printf: Remove unused 'bprintf'
[drm/drm-misc.git] / drivers / scsi / isci / request.c
blob355a0bc0828e749a45513309b942cfdae4878a7c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 #include <scsi/scsi_cmnd.h>
57 #include "isci.h"
58 #include "task.h"
59 #include "request.h"
60 #include "scu_completion_codes.h"
61 #include "scu_event_codes.h"
62 #include "sas.h"
64 #undef C
65 #define C(a) (#a)
66 const char *req_state_name(enum sci_base_request_states state)
68 static const char * const strings[] = REQUEST_STATES;
70 return strings[state];
72 #undef C
74 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
87 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
90 u32 offset;
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->tc_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->tc_dma + offset;
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
105 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
113 static void sci_request_build_sgl(struct isci_request *ireq)
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
147 prev_sg = scu_sg;
148 sg_idx++;
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
158 ireq->zero_scatter_daddr = dma_addr;
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
171 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
176 cmd_iu = &ireq->ssp.cmd;
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = 0;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
191 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
197 task_iu = &ireq->ssp.tmf;
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
211 * This method is will fill in the SCU Task Context for any type of SSP request.
213 static void scu_ssp_request_construct_task_context(
214 struct isci_request *ireq,
215 struct scu_task_context *task_context)
217 dma_addr_t dma_addr;
218 struct isci_remote_device *idev;
219 struct isci_port *iport;
221 idev = ireq->target_device;
222 iport = idev->owning_port;
224 /* Fill in the TC with its required data */
225 task_context->abort = 0;
226 task_context->priority = 0;
227 task_context->initiator_request = 1;
228 task_context->connection_rate = idev->connection_rate;
229 task_context->protocol_engine_index = ISCI_PEG;
230 task_context->logical_port_index = iport->physical_port_index;
231 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
232 task_context->valid = SCU_TASK_CONTEXT_VALID;
233 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
235 task_context->remote_node_index = idev->rnc.remote_node_index;
236 task_context->command_code = 0;
238 task_context->link_layer_control = 0;
239 task_context->do_not_dma_ssp_good_response = 1;
240 task_context->strict_ordering = 0;
241 task_context->control_frame = 0;
242 task_context->timeout_enable = 0;
243 task_context->block_guard_enable = 0;
245 task_context->address_modifier = 0;
247 /* task_context->type.ssp.tag = ireq->io_tag; */
248 task_context->task_phase = 0x01;
250 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
251 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
252 (iport->physical_port_index <<
253 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
254 ISCI_TAG_TCI(ireq->io_tag));
257 * Copy the physical address for the command buffer to the
258 * SCU Task Context
260 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
262 task_context->command_iu_upper = upper_32_bits(dma_addr);
263 task_context->command_iu_lower = lower_32_bits(dma_addr);
266 * Copy the physical address for the response buffer to the
267 * SCU Task Context
269 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
271 task_context->response_iu_upper = upper_32_bits(dma_addr);
272 task_context->response_iu_lower = lower_32_bits(dma_addr);
275 static u8 scu_bg_blk_size(struct scsi_device *sdp)
277 switch (sdp->sector_size) {
278 case 512:
279 return 0;
280 case 1024:
281 return 1;
282 case 4096:
283 return 3;
284 default:
285 return 0xff;
289 static u32 scu_dif_bytes(u32 len, u32 sector_size)
291 return (len >> ilog2(sector_size)) * 8;
294 static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
296 struct scu_task_context *tc = ireq->tc;
297 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
298 u8 blk_sz = scu_bg_blk_size(scmd->device);
300 tc->block_guard_enable = 1;
301 tc->blk_prot_en = 1;
302 tc->blk_sz = blk_sz;
303 /* DIF write insert */
304 tc->blk_prot_func = 0x2;
306 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
307 scmd->device->sector_size);
309 /* always init to 0, used by hw */
310 tc->interm_crc_val = 0;
312 tc->init_crc_seed = 0;
313 tc->app_tag_verify = 0;
314 tc->app_tag_gen = 0;
315 tc->ref_tag_seed_verify = 0;
317 /* always init to same as bg_blk_sz */
318 tc->UD_bytes_immed_val = scmd->device->sector_size;
320 tc->reserved_DC_0 = 0;
322 /* always init to 8 */
323 tc->DIF_bytes_immed_val = 8;
325 tc->reserved_DC_1 = 0;
326 tc->bgc_blk_sz = scmd->device->sector_size;
327 tc->reserved_E0_0 = 0;
328 tc->app_tag_gen_mask = 0;
330 /** setup block guard control **/
331 tc->bgctl = 0;
333 /* DIF write insert */
334 tc->bgctl_f.op = 0x2;
336 tc->app_tag_verify_mask = 0;
338 /* must init to 0 for hw */
339 tc->blk_guard_err = 0;
341 tc->reserved_E8_0 = 0;
343 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
344 tc->ref_tag_seed_gen = scsi_prot_ref_tag(scmd);
345 else if (type & SCSI_PROT_DIF_TYPE3)
346 tc->ref_tag_seed_gen = 0;
349 static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
351 struct scu_task_context *tc = ireq->tc;
352 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
353 u8 blk_sz = scu_bg_blk_size(scmd->device);
355 tc->block_guard_enable = 1;
356 tc->blk_prot_en = 1;
357 tc->blk_sz = blk_sz;
358 /* DIF read strip */
359 tc->blk_prot_func = 0x1;
361 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
362 scmd->device->sector_size);
364 /* always init to 0, used by hw */
365 tc->interm_crc_val = 0;
367 tc->init_crc_seed = 0;
368 tc->app_tag_verify = 0;
369 tc->app_tag_gen = 0;
371 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
372 tc->ref_tag_seed_verify = scsi_prot_ref_tag(scmd);
373 else if (type & SCSI_PROT_DIF_TYPE3)
374 tc->ref_tag_seed_verify = 0;
376 /* always init to same as bg_blk_sz */
377 tc->UD_bytes_immed_val = scmd->device->sector_size;
379 tc->reserved_DC_0 = 0;
381 /* always init to 8 */
382 tc->DIF_bytes_immed_val = 8;
384 tc->reserved_DC_1 = 0;
385 tc->bgc_blk_sz = scmd->device->sector_size;
386 tc->reserved_E0_0 = 0;
387 tc->app_tag_gen_mask = 0;
389 /** setup block guard control **/
390 tc->bgctl = 0;
392 /* DIF read strip */
393 tc->bgctl_f.crc_verify = 1;
394 tc->bgctl_f.op = 0x1;
395 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
396 tc->bgctl_f.ref_tag_chk = 1;
397 tc->bgctl_f.app_f_detect = 1;
398 } else if (type & SCSI_PROT_DIF_TYPE3)
399 tc->bgctl_f.app_ref_f_detect = 1;
401 tc->app_tag_verify_mask = 0;
403 /* must init to 0 for hw */
404 tc->blk_guard_err = 0;
406 tc->reserved_E8_0 = 0;
407 tc->ref_tag_seed_gen = 0;
411 * This method is will fill in the SCU Task Context for a SSP IO request.
413 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
414 enum dma_data_direction dir,
415 u32 len)
417 struct scu_task_context *task_context = ireq->tc;
418 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
419 struct scsi_cmnd *scmd = sas_task->uldd_task;
420 u8 prot_type = scsi_get_prot_type(scmd);
421 u8 prot_op = scsi_get_prot_op(scmd);
423 scu_ssp_request_construct_task_context(ireq, task_context);
425 task_context->ssp_command_iu_length =
426 sizeof(struct ssp_cmd_iu) / sizeof(u32);
427 task_context->type.ssp.frame_type = SSP_COMMAND;
429 switch (dir) {
430 case DMA_FROM_DEVICE:
431 case DMA_NONE:
432 default:
433 task_context->task_type = SCU_TASK_TYPE_IOREAD;
434 break;
435 case DMA_TO_DEVICE:
436 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
437 break;
440 task_context->transfer_length_bytes = len;
442 if (task_context->transfer_length_bytes > 0)
443 sci_request_build_sgl(ireq);
445 if (prot_type != SCSI_PROT_DIF_TYPE0) {
446 if (prot_op == SCSI_PROT_READ_STRIP)
447 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
448 else if (prot_op == SCSI_PROT_WRITE_INSERT)
449 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
454 * scu_ssp_task_request_construct_task_context() - This method will fill in
455 * the SCU Task Context for a SSP Task request. The following important
456 * settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH. This
457 * ensures that the task request is issued ahead of other task destined
458 * for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD. This
459 * simply indicates that a normal request type (i.e. non-raw frame) is
460 * being utilized to perform task management. -#control_frame == 1. This
461 * ensures that the proper endianness is set so that the bytes are
462 * transmitted in the right order for a task frame.
463 * @ireq: This parameter specifies the task request object being constructed.
465 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
467 struct scu_task_context *task_context = ireq->tc;
469 scu_ssp_request_construct_task_context(ireq, task_context);
471 task_context->control_frame = 1;
472 task_context->priority = SCU_TASK_PRIORITY_HIGH;
473 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
474 task_context->transfer_length_bytes = 0;
475 task_context->type.ssp.frame_type = SSP_TASK;
476 task_context->ssp_command_iu_length =
477 sizeof(struct ssp_task_iu) / sizeof(u32);
481 * scu_sata_request_construct_task_context()
482 * This method is will fill in the SCU Task Context for any type of SATA
483 * request. This is called from the various SATA constructors.
484 * @ireq: The general IO request object which is to be used in
485 * constructing the SCU task context.
486 * @task_context: The buffer pointer for the SCU task context which is being
487 * constructed.
489 * The general io request construction is complete. The buffer assignment for
490 * the command buffer is complete. none Revisit task context construction to
491 * determine what is common for SSP/SMP/STP task context structures.
493 static void scu_sata_request_construct_task_context(
494 struct isci_request *ireq,
495 struct scu_task_context *task_context)
497 dma_addr_t dma_addr;
498 struct isci_remote_device *idev;
499 struct isci_port *iport;
501 idev = ireq->target_device;
502 iport = idev->owning_port;
504 /* Fill in the TC with its required data */
505 task_context->abort = 0;
506 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
507 task_context->initiator_request = 1;
508 task_context->connection_rate = idev->connection_rate;
509 task_context->protocol_engine_index = ISCI_PEG;
510 task_context->logical_port_index = iport->physical_port_index;
511 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
512 task_context->valid = SCU_TASK_CONTEXT_VALID;
513 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
515 task_context->remote_node_index = idev->rnc.remote_node_index;
516 task_context->command_code = 0;
518 task_context->link_layer_control = 0;
519 task_context->do_not_dma_ssp_good_response = 1;
520 task_context->strict_ordering = 0;
521 task_context->control_frame = 0;
522 task_context->timeout_enable = 0;
523 task_context->block_guard_enable = 0;
525 task_context->address_modifier = 0;
526 task_context->task_phase = 0x01;
528 task_context->ssp_command_iu_length =
529 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
531 /* Set the first word of the H2D REG FIS */
532 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
534 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
535 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
536 (iport->physical_port_index <<
537 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
538 ISCI_TAG_TCI(ireq->io_tag));
540 * Copy the physical address for the command buffer to the SCU Task
541 * Context. We must offset the command buffer by 4 bytes because the
542 * first 4 bytes are transfered in the body of the TC.
544 dma_addr = sci_io_request_get_dma_addr(ireq,
545 ((char *) &ireq->stp.cmd) +
546 sizeof(u32));
548 task_context->command_iu_upper = upper_32_bits(dma_addr);
549 task_context->command_iu_lower = lower_32_bits(dma_addr);
551 /* SATA Requests do not have a response buffer */
552 task_context->response_iu_upper = 0;
553 task_context->response_iu_lower = 0;
556 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
558 struct scu_task_context *task_context = ireq->tc;
560 scu_sata_request_construct_task_context(ireq, task_context);
562 task_context->control_frame = 0;
563 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
564 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
565 task_context->type.stp.fis_type = FIS_REGH2D;
566 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
569 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
570 bool copy_rx_frame)
572 struct isci_stp_request *stp_req = &ireq->stp.req;
574 scu_stp_raw_request_construct_task_context(ireq);
576 stp_req->status = 0;
577 stp_req->sgl.offset = 0;
578 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
580 if (copy_rx_frame) {
581 sci_request_build_sgl(ireq);
582 stp_req->sgl.index = 0;
583 } else {
584 /* The user does not want the data copied to the SGL buffer location */
585 stp_req->sgl.index = -1;
588 return SCI_SUCCESS;
592 * sci_stp_optimized_request_construct()
593 * @ireq: This parameter specifies the request to be constructed as an
594 * optimized request.
595 * @optimized_task_type: This parameter specifies whether the request is to be
596 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597 * value of 1 indicates NCQ.
599 * This method will perform request construction common to all types of STP
600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601 * returns an indication as to whether the construction was successful.
603 static void sci_stp_optimized_request_construct(struct isci_request *ireq,
604 u8 optimized_task_type,
605 u32 len,
606 enum dma_data_direction dir)
608 struct scu_task_context *task_context = ireq->tc;
610 /* Build the STP task context structure */
611 scu_sata_request_construct_task_context(ireq, task_context);
613 /* Copy over the SGL elements */
614 sci_request_build_sgl(ireq);
616 /* Copy over the number of bytes to be transfered */
617 task_context->transfer_length_bytes = len;
619 if (dir == DMA_TO_DEVICE) {
621 * The difference between the DMA IN and DMA OUT request task type
622 * values are consistent with the difference between FPDMA READ
623 * and FPDMA WRITE values. Add the supplied task type parameter
624 * to this difference to set the task type properly for this
625 * DATA OUT (WRITE) case. */
626 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
627 - SCU_TASK_TYPE_DMA_IN);
628 } else {
630 * For the DATA IN (READ) case, simply save the supplied
631 * optimized task type. */
632 task_context->task_type = optimized_task_type;
636 static void sci_atapi_construct(struct isci_request *ireq)
638 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
639 struct sas_task *task;
641 /* To simplify the implementation we take advantage of the
642 * silicon's partial acceleration of atapi protocol (dma data
643 * transfers), so we promote all commands to dma protocol. This
644 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
646 h2d_fis->features |= ATAPI_PKT_DMA;
648 scu_stp_raw_request_construct_task_context(ireq);
650 task = isci_request_access_task(ireq);
651 if (task->data_dir == DMA_NONE)
652 task->total_xfer_len = 0;
654 /* clear the response so we can detect arrivial of an
655 * unsolicited h2d fis
657 ireq->stp.rsp.fis_type = 0;
660 static enum sci_status
661 sci_io_request_construct_sata(struct isci_request *ireq,
662 u32 len,
663 enum dma_data_direction dir,
664 bool copy)
666 enum sci_status status = SCI_SUCCESS;
667 struct sas_task *task = isci_request_access_task(ireq);
668 struct domain_device *dev = ireq->target_device->domain_dev;
670 /* check for management protocols */
671 if (test_bit(IREQ_TMF, &ireq->flags)) {
672 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
674 dev_err(&ireq->owning_controller->pdev->dev,
675 "%s: Request 0x%p received un-handled SAT "
676 "management protocol 0x%x.\n",
677 __func__, ireq, tmf->tmf_code);
679 return SCI_FAILURE;
682 if (!sas_protocol_ata(task->task_proto)) {
683 dev_err(&ireq->owning_controller->pdev->dev,
684 "%s: Non-ATA protocol in SATA path: 0x%x\n",
685 __func__,
686 task->task_proto);
687 return SCI_FAILURE;
691 /* ATAPI */
692 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
693 task->ata_task.fis.command == ATA_CMD_PACKET) {
694 sci_atapi_construct(ireq);
695 return SCI_SUCCESS;
698 /* non data */
699 if (task->data_dir == DMA_NONE) {
700 scu_stp_raw_request_construct_task_context(ireq);
701 return SCI_SUCCESS;
704 /* NCQ */
705 if (task->ata_task.use_ncq) {
706 sci_stp_optimized_request_construct(ireq,
707 SCU_TASK_TYPE_FPDMAQ_READ,
708 len, dir);
709 return SCI_SUCCESS;
712 /* DMA */
713 if (task->ata_task.dma_xfer) {
714 sci_stp_optimized_request_construct(ireq,
715 SCU_TASK_TYPE_DMA_IN,
716 len, dir);
717 return SCI_SUCCESS;
718 } else /* PIO */
719 return sci_stp_pio_request_construct(ireq, copy);
721 return status;
724 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
726 struct sas_task *task = isci_request_access_task(ireq);
728 ireq->protocol = SAS_PROTOCOL_SSP;
730 scu_ssp_io_request_construct_task_context(ireq,
731 task->data_dir,
732 task->total_xfer_len);
734 sci_io_request_build_ssp_command_iu(ireq);
736 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
738 return SCI_SUCCESS;
741 void sci_task_request_construct_ssp(struct isci_request *ireq)
743 /* Construct the SSP Task SCU Task Context */
744 scu_ssp_task_request_construct_task_context(ireq);
746 /* Fill in the SSP Task IU */
747 sci_task_request_build_ssp_task_iu(ireq);
749 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
752 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
754 enum sci_status status;
755 bool copy = false;
756 struct sas_task *task = isci_request_access_task(ireq);
758 ireq->protocol = SAS_PROTOCOL_STP;
760 copy = (task->data_dir == DMA_NONE) ? false : true;
762 status = sci_io_request_construct_sata(ireq,
763 task->total_xfer_len,
764 task->data_dir,
765 copy);
767 if (status == SCI_SUCCESS)
768 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
770 return status;
773 #define SCU_TASK_CONTEXT_SRAM 0x200000
775 * sci_req_tx_bytes - bytes transferred when reply underruns request
776 * @ireq: request that was terminated early
778 static u32 sci_req_tx_bytes(struct isci_request *ireq)
780 struct isci_host *ihost = ireq->owning_controller;
781 u32 ret_val = 0;
783 if (readl(&ihost->smu_registers->address_modifier) == 0) {
784 void __iomem *scu_reg_base = ihost->scu_registers;
786 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
787 * BAR1 is the scu_registers
788 * 0x20002C = 0x200000 + 0x2c
789 * = start of task context SRAM + offset of (type.ssp.data_offset)
790 * TCi is the io_tag of struct sci_request
792 ret_val = readl(scu_reg_base +
793 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
794 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
797 return ret_val;
800 enum sci_status sci_request_start(struct isci_request *ireq)
802 enum sci_base_request_states state;
803 struct scu_task_context *tc = ireq->tc;
804 struct isci_host *ihost = ireq->owning_controller;
806 state = ireq->sm.current_state_id;
807 if (state != SCI_REQ_CONSTRUCTED) {
808 dev_warn(&ihost->pdev->dev,
809 "%s: SCIC IO Request requested to start while in wrong "
810 "state %d\n", __func__, state);
811 return SCI_FAILURE_INVALID_STATE;
814 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
816 switch (tc->protocol_type) {
817 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
818 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
819 /* SSP/SMP Frame */
820 tc->type.ssp.tag = ireq->io_tag;
821 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
822 break;
824 case SCU_TASK_CONTEXT_PROTOCOL_STP:
825 /* STP/SATA Frame
826 * tc->type.stp.ncq_tag = ireq->ncq_tag;
828 break;
830 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
831 /* / @todo When do we set no protocol type? */
832 break;
834 default:
835 /* This should never happen since we build the IO
836 * requests */
837 break;
840 /* Add to the post_context the io tag value */
841 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
843 /* Everything is good go ahead and change state */
844 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
846 return SCI_SUCCESS;
849 enum sci_status
850 sci_io_request_terminate(struct isci_request *ireq)
852 enum sci_base_request_states state;
854 state = ireq->sm.current_state_id;
856 switch (state) {
857 case SCI_REQ_CONSTRUCTED:
858 /* Set to make sure no HW terminate posting is done: */
859 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
860 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
861 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
862 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
863 return SCI_SUCCESS;
864 case SCI_REQ_STARTED:
865 case SCI_REQ_TASK_WAIT_TC_COMP:
866 case SCI_REQ_SMP_WAIT_RESP:
867 case SCI_REQ_SMP_WAIT_TC_COMP:
868 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
869 case SCI_REQ_STP_UDMA_WAIT_D2H:
870 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
871 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
872 case SCI_REQ_STP_PIO_WAIT_H2D:
873 case SCI_REQ_STP_PIO_WAIT_FRAME:
874 case SCI_REQ_STP_PIO_DATA_IN:
875 case SCI_REQ_STP_PIO_DATA_OUT:
876 case SCI_REQ_ATAPI_WAIT_H2D:
877 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
878 case SCI_REQ_ATAPI_WAIT_D2H:
879 case SCI_REQ_ATAPI_WAIT_TC_COMP:
880 /* Fall through and change state to ABORTING... */
881 case SCI_REQ_TASK_WAIT_TC_RESP:
882 /* The task frame was already confirmed to have been
883 * sent by the SCU HW. Since the state machine is
884 * now only waiting for the task response itself,
885 * abort the request and complete it immediately
886 * and don't wait for the task response.
888 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
889 fallthrough; /* and handle like ABORTING */
890 case SCI_REQ_ABORTING:
891 if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
892 set_bit(IREQ_PENDING_ABORT, &ireq->flags);
893 else
894 clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
895 /* If the request is only waiting on the remote device
896 * suspension, return SUCCESS so the caller will wait too.
898 return SCI_SUCCESS;
899 case SCI_REQ_COMPLETED:
900 default:
901 dev_warn(&ireq->owning_controller->pdev->dev,
902 "%s: SCIC IO Request requested to abort while in wrong "
903 "state %d\n", __func__, ireq->sm.current_state_id);
904 break;
907 return SCI_FAILURE_INVALID_STATE;
910 enum sci_status sci_request_complete(struct isci_request *ireq)
912 enum sci_base_request_states state;
913 struct isci_host *ihost = ireq->owning_controller;
915 state = ireq->sm.current_state_id;
916 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
917 "isci: request completion from wrong state (%s)\n",
918 req_state_name(state)))
919 return SCI_FAILURE_INVALID_STATE;
921 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
922 sci_controller_release_frame(ihost,
923 ireq->saved_rx_frame_index);
925 /* XXX can we just stop the machine and remove the 'final' state? */
926 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
927 return SCI_SUCCESS;
930 enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
931 u32 event_code)
933 enum sci_base_request_states state;
934 struct isci_host *ihost = ireq->owning_controller;
936 state = ireq->sm.current_state_id;
938 if (state != SCI_REQ_STP_PIO_DATA_IN) {
939 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
940 __func__, event_code, req_state_name(state));
942 return SCI_FAILURE_INVALID_STATE;
945 switch (scu_get_event_specifier(event_code)) {
946 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
947 /* We are waiting for data and the SCU has R_ERR the data frame.
948 * Go back to waiting for the D2H Register FIS
950 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
951 return SCI_SUCCESS;
952 default:
953 dev_err(&ihost->pdev->dev,
954 "%s: pio request unexpected event %#x\n",
955 __func__, event_code);
957 /* TODO Should we fail the PIO request when we get an
958 * unexpected event?
960 return SCI_FAILURE;
965 * This function copies response data for requests returning response data
966 * instead of sense data.
967 * @sci_req: This parameter specifies the request object for which to copy
968 * the response data.
970 static void sci_io_request_copy_response(struct isci_request *ireq)
972 void *resp_buf;
973 u32 len;
974 struct ssp_response_iu *ssp_response;
975 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
977 ssp_response = &ireq->ssp.rsp;
979 resp_buf = &isci_tmf->resp.resp_iu;
981 len = min_t(u32,
982 SSP_RESP_IU_MAX_SIZE,
983 be32_to_cpu(ssp_response->response_data_len));
985 memcpy(resp_buf, ssp_response->resp_data, len);
988 static enum sci_status
989 request_started_state_tc_event(struct isci_request *ireq,
990 u32 completion_code)
992 struct ssp_response_iu *resp_iu;
993 u8 datapres;
995 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
996 * to determine SDMA status
998 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
999 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1000 ireq->scu_status = SCU_TASK_DONE_GOOD;
1001 ireq->sci_status = SCI_SUCCESS;
1002 break;
1003 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1004 /* There are times when the SCU hardware will return an early
1005 * response because the io request specified more data than is
1006 * returned by the target device (mode pages, inquiry data,
1007 * etc.). We must check the response stats to see if this is
1008 * truly a failed request or a good request that just got
1009 * completed early.
1011 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1012 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1014 sci_swab32_cpy(&ireq->ssp.rsp,
1015 &ireq->ssp.rsp,
1016 word_cnt);
1018 if (resp->status == 0) {
1019 ireq->scu_status = SCU_TASK_DONE_GOOD;
1020 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1021 } else {
1022 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1023 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1025 break;
1027 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1028 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1030 sci_swab32_cpy(&ireq->ssp.rsp,
1031 &ireq->ssp.rsp,
1032 word_cnt);
1034 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1035 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1036 break;
1039 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1040 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1041 * guaranteed to be received before this completion status is
1042 * posted?
1044 resp_iu = &ireq->ssp.rsp;
1045 datapres = resp_iu->datapres;
1047 if (datapres == SAS_DATAPRES_RESPONSE_DATA ||
1048 datapres == SAS_DATAPRES_SENSE_DATA) {
1049 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1050 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1051 } else {
1052 ireq->scu_status = SCU_TASK_DONE_GOOD;
1053 ireq->sci_status = SCI_SUCCESS;
1055 break;
1056 /* only stp device gets suspended. */
1057 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1058 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1059 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1060 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1061 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1068 if (ireq->protocol == SAS_PROTOCOL_STP) {
1069 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1070 SCU_COMPLETION_TL_STATUS_SHIFT;
1071 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1072 } else {
1073 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1074 SCU_COMPLETION_TL_STATUS_SHIFT;
1075 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1077 break;
1079 /* both stp/ssp device gets suspended */
1080 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1081 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1082 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1084 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1090 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1091 SCU_COMPLETION_TL_STATUS_SHIFT;
1092 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1093 break;
1095 /* neither ssp nor stp gets suspended. */
1096 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1097 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1099 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1111 default:
1112 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1113 SCU_COMPLETION_TL_STATUS_SHIFT;
1114 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1115 break;
1119 * TODO: This is probably wrong for ACK/NAK timeout conditions
1122 /* In all cases we will treat this as the completion of the IO req. */
1123 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1124 return SCI_SUCCESS;
1127 static enum sci_status
1128 request_aborting_state_tc_event(struct isci_request *ireq,
1129 u32 completion_code)
1131 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1132 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1133 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1134 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1135 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1136 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1137 break;
1139 default:
1140 /* Unless we get some strange error wait for the task abort to complete
1141 * TODO: Should there be a state change for this completion?
1143 break;
1146 return SCI_SUCCESS;
1149 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1150 u32 completion_code)
1152 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1153 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1154 ireq->scu_status = SCU_TASK_DONE_GOOD;
1155 ireq->sci_status = SCI_SUCCESS;
1156 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1157 break;
1158 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1159 /* Currently, the decision is to simply allow the task request
1160 * to timeout if the task IU wasn't received successfully.
1161 * There is a potential for receiving multiple task responses if
1162 * we decide to send the task IU again.
1164 dev_warn(&ireq->owning_controller->pdev->dev,
1165 "%s: TaskRequest:0x%p CompletionCode:%x - "
1166 "ACK/NAK timeout\n", __func__, ireq,
1167 completion_code);
1169 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1170 break;
1171 default:
1173 * All other completion status cause the IO to be complete.
1174 * If a NAK was received, then it is up to the user to retry
1175 * the request.
1177 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1178 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1179 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1180 break;
1183 return SCI_SUCCESS;
1186 static enum sci_status
1187 smp_request_await_response_tc_event(struct isci_request *ireq,
1188 u32 completion_code)
1190 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1191 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1192 /* In the AWAIT RESPONSE state, any TC completion is
1193 * unexpected. but if the TC has success status, we
1194 * complete the IO anyway.
1196 ireq->scu_status = SCU_TASK_DONE_GOOD;
1197 ireq->sci_status = SCI_SUCCESS;
1198 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1199 break;
1200 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1201 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1202 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1203 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1204 /* These status has been seen in a specific LSI
1205 * expander, which sometimes is not able to send smp
1206 * response within 2 ms. This causes our hardware break
1207 * the connection and set TC completion with one of
1208 * these SMP_XXX_XX_ERR status. For these type of error,
1209 * we ask ihost user to retry the request.
1211 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1212 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1213 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1214 break;
1215 default:
1216 /* All other completion status cause the IO to be complete. If a NAK
1217 * was received, then it is up to the user to retry the request
1219 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1220 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1221 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1222 break;
1225 return SCI_SUCCESS;
1228 static enum sci_status
1229 smp_request_await_tc_event(struct isci_request *ireq,
1230 u32 completion_code)
1232 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1233 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1234 ireq->scu_status = SCU_TASK_DONE_GOOD;
1235 ireq->sci_status = SCI_SUCCESS;
1236 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1237 break;
1238 default:
1239 /* All other completion status cause the IO to be
1240 * complete. If a NAK was received, then it is up to
1241 * the user to retry the request.
1243 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1244 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1245 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1246 break;
1249 return SCI_SUCCESS;
1252 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1254 struct scu_sgl_element *sgl;
1255 struct scu_sgl_element_pair *sgl_pair;
1256 struct isci_request *ireq = to_ireq(stp_req);
1257 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1259 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1260 if (!sgl_pair)
1261 sgl = NULL;
1262 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1263 if (sgl_pair->B.address_lower == 0 &&
1264 sgl_pair->B.address_upper == 0) {
1265 sgl = NULL;
1266 } else {
1267 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1268 sgl = &sgl_pair->B;
1270 } else {
1271 if (sgl_pair->next_pair_lower == 0 &&
1272 sgl_pair->next_pair_upper == 0) {
1273 sgl = NULL;
1274 } else {
1275 pio_sgl->index++;
1276 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1277 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1278 sgl = &sgl_pair->A;
1282 return sgl;
1285 static enum sci_status
1286 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1287 u32 completion_code)
1289 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1290 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1291 ireq->scu_status = SCU_TASK_DONE_GOOD;
1292 ireq->sci_status = SCI_SUCCESS;
1293 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1294 break;
1296 default:
1297 /* All other completion status cause the IO to be
1298 * complete. If a NAK was received, then it is up to
1299 * the user to retry the request.
1301 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1302 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1303 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1304 break;
1307 return SCI_SUCCESS;
1310 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1312 /* transmit DATA_FIS from (current sgl + offset) for input
1313 * parameter length. current sgl and offset is alreay stored in the IO request
1315 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1316 struct isci_request *ireq,
1317 u32 length)
1319 struct isci_stp_request *stp_req = &ireq->stp.req;
1320 struct scu_task_context *task_context = ireq->tc;
1321 struct scu_sgl_element_pair *sgl_pair;
1322 struct scu_sgl_element *current_sgl;
1324 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1325 * for the data from current_sgl+offset for the input length
1327 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1328 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1329 current_sgl = &sgl_pair->A;
1330 else
1331 current_sgl = &sgl_pair->B;
1333 /* update the TC */
1334 task_context->command_iu_upper = current_sgl->address_upper;
1335 task_context->command_iu_lower = current_sgl->address_lower;
1336 task_context->transfer_length_bytes = length;
1337 task_context->type.stp.fis_type = FIS_DATA;
1339 /* send the new TC out. */
1340 return sci_controller_continue_io(ireq);
1343 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1345 struct isci_stp_request *stp_req = &ireq->stp.req;
1346 struct scu_sgl_element_pair *sgl_pair;
1347 enum sci_status status = SCI_SUCCESS;
1348 struct scu_sgl_element *sgl;
1349 u32 offset;
1350 u32 len = 0;
1352 offset = stp_req->sgl.offset;
1353 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1354 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1355 return SCI_FAILURE;
1357 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1358 sgl = &sgl_pair->A;
1359 len = sgl_pair->A.length - offset;
1360 } else {
1361 sgl = &sgl_pair->B;
1362 len = sgl_pair->B.length - offset;
1365 if (stp_req->pio_len == 0)
1366 return SCI_SUCCESS;
1368 if (stp_req->pio_len >= len) {
1369 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1370 if (status != SCI_SUCCESS)
1371 return status;
1372 stp_req->pio_len -= len;
1374 /* update the current sgl, offset and save for future */
1375 sgl = pio_sgl_next(stp_req);
1376 offset = 0;
1377 } else if (stp_req->pio_len < len) {
1378 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1380 /* Sgl offset will be adjusted and saved for future */
1381 offset += stp_req->pio_len;
1382 sgl->address_lower += stp_req->pio_len;
1383 stp_req->pio_len = 0;
1386 stp_req->sgl.offset = offset;
1388 return status;
1392 * sci_stp_request_pio_data_in_copy_data_buffer()
1393 * @stp_req: The request that is used for the SGL processing.
1394 * @data_buf: The buffer of data to be copied.
1395 * @len: The length of the data transfer.
1397 * Copy the data from the buffer for the length specified to the IO request SGL
1398 * specified data region. enum sci_status
1400 static enum sci_status
1401 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1402 u8 *data_buf, u32 len)
1404 struct isci_request *ireq;
1405 u8 *src_addr;
1406 int copy_len;
1407 struct sas_task *task;
1408 struct scatterlist *sg;
1409 void *kaddr;
1410 int total_len = len;
1412 ireq = to_ireq(stp_req);
1413 task = isci_request_access_task(ireq);
1414 src_addr = data_buf;
1416 if (task->num_scatter > 0) {
1417 sg = task->scatter;
1419 while (total_len > 0) {
1420 struct page *page = sg_page(sg);
1422 copy_len = min_t(int, total_len, sg_dma_len(sg));
1423 kaddr = kmap_atomic(page);
1424 memcpy(kaddr + sg->offset, src_addr, copy_len);
1425 kunmap_atomic(kaddr);
1426 total_len -= copy_len;
1427 src_addr += copy_len;
1428 sg = sg_next(sg);
1430 } else {
1431 BUG_ON(task->total_xfer_len < total_len);
1432 memcpy(task->scatter, src_addr, total_len);
1435 return SCI_SUCCESS;
1439 * sci_stp_request_pio_data_in_copy_data()
1440 * @stp_req: The PIO DATA IN request that is to receive the data.
1441 * @data_buffer: The buffer to copy from.
1443 * Copy the data buffer to the io request data region. enum sci_status
1445 static enum sci_status sci_stp_request_pio_data_in_copy_data(
1446 struct isci_stp_request *stp_req,
1447 u8 *data_buffer)
1449 enum sci_status status;
1452 * If there is less than 1K remaining in the transfer request
1453 * copy just the data for the transfer */
1454 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1455 status = sci_stp_request_pio_data_in_copy_data_buffer(
1456 stp_req, data_buffer, stp_req->pio_len);
1458 if (status == SCI_SUCCESS)
1459 stp_req->pio_len = 0;
1460 } else {
1461 /* We are transfering the whole frame so copy */
1462 status = sci_stp_request_pio_data_in_copy_data_buffer(
1463 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1465 if (status == SCI_SUCCESS)
1466 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1469 return status;
1472 static enum sci_status
1473 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1474 u32 completion_code)
1476 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1477 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1478 ireq->scu_status = SCU_TASK_DONE_GOOD;
1479 ireq->sci_status = SCI_SUCCESS;
1480 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1481 break;
1483 default:
1484 /* All other completion status cause the IO to be
1485 * complete. If a NAK was received, then it is up to
1486 * the user to retry the request.
1488 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1489 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1490 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1491 break;
1494 return SCI_SUCCESS;
1497 static enum sci_status
1498 pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1499 u32 completion_code)
1501 enum sci_status status = SCI_SUCCESS;
1502 bool all_frames_transferred = false;
1503 struct isci_stp_request *stp_req = &ireq->stp.req;
1505 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1506 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1507 /* Transmit data */
1508 if (stp_req->pio_len != 0) {
1509 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1510 if (status == SCI_SUCCESS) {
1511 if (stp_req->pio_len == 0)
1512 all_frames_transferred = true;
1514 } else if (stp_req->pio_len == 0) {
1516 * this will happen if the all data is written at the
1517 * first time after the pio setup fis is received
1519 all_frames_transferred = true;
1522 /* all data transferred. */
1523 if (all_frames_transferred) {
1525 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1526 * and wait for PIO_SETUP fis / or D2H REg fis. */
1527 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1529 break;
1531 default:
1533 * All other completion status cause the IO to be complete.
1534 * If a NAK was received, then it is up to the user to retry
1535 * the request.
1537 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1538 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1539 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1540 break;
1543 return status;
1546 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1547 u32 frame_index)
1549 struct isci_host *ihost = ireq->owning_controller;
1550 struct dev_to_host_fis *frame_header;
1551 enum sci_status status;
1552 u32 *frame_buffer;
1554 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1555 frame_index,
1556 (void **)&frame_header);
1558 if ((status == SCI_SUCCESS) &&
1559 (frame_header->fis_type == FIS_REGD2H)) {
1560 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1561 frame_index,
1562 (void **)&frame_buffer);
1564 sci_controller_copy_sata_response(&ireq->stp.rsp,
1565 frame_header,
1566 frame_buffer);
1569 sci_controller_release_frame(ihost, frame_index);
1571 return status;
1574 static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1575 u32 frame_index)
1577 struct isci_host *ihost = ireq->owning_controller;
1578 enum sci_status status;
1579 struct dev_to_host_fis *frame_header;
1580 u32 *frame_buffer;
1582 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1583 frame_index,
1584 (void **)&frame_header);
1586 if (status != SCI_SUCCESS)
1587 return status;
1589 if (frame_header->fis_type != FIS_REGD2H) {
1590 dev_err(&ireq->isci_host->pdev->dev,
1591 "%s ERROR: invalid fis type 0x%X\n",
1592 __func__, frame_header->fis_type);
1593 return SCI_FAILURE;
1596 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1597 frame_index,
1598 (void **)&frame_buffer);
1600 sci_controller_copy_sata_response(&ireq->stp.rsp,
1601 (u32 *)frame_header,
1602 frame_buffer);
1604 /* Frame has been decoded return it to the controller */
1605 sci_controller_release_frame(ihost, frame_index);
1607 return status;
1610 static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1611 u32 frame_index)
1613 struct sas_task *task = isci_request_access_task(ireq);
1614 enum sci_status status;
1616 status = process_unsolicited_fis(ireq, frame_index);
1618 if (status == SCI_SUCCESS) {
1619 if (ireq->stp.rsp.status & ATA_ERR)
1620 status = SCI_FAILURE_IO_RESPONSE_VALID;
1621 } else {
1622 status = SCI_FAILURE_IO_RESPONSE_VALID;
1625 if (status != SCI_SUCCESS) {
1626 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1627 ireq->sci_status = status;
1628 } else {
1629 ireq->scu_status = SCU_TASK_DONE_GOOD;
1630 ireq->sci_status = SCI_SUCCESS;
1633 /* the d2h ufi is the end of non-data commands */
1634 if (task->data_dir == DMA_NONE)
1635 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1637 return status;
1640 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1642 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1643 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1644 struct scu_task_context *task_context = ireq->tc;
1646 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1647 * type. The TC for previous Packet fis was already there, we only need to
1648 * change the H2D fis content.
1650 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1651 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1652 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1653 task_context->type.stp.fis_type = FIS_DATA;
1654 task_context->transfer_length_bytes = dev->cdb_len;
1657 static void scu_atapi_construct_task_context(struct isci_request *ireq)
1659 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1660 struct sas_task *task = isci_request_access_task(ireq);
1661 struct scu_task_context *task_context = ireq->tc;
1662 int cdb_len = dev->cdb_len;
1664 /* reference: SSTL 1.13.4.2
1665 * task_type, sata_direction
1667 if (task->data_dir == DMA_TO_DEVICE) {
1668 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1669 task_context->sata_direction = 0;
1670 } else {
1671 /* todo: for NO_DATA command, we need to send out raw frame. */
1672 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1673 task_context->sata_direction = 1;
1676 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1677 task_context->type.stp.fis_type = FIS_DATA;
1679 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1680 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1681 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1683 /* task phase is set to TX_CMD */
1684 task_context->task_phase = 0x1;
1686 /* retry counter */
1687 task_context->stp_retry_count = 0;
1689 /* data transfer size. */
1690 task_context->transfer_length_bytes = task->total_xfer_len;
1692 /* setup sgl */
1693 sci_request_build_sgl(ireq);
1696 enum sci_status
1697 sci_io_request_frame_handler(struct isci_request *ireq,
1698 u32 frame_index)
1700 struct isci_host *ihost = ireq->owning_controller;
1701 struct isci_stp_request *stp_req = &ireq->stp.req;
1702 enum sci_base_request_states state;
1703 enum sci_status status;
1704 ssize_t word_cnt;
1706 state = ireq->sm.current_state_id;
1707 switch (state) {
1708 case SCI_REQ_STARTED: {
1709 struct ssp_frame_hdr ssp_hdr;
1710 void *frame_header;
1712 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1713 frame_index,
1714 &frame_header);
1716 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1717 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1719 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1720 struct ssp_response_iu *resp_iu;
1721 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1723 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1724 frame_index,
1725 (void **)&resp_iu);
1727 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1729 resp_iu = &ireq->ssp.rsp;
1731 if (resp_iu->datapres == SAS_DATAPRES_RESPONSE_DATA ||
1732 resp_iu->datapres == SAS_DATAPRES_SENSE_DATA) {
1733 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1734 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1735 } else {
1736 ireq->scu_status = SCU_TASK_DONE_GOOD;
1737 ireq->sci_status = SCI_SUCCESS;
1739 } else {
1740 /* not a response frame, why did it get forwarded? */
1741 dev_err(&ihost->pdev->dev,
1742 "%s: SCIC IO Request 0x%p received unexpected "
1743 "frame %d type 0x%02x\n", __func__, ireq,
1744 frame_index, ssp_hdr.frame_type);
1748 * In any case we are done with this frame buffer return it to
1749 * the controller
1751 sci_controller_release_frame(ihost, frame_index);
1753 return SCI_SUCCESS;
1756 case SCI_REQ_TASK_WAIT_TC_RESP:
1757 sci_io_request_copy_response(ireq);
1758 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1759 sci_controller_release_frame(ihost, frame_index);
1760 return SCI_SUCCESS;
1762 case SCI_REQ_SMP_WAIT_RESP: {
1763 struct sas_task *task = isci_request_access_task(ireq);
1764 struct scatterlist *sg = &task->smp_task.smp_resp;
1765 void *frame_header, *kaddr;
1766 u8 *rsp;
1768 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1769 frame_index,
1770 &frame_header);
1771 kaddr = kmap_atomic(sg_page(sg));
1772 rsp = kaddr + sg->offset;
1773 sci_swab32_cpy(rsp, frame_header, 1);
1775 if (rsp[0] == SMP_RESPONSE) {
1776 void *smp_resp;
1778 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1779 frame_index,
1780 &smp_resp);
1782 word_cnt = (sg->length/4)-1;
1783 if (word_cnt > 0)
1784 word_cnt = min_t(unsigned int, word_cnt,
1785 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1786 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1788 ireq->scu_status = SCU_TASK_DONE_GOOD;
1789 ireq->sci_status = SCI_SUCCESS;
1790 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1791 } else {
1793 * This was not a response frame why did it get
1794 * forwarded?
1796 dev_err(&ihost->pdev->dev,
1797 "%s: SCIC SMP Request 0x%p received unexpected "
1798 "frame %d type 0x%02x\n",
1799 __func__,
1800 ireq,
1801 frame_index,
1802 rsp[0]);
1804 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1805 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1806 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1808 kunmap_atomic(kaddr);
1810 sci_controller_release_frame(ihost, frame_index);
1812 return SCI_SUCCESS;
1815 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1816 return sci_stp_request_udma_general_frame_handler(ireq,
1817 frame_index);
1819 case SCI_REQ_STP_UDMA_WAIT_D2H:
1820 /* Use the general frame handler to copy the resposne data */
1821 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1823 if (status != SCI_SUCCESS)
1824 return status;
1826 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1827 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1828 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1829 return SCI_SUCCESS;
1831 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1832 struct dev_to_host_fis *frame_header;
1833 u32 *frame_buffer;
1835 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1836 frame_index,
1837 (void **)&frame_header);
1839 if (status != SCI_SUCCESS) {
1840 dev_err(&ihost->pdev->dev,
1841 "%s: SCIC IO Request 0x%p could not get frame "
1842 "header for frame index %d, status %x\n",
1843 __func__,
1844 stp_req,
1845 frame_index,
1846 status);
1848 return status;
1851 switch (frame_header->fis_type) {
1852 case FIS_REGD2H:
1853 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1854 frame_index,
1855 (void **)&frame_buffer);
1857 sci_controller_copy_sata_response(&ireq->stp.rsp,
1858 frame_header,
1859 frame_buffer);
1861 /* The command has completed with error */
1862 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1863 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1864 break;
1866 default:
1867 dev_warn(&ihost->pdev->dev,
1868 "%s: IO Request:0x%p Frame Id:%d protocol "
1869 "violation occurred\n", __func__, stp_req,
1870 frame_index);
1872 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1873 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1874 break;
1877 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1879 /* Frame has been decoded return it to the controller */
1880 sci_controller_release_frame(ihost, frame_index);
1882 return status;
1885 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1886 struct sas_task *task = isci_request_access_task(ireq);
1887 struct dev_to_host_fis *frame_header;
1888 u32 *frame_buffer;
1890 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1891 frame_index,
1892 (void **)&frame_header);
1894 if (status != SCI_SUCCESS) {
1895 dev_err(&ihost->pdev->dev,
1896 "%s: SCIC IO Request 0x%p could not get frame "
1897 "header for frame index %d, status %x\n",
1898 __func__, stp_req, frame_index, status);
1899 return status;
1902 switch (frame_header->fis_type) {
1903 case FIS_PIO_SETUP:
1904 /* Get from the frame buffer the PIO Setup Data */
1905 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1906 frame_index,
1907 (void **)&frame_buffer);
1909 /* Get the data from the PIO Setup The SCU Hardware
1910 * returns first word in the frame_header and the rest
1911 * of the data is in the frame buffer so we need to
1912 * back up one dword
1915 /* transfer_count: first 16bits in the 4th dword */
1916 stp_req->pio_len = frame_buffer[3] & 0xffff;
1918 /* status: 4th byte in the 3rd dword */
1919 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1921 sci_controller_copy_sata_response(&ireq->stp.rsp,
1922 frame_header,
1923 frame_buffer);
1925 ireq->stp.rsp.status = stp_req->status;
1927 /* The next state is dependent on whether the
1928 * request was PIO Data-in or Data out
1930 if (task->data_dir == DMA_FROM_DEVICE) {
1931 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1932 } else if (task->data_dir == DMA_TO_DEVICE) {
1933 /* Transmit data */
1934 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1935 if (status != SCI_SUCCESS)
1936 break;
1937 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1939 break;
1941 case FIS_SETDEVBITS:
1942 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1943 break;
1945 case FIS_REGD2H:
1946 if (frame_header->status & ATA_BUSY) {
1948 * Now why is the drive sending a D2H Register
1949 * FIS when it is still busy? Do nothing since
1950 * we are still in the right state.
1952 dev_dbg(&ihost->pdev->dev,
1953 "%s: SCIC PIO Request 0x%p received "
1954 "D2H Register FIS with BSY status "
1955 "0x%x\n",
1956 __func__,
1957 stp_req,
1958 frame_header->status);
1959 break;
1962 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1963 frame_index,
1964 (void **)&frame_buffer);
1966 sci_controller_copy_sata_response(&ireq->stp.rsp,
1967 frame_header,
1968 frame_buffer);
1970 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1971 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1972 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1973 break;
1975 default:
1976 /* FIXME: what do we do here? */
1977 break;
1980 /* Frame is decoded return it to the controller */
1981 sci_controller_release_frame(ihost, frame_index);
1983 return status;
1986 case SCI_REQ_STP_PIO_DATA_IN: {
1987 struct dev_to_host_fis *frame_header;
1988 struct sata_fis_data *frame_buffer;
1990 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1991 frame_index,
1992 (void **)&frame_header);
1994 if (status != SCI_SUCCESS) {
1995 dev_err(&ihost->pdev->dev,
1996 "%s: SCIC IO Request 0x%p could not get frame "
1997 "header for frame index %d, status %x\n",
1998 __func__,
1999 stp_req,
2000 frame_index,
2001 status);
2002 return status;
2005 if (frame_header->fis_type != FIS_DATA) {
2006 dev_err(&ihost->pdev->dev,
2007 "%s: SCIC PIO Request 0x%p received frame %d "
2008 "with fis type 0x%02x when expecting a data "
2009 "fis.\n",
2010 __func__,
2011 stp_req,
2012 frame_index,
2013 frame_header->fis_type);
2015 ireq->scu_status = SCU_TASK_DONE_GOOD;
2016 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2017 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2019 /* Frame is decoded return it to the controller */
2020 sci_controller_release_frame(ihost, frame_index);
2021 return status;
2024 if (stp_req->sgl.index < 0) {
2025 ireq->saved_rx_frame_index = frame_index;
2026 stp_req->pio_len = 0;
2027 } else {
2028 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2029 frame_index,
2030 (void **)&frame_buffer);
2032 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2033 (u8 *)frame_buffer);
2035 /* Frame is decoded return it to the controller */
2036 sci_controller_release_frame(ihost, frame_index);
2039 /* Check for the end of the transfer, are there more
2040 * bytes remaining for this data transfer
2042 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2043 return status;
2045 if ((stp_req->status & ATA_BUSY) == 0) {
2046 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2047 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2048 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2049 } else {
2050 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2052 return status;
2055 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2056 struct sas_task *task = isci_request_access_task(ireq);
2058 sci_controller_release_frame(ihost, frame_index);
2059 ireq->target_device->working_request = ireq;
2060 if (task->data_dir == DMA_NONE) {
2061 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2062 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2063 } else {
2064 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2065 scu_atapi_construct_task_context(ireq);
2068 sci_controller_continue_io(ireq);
2069 return SCI_SUCCESS;
2071 case SCI_REQ_ATAPI_WAIT_D2H:
2072 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2073 case SCI_REQ_ABORTING:
2075 * TODO: Is it even possible to get an unsolicited frame in the
2076 * aborting state?
2078 sci_controller_release_frame(ihost, frame_index);
2079 return SCI_SUCCESS;
2081 default:
2082 dev_warn(&ihost->pdev->dev,
2083 "%s: SCIC IO Request given unexpected frame %x while "
2084 "in state %d\n",
2085 __func__,
2086 frame_index,
2087 state);
2089 sci_controller_release_frame(ihost, frame_index);
2090 return SCI_FAILURE_INVALID_STATE;
2094 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2095 u32 completion_code)
2097 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2099 ireq->scu_status = SCU_TASK_DONE_GOOD;
2100 ireq->sci_status = SCI_SUCCESS;
2101 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2102 break;
2103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2105 /* We must check ther response buffer to see if the D2H
2106 * Register FIS was received before we got the TC
2107 * completion.
2109 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2110 sci_remote_device_suspend(ireq->target_device,
2111 SCI_SW_SUSPEND_NORMAL);
2113 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2114 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2115 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2116 } else {
2117 /* If we have an error completion status for the
2118 * TC then we can expect a D2H register FIS from
2119 * the device so we must change state to wait
2120 * for it
2122 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2124 break;
2126 /* TODO Check to see if any of these completion status need to
2127 * wait for the device to host register fis.
2129 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2130 * - this comes only for B0
2132 default:
2133 /* All other completion status cause the IO to be complete. */
2134 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2135 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2136 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2137 break;
2140 return SCI_SUCCESS;
2143 static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2144 enum sci_base_request_states next)
2146 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2147 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2148 ireq->scu_status = SCU_TASK_DONE_GOOD;
2149 ireq->sci_status = SCI_SUCCESS;
2150 sci_change_state(&ireq->sm, next);
2151 break;
2152 default:
2153 /* All other completion status cause the IO to be complete.
2154 * If a NAK was received, then it is up to the user to retry
2155 * the request.
2157 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2158 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2160 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2161 break;
2164 return SCI_SUCCESS;
2167 static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2168 u32 completion_code)
2170 struct isci_remote_device *idev = ireq->target_device;
2171 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2172 enum sci_status status = SCI_SUCCESS;
2174 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2175 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2176 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2177 break;
2179 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2180 u16 len = sci_req_tx_bytes(ireq);
2182 /* likely non-error data underrun, workaround missing
2183 * d2h frame from the controller
2185 if (d2h->fis_type != FIS_REGD2H) {
2186 d2h->fis_type = FIS_REGD2H;
2187 d2h->flags = (1 << 6);
2188 d2h->status = 0x50;
2189 d2h->error = 0;
2190 d2h->lbal = 0;
2191 d2h->byte_count_low = len & 0xff;
2192 d2h->byte_count_high = len >> 8;
2193 d2h->device = 0xa0;
2194 d2h->lbal_exp = 0;
2195 d2h->lbam_exp = 0;
2196 d2h->lbah_exp = 0;
2197 d2h->_r_a = 0;
2198 d2h->sector_count = 0x3;
2199 d2h->sector_count_exp = 0;
2200 d2h->_r_b = 0;
2201 d2h->_r_c = 0;
2202 d2h->_r_d = 0;
2205 ireq->scu_status = SCU_TASK_DONE_GOOD;
2206 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2207 status = ireq->sci_status;
2209 /* the hw will have suspended the rnc, so complete the
2210 * request upon pending resume
2212 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2213 break;
2215 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2216 /* In this case, there is no UF coming after.
2217 * compelte the IO now.
2219 ireq->scu_status = SCU_TASK_DONE_GOOD;
2220 ireq->sci_status = SCI_SUCCESS;
2221 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2222 break;
2224 default:
2225 if (d2h->fis_type == FIS_REGD2H) {
2226 /* UF received change the device state to ATAPI_ERROR */
2227 status = ireq->sci_status;
2228 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2229 } else {
2230 /* If receiving any non-success TC status, no UF
2231 * received yet, then an UF for the status fis
2232 * is coming after (XXX: suspect this is
2233 * actually a protocol error or a bug like the
2234 * DONE_UNEXP_FIS case)
2236 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2237 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2239 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2241 break;
2244 return status;
2247 static int sci_request_smp_completion_status_is_tx_suspend(
2248 unsigned int completion_status)
2250 switch (completion_status) {
2251 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2252 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2253 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2254 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2255 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2256 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2257 return 1;
2259 return 0;
2262 static int sci_request_smp_completion_status_is_tx_rx_suspend(
2263 unsigned int completion_status)
2265 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2268 static int sci_request_ssp_completion_status_is_tx_suspend(
2269 unsigned int completion_status)
2271 switch (completion_status) {
2272 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2273 case SCU_TASK_DONE_LF_ERR:
2274 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2275 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2276 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2277 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2278 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2279 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2280 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2281 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2282 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2283 return 1;
2285 return 0;
2288 static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2289 unsigned int completion_status)
2291 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2294 static int sci_request_stpsata_completion_status_is_tx_suspend(
2295 unsigned int completion_status)
2297 switch (completion_status) {
2298 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2299 case SCU_TASK_DONE_LL_R_ERR:
2300 case SCU_TASK_DONE_LL_PERR:
2301 case SCU_TASK_DONE_REG_ERR:
2302 case SCU_TASK_DONE_SDB_ERR:
2303 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2304 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2305 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2306 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2307 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2308 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2309 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2310 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2311 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2312 return 1;
2314 return 0;
2318 static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2319 unsigned int completion_status)
2321 switch (completion_status) {
2322 case SCU_TASK_DONE_LF_ERR:
2323 case SCU_TASK_DONE_LL_SY_TERM:
2324 case SCU_TASK_DONE_LL_LF_TERM:
2325 case SCU_TASK_DONE_BREAK_RCVD:
2326 case SCU_TASK_DONE_INV_FIS_LEN:
2327 case SCU_TASK_DONE_UNEXP_FIS:
2328 case SCU_TASK_DONE_UNEXP_SDBFIS:
2329 case SCU_TASK_DONE_MAX_PLD_ERR:
2330 return 1;
2332 return 0;
2335 static void sci_request_handle_suspending_completions(
2336 struct isci_request *ireq,
2337 u32 completion_code)
2339 int is_tx = 0;
2340 int is_tx_rx = 0;
2342 switch (ireq->protocol) {
2343 case SAS_PROTOCOL_SMP:
2344 is_tx = sci_request_smp_completion_status_is_tx_suspend(
2345 completion_code);
2346 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2347 completion_code);
2348 break;
2349 case SAS_PROTOCOL_SSP:
2350 is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2351 completion_code);
2352 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2353 completion_code);
2354 break;
2355 case SAS_PROTOCOL_STP:
2356 is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2357 completion_code);
2358 is_tx_rx =
2359 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2360 completion_code);
2361 break;
2362 default:
2363 dev_warn(&ireq->isci_host->pdev->dev,
2364 "%s: request %p has no valid protocol\n",
2365 __func__, ireq);
2366 break;
2368 if (is_tx || is_tx_rx) {
2369 BUG_ON(is_tx && is_tx_rx);
2371 sci_remote_node_context_suspend(
2372 &ireq->target_device->rnc,
2373 SCI_HW_SUSPEND,
2374 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2375 : SCU_EVENT_TL_RNC_SUSPEND_TX);
2379 enum sci_status
2380 sci_io_request_tc_completion(struct isci_request *ireq,
2381 u32 completion_code)
2383 enum sci_base_request_states state;
2384 struct isci_host *ihost = ireq->owning_controller;
2386 state = ireq->sm.current_state_id;
2388 /* Decode those completions that signal upcoming suspension events. */
2389 sci_request_handle_suspending_completions(
2390 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2392 switch (state) {
2393 case SCI_REQ_STARTED:
2394 return request_started_state_tc_event(ireq, completion_code);
2396 case SCI_REQ_TASK_WAIT_TC_COMP:
2397 return ssp_task_request_await_tc_event(ireq,
2398 completion_code);
2400 case SCI_REQ_SMP_WAIT_RESP:
2401 return smp_request_await_response_tc_event(ireq,
2402 completion_code);
2404 case SCI_REQ_SMP_WAIT_TC_COMP:
2405 return smp_request_await_tc_event(ireq, completion_code);
2407 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2408 return stp_request_udma_await_tc_event(ireq,
2409 completion_code);
2411 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2412 return stp_request_non_data_await_h2d_tc_event(ireq,
2413 completion_code);
2415 case SCI_REQ_STP_PIO_WAIT_H2D:
2416 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2417 completion_code);
2419 case SCI_REQ_STP_PIO_DATA_OUT:
2420 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2422 case SCI_REQ_ABORTING:
2423 return request_aborting_state_tc_event(ireq,
2424 completion_code);
2426 case SCI_REQ_ATAPI_WAIT_H2D:
2427 return atapi_raw_completion(ireq, completion_code,
2428 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2430 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2431 return atapi_raw_completion(ireq, completion_code,
2432 SCI_REQ_ATAPI_WAIT_D2H);
2434 case SCI_REQ_ATAPI_WAIT_D2H:
2435 return atapi_data_tc_completion_handler(ireq, completion_code);
2437 default:
2438 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2439 __func__, completion_code, req_state_name(state));
2440 return SCI_FAILURE_INVALID_STATE;
2445 * isci_request_process_response_iu() - This function sets the status and
2446 * response iu, in the task struct, from the request object for the upper
2447 * layer driver.
2448 * @task: This parameter is the task struct from the upper layer driver.
2449 * @resp_iu: This parameter points to the response iu of the completed request.
2450 * @dev: This parameter specifies the linux device struct.
2452 * none.
2454 static void isci_request_process_response_iu(
2455 struct sas_task *task,
2456 struct ssp_response_iu *resp_iu,
2457 struct device *dev)
2459 dev_dbg(dev,
2460 "%s: resp_iu = %p "
2461 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2462 "resp_iu->response_data_len = %x, "
2463 "resp_iu->sense_data_len = %x\nresponse data: ",
2464 __func__,
2465 resp_iu,
2466 resp_iu->status,
2467 resp_iu->datapres,
2468 resp_iu->response_data_len,
2469 resp_iu->sense_data_len);
2471 task->task_status.stat = resp_iu->status;
2473 /* libsas updates the task status fields based on the response iu. */
2474 sas_ssp_task_response(dev, task, resp_iu);
2478 * isci_request_set_open_reject_status() - This function prepares the I/O
2479 * completion for OPEN_REJECT conditions.
2480 * @request: This parameter is the completed isci_request object.
2481 * @task: This parameter is the task struct from the upper layer driver.
2482 * @response_ptr: This parameter specifies the service response for the I/O.
2483 * @status_ptr: This parameter specifies the exec status for the I/O.
2484 * @open_rej_reason: This parameter specifies the encoded reason for the
2485 * abandon-class reject.
2487 * none.
2489 static void isci_request_set_open_reject_status(
2490 struct isci_request *request,
2491 struct sas_task *task,
2492 enum service_response *response_ptr,
2493 enum exec_status *status_ptr,
2494 enum sas_open_rej_reason open_rej_reason)
2496 /* Task in the target is done. */
2497 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2498 *response_ptr = SAS_TASK_UNDELIVERED;
2499 *status_ptr = SAS_OPEN_REJECT;
2500 task->task_status.open_rej_reason = open_rej_reason;
2504 * isci_request_handle_controller_specific_errors() - This function decodes
2505 * controller-specific I/O completion error conditions.
2506 * @idev: Remote device
2507 * @request: This parameter is the completed isci_request object.
2508 * @task: This parameter is the task struct from the upper layer driver.
2509 * @response_ptr: This parameter specifies the service response for the I/O.
2510 * @status_ptr: This parameter specifies the exec status for the I/O.
2512 * none.
2514 static void isci_request_handle_controller_specific_errors(
2515 struct isci_remote_device *idev,
2516 struct isci_request *request,
2517 struct sas_task *task,
2518 enum service_response *response_ptr,
2519 enum exec_status *status_ptr)
2521 unsigned int cstatus;
2523 cstatus = request->scu_status;
2525 dev_dbg(&request->isci_host->pdev->dev,
2526 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2527 "- controller status = 0x%x\n",
2528 __func__, request, cstatus);
2530 /* Decode the controller-specific errors; most
2531 * important is to recognize those conditions in which
2532 * the target may still have a task outstanding that
2533 * must be aborted.
2535 * Note that there are SCU completion codes being
2536 * named in the decode below for which SCIC has already
2537 * done work to handle them in a way other than as
2538 * a controller-specific completion code; these are left
2539 * in the decode below for completeness sake.
2541 switch (cstatus) {
2542 case SCU_TASK_DONE_DMASETUP_DIRERR:
2543 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2544 case SCU_TASK_DONE_XFERCNT_ERR:
2545 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2546 if (task->task_proto == SAS_PROTOCOL_SMP) {
2547 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2548 *response_ptr = SAS_TASK_COMPLETE;
2550 /* See if the device has been/is being stopped. Note
2551 * that we ignore the quiesce state, since we are
2552 * concerned about the actual device state.
2554 if (!idev)
2555 *status_ptr = SAS_DEVICE_UNKNOWN;
2556 else
2557 *status_ptr = SAS_ABORTED_TASK;
2559 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2560 } else {
2561 /* Task in the target is not done. */
2562 *response_ptr = SAS_TASK_UNDELIVERED;
2564 if (!idev)
2565 *status_ptr = SAS_DEVICE_UNKNOWN;
2566 else
2567 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2569 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2572 break;
2574 case SCU_TASK_DONE_CRC_ERR:
2575 case SCU_TASK_DONE_NAK_CMD_ERR:
2576 case SCU_TASK_DONE_EXCESS_DATA:
2577 case SCU_TASK_DONE_UNEXP_FIS:
2578 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2579 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2580 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2581 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2582 /* These are conditions in which the target
2583 * has completed the task, so that no cleanup
2584 * is necessary.
2586 *response_ptr = SAS_TASK_COMPLETE;
2588 /* See if the device has been/is being stopped. Note
2589 * that we ignore the quiesce state, since we are
2590 * concerned about the actual device state.
2592 if (!idev)
2593 *status_ptr = SAS_DEVICE_UNKNOWN;
2594 else
2595 *status_ptr = SAS_ABORTED_TASK;
2597 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2598 break;
2601 /* Note that the only open reject completion codes seen here will be
2602 * abandon-class codes; all others are automatically retried in the SCU.
2604 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2606 isci_request_set_open_reject_status(
2607 request, task, response_ptr, status_ptr,
2608 SAS_OREJ_WRONG_DEST);
2609 break;
2611 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2613 /* Note - the return of AB0 will change when
2614 * libsas implements detection of zone violations.
2616 isci_request_set_open_reject_status(
2617 request, task, response_ptr, status_ptr,
2618 SAS_OREJ_RESV_AB0);
2619 break;
2621 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2623 isci_request_set_open_reject_status(
2624 request, task, response_ptr, status_ptr,
2625 SAS_OREJ_RESV_AB1);
2626 break;
2628 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2630 isci_request_set_open_reject_status(
2631 request, task, response_ptr, status_ptr,
2632 SAS_OREJ_RESV_AB2);
2633 break;
2635 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2637 isci_request_set_open_reject_status(
2638 request, task, response_ptr, status_ptr,
2639 SAS_OREJ_RESV_AB3);
2640 break;
2642 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2644 isci_request_set_open_reject_status(
2645 request, task, response_ptr, status_ptr,
2646 SAS_OREJ_BAD_DEST);
2647 break;
2649 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2651 isci_request_set_open_reject_status(
2652 request, task, response_ptr, status_ptr,
2653 SAS_OREJ_STP_NORES);
2654 break;
2656 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2658 isci_request_set_open_reject_status(
2659 request, task, response_ptr, status_ptr,
2660 SAS_OREJ_EPROTO);
2661 break;
2663 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2665 isci_request_set_open_reject_status(
2666 request, task, response_ptr, status_ptr,
2667 SAS_OREJ_CONN_RATE);
2668 break;
2670 case SCU_TASK_DONE_LL_R_ERR:
2671 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2672 case SCU_TASK_DONE_LL_PERR:
2673 case SCU_TASK_DONE_LL_SY_TERM:
2674 /* Also SCU_TASK_DONE_NAK_ERR:*/
2675 case SCU_TASK_DONE_LL_LF_TERM:
2676 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2677 case SCU_TASK_DONE_LL_ABORT_ERR:
2678 case SCU_TASK_DONE_SEQ_INV_TYPE:
2679 /* Also SCU_TASK_DONE_UNEXP_XR: */
2680 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2681 case SCU_TASK_DONE_INV_FIS_LEN:
2682 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2683 case SCU_TASK_DONE_SDMA_ERR:
2684 case SCU_TASK_DONE_OFFSET_ERR:
2685 case SCU_TASK_DONE_MAX_PLD_ERR:
2686 case SCU_TASK_DONE_LF_ERR:
2687 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2688 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2689 case SCU_TASK_DONE_UNEXP_DATA:
2690 case SCU_TASK_DONE_UNEXP_SDBFIS:
2691 case SCU_TASK_DONE_REG_ERR:
2692 case SCU_TASK_DONE_SDB_ERR:
2693 case SCU_TASK_DONE_TASK_ABORT:
2694 default:
2695 /* Task in the target is not done. */
2696 *response_ptr = SAS_TASK_UNDELIVERED;
2697 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2699 if (task->task_proto == SAS_PROTOCOL_SMP)
2700 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2701 else
2702 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2703 break;
2707 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2709 struct task_status_struct *ts = &task->task_status;
2710 struct ata_task_resp *resp = (void *)&ts->buf[0];
2712 resp->frame_len = sizeof(*fis);
2713 memcpy(resp->ending_fis, fis, sizeof(*fis));
2714 ts->buf_valid_size = sizeof(*resp);
2716 /* If an error is flagged let libata decode the fis */
2717 if (ac_err_mask(fis->status))
2718 ts->stat = SAS_PROTO_RESPONSE;
2719 else
2720 ts->stat = SAS_SAM_STAT_GOOD;
2722 ts->resp = SAS_TASK_COMPLETE;
2725 static void isci_request_io_request_complete(struct isci_host *ihost,
2726 struct isci_request *request,
2727 enum sci_io_status completion_status)
2729 struct sas_task *task = isci_request_access_task(request);
2730 struct ssp_response_iu *resp_iu;
2731 unsigned long task_flags;
2732 struct isci_remote_device *idev = request->target_device;
2733 enum service_response response = SAS_TASK_UNDELIVERED;
2734 enum exec_status status = SAS_ABORTED_TASK;
2736 dev_dbg(&ihost->pdev->dev,
2737 "%s: request = %p, task = %p, "
2738 "task->data_dir = %d completion_status = 0x%x\n",
2739 __func__, request, task, task->data_dir, completion_status);
2741 /* The request is done from an SCU HW perspective. */
2743 /* This is an active request being completed from the core. */
2744 switch (completion_status) {
2746 case SCI_IO_FAILURE_RESPONSE_VALID:
2747 dev_dbg(&ihost->pdev->dev,
2748 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2749 __func__, request, task);
2751 if (sas_protocol_ata(task->task_proto)) {
2752 isci_process_stp_response(task, &request->stp.rsp);
2753 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2755 /* crack the iu response buffer. */
2756 resp_iu = &request->ssp.rsp;
2757 isci_request_process_response_iu(task, resp_iu,
2758 &ihost->pdev->dev);
2760 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2762 dev_err(&ihost->pdev->dev,
2763 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2764 "SAS_PROTOCOL_SMP protocol\n",
2765 __func__);
2767 } else
2768 dev_err(&ihost->pdev->dev,
2769 "%s: unknown protocol\n", __func__);
2771 /* use the task status set in the task struct by the
2772 * isci_request_process_response_iu call.
2774 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2775 response = task->task_status.resp;
2776 status = task->task_status.stat;
2777 break;
2779 case SCI_IO_SUCCESS:
2780 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2782 response = SAS_TASK_COMPLETE;
2783 status = SAS_SAM_STAT_GOOD;
2784 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2786 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2788 /* This was an SSP / STP / SATA transfer.
2789 * There is a possibility that less data than
2790 * the maximum was transferred.
2792 u32 transferred_length = sci_req_tx_bytes(request);
2794 task->task_status.residual
2795 = task->total_xfer_len - transferred_length;
2797 /* If there were residual bytes, call this an
2798 * underrun.
2800 if (task->task_status.residual != 0)
2801 status = SAS_DATA_UNDERRUN;
2803 dev_dbg(&ihost->pdev->dev,
2804 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2805 __func__, status);
2807 } else
2808 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2809 __func__);
2810 break;
2812 case SCI_IO_FAILURE_TERMINATED:
2814 dev_dbg(&ihost->pdev->dev,
2815 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2816 __func__, request, task);
2818 /* The request was terminated explicitly. */
2819 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2820 response = SAS_TASK_UNDELIVERED;
2822 /* See if the device has been/is being stopped. Note
2823 * that we ignore the quiesce state, since we are
2824 * concerned about the actual device state.
2826 if (!idev)
2827 status = SAS_DEVICE_UNKNOWN;
2828 else
2829 status = SAS_ABORTED_TASK;
2830 break;
2832 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2834 isci_request_handle_controller_specific_errors(idev, request,
2835 task, &response,
2836 &status);
2837 break;
2839 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2840 /* This is a special case, in that the I/O completion
2841 * is telling us that the device needs a reset.
2842 * In order for the device reset condition to be
2843 * noticed, the I/O has to be handled in the error
2844 * handler. Set the reset flag and cause the
2845 * SCSI error thread to be scheduled.
2847 spin_lock_irqsave(&task->task_state_lock, task_flags);
2848 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2849 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2851 /* Fail the I/O. */
2852 response = SAS_TASK_UNDELIVERED;
2853 status = SAS_SAM_STAT_TASK_ABORTED;
2855 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2856 break;
2858 case SCI_FAILURE_RETRY_REQUIRED:
2860 /* Fail the I/O so it can be retried. */
2861 response = SAS_TASK_UNDELIVERED;
2862 if (!idev)
2863 status = SAS_DEVICE_UNKNOWN;
2864 else
2865 status = SAS_ABORTED_TASK;
2867 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2868 break;
2871 default:
2872 /* Catch any otherwise unhandled error codes here. */
2873 dev_dbg(&ihost->pdev->dev,
2874 "%s: invalid completion code: 0x%x - "
2875 "isci_request = %p\n",
2876 __func__, completion_status, request);
2878 response = SAS_TASK_UNDELIVERED;
2880 /* See if the device has been/is being stopped. Note
2881 * that we ignore the quiesce state, since we are
2882 * concerned about the actual device state.
2884 if (!idev)
2885 status = SAS_DEVICE_UNKNOWN;
2886 else
2887 status = SAS_ABORTED_TASK;
2889 if (SAS_PROTOCOL_SMP == task->task_proto)
2890 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2891 else
2892 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2893 break;
2896 switch (task->task_proto) {
2897 case SAS_PROTOCOL_SSP:
2898 if (task->data_dir == DMA_NONE)
2899 break;
2900 if (task->num_scatter == 0)
2901 /* 0 indicates a single dma address */
2902 dma_unmap_single(&ihost->pdev->dev,
2903 request->zero_scatter_daddr,
2904 task->total_xfer_len, task->data_dir);
2905 else /* unmap the sgl dma addresses */
2906 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2907 request->num_sg_entries, task->data_dir);
2908 break;
2909 case SAS_PROTOCOL_SMP: {
2910 struct scatterlist *sg = &task->smp_task.smp_req;
2911 struct smp_req *smp_req;
2912 void *kaddr;
2914 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2916 /* need to swab it back in case the command buffer is re-used */
2917 kaddr = kmap_atomic(sg_page(sg));
2918 smp_req = kaddr + sg->offset;
2919 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2920 kunmap_atomic(kaddr);
2921 break;
2923 default:
2924 break;
2927 spin_lock_irqsave(&task->task_state_lock, task_flags);
2929 task->task_status.resp = response;
2930 task->task_status.stat = status;
2932 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2933 /* Normal notification (task_done) */
2934 task->task_state_flags |= SAS_TASK_STATE_DONE;
2935 task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2937 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2939 /* complete the io request to the core. */
2940 sci_controller_complete_io(ihost, request->target_device, request);
2942 /* set terminated handle so it cannot be completed or
2943 * terminated again, and to cause any calls into abort
2944 * task to recognize the already completed case.
2946 set_bit(IREQ_TERMINATED, &request->flags);
2948 ireq_done(ihost, request, task);
2951 static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2953 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2954 struct domain_device *dev = ireq->target_device->domain_dev;
2955 enum sci_base_request_states state;
2956 struct sas_task *task;
2958 /* XXX as hch said always creating an internal sas_task for tmf
2959 * requests would simplify the driver
2961 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2963 /* all unaccelerated request types (non ssp or ncq) handled with
2964 * substates
2966 if (!task && dev->dev_type == SAS_END_DEVICE) {
2967 state = SCI_REQ_TASK_WAIT_TC_COMP;
2968 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2969 state = SCI_REQ_SMP_WAIT_RESP;
2970 } else if (task && sas_protocol_ata(task->task_proto) &&
2971 !task->ata_task.use_ncq) {
2972 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2973 task->ata_task.fis.command == ATA_CMD_PACKET) {
2974 state = SCI_REQ_ATAPI_WAIT_H2D;
2975 } else if (task->data_dir == DMA_NONE) {
2976 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2977 } else if (task->ata_task.dma_xfer) {
2978 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2979 } else /* PIO */ {
2980 state = SCI_REQ_STP_PIO_WAIT_H2D;
2982 } else {
2983 /* SSP or NCQ are fully accelerated, no substates */
2984 return;
2986 sci_change_state(sm, state);
2989 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2991 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2992 struct isci_host *ihost = ireq->owning_controller;
2994 /* Tell the SCI_USER that the IO request is complete */
2995 if (!test_bit(IREQ_TMF, &ireq->flags))
2996 isci_request_io_request_complete(ihost, ireq,
2997 ireq->sci_status);
2998 else
2999 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3002 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3004 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3006 /* Setting the abort bit in the Task Context is required by the silicon. */
3007 ireq->tc->abort = 1;
3010 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3012 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3014 ireq->target_device->working_request = ireq;
3017 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3019 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3021 ireq->target_device->working_request = ireq;
3024 static const struct sci_base_state sci_request_state_table[] = {
3025 [SCI_REQ_INIT] = { },
3026 [SCI_REQ_CONSTRUCTED] = { },
3027 [SCI_REQ_STARTED] = {
3028 .enter_state = sci_request_started_state_enter,
3030 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3031 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3033 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3034 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3035 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3037 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3038 [SCI_REQ_STP_PIO_DATA_IN] = { },
3039 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3040 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3041 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3042 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3043 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3044 [SCI_REQ_SMP_WAIT_RESP] = { },
3045 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3046 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3047 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3048 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3049 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3050 [SCI_REQ_COMPLETED] = {
3051 .enter_state = sci_request_completed_state_enter,
3053 [SCI_REQ_ABORTING] = {
3054 .enter_state = sci_request_aborting_state_enter,
3056 [SCI_REQ_FINAL] = { },
3059 static void
3060 sci_general_request_construct(struct isci_host *ihost,
3061 struct isci_remote_device *idev,
3062 struct isci_request *ireq)
3064 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3066 ireq->target_device = idev;
3067 ireq->protocol = SAS_PROTOCOL_NONE;
3068 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3070 ireq->sci_status = SCI_SUCCESS;
3071 ireq->scu_status = 0;
3072 ireq->post_context = 0xFFFFFFFF;
3075 static enum sci_status
3076 sci_io_request_construct(struct isci_host *ihost,
3077 struct isci_remote_device *idev,
3078 struct isci_request *ireq)
3080 struct domain_device *dev = idev->domain_dev;
3081 enum sci_status status = SCI_SUCCESS;
3083 /* Build the common part of the request */
3084 sci_general_request_construct(ihost, idev, ireq);
3086 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3087 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3089 if (dev->dev_type == SAS_END_DEVICE)
3090 /* pass */;
3091 else if (dev_is_sata(dev))
3092 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3093 else if (dev_is_expander(dev->dev_type))
3094 /* pass */;
3095 else
3096 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3098 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3100 return status;
3103 enum sci_status sci_task_request_construct(struct isci_host *ihost,
3104 struct isci_remote_device *idev,
3105 u16 io_tag, struct isci_request *ireq)
3107 struct domain_device *dev = idev->domain_dev;
3108 enum sci_status status = SCI_SUCCESS;
3110 /* Build the common part of the request */
3111 sci_general_request_construct(ihost, idev, ireq);
3113 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3114 set_bit(IREQ_TMF, &ireq->flags);
3115 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3117 /* Set the protocol indicator. */
3118 if (dev_is_sata(dev))
3119 ireq->protocol = SAS_PROTOCOL_STP;
3120 else
3121 ireq->protocol = SAS_PROTOCOL_SSP;
3122 } else
3123 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3125 return status;
3128 static enum sci_status isci_request_ssp_request_construct(
3129 struct isci_request *request)
3131 enum sci_status status;
3133 dev_dbg(&request->isci_host->pdev->dev,
3134 "%s: request = %p\n",
3135 __func__,
3136 request);
3137 status = sci_io_request_construct_basic_ssp(request);
3138 return status;
3141 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3143 struct sas_task *task = isci_request_access_task(ireq);
3144 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3145 struct ata_queued_cmd *qc = task->uldd_task;
3146 enum sci_status status;
3148 dev_dbg(&ireq->isci_host->pdev->dev,
3149 "%s: ireq = %p\n",
3150 __func__,
3151 ireq);
3153 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3154 if (!task->ata_task.device_control_reg_update)
3155 fis->flags |= 0x80;
3156 fis->flags &= 0xF0;
3158 status = sci_io_request_construct_basic_sata(ireq);
3160 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3161 qc->tf.command == ATA_CMD_FPDMA_READ ||
3162 qc->tf.command == ATA_CMD_FPDMA_RECV ||
3163 qc->tf.command == ATA_CMD_FPDMA_SEND ||
3164 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3165 fis->sector_count = qc->tag << 3;
3166 ireq->tc->type.stp.ncq_tag = qc->tag;
3169 return status;
3172 static enum sci_status
3173 sci_io_request_construct_smp(struct device *dev,
3174 struct isci_request *ireq,
3175 struct sas_task *task)
3177 struct scatterlist *sg = &task->smp_task.smp_req;
3178 struct isci_remote_device *idev;
3179 struct scu_task_context *task_context;
3180 struct isci_port *iport;
3181 struct smp_req *smp_req;
3182 void *kaddr;
3183 u8 req_len;
3184 u32 cmd;
3186 kaddr = kmap_atomic(sg_page(sg));
3187 smp_req = kaddr + sg->offset;
3189 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3190 * functions under SAS 2.0, a zero request length really indicates
3191 * a non-zero default length.
3193 if (smp_req->req_len == 0) {
3194 switch (smp_req->func) {
3195 case SMP_DISCOVER:
3196 case SMP_REPORT_PHY_ERR_LOG:
3197 case SMP_REPORT_PHY_SATA:
3198 case SMP_REPORT_ROUTE_INFO:
3199 smp_req->req_len = 2;
3200 break;
3201 case SMP_CONF_ROUTE_INFO:
3202 case SMP_PHY_CONTROL:
3203 case SMP_PHY_TEST_FUNCTION:
3204 smp_req->req_len = 9;
3205 break;
3206 /* Default - zero is a valid default for 2.0. */
3209 req_len = smp_req->req_len;
3210 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3211 cmd = *(u32 *) smp_req;
3212 kunmap_atomic(kaddr);
3214 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3215 return SCI_FAILURE;
3217 ireq->protocol = SAS_PROTOCOL_SMP;
3219 /* byte swap the smp request. */
3221 task_context = ireq->tc;
3223 idev = ireq->target_device;
3224 iport = idev->owning_port;
3227 * Fill in the TC with its required data
3228 * 00h
3230 task_context->priority = 0;
3231 task_context->initiator_request = 1;
3232 task_context->connection_rate = idev->connection_rate;
3233 task_context->protocol_engine_index = ISCI_PEG;
3234 task_context->logical_port_index = iport->physical_port_index;
3235 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3236 task_context->abort = 0;
3237 task_context->valid = SCU_TASK_CONTEXT_VALID;
3238 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3240 /* 04h */
3241 task_context->remote_node_index = idev->rnc.remote_node_index;
3242 task_context->command_code = 0;
3243 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3245 /* 08h */
3246 task_context->link_layer_control = 0;
3247 task_context->do_not_dma_ssp_good_response = 1;
3248 task_context->strict_ordering = 0;
3249 task_context->control_frame = 1;
3250 task_context->timeout_enable = 0;
3251 task_context->block_guard_enable = 0;
3253 /* 0ch */
3254 task_context->address_modifier = 0;
3256 /* 10h */
3257 task_context->ssp_command_iu_length = req_len;
3259 /* 14h */
3260 task_context->transfer_length_bytes = 0;
3263 * 18h ~ 30h, protocol specific
3264 * since commandIU has been build by framework at this point, we just
3265 * copy the frist DWord from command IU to this location. */
3266 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3269 * 40h
3270 * "For SMP you could program it to zero. We would prefer that way
3271 * so that done code will be consistent." - Venki
3273 task_context->task_phase = 0;
3275 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3276 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3277 (iport->physical_port_index <<
3278 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3279 ISCI_TAG_TCI(ireq->io_tag));
3281 * Copy the physical address for the command buffer to the SCU Task
3282 * Context command buffer should not contain command header.
3284 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3285 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3287 /* SMP response comes as UF, so no need to set response IU address. */
3288 task_context->response_iu_upper = 0;
3289 task_context->response_iu_lower = 0;
3291 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3293 return SCI_SUCCESS;
3297 * isci_smp_request_build() - This function builds the smp request.
3298 * @ireq: This parameter points to the isci_request allocated in the
3299 * request construct function.
3301 * SCI_SUCCESS on successfull completion, or specific failure code.
3303 static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3305 struct sas_task *task = isci_request_access_task(ireq);
3306 struct device *dev = &ireq->isci_host->pdev->dev;
3307 enum sci_status status = SCI_FAILURE;
3309 status = sci_io_request_construct_smp(dev, ireq, task);
3310 if (status != SCI_SUCCESS)
3311 dev_dbg(&ireq->isci_host->pdev->dev,
3312 "%s: failed with status = %d\n",
3313 __func__,
3314 status);
3316 return status;
3320 * isci_io_request_build() - This function builds the io request object.
3321 * @ihost: This parameter specifies the ISCI host object
3322 * @request: This parameter points to the isci_request object allocated in the
3323 * request construct function.
3324 * @idev: This parameter is the handle for the sci core's remote device
3325 * object that is the destination for this request.
3327 * SCI_SUCCESS on successfull completion, or specific failure code.
3329 static enum sci_status isci_io_request_build(struct isci_host *ihost,
3330 struct isci_request *request,
3331 struct isci_remote_device *idev)
3333 enum sci_status status = SCI_SUCCESS;
3334 struct sas_task *task = isci_request_access_task(request);
3336 dev_dbg(&ihost->pdev->dev,
3337 "%s: idev = 0x%p; request = %p, "
3338 "num_scatter = %d\n",
3339 __func__,
3340 idev,
3341 request,
3342 task->num_scatter);
3344 /* map the sgl addresses, if present.
3345 * libata does the mapping for sata devices
3346 * before we get the request.
3348 if (task->num_scatter &&
3349 !sas_protocol_ata(task->task_proto) &&
3350 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3352 request->num_sg_entries = dma_map_sg(
3353 &ihost->pdev->dev,
3354 task->scatter,
3355 task->num_scatter,
3356 task->data_dir
3359 if (request->num_sg_entries == 0)
3360 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3363 status = sci_io_request_construct(ihost, idev, request);
3365 if (status != SCI_SUCCESS) {
3366 dev_dbg(&ihost->pdev->dev,
3367 "%s: failed request construct\n",
3368 __func__);
3369 return SCI_FAILURE;
3372 switch (task->task_proto) {
3373 case SAS_PROTOCOL_SMP:
3374 status = isci_smp_request_build(request);
3375 break;
3376 case SAS_PROTOCOL_SSP:
3377 status = isci_request_ssp_request_construct(request);
3378 break;
3379 case SAS_PROTOCOL_SATA:
3380 case SAS_PROTOCOL_STP:
3381 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3382 status = isci_request_stp_request_construct(request);
3383 break;
3384 default:
3385 dev_dbg(&ihost->pdev->dev,
3386 "%s: unknown protocol\n", __func__);
3387 return SCI_FAILURE;
3390 return status;
3393 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3395 struct isci_request *ireq;
3397 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3398 ireq->io_tag = tag;
3399 ireq->io_request_completion = NULL;
3400 ireq->flags = 0;
3401 ireq->num_sg_entries = 0;
3403 return ireq;
3406 struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3407 struct sas_task *task,
3408 u16 tag)
3410 struct isci_request *ireq;
3412 ireq = isci_request_from_tag(ihost, tag);
3413 ireq->ttype_ptr.io_task_ptr = task;
3414 clear_bit(IREQ_TMF, &ireq->flags);
3415 task->lldd_task = ireq;
3417 return ireq;
3420 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3421 struct isci_tmf *isci_tmf,
3422 u16 tag)
3424 struct isci_request *ireq;
3426 ireq = isci_request_from_tag(ihost, tag);
3427 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3428 set_bit(IREQ_TMF, &ireq->flags);
3430 return ireq;
3433 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3434 struct sas_task *task, struct isci_request *ireq)
3436 enum sci_status status;
3437 unsigned long flags;
3438 int ret = 0;
3440 status = isci_io_request_build(ihost, ireq, idev);
3441 if (status != SCI_SUCCESS) {
3442 dev_dbg(&ihost->pdev->dev,
3443 "%s: request_construct failed - status = 0x%x\n",
3444 __func__,
3445 status);
3446 return status;
3449 spin_lock_irqsave(&ihost->scic_lock, flags);
3451 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3453 if (isci_task_is_ncq_recovery(task)) {
3455 /* The device is in an NCQ recovery state. Issue the
3456 * request on the task side. Note that it will
3457 * complete on the I/O request side because the
3458 * request was built that way (ie.
3459 * ireq->is_task_management_request is false).
3461 status = sci_controller_start_task(ihost,
3462 idev,
3463 ireq);
3464 } else {
3465 status = SCI_FAILURE;
3467 } else {
3468 /* send the request, let the core assign the IO TAG. */
3469 status = sci_controller_start_io(ihost, idev,
3470 ireq);
3473 if (status != SCI_SUCCESS &&
3474 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3475 dev_dbg(&ihost->pdev->dev,
3476 "%s: failed request start (0x%x)\n",
3477 __func__, status);
3478 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3479 return status;
3481 /* Either I/O started OK, or the core has signaled that
3482 * the device needs a target reset.
3484 if (status != SCI_SUCCESS) {
3485 /* The request did not really start in the
3486 * hardware, so clear the request handle
3487 * here so no terminations will be done.
3489 set_bit(IREQ_TERMINATED, &ireq->flags);
3491 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3493 if (status ==
3494 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3495 /* Signal libsas that we need the SCSI error
3496 * handler thread to work on this I/O and that
3497 * we want a device reset.
3499 spin_lock_irqsave(&task->task_state_lock, flags);
3500 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3501 spin_unlock_irqrestore(&task->task_state_lock, flags);
3503 /* Cause this task to be scheduled in the SCSI error
3504 * handler thread.
3506 sas_task_abort(task);
3508 /* Change the status, since we are holding
3509 * the I/O until it is managed by the SCSI
3510 * error handler.
3512 status = SCI_SUCCESS;
3515 return ret;