->rst
);
1866 spin_lock_irqsave(&host
->lock
, flags
);
1867 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1868 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1869 writel(MCI_IRQENABLE
| host
->variant
->start_err
,
1870 host
->base
+ MMCIMASK0
);
1872 host
->irq_action
= IRQ_HANDLED
;
1873 mmci_request_end(host
, host
->mrq
);
1874 spin_unlock_irqrestore(&host
->lock
, flags
);
1876 return host
->irq_action
;
1879 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1881 struct mmci_host
*host
= mmc_priv(mmc
);
1882 unsigned long flags
;
1884 WARN_ON(host
->mrq
!= NULL
);
1886 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1887 if (mrq
->cmd
->error
) {
1888 mmc_request_done(mmc
, mrq
);
1892 spin_lock_irqsave(&host
->lock
, flags
);
1897 mmci_get_next_data(host
, mrq
->data
);
1900 (host
->variant
->datactrl_first
|| mrq
->data
->flags
& MMC_DATA_READ
))
1901 mmci_start_data(host
, mrq
->data
);
1904 mmci_start_command(host
, mrq
->sbc
, 0);
1906 mmci_start_command(host
, mrq
->cmd
, 0);
1908 spin_unlock_irqrestore(&host
->lock
, flags
);
1911 static void mmci_set_max_busy_timeout(struct mmc_host
*mmc
)
1913 struct mmci_host
*host
= mmc_priv(mmc
);
1914 u32 max_busy_timeout
= 0;
1916 if (!host
->variant
->busy_detect
)
1919 if (host
->variant
->busy_timeout
&& mmc
->actual_clock
)
1920 max_busy_timeout
= U32_MAX
/ DIV_ROUND_UP(mmc
->actual_clock
,
1923 mmc
->max_busy_timeout
= max_busy_timeout
;
1926 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1928 struct mmci_host
*host
= mmc_priv(mmc
);
1929 struct variant_data
*variant
= host
->variant
;
1931 unsigned long flags
;
1934 switch (ios
->power_mode
) {
1936 if (!IS_ERR(mmc
->supply
.vmmc
))
1937 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1939 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1940 regulator_disable(mmc
->supply
.vqmmc
);
1941 host
->vqmmc_enabled
= false;
1946 if (!IS_ERR(mmc
->supply
.vmmc
))
1947 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1950 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1951 * and instead uses MCI_PWR_ON so apply whatever value is
1952 * configured in the variant data.
1954 pwr
|= variant
->pwrreg_powerup
;
1958 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1959 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1961 dev_err(mmc_dev(mmc
),
1962 "failed to enable vqmmc regulator\n");
1964 host
->vqmmc_enabled
= true;
1971 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1973 * The ST Micro variant has some additional bits
1974 * indicating signal direction for the signals in
1975 * the SD/MMC bus and feedback-clock usage.
1977 pwr
|= host
->pwr_reg_add
;
1979 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1980 pwr
&= ~MCI_ST_DATA74DIREN
;
1981 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1982 pwr
&= (~MCI_ST_DATA74DIREN
&
1983 ~MCI_ST_DATA31DIREN
&
1984 ~MCI_ST_DATA2DIREN
);
1987 if (variant
->opendrain
) {
1988 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1989 pwr
|= variant
->opendrain
;
1992 * If the variant cannot configure the pads by its own, then we
1993 * expect the pinctrl to be able to do that for us
1995 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1996 pinctrl_select_state(host
->pinctrl
, host
->pins_opendrain
);
1998 pinctrl_select_default_state(mmc_dev(mmc
));
2002 * If clock = 0 and the variant requires the MMCIPOWER to be used for
2003 * gating the clock, the MCI_PWR_ON bit is cleared.
2005 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
2008 if (host
->variant
->explicit_mclk_control
&&
2009 ios
->clock
!= host
->clock_cache
) {
2010 ret
= clk_set_rate(host
->clk
, ios
->clock
);
2012 dev_err(mmc_dev(host
->mmc
),
2013 "Error setting clock rate (%d)\n", ret
);
2015 host
->mclk
= clk_get_rate(host
->clk
);
2017 host
->clock_cache
= ios
->clock
;
2019 spin_lock_irqsave(&host
->lock
, flags
);
2021 if (host
->ops
&& host
->ops
->set_clkreg
)
2022 host
->ops
->set_clkreg(host
, ios
->clock
);
2024 mmci_set_clkreg(host
, ios
->clock
);
2026 mmci_set_max_busy_timeout(mmc
);
2028 if (host
->ops
&& host
->ops
->set_pwrreg
)
2029 host
->ops
->set_pwrreg(host
, pwr
);
2031 mmci_write_pwrreg(host
, pwr
);
2033 mmci_reg_delay(host
);
2035 spin_unlock_irqrestore(&host
->lock
, flags
);
2038 static int mmci_get_cd(struct mmc_host
*mmc
)
2040 struct mmci_host
*host
= mmc_priv(mmc
);
2041 struct mmci_platform_data
*plat
= host
->plat
;
2042 unsigned int status
= mmc_gpio_get_cd(mmc
);
2044 if (status
== -ENOSYS
) {
2046 return 1; /* Assume always present */
2048 status
= plat
->status(mmc_dev(host
->mmc
));
2053 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
2055 struct mmci_host
*host
= mmc_priv(mmc
);
2058 ret
= mmc_regulator_set_vqmmc(mmc
, ios
);
2060 if (!ret
&& host
->ops
&& host
->ops
->post_sig_volt_switch
)
2061 ret
= host
->ops
->post_sig_volt_switch(host
, ios
);
2066 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
2071 static void mmci_enable_sdio_irq(struct mmc_host
*mmc
, int enable
)
2073 struct mmci_host
*host
= mmc_priv(mmc
);
2074 unsigned long flags
;
2077 /* Keep the SDIO mode bit if SDIO irqs are enabled */
2078 pm_runtime_get_sync(mmc_dev(mmc
));
2080 spin_lock_irqsave(&host
->lock
, flags
);
2081 mmci_write_sdio_irq_bit(host
, enable
);
2082 spin_unlock_irqrestore(&host
->lock
, flags
);
2085 pm_runtime_mark_last_busy(mmc_dev(mmc
));
2086 pm_runtime_put_autosuspend(mmc_dev(mmc
));
2090 static void mmci_ack_sdio_irq(struct mmc_host
*mmc
)
2092 struct mmci_host
*host
= mmc_priv(mmc
);
2093 unsigned long flags
;
2095 spin_lock_irqsave(&host
->lock
, flags
);
2096 mmci_write_sdio_irq_bit(host
, 1);
2097 spin_unlock_irqrestore(&host
->lock
, flags
);
2100 static struct mmc_host_ops mmci_ops
= {
2101 .request
= mmci_request
,
2102 .pre_req
= mmci_pre_request
,
2103 .post_req
= mmci_post_request
,
2104 .set_ios
= mmci_set_ios
,
2105 .get_ro
= mmc_gpio_get_ro
,
2106 .get_cd
= mmci_get_cd
,
2107 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
2110 static void mmci_probe_level_translator(struct mmc_host
*mmc
)
2112 struct device
*dev
= mmc_dev(mmc
);
2113 struct mmci_host
*host
= mmc_priv(mmc
);
2114 struct gpio_desc
*cmd_gpio
;
2115 struct gpio_desc
*ck_gpio
;
2116 struct gpio_desc
*ckin_gpio
;
2120 * Assume the level translator is present if st,use-ckin is set.
2121 * This is to cater for DTs which do not implement this test.
2123 host
->clk_reg_add
|= MCI_STM32_CLK_SELCKIN
;
2125 cmd_gpio
= gpiod_get(dev
, "st,cmd", GPIOD_OUT_HIGH
);
2126 if (IS_ERR(cmd_gpio
))
2129 ck_gpio
= gpiod_get(dev
, "st,ck", GPIOD_OUT_HIGH
);
2130 if (IS_ERR(ck_gpio
))
2133 ckin_gpio
= gpiod_get(dev
, "st,ckin", GPIOD_IN
);
2134 if (IS_ERR(ckin_gpio
))
2137 /* All GPIOs are valid, test whether level translator works */
2140 clk_hi
= !!gpiod_get_value(ckin_gpio
);
2143 gpiod_set_value(ck_gpio
, 0);
2146 clk_lo
= !!gpiod_get_value(ckin_gpio
);
2149 gpiod_direction_input(cmd_gpio
);
2150 gpiod_direction_input(ck_gpio
);
2152 /* Level translator is present if CK signal is propagated to CKIN */
2153 if (!clk_hi
|| clk_lo
) {
2154 host
->clk_reg_add
&= ~MCI_STM32_CLK_SELCKIN
;
2156 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2159 gpiod_put(ckin_gpio
);
2164 gpiod_put(cmd_gpio
);
2166 pinctrl_select_default_state(dev
);
2169 static int mmci_of_parse(struct device_node
*np
, struct mmc_host
*mmc
)
2171 struct mmci_host
*host
= mmc_priv(mmc
);
2172 int ret
= mmc_of_parse(mmc
);
2177 if (of_property_read_bool(np
, "st,sig-dir-dat0"))
2178 host
->pwr_reg_add
|= MCI_ST_DATA0DIREN
;
2179 if (of_property_read_bool(np
, "st,sig-dir-dat2"))
2180 host
->pwr_reg_add
|= MCI_ST_DATA2DIREN
;
2181 if (of_property_read_bool(np
, "st,sig-dir-dat31"))
2182 host
->pwr_reg_add
|= MCI_ST_DATA31DIREN
;
2183 if (of_property_read_bool(np
, "st,sig-dir-dat74"))
2184 host
->pwr_reg_add
|= MCI_ST_DATA74DIREN
;
2185 if (of_property_read_bool(np
, "st,sig-dir-cmd"))
2186 host
->pwr_reg_add
|= MCI_ST_CMDDIREN
;
2187 if (of_property_read_bool(np
, "st,sig-pin-fbclk"))
2188 host
->pwr_reg_add
|= MCI_ST_FBCLKEN
;
2189 if (of_property_read_bool(np
, "st,sig-dir"))
2190 host
->pwr_reg_add
|= MCI_STM32_DIRPOL
;
2191 if (of_property_read_bool(np
, "st,neg-edge"))
2192 host
->clk_reg_add
|= MCI_STM32_CLK_NEGEDGE
;
2193 if (of_property_read_bool(np
, "st,use-ckin"))
2194 mmci_probe_level_translator(mmc
);
2196 if (of_property_read_bool(np
, "mmc-cap-mmc-highspeed"))
2197 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
;
2198 if (of_property_read_bool(np
, "mmc-cap-sd-highspeed"))
2199 mmc
->caps
|= MMC_CAP_SD_HIGHSPEED
;
2204 static int mmci_probe(struct amba_device
*dev
,
2205 const struct amba_id
*id
)
2207 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
2208 struct device_node
*np
= dev
->dev
.of_node
;
2209 struct variant_data
*variant
= id
->data
;
2210 struct mmci_host
*host
;
2211 struct mmc_host
*mmc
;
2214 /* Must have platform data or Device Tree. */
2216 dev_err(&dev
->dev
, "No plat data or DT found\n");
2221 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
2226 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
2230 host
= mmc_priv(mmc
);
2232 host
->mmc_ops
= &mmci_ops
;
2233 mmc
->ops
= &mmci_ops
;
2235 ret
= mmci_of_parse(np
, mmc
);
2240 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2241 * pins can be set accordingly using pinctrl
2243 if (!variant
->opendrain
) {
2244 host
->pinctrl
= devm_pinctrl_get(&dev
->dev
);
2245 if (IS_ERR(host
->pinctrl
)) {
2246 dev_err(&dev
->dev
, "failed to get pinctrl");
2247 ret
= PTR_ERR(host
->pinctrl
);
2251 host
->pins_opendrain
= pinctrl_lookup_state(host
->pinctrl
,
2252 MMCI_PINCTRL_STATE_OPENDRAIN
);
2253 if (IS_ERR(host
->pins_opendrain
)) {
2254 dev_err(mmc_dev(mmc
), "Can't select opendrain pins\n");
2255 ret
= PTR_ERR(host
->pins_opendrain
);
2260 host
->hw_designer
= amba_manf(dev
);
2261 host
->hw_revision
= amba_rev(dev
);
2262 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
2263 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
2265 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2266 if (IS_ERR(host
->clk
)) {
2267 ret
= PTR_ERR(host
->clk
);
2271 ret
= clk_prepare_enable(host
->clk
);
2275 if (variant
->qcom_fifo
)
2276 host
->get_rx_fifocnt
= mmci_qcom_get_rx_fifocnt
;
2278 host
->get_rx_fifocnt
= mmci_get_rx_fifocnt
;
2281 host
->variant
= variant
;
2282 host
->mclk
= clk_get_rate(host
->clk
);
2284 * According to the spec, mclk is max 100 MHz,
2285 * so we try to adjust the clock down to this,
2288 if (host
->mclk
> variant
->f_max
) {
2289 ret
= clk_set_rate(host
->clk
, variant
->f_max
);
2292 host
->mclk
= clk_get_rate(host
->clk
);
2293 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
2297 host
->phybase
= dev
->res
.start
;
2298 host
->base
= devm_ioremap_resource(&dev
->dev
, &dev
->res
);
2299 if (IS_ERR(host
->base
)) {
2300 ret
= PTR_ERR(host
->base
);
2305 variant
->init(host
);
2308 * The ARM and ST versions of the block have slightly different
2309 * clock divider equations which means that the minimum divider
2311 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2313 if (variant
->st_clkdiv
)
2314 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
2315 else if (variant
->stm32_clkdiv
)
2316 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 2046);
2317 else if (variant
->explicit_mclk_control
)
2318 mmc
->f_min
= clk_round_rate(host
->clk
, 100000);
2320 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
2322 * If no maximum operating frequency is supplied, fall back to use
2323 * the module parameter, which has a (low) default value in case it
2324 * is not specified. Either value must not exceed the clock rate into
2325 * the block, of course.
2328 mmc
->f_max
= variant
->explicit_mclk_control
?
2329 min(variant
->f_max
, mmc
->f_max
) :
2330 min(host
->mclk
, mmc
->f_max
);
2332 mmc
->f_max
= variant
->explicit_mclk_control
?
2333 fmax
: min(host
->mclk
, fmax
);
2336 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
2338 host
->rst
= devm_reset_control_get_optional_exclusive(&dev
->dev
, NULL
);
2339 if (IS_ERR(host
->rst
)) {
2340 ret
= PTR_ERR(host
->rst
);
2343 ret
= reset_control_deassert(host
->rst
);
2345 dev_err(mmc_dev(mmc
), "failed to de-assert reset\n");
2347 /* Get regulators and the supported OCR mask */
2348 ret
= mmc_regulator_get_supply(mmc
);
2352 if (!mmc
->ocr_avail
)
2353 mmc
->ocr_avail
= plat
->ocr_mask
;
2354 else if (plat
->ocr_mask
)
2355 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
2357 /* We support these capabilities. */
2358 mmc
->caps
|= MMC_CAP_CMD23
;
2361 * Enable busy detection.
2363 if (variant
->busy_detect
) {
2364 mmci_ops
.card_busy
= mmci_card_busy
;
2366 * Not all variants have a flag to enable busy detection
2367 * in the DPSM, but if they do, set it here.
2369 if (variant
->busy_dpsm_flag
)
2370 mmci_write_datactrlreg(host
,
2371 host
->variant
->busy_dpsm_flag
);
2372 mmc
->caps
|= MMC_CAP_WAIT_WHILE_BUSY
;
2375 if (variant
->supports_sdio_irq
&& host
->mmc
->caps
& MMC_CAP_SDIO_IRQ
) {
2376 mmc
->caps2
|= MMC_CAP2_SDIO_IRQ_NOTHREAD
;
2378 mmci_ops
.enable_sdio_irq
= mmci_enable_sdio_irq
;
2379 mmci_ops
.ack_sdio_irq
= mmci_ack_sdio_irq
;
2381 mmci_write_datactrlreg(host
,
2382 host
->variant
->datactrl_mask_sdio
);
2385 /* Variants with mandatory busy timeout in HW needs R1B responses. */
2386 if (variant
->busy_timeout
)
2387 mmc
->caps
|= MMC_CAP_NEED_RSP_BUSY
;
2389 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2390 host
->stop_abort
.opcode
= MMC_STOP_TRANSMISSION
;
2391 host
->stop_abort
.arg
= 0;
2392 host
->stop_abort
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
2394 /* We support these PM capabilities. */
2395 mmc
->pm_caps
|= MMC_PM_KEEP_POWER
;
2400 mmc
->max_segs
= NR_SG
;
2403 * Since only a certain number of bits are valid in the data length
2404 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2407 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
2410 * Set the maximum segment size. Since we aren't doing DMA
2411 * (yet) we are only limited by the data length register.
2413 mmc
->max_seg_size
= mmc
->max_req_size
;
2416 * Block size can be up to 2048 bytes, but must be a power of two.
2418 mmc
->max_blk_size
= 1 << variant
->datactrl_blocksz
;
2421 * Limit the number of blocks transferred so that we don't overflow
2422 * the maximum request size.
2424 mmc
->max_blk_count
= mmc
->max_req_size
>> variant
->datactrl_blocksz
;
2426 spin_lock_init(&host
->lock
);
2428 writel(0, host
->base
+ MMCIMASK0
);
2430 if (variant
->mmcimask1
)
2431 writel(0, host
->base
+ MMCIMASK1
);
2433 writel(0xfff, host
->base
+ MMCICLEAR
);
2437 * - not using DT but using a descriptor table, or
2438 * - using a table of descriptors ALONGSIDE DT, or
2439 * look up these descriptors named "cd" and "wp" right here, fail
2440 * silently of these do not exist
2443 ret
= mmc_gpiod_request_cd(mmc
, "cd", 0, false, 0);
2444 if (ret
== -EPROBE_DEFER
)
2447 ret
= mmc_gpiod_request_ro(mmc
, "wp", 0, 0);
2448 if (ret
== -EPROBE_DEFER
)
2452 ret
= devm_request_threaded_irq(&dev
->dev
, dev
->irq
[0], mmci_irq
,
2453 mmci_irq_thread
, IRQF_SHARED
,
2454 DRIVER_NAME
" (cmd)", host
);
2459 host
->singleirq
= true;
2461 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[1], mmci_pio_irq
,
2462 IRQF_SHARED
, DRIVER_NAME
" (pio)", host
);
2467 if (host
->variant
->busy_detect
)
2468 INIT_DELAYED_WORK(&host
->ux500_busy_timeout_work
,
2469 ux500_busy_timeout_work
);
2471 writel(MCI_IRQENABLE
| variant
->start_err
, host
->base
+ MMCIMASK0
);
2473 amba_set_drvdata(dev
, mmc
);
2475 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2476 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
2477 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
2478 dev
->irq
[0], dev
->irq
[1]);
2480 mmci_dma_setup(host
);
2482 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
2483 pm_runtime_use_autosuspend(&dev
->dev
);
2485 ret
= mmc_add_host(mmc
);
2489 pm_runtime_put(&dev
->dev
);
2493 clk_disable_unprepare(host
->clk
);
2499 static void mmci_remove(struct amba_device
*dev
)
2501 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
2504 struct mmci_host
*host
= mmc_priv(mmc
);
2505 struct variant_data
*variant
= host
->variant
;
2508 * Undo pm_runtime_put() in probe. We use the _sync
2509 * version here so that we can access the primecell.
2511 pm_runtime_get_sync(&dev
->dev
);
2513 mmc_remove_host(mmc
);
2515 writel(0, host
->base
+ MMCIMASK0
);
2517 if (variant
->mmcimask1
)
2518 writel(0, host
->base
+ MMCIMASK1
);
2520 writel(0, host
->base
+ MMCICOMMAND
);
2521 writel(0, host
->base
+ MMCIDATACTRL
);
2523 mmci_dma_release(host
);
2524 clk_disable_unprepare(host
->clk
);
2530 static void mmci_save(struct mmci_host
*host
)
2532 unsigned long flags
;
2534 spin_lock_irqsave(&host
->lock
, flags
);
2536 writel(0, host
->base
+ MMCIMASK0
);
2537 if (host
->variant
->pwrreg_nopower
) {
2538 writel(0, host
->base
+ MMCIDATACTRL
);
2539 writel(0, host
->base
+ MMCIPOWER
);
2540 writel(0, host
->base
+ MMCICLOCK
);
2542 mmci_reg_delay(host
);
2544 spin_unlock_irqrestore(&host
->lock
, flags
);
2547 static void mmci_restore(struct mmci_host
*host
)
2549 unsigned long flags
;
2551 spin_lock_irqsave(&host
->lock
, flags
);
2553 if (host
->variant
->pwrreg_nopower
) {
2554 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
2555 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
2556 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
2558 writel(MCI_IRQENABLE
| host
->variant
->start_err
,
2559 host
->base
+ MMCIMASK0
);
2560 mmci_reg_delay(host
);
2562 spin_unlock_irqrestore(&host
->lock
, flags
);
2565 static int mmci_runtime_suspend(struct device
*dev
)
2567 struct amba_device
*adev
= to_amba_device(dev
);
2568 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
2571 struct mmci_host
*host
= mmc_priv(mmc
);
2572 pinctrl_pm_select_sleep_state(dev
);
2574 clk_disable_unprepare(host
->clk
);
2580 static int mmci_runtime_resume(struct device
*dev
)
2582 struct amba_device
*adev
= to_amba_device(dev
);
2583 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
2586 struct mmci_host
*host
= mmc_priv(mmc
);
2587 clk_prepare_enable(host
->clk
);
2589 pinctrl_select_default_state(dev
);
2596 static const struct dev_pm_ops mmci_dev_pm_ops
= {
2597 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
2598 pm_runtime_force_resume
)
2599 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
2602 static const struct amba_id mmci_ids
[] = {
2606 .data
= &variant_arm
,
2611 .data
= &variant_arm_extended_fifo
,
2616 .data
= &variant_arm_extended_fifo_hwfc
,
2621 .data
= &variant_arm
,
2623 /* ST Micro variants */
2627 .data
= &variant_u300
,
2632 .data
= &variant_nomadik
,
2637 .data
= &variant_nomadik
,
2642 .data
= &variant_ux500
,
2647 .data
= &variant_ux500v2
,
2652 .data
= &variant_stm32
,
2657 .data
= &variant_stm32_sdmmc
,
2662 .data
= &variant_stm32_sdmmcv2
,
2667 .data
= &variant_stm32_sdmmcv2
,
2672 .data
= &variant_stm32_sdmmcv3
,
2674 /* Qualcomm variants */
2678 .data
= &variant_qcom
,
2683 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
2685 static struct amba_driver mmci_driver
= {
2687 .name
= DRIVER_NAME
,
2688 .pm
= &mmci_dev_pm_ops
,
2689 .probe_type
= PROBE_PREFER_ASYNCHRONOUS
,
2691 .probe
= mmci_probe
,
2692 .remove
= mmci_remove
,
2693 .id_table
= mmci_ids
,
2696 module_amba_driver(mmci_driver
);
2698 module_param(fmax
, uint
, 0444);
2700 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2701 MODULE_LICENSE("GPL");