printf: Remove unused 'bprintf'
[drm/drm-misc.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
blobf0db17e34ea00426362502b51984092c7d4ae7e3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4 * of PCI-SCSI IO processors.
6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
7 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
9 * This driver is derived from the Linux sym53c8xx driver.
10 * Copyright (C) 1998-2000 Gerard Roudier
12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
13 * a port of the FreeBSD ncr driver to Linux-1.2.13.
15 * The original ncr driver has been written for 386bsd and FreeBSD by
16 * Wolfgang Stanglmeier <wolf@cologne.de>
17 * Stefan Esser <se@mi.Uni-Koeln.de>
18 * Copyright (C) 1994 Wolfgang Stanglmeier
20 * Other major contributions:
22 * NVRAM detection and reading.
23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
25 *-----------------------------------------------------------------------------
28 #include <linux/slab.h>
29 #include <asm/param.h> /* for timeouts in units of HZ */
31 #include "sym_glue.h"
32 #include "sym_nvram.h"
34 #if 0
35 #define SYM_DEBUG_GENERIC_SUPPORT
36 #endif
39 * Needed function prototypes.
41 static void sym_int_ma (struct sym_hcb *np);
42 static void sym_int_sir(struct sym_hcb *);
43 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
44 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
45 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
46 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
47 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
48 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
51 * Print a buffer in hexadecimal format with a ".\n" at end.
53 static void sym_printl_hex(u_char *p, int n)
55 while (n-- > 0)
56 printf (" %x", *p++);
57 printf (".\n");
60 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
62 sym_print_addr(cp->cmd, "%s: ", label);
64 spi_print_msg(msg);
65 printf("\n");
68 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
70 struct sym_tcb *tp = &np->target[target];
71 dev_info(&tp->starget->dev, "%s: ", label);
73 spi_print_msg(msg);
74 printf("\n");
78 * Print something that tells about extended errors.
80 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
82 if (x_status & XE_PARITY_ERR) {
83 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
85 if (x_status & XE_EXTRA_DATA) {
86 sym_print_addr(cmd, "extraneous data discarded.\n");
88 if (x_status & XE_BAD_PHASE) {
89 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
91 if (x_status & XE_SODL_UNRUN) {
92 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
94 if (x_status & XE_SWIDE_OVRUN) {
95 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
100 * Return a string for SCSI BUS mode.
102 static char *sym_scsi_bus_mode(int mode)
104 switch(mode) {
105 case SMODE_HVD: return "HVD";
106 case SMODE_SE: return "SE";
107 case SMODE_LVD: return "LVD";
109 return "??";
113 * Soft reset the chip.
115 * Raising SRST when the chip is running may cause
116 * problems on dual function chips (see below).
117 * On the other hand, LVD devices need some delay
118 * to settle and report actual BUS mode in STEST4.
120 static void sym_chip_reset (struct sym_hcb *np)
122 OUTB(np, nc_istat, SRST);
123 INB(np, nc_mbox1);
124 udelay(10);
125 OUTB(np, nc_istat, 0);
126 INB(np, nc_mbox1);
127 udelay(2000); /* For BUS MODE to settle */
131 * Really soft reset the chip.:)
133 * Some 896 and 876 chip revisions may hang-up if we set
134 * the SRST (soft reset) bit at the wrong time when SCRIPTS
135 * are running.
136 * So, we need to abort the current operation prior to
137 * soft resetting the chip.
139 static void sym_soft_reset (struct sym_hcb *np)
141 u_char istat = 0;
142 int i;
144 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
145 goto do_chip_reset;
147 OUTB(np, nc_istat, CABRT);
148 for (i = 100000 ; i ; --i) {
149 istat = INB(np, nc_istat);
150 if (istat & SIP) {
151 INW(np, nc_sist);
153 else if (istat & DIP) {
154 if (INB(np, nc_dstat) & ABRT)
155 break;
157 udelay(5);
159 OUTB(np, nc_istat, 0);
160 if (!i)
161 printf("%s: unable to abort current chip operation, "
162 "ISTAT=0x%02x.\n", sym_name(np), istat);
163 do_chip_reset:
164 sym_chip_reset(np);
168 * Start reset process.
170 * The interrupt handler will reinitialize the chip.
172 static void sym_start_reset(struct sym_hcb *np)
174 sym_reset_scsi_bus(np, 1);
177 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
179 u32 term;
180 int retv = 0;
182 sym_soft_reset(np); /* Soft reset the chip */
183 if (enab_int)
184 OUTW(np, nc_sien, RST);
186 * Enable Tolerant, reset IRQD if present and
187 * properly set IRQ mode, prior to resetting the bus.
189 OUTB(np, nc_stest3, TE);
190 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
191 OUTB(np, nc_scntl1, CRST);
192 INB(np, nc_mbox1);
193 udelay(200);
195 if (!SYM_SETUP_SCSI_BUS_CHECK)
196 goto out;
198 * Check for no terminators or SCSI bus shorts to ground.
199 * Read SCSI data bus, data parity bits and control signals.
200 * We are expecting RESET to be TRUE and other signals to be
201 * FALSE.
203 term = INB(np, nc_sstat0);
204 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
205 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
206 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
207 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
208 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
210 if (!np->maxwide)
211 term &= 0x3ffff;
213 if (term != (2<<7)) {
214 printf("%s: suspicious SCSI data while resetting the BUS.\n",
215 sym_name(np));
216 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
217 "0x%lx, expecting 0x%lx\n",
218 sym_name(np),
219 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
220 (u_long)term, (u_long)(2<<7));
221 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
222 retv = 1;
224 out:
225 OUTB(np, nc_scntl1, 0);
226 return retv;
230 * Select SCSI clock frequency
232 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
235 * If multiplier not present or not selected, leave here.
237 if (np->multiplier <= 1) {
238 OUTB(np, nc_scntl3, scntl3);
239 return;
242 if (sym_verbose >= 2)
243 printf ("%s: enabling clock multiplier\n", sym_name(np));
245 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
247 * Wait for the LCKFRQ bit to be set if supported by the chip.
248 * Otherwise wait 50 micro-seconds (at least).
250 if (np->features & FE_LCKFRQ) {
251 int i = 20;
252 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
253 udelay(20);
254 if (!i)
255 printf("%s: the chip cannot lock the frequency\n",
256 sym_name(np));
257 } else {
258 INB(np, nc_mbox1);
259 udelay(50+10);
261 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
262 OUTB(np, nc_scntl3, scntl3);
263 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
264 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
269 * Determine the chip's clock frequency.
271 * This is essential for the negotiation of the synchronous
272 * transfer rate.
274 * Note: we have to return the correct value.
275 * THERE IS NO SAFE DEFAULT VALUE.
277 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
278 * 53C860 and 53C875 rev. 1 support fast20 transfers but
279 * do not have a clock doubler and so are provided with a
280 * 80 MHz clock. All other fast20 boards incorporate a doubler
281 * and so should be delivered with a 40 MHz clock.
282 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
283 * clock and provide a clock quadrupler (160 Mhz).
287 * calculate SCSI clock frequency (in KHz)
289 static unsigned getfreq (struct sym_hcb *np, int gen)
291 unsigned int ms = 0;
292 unsigned int f;
295 * Measure GEN timer delay in order
296 * to calculate SCSI clock frequency
298 * This code will never execute too
299 * many loop iterations (if DELAY is
300 * reasonably correct). It could get
301 * too low a delay (too high a freq.)
302 * if the CPU is slow executing the
303 * loop for some reason (an NMI, for
304 * example). For this reason we will
305 * if multiple measurements are to be
306 * performed trust the higher delay
307 * (lower frequency returned).
309 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
310 INW(np, nc_sist); /* clear pending scsi interrupt */
311 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
312 INW(np, nc_sist); /* another one, just to be sure :) */
314 * The C1010-33 core does not report GEN in SIST,
315 * if this interrupt is masked in SIEN.
316 * I don't know yet if the C1010-66 behaves the same way.
318 if (np->features & FE_C10) {
319 OUTW(np, nc_sien, GEN);
320 OUTB(np, nc_istat1, SIRQD);
322 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
323 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
324 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
325 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
326 udelay(1000/4); /* count in 1/4 of ms */
327 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
329 * Undo C1010-33 specific settings.
331 if (np->features & FE_C10) {
332 OUTW(np, nc_sien, 0);
333 OUTB(np, nc_istat1, 0);
336 * set prescaler to divide by whatever 0 means
337 * 0 ought to choose divide by 2, but appears
338 * to set divide by 3.5 mode in my 53c810 ...
340 OUTB(np, nc_scntl3, 0);
343 * adjust for prescaler, and convert into KHz
345 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
348 * The C1010-33 result is biased by a factor
349 * of 2/3 compared to earlier chips.
351 if (np->features & FE_C10)
352 f = (f * 2) / 3;
354 if (sym_verbose >= 2)
355 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
356 sym_name(np), gen, ms/4, f);
358 return f;
361 static unsigned sym_getfreq (struct sym_hcb *np)
363 u_int f1, f2;
364 int gen = 8;
366 getfreq (np, gen); /* throw away first result */
367 f1 = getfreq (np, gen);
368 f2 = getfreq (np, gen);
369 if (f1 > f2) f1 = f2; /* trust lower result */
370 return f1;
374 * Get/probe chip SCSI clock frequency
376 static void sym_getclock (struct sym_hcb *np, int mult)
378 unsigned char scntl3 = np->sv_scntl3;
379 unsigned char stest1 = np->sv_stest1;
380 unsigned f1;
382 np->multiplier = 1;
383 f1 = 40000;
385 * True with 875/895/896/895A with clock multiplier selected
387 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
388 if (sym_verbose >= 2)
389 printf ("%s: clock multiplier found\n", sym_name(np));
390 np->multiplier = mult;
394 * If multiplier not found or scntl3 not 7,5,3,
395 * reset chip and get frequency from general purpose timer.
396 * Otherwise trust scntl3 BIOS setting.
398 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
399 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
400 f1 = sym_getfreq (np);
402 if (sym_verbose)
403 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
405 if (f1 < 45000) f1 = 40000;
406 else if (f1 < 55000) f1 = 50000;
407 else f1 = 80000;
409 if (f1 < 80000 && mult > 1) {
410 if (sym_verbose >= 2)
411 printf ("%s: clock multiplier assumed\n",
412 sym_name(np));
413 np->multiplier = mult;
415 } else {
416 if ((scntl3 & 7) == 3) f1 = 40000;
417 else if ((scntl3 & 7) == 5) f1 = 80000;
418 else f1 = 160000;
420 f1 /= np->multiplier;
424 * Compute controller synchronous parameters.
426 f1 *= np->multiplier;
427 np->clock_khz = f1;
431 * Get/probe PCI clock frequency
433 static int sym_getpciclock (struct sym_hcb *np)
435 int f = 0;
438 * For now, we only need to know about the actual
439 * PCI BUS clock frequency for C1010-66 chips.
441 #if 1
442 if (np->features & FE_66MHZ) {
443 #else
444 if (1) {
445 #endif
446 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
447 f = sym_getfreq(np);
448 OUTB(np, nc_stest1, 0);
450 np->pciclk_khz = f;
452 return f;
456 * SYMBIOS chip clock divisor table.
458 * Divisors are multiplied by 10,000,000 in order to make
459 * calculations more simple.
461 #define _5M 5000000
462 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
465 * Get clock factor and sync divisor for a given
466 * synchronous factor period.
468 static int
469 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
471 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
472 int div = np->clock_divn; /* Number of divisors supported */
473 u32 fak; /* Sync factor in sxfer */
474 u32 per; /* Period in tenths of ns */
475 u32 kpc; /* (per * clk) */
476 int ret;
479 * Compute the synchronous period in tenths of nano-seconds
481 if (dt && sfac <= 9) per = 125;
482 else if (sfac <= 10) per = 250;
483 else if (sfac == 11) per = 303;
484 else if (sfac == 12) per = 500;
485 else per = 40 * sfac;
486 ret = per;
488 kpc = per * clk;
489 if (dt)
490 kpc <<= 1;
493 * For earliest C10 revision 0, we cannot use extra
494 * clocks for the setting of the SCSI clocking.
495 * Note that this limits the lowest sync data transfer
496 * to 5 Mega-transfers per second and may result in
497 * using higher clock divisors.
499 #if 1
500 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
502 * Look for the lowest clock divisor that allows an
503 * output speed not faster than the period.
505 while (div > 0) {
506 --div;
507 if (kpc > (div_10M[div] << 2)) {
508 ++div;
509 break;
512 fak = 0; /* No extra clocks */
513 if (div == np->clock_divn) { /* Are we too fast ? */
514 ret = -1;
516 *divp = div;
517 *fakp = fak;
518 return ret;
520 #endif
523 * Look for the greatest clock divisor that allows an
524 * input speed faster than the period.
526 while (--div > 0)
527 if (kpc >= (div_10M[div] << 2)) break;
530 * Calculate the lowest clock factor that allows an output
531 * speed not faster than the period, and the max output speed.
532 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
533 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
535 if (dt) {
536 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
537 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
538 } else {
539 fak = (kpc - 1) / div_10M[div] + 1 - 4;
540 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
544 * Check against our hardware limits, or bugs :).
546 if (fak > 2) {
547 fak = 2;
548 ret = -1;
552 * Compute and return sync parameters.
554 *divp = div;
555 *fakp = fak;
557 return ret;
561 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
562 * 128 transfers. All chips support at least 16 transfers
563 * bursts. The 825A, 875 and 895 chips support bursts of up
564 * to 128 transfers and the 895A and 896 support bursts of up
565 * to 64 transfers. All other chips support up to 16
566 * transfers bursts.
568 * For PCI 32 bit data transfers each transfer is a DWORD.
569 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
571 * We use log base 2 (burst length) as internal code, with
572 * value 0 meaning "burst disabled".
576 * Burst length from burst code.
578 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
581 * Burst code from io register bits.
583 #define burst_code(dmode, ctest4, ctest5) \
584 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
587 * Set initial io register bits from burst code.
589 static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
591 np->rv_ctest4 &= ~0x80;
592 np->rv_dmode &= ~(0x3 << 6);
593 np->rv_ctest5 &= ~0x4;
595 if (!bc) {
596 np->rv_ctest4 |= 0x80;
598 else {
599 --bc;
600 np->rv_dmode |= ((bc & 0x3) << 6);
601 np->rv_ctest5 |= (bc & 0x4);
606 * Save initial settings of some IO registers.
607 * Assumed to have been set by BIOS.
608 * We cannot reset the chip prior to reading the
609 * IO registers, since informations will be lost.
610 * Since the SCRIPTS processor may be running, this
611 * is not safe on paper, but it seems to work quite
612 * well. :)
614 static void sym_save_initial_setting (struct sym_hcb *np)
616 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
617 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
618 np->sv_dmode = INB(np, nc_dmode) & 0xce;
619 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
620 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
621 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
622 np->sv_gpcntl = INB(np, nc_gpcntl);
623 np->sv_stest1 = INB(np, nc_stest1);
624 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
625 np->sv_stest4 = INB(np, nc_stest4);
626 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
627 np->sv_scntl4 = INB(np, nc_scntl4);
628 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
630 else
631 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
635 * Set SCSI BUS mode.
636 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
637 * through the STEST4 IO register.
638 * - For previous generation chips (825/825A/875), the user has to tell us
639 * how to check against HVD, since a 100% safe algorithm is not possible.
641 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
643 if (np->scsi_mode)
644 return;
646 np->scsi_mode = SMODE_SE;
647 if (np->features & (FE_ULTRA2|FE_ULTRA3))
648 np->scsi_mode = (np->sv_stest4 & SMODE);
649 else if (np->features & FE_DIFF) {
650 if (SYM_SETUP_SCSI_DIFF == 1) {
651 if (np->sv_scntl3) {
652 if (np->sv_stest2 & 0x20)
653 np->scsi_mode = SMODE_HVD;
654 } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
655 if (!(INB(np, nc_gpreg) & 0x08))
656 np->scsi_mode = SMODE_HVD;
658 } else if (SYM_SETUP_SCSI_DIFF == 2)
659 np->scsi_mode = SMODE_HVD;
661 if (np->scsi_mode == SMODE_HVD)
662 np->rv_stest2 |= 0x20;
666 * Prepare io register values used by sym_start_up()
667 * according to selected and supported features.
669 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
671 struct sym_data *sym_data = shost_priv(shost);
672 struct pci_dev *pdev = sym_data->pdev;
673 u_char burst_max;
674 u32 period;
675 int i;
677 np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
680 * Guess the frequency of the chip's clock.
682 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
683 np->clock_khz = 160000;
684 else if (np->features & FE_ULTRA)
685 np->clock_khz = 80000;
686 else
687 np->clock_khz = 40000;
690 * Get the clock multiplier factor.
692 if (np->features & FE_QUAD)
693 np->multiplier = 4;
694 else if (np->features & FE_DBLR)
695 np->multiplier = 2;
696 else
697 np->multiplier = 1;
700 * Measure SCSI clock frequency for chips
701 * it may vary from assumed one.
703 if (np->features & FE_VARCLK)
704 sym_getclock(np, np->multiplier);
707 * Divisor to be used for async (timer pre-scaler).
709 i = np->clock_divn - 1;
710 while (--i >= 0) {
711 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
712 ++i;
713 break;
716 np->rv_scntl3 = i+1;
719 * The C1010 uses hardwired divisors for async.
720 * So, we just throw away, the async. divisor.:-)
722 if (np->features & FE_C10)
723 np->rv_scntl3 = 0;
726 * Minimum synchronous period factor supported by the chip.
727 * Btw, 'period' is in tenths of nanoseconds.
729 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
731 if (period <= 250) np->minsync = 10;
732 else if (period <= 303) np->minsync = 11;
733 else if (period <= 500) np->minsync = 12;
734 else np->minsync = (period + 40 - 1) / 40;
737 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
739 if (np->minsync < 25 &&
740 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
741 np->minsync = 25;
742 else if (np->minsync < 12 &&
743 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
744 np->minsync = 12;
747 * Maximum synchronous period factor supported by the chip.
749 period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz);
750 np->maxsync = period > 2540 ? 254 : period / 10;
753 * If chip is a C1010, guess the sync limits in DT mode.
755 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
756 if (np->clock_khz == 160000) {
757 np->minsync_dt = 9;
758 np->maxsync_dt = 50;
759 np->maxoffs_dt = nvram->type ? 62 : 31;
764 * 64 bit addressing (895A/896/1010) ?
766 if (np->features & FE_DAC) {
767 if (!use_dac(np))
768 np->rv_ccntl1 |= (DDAC);
769 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
770 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
771 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
772 np->rv_ccntl1 |= (0 | EXTIBMV);
776 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
778 if (np->features & FE_NOPM)
779 np->rv_ccntl0 |= (ENPMJ);
782 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
783 * In dual channel mode, contention occurs if internal cycles
784 * are used. Disable internal cycles.
786 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
787 pdev->revision < 0x1)
788 np->rv_ccntl0 |= DILS;
791 * Select burst length (dwords)
793 burst_max = SYM_SETUP_BURST_ORDER;
794 if (burst_max == 255)
795 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
796 np->sv_ctest5);
797 if (burst_max > 7)
798 burst_max = 7;
799 if (burst_max > np->maxburst)
800 burst_max = np->maxburst;
803 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
804 * This chip and the 860 Rev 1 may wrongly use PCI cache line
805 * based transactions on LOAD/STORE instructions. So we have
806 * to prevent these chips from using such PCI transactions in
807 * this driver. The generic ncr driver that does not use
808 * LOAD/STORE instructions does not need this work-around.
810 if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
811 pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
812 (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
813 pdev->revision <= 0x1))
814 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
817 * Select all supported special features.
818 * If we are using on-board RAM for scripts, prefetch (PFEN)
819 * does not help, but burst op fetch (BOF) does.
820 * Disabling PFEN makes sure BOF will be used.
822 if (np->features & FE_ERL)
823 np->rv_dmode |= ERL; /* Enable Read Line */
824 if (np->features & FE_BOF)
825 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
826 if (np->features & FE_ERMP)
827 np->rv_dmode |= ERMP; /* Enable Read Multiple */
828 #if 1
829 if ((np->features & FE_PFEN) && !np->ram_ba)
830 #else
831 if (np->features & FE_PFEN)
832 #endif
833 np->rv_dcntl |= PFEN; /* Prefetch Enable */
834 if (np->features & FE_CLSE)
835 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
836 if (np->features & FE_WRIE)
837 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
838 if (np->features & FE_DFS)
839 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
842 * Select some other
844 np->rv_ctest4 |= MPEE; /* Master parity checking */
845 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
848 * Get parity checking, host ID and verbose mode from NVRAM
850 np->myaddr = 255;
851 np->scsi_mode = 0;
852 sym_nvram_setup_host(shost, np, nvram);
855 * Get SCSI addr of host adapter (set by bios?).
857 if (np->myaddr == 255) {
858 np->myaddr = INB(np, nc_scid) & 0x07;
859 if (!np->myaddr)
860 np->myaddr = SYM_SETUP_HOST_ID;
864 * Prepare initial io register bits for burst length
866 sym_init_burst(np, burst_max);
868 sym_set_bus_mode(np, nvram);
871 * Set LED support from SCRIPTS.
872 * Ignore this feature for boards known to use a
873 * specific GPIO wiring and for the 895A, 896
874 * and 1010 that drive the LED directly.
876 if ((SYM_SETUP_SCSI_LED ||
877 (nvram->type == SYM_SYMBIOS_NVRAM ||
878 (nvram->type == SYM_TEKRAM_NVRAM &&
879 pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
880 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
881 np->features |= FE_LED0;
884 * Set irq mode.
886 switch(SYM_SETUP_IRQ_MODE & 3) {
887 case 2:
888 np->rv_dcntl |= IRQM;
889 break;
890 case 1:
891 np->rv_dcntl |= (np->sv_dcntl & IRQM);
892 break;
893 default:
894 break;
898 * Configure targets according to driver setup.
899 * If NVRAM present get targets setup from NVRAM.
901 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
902 struct sym_tcb *tp = &np->target[i];
904 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
905 tp->usrtags = SYM_SETUP_MAX_TAG;
906 tp->usr_width = np->maxwide;
907 tp->usr_period = 9;
909 sym_nvram_setup_target(tp, i, nvram);
911 if (!tp->usrtags)
912 tp->usrflags &= ~SYM_TAGS_ENABLED;
916 * Let user know about the settings.
918 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
919 sym_nvram_type(nvram), np->myaddr,
920 (np->features & FE_ULTRA3) ? 80 :
921 (np->features & FE_ULTRA2) ? 40 :
922 (np->features & FE_ULTRA) ? 20 : 10,
923 sym_scsi_bus_mode(np->scsi_mode),
924 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
926 * Tell him more on demand.
928 if (sym_verbose) {
929 printf("%s: %s IRQ line driver%s\n",
930 sym_name(np),
931 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
932 np->ram_ba ? ", using on-chip SRAM" : "");
933 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
934 if (np->features & FE_NOPM)
935 printf("%s: handling phase mismatch from SCRIPTS.\n",
936 sym_name(np));
939 * And still more.
941 if (sym_verbose >= 2) {
942 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
943 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
944 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
945 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
947 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
948 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
949 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
950 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
953 return 0;
957 * Test the pci bus snoop logic :-(
959 * Has to be called with interrupts disabled.
961 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
962 static int sym_regtest(struct sym_hcb *np)
964 register volatile u32 data;
966 * chip registers may NOT be cached.
967 * write 0xffffffff to a read only register area,
968 * and try to read it back.
970 data = 0xffffffff;
971 OUTL(np, nc_dstat, data);
972 data = INL(np, nc_dstat);
973 #if 1
974 if (data == 0xffffffff) {
975 #else
976 if ((data & 0xe2f0fffd) != 0x02000080) {
977 #endif
978 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
979 (unsigned) data);
980 return 0x10;
982 return 0;
984 #else
985 static inline int sym_regtest(struct sym_hcb *np)
987 return 0;
989 #endif
991 static int sym_snooptest(struct sym_hcb *np)
993 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
994 int i, err;
996 err = sym_regtest(np);
997 if (err)
998 return err;
999 restart_test:
1001 * Enable Master Parity Checking as we intend
1002 * to enable it for normal operations.
1004 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1006 * init
1008 pc = SCRIPTZ_BA(np, snooptest);
1009 host_wr = 1;
1010 sym_wr = 2;
1012 * Set memory and register.
1014 np->scratch = cpu_to_scr(host_wr);
1015 OUTL(np, nc_temp, sym_wr);
1017 * Start script (exchange values)
1019 OUTL(np, nc_dsa, np->hcb_ba);
1020 OUTL_DSP(np, pc);
1022 * Wait 'til done (with timeout)
1024 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1025 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1026 break;
1027 if (i>=SYM_SNOOP_TIMEOUT) {
1028 printf ("CACHE TEST FAILED: timeout.\n");
1029 return (0x20);
1032 * Check for fatal DMA errors.
1034 dstat = INB(np, nc_dstat);
1035 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1036 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1037 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1038 "DISABLING MASTER DATA PARITY CHECKING.\n",
1039 sym_name(np));
1040 np->rv_ctest4 &= ~MPEE;
1041 goto restart_test;
1043 #endif
1044 if (dstat & (MDPE|BF|IID)) {
1045 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1046 return (0x80);
1049 * Save termination position.
1051 pc = INL(np, nc_dsp);
1053 * Read memory and register.
1055 host_rd = scr_to_cpu(np->scratch);
1056 sym_rd = INL(np, nc_scratcha);
1057 sym_bk = INL(np, nc_temp);
1059 * Check termination position.
1061 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1062 printf ("CACHE TEST FAILED: script execution failed.\n");
1063 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1064 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1065 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1066 return (0x40);
1069 * Show results.
1071 if (host_wr != sym_rd) {
1072 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1073 (int) host_wr, (int) sym_rd);
1074 err |= 1;
1076 if (host_rd != sym_wr) {
1077 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1078 (int) sym_wr, (int) host_rd);
1079 err |= 2;
1081 if (sym_bk != sym_wr) {
1082 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1083 (int) sym_wr, (int) sym_bk);
1084 err |= 4;
1087 return err;
1091 * log message for real hard errors
1093 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1094 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1096 * exception register:
1097 * ds: dstat
1098 * si: sist
1100 * SCSI bus lines:
1101 * so: control lines as driven by chip.
1102 * si: control lines as seen by chip.
1103 * sd: scsi data lines as seen by chip.
1105 * wide/fastmode:
1106 * sx: sxfer (see the manual)
1107 * s3: scntl3 (see the manual)
1108 * s4: scntl4 (see the manual)
1110 * current script command:
1111 * dsp: script address (relative to start of script).
1112 * dbc: first word of script command.
1114 * First 24 register of the chip:
1115 * r0..rf
1117 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1119 struct sym_hcb *np = sym_get_hcb(shost);
1120 u32 dsp;
1121 int script_ofs;
1122 int script_size;
1123 char *script_name;
1124 u_char *script_base;
1125 int i;
1127 dsp = INL(np, nc_dsp);
1129 if (dsp > np->scripta_ba &&
1130 dsp <= np->scripta_ba + np->scripta_sz) {
1131 script_ofs = dsp - np->scripta_ba;
1132 script_size = np->scripta_sz;
1133 script_base = (u_char *) np->scripta0;
1134 script_name = "scripta";
1136 else if (np->scriptb_ba < dsp &&
1137 dsp <= np->scriptb_ba + np->scriptb_sz) {
1138 script_ofs = dsp - np->scriptb_ba;
1139 script_size = np->scriptb_sz;
1140 script_base = (u_char *) np->scriptb0;
1141 script_name = "scriptb";
1142 } else {
1143 script_ofs = dsp;
1144 script_size = 0;
1145 script_base = NULL;
1146 script_name = "mem";
1149 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1150 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1151 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1152 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1153 (unsigned)INB(np, nc_scntl3),
1154 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1155 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1157 if (((script_ofs & 3) == 0) &&
1158 (unsigned)script_ofs < script_size) {
1159 printf ("%s: script cmd = %08x\n", sym_name(np),
1160 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1163 printf("%s: regdump:", sym_name(np));
1164 for (i = 0; i < 24; i++)
1165 printf(" %02x", (unsigned)INB_OFF(np, i));
1166 printf(".\n");
1169 * PCI BUS error.
1171 if (dstat & (MDPE|BF))
1172 sym_log_bus_error(shost);
1175 void sym_dump_registers(struct Scsi_Host *shost)
1177 struct sym_hcb *np = sym_get_hcb(shost);
1178 u_short sist;
1179 u_char dstat;
1181 sist = INW(np, nc_sist);
1182 dstat = INB(np, nc_dstat);
1183 sym_log_hard_error(shost, sist, dstat);
1186 static struct sym_chip sym_dev_table[] = {
1187 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1188 FE_ERL}
1190 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1191 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1192 FE_BOF}
1194 #else
1195 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1196 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1198 #endif
1199 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1200 FE_BOF|FE_ERL}
1202 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1203 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1205 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1206 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1208 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1209 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1211 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1212 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1213 FE_RAM|FE_DIFF|FE_VARCLK}
1215 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1216 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1217 FE_RAM|FE_DIFF|FE_VARCLK}
1219 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1220 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1221 FE_RAM|FE_DIFF|FE_VARCLK}
1223 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1224 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1225 FE_RAM|FE_DIFF|FE_VARCLK}
1227 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1228 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1229 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1230 FE_RAM|FE_LCKFRQ}
1232 #else
1233 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1234 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1235 FE_RAM|FE_LCKFRQ}
1237 #endif
1238 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1239 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1240 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1242 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1243 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1244 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1246 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1247 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1248 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1250 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1251 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1252 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1253 FE_C10}
1255 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1256 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1257 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1258 FE_C10|FE_U3EN}
1260 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1261 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1262 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1263 FE_C10|FE_U3EN}
1265 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1266 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1267 FE_RAM|FE_IO256|FE_LEDC}
1270 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1273 * Look up the chip table.
1275 * Return a pointer to the chip entry if found,
1276 * zero otherwise.
1278 struct sym_chip *
1279 sym_lookup_chip_table (u_short device_id, u_char revision)
1281 struct sym_chip *chip;
1282 int i;
1284 for (i = 0; i < sym_num_devs; i++) {
1285 chip = &sym_dev_table[i];
1286 if (device_id != chip->device_id)
1287 continue;
1288 if (revision > chip->revision_id)
1289 continue;
1290 return chip;
1293 return NULL;
1296 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1298 * Lookup the 64 bit DMA segments map.
1299 * This is only used if the direct mapping
1300 * has been unsuccessful.
1302 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1304 int i;
1306 if (!use_dac(np))
1307 goto weird;
1309 /* Look up existing mappings */
1310 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1311 if (h == np->dmap_bah[i])
1312 return i;
1314 /* If direct mapping is free, get it */
1315 if (!np->dmap_bah[s])
1316 goto new;
1317 /* Collision -> lookup free mappings */
1318 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1319 if (!np->dmap_bah[s])
1320 goto new;
1322 weird:
1323 panic("sym: ran out of 64 bit DMA segment registers");
1324 return -1;
1325 new:
1326 np->dmap_bah[s] = h;
1327 np->dmap_dirty = 1;
1328 return s;
1332 * Update IO registers scratch C..R so they will be
1333 * in sync. with queued CCB expectations.
1335 static void sym_update_dmap_regs(struct sym_hcb *np)
1337 int o, i;
1339 if (!np->dmap_dirty)
1340 return;
1341 o = offsetof(struct sym_reg, nc_scrx[0]);
1342 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1343 OUTL_OFF(np, o, np->dmap_bah[i]);
1344 o += 4;
1346 np->dmap_dirty = 0;
1348 #endif
1350 /* Enforce all the fiddly SPI rules and the chip limitations */
1351 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1352 struct sym_trans *goal)
1354 if (!spi_support_wide(starget))
1355 goal->width = 0;
1357 if (!spi_support_sync(starget)) {
1358 goal->iu = 0;
1359 goal->dt = 0;
1360 goal->qas = 0;
1361 goal->offset = 0;
1362 return;
1365 if (spi_support_dt(starget)) {
1366 if (spi_support_dt_only(starget))
1367 goal->dt = 1;
1369 if (goal->offset == 0)
1370 goal->dt = 0;
1371 } else {
1372 goal->dt = 0;
1375 /* Some targets fail to properly negotiate DT in SE mode */
1376 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1377 goal->dt = 0;
1379 if (goal->dt) {
1380 /* all DT transfers must be wide */
1381 goal->width = 1;
1382 if (goal->offset > np->maxoffs_dt)
1383 goal->offset = np->maxoffs_dt;
1384 if (goal->period < np->minsync_dt)
1385 goal->period = np->minsync_dt;
1386 if (goal->period > np->maxsync_dt)
1387 goal->period = np->maxsync_dt;
1388 } else {
1389 goal->iu = goal->qas = 0;
1390 if (goal->offset > np->maxoffs)
1391 goal->offset = np->maxoffs;
1392 if (goal->period < np->minsync)
1393 goal->period = np->minsync;
1394 if (goal->period > np->maxsync)
1395 goal->period = np->maxsync;
1400 * Prepare the next negotiation message if needed.
1402 * Fill in the part of message buffer that contains the
1403 * negotiation and the nego_status field of the CCB.
1404 * Returns the size of the message in bytes.
1406 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1408 struct sym_tcb *tp = &np->target[cp->target];
1409 struct scsi_target *starget = tp->starget;
1410 struct sym_trans *goal = &tp->tgoal;
1411 int msglen = 0;
1412 int nego;
1414 sym_check_goals(np, starget, goal);
1417 * Many devices implement PPR in a buggy way, so only use it if we
1418 * really want to.
1420 if (goal->renego == NS_PPR || (goal->offset &&
1421 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1422 nego = NS_PPR;
1423 } else if (goal->renego == NS_WIDE || goal->width) {
1424 nego = NS_WIDE;
1425 } else if (goal->renego == NS_SYNC || goal->offset) {
1426 nego = NS_SYNC;
1427 } else {
1428 goal->check_nego = 0;
1429 nego = 0;
1432 switch (nego) {
1433 case NS_SYNC:
1434 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1435 goal->offset);
1436 break;
1437 case NS_WIDE:
1438 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1439 break;
1440 case NS_PPR:
1441 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1442 goal->offset, goal->width,
1443 (goal->iu ? PPR_OPT_IU : 0) |
1444 (goal->dt ? PPR_OPT_DT : 0) |
1445 (goal->qas ? PPR_OPT_QAS : 0));
1446 break;
1449 cp->nego_status = nego;
1451 if (nego) {
1452 tp->nego_cp = cp; /* Keep track a nego will be performed */
1453 if (DEBUG_FLAGS & DEBUG_NEGO) {
1454 sym_print_nego_msg(np, cp->target,
1455 nego == NS_SYNC ? "sync msgout" :
1456 nego == NS_WIDE ? "wide msgout" :
1457 "ppr msgout", msgptr);
1461 return msglen;
1465 * Insert a job into the start queue.
1467 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1469 u_short qidx;
1471 #ifdef SYM_CONF_IARB_SUPPORT
1473 * If the previously queued CCB is not yet done,
1474 * set the IARB hint. The SCRIPTS will go with IARB
1475 * for this job when starting the previous one.
1476 * We leave devices a chance to win arbitration by
1477 * not using more than 'iarb_max' consecutive
1478 * immediate arbitrations.
1480 if (np->last_cp && np->iarb_count < np->iarb_max) {
1481 np->last_cp->host_flags |= HF_HINT_IARB;
1482 ++np->iarb_count;
1484 else
1485 np->iarb_count = 0;
1486 np->last_cp = cp;
1487 #endif
1489 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1491 * Make SCRIPTS aware of the 64 bit DMA
1492 * segment registers not being up-to-date.
1494 if (np->dmap_dirty)
1495 cp->host_xflags |= HX_DMAP_DIRTY;
1496 #endif
1499 * Insert first the idle task and then our job.
1500 * The MBs should ensure proper ordering.
1502 qidx = np->squeueput + 2;
1503 if (qidx >= MAX_QUEUE*2) qidx = 0;
1505 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1506 MEMORY_WRITE_BARRIER();
1507 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1509 np->squeueput = qidx;
1511 if (DEBUG_FLAGS & DEBUG_QUEUE)
1512 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1513 np->squeueput);
1516 * Script processor may be waiting for reselect.
1517 * Wake it up.
1519 MEMORY_WRITE_BARRIER();
1520 OUTB(np, nc_istat, SIGP|np->istat_sem);
1523 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1525 * Start next ready-to-start CCBs.
1527 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1529 SYM_QUEHEAD *qp;
1530 struct sym_ccb *cp;
1533 * Paranoia, as usual. :-)
1535 assert(!lp->started_tags || !lp->started_no_tag);
1538 * Try to start as many commands as asked by caller.
1539 * Prevent from having both tagged and untagged
1540 * commands queued to the device at the same time.
1542 while (maxn--) {
1543 qp = sym_remque_head(&lp->waiting_ccbq);
1544 if (!qp)
1545 break;
1546 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1547 if (cp->tag != NO_TAG) {
1548 if (lp->started_no_tag ||
1549 lp->started_tags >= lp->started_max) {
1550 sym_insque_head(qp, &lp->waiting_ccbq);
1551 break;
1553 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1554 lp->head.resel_sa =
1555 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1556 ++lp->started_tags;
1557 } else {
1558 if (lp->started_no_tag || lp->started_tags) {
1559 sym_insque_head(qp, &lp->waiting_ccbq);
1560 break;
1562 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1563 lp->head.resel_sa =
1564 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1565 ++lp->started_no_tag;
1567 cp->started = 1;
1568 sym_insque_tail(qp, &lp->started_ccbq);
1569 sym_put_start_queue(np, cp);
1572 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1575 * The chip may have completed jobs. Look at the DONE QUEUE.
1577 * On paper, memory read barriers may be needed here to
1578 * prevent out of order LOADs by the CPU from having
1579 * prefetched stale data prior to DMA having occurred.
1581 static int sym_wakeup_done (struct sym_hcb *np)
1583 struct sym_ccb *cp;
1584 int i, n;
1585 u32 dsa;
1587 n = 0;
1588 i = np->dqueueget;
1590 /* MEMORY_READ_BARRIER(); */
1591 while (1) {
1592 dsa = scr_to_cpu(np->dqueue[i]);
1593 if (!dsa)
1594 break;
1595 np->dqueue[i] = 0;
1596 if ((i = i+2) >= MAX_QUEUE*2)
1597 i = 0;
1599 cp = sym_ccb_from_dsa(np, dsa);
1600 if (cp) {
1601 MEMORY_READ_BARRIER();
1602 sym_complete_ok (np, cp);
1603 ++n;
1605 else
1606 printf ("%s: bad DSA (%x) in done queue.\n",
1607 sym_name(np), (u_int) dsa);
1609 np->dqueueget = i;
1611 return n;
1615 * Complete all CCBs queued to the COMP queue.
1617 * These CCBs are assumed:
1618 * - Not to be referenced either by devices or
1619 * SCRIPTS-related queues and datas.
1620 * - To have to be completed with an error condition
1621 * or requeued.
1623 * The device queue freeze count is incremented
1624 * for each CCB that does not prevent this.
1625 * This function is called when all CCBs involved
1626 * in error handling/recovery have been reaped.
1628 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1630 SYM_QUEHEAD *qp;
1631 struct sym_ccb *cp;
1633 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1634 struct scsi_cmnd *cmd;
1635 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1636 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1637 /* Leave quiet CCBs waiting for resources */
1638 if (cp->host_status == HS_WAIT)
1639 continue;
1640 cmd = cp->cmd;
1641 if (cam_status)
1642 sym_set_cam_status(cmd, cam_status);
1643 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1644 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1645 struct sym_tcb *tp = &np->target[cp->target];
1646 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1647 if (lp) {
1648 sym_remque(&cp->link2_ccbq);
1649 sym_insque_tail(&cp->link2_ccbq,
1650 &lp->waiting_ccbq);
1651 if (cp->started) {
1652 if (cp->tag != NO_TAG)
1653 --lp->started_tags;
1654 else
1655 --lp->started_no_tag;
1658 cp->started = 0;
1659 continue;
1661 #endif
1662 sym_free_ccb(np, cp);
1663 sym_xpt_done(np, cmd);
1668 * Complete all active CCBs with error.
1669 * Used on CHIP/SCSI RESET.
1671 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1674 * Move all active CCBs to the COMP queue
1675 * and flush this queue.
1677 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1678 sym_que_init(&np->busy_ccbq);
1679 sym_flush_comp_queue(np, cam_status);
1683 * Start chip.
1685 * 'reason' means:
1686 * 0: initialisation.
1687 * 1: SCSI BUS RESET delivered or received.
1688 * 2: SCSI BUS MODE changed.
1690 void sym_start_up(struct Scsi_Host *shost, int reason)
1692 struct sym_data *sym_data = shost_priv(shost);
1693 struct pci_dev *pdev = sym_data->pdev;
1694 struct sym_hcb *np = sym_data->ncb;
1695 int i;
1696 u32 phys;
1699 * Reset chip if asked, otherwise just clear fifos.
1701 if (reason == 1)
1702 sym_soft_reset(np);
1703 else {
1704 OUTB(np, nc_stest3, TE|CSF);
1705 OUTONB(np, nc_ctest3, CLF);
1709 * Clear Start Queue
1711 phys = np->squeue_ba;
1712 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1713 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1714 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1716 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1719 * Start at first entry.
1721 np->squeueput = 0;
1724 * Clear Done Queue
1726 phys = np->dqueue_ba;
1727 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1728 np->dqueue[i] = 0;
1729 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1731 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1734 * Start at first entry.
1736 np->dqueueget = 0;
1739 * Install patches in scripts.
1740 * This also let point to first position the start
1741 * and done queue pointers used from SCRIPTS.
1743 np->fw_patch(shost);
1746 * Wakeup all pending jobs.
1748 sym_flush_busy_queue(np, DID_RESET);
1751 * Init chip.
1753 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
1754 INB(np, nc_mbox1);
1755 udelay(2000); /* The 895 needs time for the bus mode to settle */
1757 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1758 /* full arb., ena parity, par->ATN */
1759 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1761 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1763 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1764 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1765 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1766 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1767 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1769 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1770 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1771 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1773 /* Extended Sreq/Sack filtering not supported on the C10 */
1774 if (np->features & FE_C10)
1775 OUTB(np, nc_stest2, np->rv_stest2);
1776 else
1777 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1779 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1780 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1783 * For now, disable AIP generation on C1010-66.
1785 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1786 OUTB(np, nc_aipcntl1, DISAIP);
1789 * C10101 rev. 0 errata.
1790 * Errant SGE's when in narrow. Write bits 4 & 5 of
1791 * STEST1 register to disable SGE. We probably should do
1792 * that from SCRIPTS for each selection/reselection, but
1793 * I just don't want. :)
1795 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1796 pdev->revision < 1)
1797 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1800 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1801 * Disable overlapped arbitration for some dual function devices,
1802 * regardless revision id (kind of post-chip-design feature. ;-))
1804 if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1805 OUTB(np, nc_ctest0, (1<<5));
1806 else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1807 np->rv_ccntl0 |= DPR;
1810 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1811 * and/or hardware phase mismatch, since only such chips
1812 * seem to support those IO registers.
1814 if (np->features & (FE_DAC|FE_NOPM)) {
1815 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1816 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1819 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1821 * Set up scratch C and DRS IO registers to map the 32 bit
1822 * DMA address range our data structures are located in.
1824 if (use_dac(np)) {
1825 np->dmap_bah[0] = 0; /* ??? */
1826 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1827 OUTL(np, nc_drs, np->dmap_bah[0]);
1829 #endif
1832 * If phase mismatch handled by scripts (895A/896/1010),
1833 * set PM jump addresses.
1835 if (np->features & FE_NOPM) {
1836 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1837 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1841 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1842 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1844 if (np->features & FE_LED0)
1845 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1846 else if (np->features & FE_LEDC)
1847 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1850 * enable ints
1852 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1853 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1856 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1857 * Try to eat the spurious SBMC interrupt that may occur when
1858 * we reset the chip but not the SCSI BUS (at initialization).
1860 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1861 OUTONW(np, nc_sien, SBMC);
1862 if (reason == 0) {
1863 INB(np, nc_mbox1);
1864 mdelay(100);
1865 INW(np, nc_sist);
1867 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1871 * Fill in target structure.
1872 * Reinitialize usrsync.
1873 * Reinitialize usrwide.
1874 * Prepare sync negotiation according to actual SCSI bus mode.
1876 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1877 struct sym_tcb *tp = &np->target[i];
1879 tp->to_reset = 0;
1880 tp->head.sval = 0;
1881 tp->head.wval = np->rv_scntl3;
1882 tp->head.uval = 0;
1883 if (tp->lun0p)
1884 tp->lun0p->to_clear = 0;
1885 if (tp->lunmp) {
1886 int ln;
1888 for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1889 if (tp->lunmp[ln])
1890 tp->lunmp[ln]->to_clear = 0;
1895 * Download SCSI SCRIPTS to on-chip RAM if present,
1896 * and start script processor.
1897 * We do the download preferently from the CPU.
1898 * For platforms that may not support PCI memory mapping,
1899 * we use simple SCRIPTS that performs MEMORY MOVEs.
1901 phys = SCRIPTA_BA(np, init);
1902 if (np->ram_ba) {
1903 if (sym_verbose >= 2)
1904 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1905 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1906 if (np->features & FE_RAM8K) {
1907 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1908 phys = scr_to_cpu(np->scr_ram_seg);
1909 OUTL(np, nc_mmws, phys);
1910 OUTL(np, nc_mmrs, phys);
1911 OUTL(np, nc_sfs, phys);
1912 phys = SCRIPTB_BA(np, start64);
1916 np->istat_sem = 0;
1918 OUTL(np, nc_dsa, np->hcb_ba);
1919 OUTL_DSP(np, phys);
1922 * Notify the XPT about the RESET condition.
1924 if (reason != 0)
1925 sym_xpt_async_bus_reset(np);
1929 * Switch trans mode for current job and its target.
1931 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1932 u_char per, u_char wide, u_char div, u_char fak)
1934 SYM_QUEHEAD *qp;
1935 u_char sval, wval, uval;
1936 struct sym_tcb *tp = &np->target[target];
1938 assert(target == (INB(np, nc_sdid) & 0x0f));
1940 sval = tp->head.sval;
1941 wval = tp->head.wval;
1942 uval = tp->head.uval;
1944 #if 0
1945 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1946 sval, wval, uval, np->rv_scntl3);
1947 #endif
1949 * Set the offset.
1951 if (!(np->features & FE_C10))
1952 sval = (sval & ~0x1f) | ofs;
1953 else
1954 sval = (sval & ~0x3f) | ofs;
1957 * Set the sync divisor and extra clock factor.
1959 if (ofs != 0) {
1960 wval = (wval & ~0x70) | ((div+1) << 4);
1961 if (!(np->features & FE_C10))
1962 sval = (sval & ~0xe0) | (fak << 5);
1963 else {
1964 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1965 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1966 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1971 * Set the bus width.
1973 wval = wval & ~EWS;
1974 if (wide != 0)
1975 wval |= EWS;
1978 * Set misc. ultra enable bits.
1980 if (np->features & FE_C10) {
1981 uval = uval & ~(U3EN|AIPCKEN);
1982 if (opts) {
1983 assert(np->features & FE_U3EN);
1984 uval |= U3EN;
1986 } else {
1987 wval = wval & ~ULTRA;
1988 if (per <= 12) wval |= ULTRA;
1992 * Stop there if sync parameters are unchanged.
1994 if (tp->head.sval == sval &&
1995 tp->head.wval == wval &&
1996 tp->head.uval == uval)
1997 return;
1998 tp->head.sval = sval;
1999 tp->head.wval = wval;
2000 tp->head.uval = uval;
2003 * Disable extended Sreq/Sack filtering if per < 50.
2004 * Not supported on the C1010.
2006 if (per < 50 && !(np->features & FE_C10))
2007 OUTOFFB(np, nc_stest2, EXT);
2010 * set actual value and sync_status
2012 OUTB(np, nc_sxfer, tp->head.sval);
2013 OUTB(np, nc_scntl3, tp->head.wval);
2015 if (np->features & FE_C10) {
2016 OUTB(np, nc_scntl4, tp->head.uval);
2020 * patch ALL busy ccbs of this target.
2022 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2023 struct sym_ccb *cp;
2024 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2025 if (cp->target != target)
2026 continue;
2027 cp->phys.select.sel_scntl3 = tp->head.wval;
2028 cp->phys.select.sel_sxfer = tp->head.sval;
2029 if (np->features & FE_C10) {
2030 cp->phys.select.sel_scntl4 = tp->head.uval;
2035 static void sym_announce_transfer_rate(struct sym_tcb *tp)
2037 struct scsi_target *starget = tp->starget;
2039 if (tp->tprint.period != spi_period(starget) ||
2040 tp->tprint.offset != spi_offset(starget) ||
2041 tp->tprint.width != spi_width(starget) ||
2042 tp->tprint.iu != spi_iu(starget) ||
2043 tp->tprint.dt != spi_dt(starget) ||
2044 tp->tprint.qas != spi_qas(starget) ||
2045 !tp->tprint.check_nego) {
2046 tp->tprint.period = spi_period(starget);
2047 tp->tprint.offset = spi_offset(starget);
2048 tp->tprint.width = spi_width(starget);
2049 tp->tprint.iu = spi_iu(starget);
2050 tp->tprint.dt = spi_dt(starget);
2051 tp->tprint.qas = spi_qas(starget);
2052 tp->tprint.check_nego = 1;
2054 spi_display_xfer_agreement(starget);
2059 * We received a WDTR.
2060 * Let everything be aware of the changes.
2062 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2064 struct sym_tcb *tp = &np->target[target];
2065 struct scsi_target *starget = tp->starget;
2067 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2069 if (wide)
2070 tp->tgoal.renego = NS_WIDE;
2071 else
2072 tp->tgoal.renego = 0;
2073 tp->tgoal.check_nego = 0;
2074 tp->tgoal.width = wide;
2075 spi_offset(starget) = 0;
2076 spi_period(starget) = 0;
2077 spi_width(starget) = wide;
2078 spi_iu(starget) = 0;
2079 spi_dt(starget) = 0;
2080 spi_qas(starget) = 0;
2082 if (sym_verbose >= 3)
2083 sym_announce_transfer_rate(tp);
2087 * We received a SDTR.
2088 * Let everything be aware of the changes.
2090 static void
2091 sym_setsync(struct sym_hcb *np, int target,
2092 u_char ofs, u_char per, u_char div, u_char fak)
2094 struct sym_tcb *tp = &np->target[target];
2095 struct scsi_target *starget = tp->starget;
2096 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2098 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2100 if (wide)
2101 tp->tgoal.renego = NS_WIDE;
2102 else if (ofs)
2103 tp->tgoal.renego = NS_SYNC;
2104 else
2105 tp->tgoal.renego = 0;
2106 spi_period(starget) = per;
2107 spi_offset(starget) = ofs;
2108 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2110 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2111 tp->tgoal.period = per;
2112 tp->tgoal.offset = ofs;
2113 tp->tgoal.check_nego = 0;
2116 sym_announce_transfer_rate(tp);
2120 * We received a PPR.
2121 * Let everything be aware of the changes.
2123 static void
2124 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2125 u_char per, u_char wide, u_char div, u_char fak)
2127 struct sym_tcb *tp = &np->target[target];
2128 struct scsi_target *starget = tp->starget;
2130 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2132 if (wide || ofs)
2133 tp->tgoal.renego = NS_PPR;
2134 else
2135 tp->tgoal.renego = 0;
2136 spi_width(starget) = tp->tgoal.width = wide;
2137 spi_period(starget) = tp->tgoal.period = per;
2138 spi_offset(starget) = tp->tgoal.offset = ofs;
2139 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2140 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2141 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2142 tp->tgoal.check_nego = 0;
2144 sym_announce_transfer_rate(tp);
2148 * generic recovery from scsi interrupt
2150 * The doc says that when the chip gets an SCSI interrupt,
2151 * it tries to stop in an orderly fashion, by completing
2152 * an instruction fetch that had started or by flushing
2153 * the DMA fifo for a write to memory that was executing.
2154 * Such a fashion is not enough to know if the instruction
2155 * that was just before the current DSP value has been
2156 * executed or not.
2158 * There are some small SCRIPTS sections that deal with
2159 * the start queue and the done queue that may break any
2160 * assomption from the C code if we are interrupted
2161 * inside, so we reset if this happens. Btw, since these
2162 * SCRIPTS sections are executed while the SCRIPTS hasn't
2163 * started SCSI operations, it is very unlikely to happen.
2165 * All the driver data structures are supposed to be
2166 * allocated from the same 4 GB memory window, so there
2167 * is a 1 to 1 relationship between DSA and driver data
2168 * structures. Since we are careful :) to invalidate the
2169 * DSA when we complete a command or when the SCRIPTS
2170 * pushes a DSA into a queue, we can trust it when it
2171 * points to a CCB.
2173 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2175 u32 dsp = INL(np, nc_dsp);
2176 u32 dsa = INL(np, nc_dsa);
2177 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2180 * If we haven't been interrupted inside the SCRIPTS
2181 * critical pathes, we can safely restart the SCRIPTS
2182 * and trust the DSA value if it matches a CCB.
2184 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2185 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2186 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2187 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2188 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2189 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2190 (!(dsp > SCRIPTA_BA(np, done) &&
2191 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2192 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2193 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2195 * If we have a CCB, let the SCRIPTS call us back for
2196 * the handling of the error with SCRATCHA filled with
2197 * STARTPOS. This way, we will be able to freeze the
2198 * device queue and requeue awaiting IOs.
2200 if (cp) {
2201 cp->host_status = hsts;
2202 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2205 * Otherwise just restart the SCRIPTS.
2207 else {
2208 OUTL(np, nc_dsa, 0xffffff);
2209 OUTL_DSP(np, SCRIPTA_BA(np, start));
2212 else
2213 goto reset_all;
2215 return;
2217 reset_all:
2218 sym_start_reset(np);
2222 * chip exception handler for selection timeout
2224 static void sym_int_sto (struct sym_hcb *np)
2226 u32 dsp = INL(np, nc_dsp);
2228 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2230 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2231 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2232 else
2233 sym_start_reset(np);
2237 * chip exception handler for unexpected disconnect
2239 static void sym_int_udc (struct sym_hcb *np)
2241 printf ("%s: unexpected disconnect\n", sym_name(np));
2242 sym_recover_scsi_int(np, HS_UNEXPECTED);
2246 * chip exception handler for SCSI bus mode change
2248 * spi2-r12 11.2.3 says a transceiver mode change must
2249 * generate a reset event and a device that detects a reset
2250 * event shall initiate a hard reset. It says also that a
2251 * device that detects a mode change shall set data transfer
2252 * mode to eight bit asynchronous, etc...
2253 * So, just reinitializing all except chip should be enough.
2255 static void sym_int_sbmc(struct Scsi_Host *shost)
2257 struct sym_hcb *np = sym_get_hcb(shost);
2258 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2261 * Notify user.
2263 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2264 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2267 * Should suspend command processing for a few seconds and
2268 * reinitialize all except the chip.
2270 sym_start_up(shost, 2);
2274 * chip exception handler for SCSI parity error.
2276 * When the chip detects a SCSI parity error and is
2277 * currently executing a (CH)MOV instruction, it does
2278 * not interrupt immediately, but tries to finish the
2279 * transfer of the current scatter entry before
2280 * interrupting. The following situations may occur:
2282 * - The complete scatter entry has been transferred
2283 * without the device having changed phase.
2284 * The chip will then interrupt with the DSP pointing
2285 * to the instruction that follows the MOV.
2287 * - A phase mismatch occurs before the MOV finished
2288 * and phase errors are to be handled by the C code.
2289 * The chip will then interrupt with both PAR and MA
2290 * conditions set.
2292 * - A phase mismatch occurs before the MOV finished and
2293 * phase errors are to be handled by SCRIPTS.
2294 * The chip will load the DSP with the phase mismatch
2295 * JUMP address and interrupt the host processor.
2297 static void sym_int_par (struct sym_hcb *np, u_short sist)
2299 u_char hsts = INB(np, HS_PRT);
2300 u32 dsp = INL(np, nc_dsp);
2301 u32 dbc = INL(np, nc_dbc);
2302 u32 dsa = INL(np, nc_dsa);
2303 u_char sbcl = INB(np, nc_sbcl);
2304 u_char cmd = dbc >> 24;
2305 int phase = cmd & 7;
2306 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2308 if (printk_ratelimit())
2309 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2310 sym_name(np), hsts, dbc, sbcl);
2313 * Check that the chip is connected to the SCSI BUS.
2315 if (!(INB(np, nc_scntl1) & ISCON)) {
2316 sym_recover_scsi_int(np, HS_UNEXPECTED);
2317 return;
2321 * If the nexus is not clearly identified, reset the bus.
2322 * We will try to do better later.
2324 if (!cp)
2325 goto reset_all;
2328 * Check instruction was a MOV, direction was INPUT and
2329 * ATN is asserted.
2331 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2332 goto reset_all;
2335 * Keep track of the parity error.
2337 OUTONB(np, HF_PRT, HF_EXT_ERR);
2338 cp->xerr_status |= XE_PARITY_ERR;
2341 * Prepare the message to send to the device.
2343 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2346 * If the old phase was DATA IN phase, we have to deal with
2347 * the 3 situations described above.
2348 * For other input phases (MSG IN and STATUS), the device
2349 * must resend the whole thing that failed parity checking
2350 * or signal error. So, jumping to dispatcher should be OK.
2352 if (phase == 1 || phase == 5) {
2353 /* Phase mismatch handled by SCRIPTS */
2354 if (dsp == SCRIPTB_BA(np, pm_handle))
2355 OUTL_DSP(np, dsp);
2356 /* Phase mismatch handled by the C code */
2357 else if (sist & MA)
2358 sym_int_ma (np);
2359 /* No phase mismatch occurred */
2360 else {
2361 sym_set_script_dp (np, cp, dsp);
2362 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2365 else if (phase == 7) /* We definitely cannot handle parity errors */
2366 #if 1 /* in message-in phase due to the relection */
2367 goto reset_all; /* path and various message anticipations. */
2368 #else
2369 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2370 #endif
2371 else
2372 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2373 return;
2375 reset_all:
2376 sym_start_reset(np);
2377 return;
2381 * chip exception handler for phase errors.
2383 * We have to construct a new transfer descriptor,
2384 * to transfer the rest of the current block.
2386 static void sym_int_ma (struct sym_hcb *np)
2388 u32 dbc;
2389 u32 rest;
2390 u32 dsp;
2391 u32 dsa;
2392 u32 nxtdsp;
2393 u32 *vdsp;
2394 u32 oadr, olen;
2395 u32 *tblp;
2396 u32 newcmd;
2397 u_int delta;
2398 u_char cmd;
2399 u_char hflags, hflags0;
2400 struct sym_pmc *pm;
2401 struct sym_ccb *cp;
2403 dsp = INL(np, nc_dsp);
2404 dbc = INL(np, nc_dbc);
2405 dsa = INL(np, nc_dsa);
2407 cmd = dbc >> 24;
2408 rest = dbc & 0xffffff;
2409 delta = 0;
2412 * locate matching cp if any.
2414 cp = sym_ccb_from_dsa(np, dsa);
2417 * Donnot take into account dma fifo and various buffers in
2418 * INPUT phase since the chip flushes everything before
2419 * raising the MA interrupt for interrupted INPUT phases.
2420 * For DATA IN phase, we will check for the SWIDE later.
2422 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2423 u_char ss0, ss2;
2425 if (np->features & FE_DFBC)
2426 delta = INW(np, nc_dfbc);
2427 else {
2428 u32 dfifo;
2431 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2433 dfifo = INL(np, nc_dfifo);
2436 * Calculate remaining bytes in DMA fifo.
2437 * (CTEST5 = dfifo >> 16)
2439 if (dfifo & (DFS << 16))
2440 delta = ((((dfifo >> 8) & 0x300) |
2441 (dfifo & 0xff)) - rest) & 0x3ff;
2442 else
2443 delta = ((dfifo & 0xff) - rest) & 0x7f;
2447 * The data in the dma fifo has not been transferred to
2448 * the target -> add the amount to the rest
2449 * and clear the data.
2450 * Check the sstat2 register in case of wide transfer.
2452 rest += delta;
2453 ss0 = INB(np, nc_sstat0);
2454 if (ss0 & OLF) rest++;
2455 if (!(np->features & FE_C10))
2456 if (ss0 & ORF) rest++;
2457 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2458 ss2 = INB(np, nc_sstat2);
2459 if (ss2 & OLF1) rest++;
2460 if (!(np->features & FE_C10))
2461 if (ss2 & ORF1) rest++;
2465 * Clear fifos.
2467 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2468 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2472 * log the information
2474 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2475 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2476 (unsigned) rest, (unsigned) delta);
2479 * try to find the interrupted script command,
2480 * and the address at which to continue.
2482 vdsp = NULL;
2483 nxtdsp = 0;
2484 if (dsp > np->scripta_ba &&
2485 dsp <= np->scripta_ba + np->scripta_sz) {
2486 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2487 nxtdsp = dsp;
2489 else if (dsp > np->scriptb_ba &&
2490 dsp <= np->scriptb_ba + np->scriptb_sz) {
2491 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2492 nxtdsp = dsp;
2496 * log the information
2498 if (DEBUG_FLAGS & DEBUG_PHASE) {
2499 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2500 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2503 if (!vdsp) {
2504 printf ("%s: interrupted SCRIPT address not found.\n",
2505 sym_name (np));
2506 goto reset_all;
2509 if (!cp) {
2510 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2511 sym_name (np));
2512 goto reset_all;
2516 * get old startaddress and old length.
2518 oadr = scr_to_cpu(vdsp[1]);
2520 if (cmd & 0x10) { /* Table indirect */
2521 tblp = (u32 *) ((char*) &cp->phys + oadr);
2522 olen = scr_to_cpu(tblp[0]);
2523 oadr = scr_to_cpu(tblp[1]);
2524 } else {
2525 tblp = (u32 *) 0;
2526 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2529 if (DEBUG_FLAGS & DEBUG_PHASE) {
2530 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2531 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2532 tblp,
2533 (unsigned) olen,
2534 (unsigned) oadr);
2538 * check cmd against assumed interrupted script command.
2539 * If dt data phase, the MOVE instruction hasn't bit 4 of
2540 * the phase.
2542 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2543 sym_print_addr(cp->cmd,
2544 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2545 cmd, scr_to_cpu(vdsp[0]) >> 24);
2547 goto reset_all;
2551 * if old phase not dataphase, leave here.
2553 if (cmd & 2) {
2554 sym_print_addr(cp->cmd,
2555 "phase change %x-%x %d@%08x resid=%d.\n",
2556 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2557 (unsigned)oadr, (unsigned)rest);
2558 goto unexpected_phase;
2562 * Choose the correct PM save area.
2564 * Look at the PM_SAVE SCRIPT if you want to understand
2565 * this stuff. The equivalent code is implemented in
2566 * SCRIPTS for the 895A, 896 and 1010 that are able to
2567 * handle PM from the SCRIPTS processor.
2569 hflags0 = INB(np, HF_PRT);
2570 hflags = hflags0;
2572 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2573 if (hflags & HF_IN_PM0)
2574 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2575 else if (hflags & HF_IN_PM1)
2576 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2578 if (hflags & HF_DP_SAVED)
2579 hflags ^= HF_ACT_PM;
2582 if (!(hflags & HF_ACT_PM)) {
2583 pm = &cp->phys.pm0;
2584 newcmd = SCRIPTA_BA(np, pm0_data);
2586 else {
2587 pm = &cp->phys.pm1;
2588 newcmd = SCRIPTA_BA(np, pm1_data);
2591 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2592 if (hflags != hflags0)
2593 OUTB(np, HF_PRT, hflags);
2596 * fillin the phase mismatch context
2598 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2599 pm->sg.size = cpu_to_scr(rest);
2600 pm->ret = cpu_to_scr(nxtdsp);
2603 * If we have a SWIDE,
2604 * - prepare the address to write the SWIDE from SCRIPTS,
2605 * - compute the SCRIPTS address to restart from,
2606 * - move current data pointer context by one byte.
2608 nxtdsp = SCRIPTA_BA(np, dispatch);
2609 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2610 (INB(np, nc_scntl2) & WSR)) {
2611 u32 tmp;
2614 * Set up the table indirect for the MOVE
2615 * of the residual byte and adjust the data
2616 * pointer context.
2618 tmp = scr_to_cpu(pm->sg.addr);
2619 cp->phys.wresid.addr = cpu_to_scr(tmp);
2620 pm->sg.addr = cpu_to_scr(tmp + 1);
2621 tmp = scr_to_cpu(pm->sg.size);
2622 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2623 pm->sg.size = cpu_to_scr(tmp - 1);
2626 * If only the residual byte is to be moved,
2627 * no PM context is needed.
2629 if ((tmp&0xffffff) == 1)
2630 newcmd = pm->ret;
2633 * Prepare the address of SCRIPTS that will
2634 * move the residual byte to memory.
2636 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2639 if (DEBUG_FLAGS & DEBUG_PHASE) {
2640 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2641 hflags0, hflags, newcmd,
2642 (unsigned)scr_to_cpu(pm->sg.addr),
2643 (unsigned)scr_to_cpu(pm->sg.size),
2644 (unsigned)scr_to_cpu(pm->ret));
2648 * Restart the SCRIPTS processor.
2650 sym_set_script_dp (np, cp, newcmd);
2651 OUTL_DSP(np, nxtdsp);
2652 return;
2655 * Unexpected phase changes that occurs when the current phase
2656 * is not a DATA IN or DATA OUT phase are due to error conditions.
2657 * Such event may only happen when the SCRIPTS is using a
2658 * multibyte SCSI MOVE.
2660 * Phase change Some possible cause
2662 * COMMAND --> MSG IN SCSI parity error detected by target.
2663 * COMMAND --> STATUS Bad command or refused by target.
2664 * MSG OUT --> MSG IN Message rejected by target.
2665 * MSG OUT --> COMMAND Bogus target that discards extended
2666 * negotiation messages.
2668 * The code below does not care of the new phase and so
2669 * trusts the target. Why to annoy it ?
2670 * If the interrupted phase is COMMAND phase, we restart at
2671 * dispatcher.
2672 * If a target does not get all the messages after selection,
2673 * the code assumes blindly that the target discards extended
2674 * messages and clears the negotiation status.
2675 * If the target does not want all our response to negotiation,
2676 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2677 * bloat for such a should_not_happen situation).
2678 * In all other situation, we reset the BUS.
2679 * Are these assumptions reasonable ? (Wait and see ...)
2681 unexpected_phase:
2682 dsp -= 8;
2683 nxtdsp = 0;
2685 switch (cmd & 7) {
2686 case 2: /* COMMAND phase */
2687 nxtdsp = SCRIPTA_BA(np, dispatch);
2688 break;
2689 #if 0
2690 case 3: /* STATUS phase */
2691 nxtdsp = SCRIPTA_BA(np, dispatch);
2692 break;
2693 #endif
2694 case 6: /* MSG OUT phase */
2696 * If the device may want to use untagged when we want
2697 * tagged, we prepare an IDENTIFY without disc. granted,
2698 * since we will not be able to handle reselect.
2699 * Otherwise, we just don't care.
2701 if (dsp == SCRIPTA_BA(np, send_ident)) {
2702 if (cp->tag != NO_TAG && olen - rest <= 3) {
2703 cp->host_status = HS_BUSY;
2704 np->msgout[0] = IDENTIFY(0, cp->lun);
2705 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2707 else
2708 nxtdsp = SCRIPTB_BA(np, ident_break);
2710 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2711 dsp == SCRIPTB_BA(np, send_sdtr) ||
2712 dsp == SCRIPTB_BA(np, send_ppr)) {
2713 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2714 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2715 struct scsi_device *dev = cp->cmd->device;
2716 dev->ppr = 0;
2719 break;
2720 #if 0
2721 case 7: /* MSG IN phase */
2722 nxtdsp = SCRIPTA_BA(np, clrack);
2723 break;
2724 #endif
2727 if (nxtdsp) {
2728 OUTL_DSP(np, nxtdsp);
2729 return;
2732 reset_all:
2733 sym_start_reset(np);
2737 * chip interrupt handler
2739 * In normal situations, interrupt conditions occur one at
2740 * a time. But when something bad happens on the SCSI BUS,
2741 * the chip may raise several interrupt flags before
2742 * stopping and interrupting the CPU. The additionnal
2743 * interrupt flags are stacked in some extra registers
2744 * after the SIP and/or DIP flag has been raised in the
2745 * ISTAT. After the CPU has read the interrupt condition
2746 * flag from SIST or DSTAT, the chip unstacks the other
2747 * interrupt flags and sets the corresponding bits in
2748 * SIST or DSTAT. Since the chip starts stacking once the
2749 * SIP or DIP flag is set, there is a small window of time
2750 * where the stacking does not occur.
2752 * Typically, multiple interrupt conditions may happen in
2753 * the following situations:
2755 * - SCSI parity error + Phase mismatch (PAR|MA)
2756 * When an parity error is detected in input phase
2757 * and the device switches to msg-in phase inside a
2758 * block MOV.
2759 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2760 * When a stupid device does not want to handle the
2761 * recovery of an SCSI parity error.
2762 * - Some combinations of STO, PAR, UDC, ...
2763 * When using non compliant SCSI stuff, when user is
2764 * doing non compliant hot tampering on the BUS, when
2765 * something really bad happens to a device, etc ...
2767 * The heuristic suggested by SYMBIOS to handle
2768 * multiple interrupts is to try unstacking all
2769 * interrupts conditions and to handle them on some
2770 * priority based on error severity.
2771 * This will work when the unstacking has been
2772 * successful, but we cannot be 100 % sure of that,
2773 * since the CPU may have been faster to unstack than
2774 * the chip is able to stack. Hmmm ... But it seems that
2775 * such a situation is very unlikely to happen.
2777 * If this happen, for example STO caught by the CPU
2778 * then UDC happenning before the CPU have restarted
2779 * the SCRIPTS, the driver may wrongly complete the
2780 * same command on UDC, since the SCRIPTS didn't restart
2781 * and the DSA still points to the same command.
2782 * We avoid this situation by setting the DSA to an
2783 * invalid value when the CCB is completed and before
2784 * restarting the SCRIPTS.
2786 * Another issue is that we need some section of our
2787 * recovery procedures to be somehow uninterruptible but
2788 * the SCRIPTS processor does not provides such a
2789 * feature. For this reason, we handle recovery preferently
2790 * from the C code and check against some SCRIPTS critical
2791 * sections from the C code.
2793 * Hopefully, the interrupt handling of the driver is now
2794 * able to resist to weird BUS error conditions, but donnot
2795 * ask me for any guarantee that it will never fail. :-)
2796 * Use at your own decision and risk.
2799 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2801 struct sym_data *sym_data = shost_priv(shost);
2802 struct sym_hcb *np = sym_data->ncb;
2803 struct pci_dev *pdev = sym_data->pdev;
2804 u_char istat, istatc;
2805 u_char dstat;
2806 u_short sist;
2809 * interrupt on the fly ?
2810 * (SCRIPTS may still be running)
2812 * A `dummy read' is needed to ensure that the
2813 * clear of the INTF flag reaches the device
2814 * and that posted writes are flushed to memory
2815 * before the scanning of the DONE queue.
2816 * Note that SCRIPTS also (dummy) read to memory
2817 * prior to deliver the INTF interrupt condition.
2819 istat = INB(np, nc_istat);
2820 if (istat & INTF) {
2821 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2822 istat |= INB(np, nc_istat); /* DUMMY READ */
2823 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2824 sym_wakeup_done(np);
2827 if (!(istat & (SIP|DIP)))
2828 return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2830 #if 0 /* We should never get this one */
2831 if (istat & CABRT)
2832 OUTB(np, nc_istat, CABRT);
2833 #endif
2836 * PAR and MA interrupts may occur at the same time,
2837 * and we need to know of both in order to handle
2838 * this situation properly. We try to unstack SCSI
2839 * interrupts for that reason. BTW, I dislike a LOT
2840 * such a loop inside the interrupt routine.
2841 * Even if DMA interrupt stacking is very unlikely to
2842 * happen, we also try unstacking these ones, since
2843 * this has no performance impact.
2845 sist = 0;
2846 dstat = 0;
2847 istatc = istat;
2848 do {
2849 if (istatc & SIP)
2850 sist |= INW(np, nc_sist);
2851 if (istatc & DIP)
2852 dstat |= INB(np, nc_dstat);
2853 istatc = INB(np, nc_istat);
2854 istat |= istatc;
2856 /* Prevent deadlock waiting on a condition that may
2857 * never clear. */
2858 if (unlikely(sist == 0xffff && dstat == 0xff)) {
2859 if (pci_channel_offline(pdev))
2860 return IRQ_NONE;
2862 } while (istatc & (SIP|DIP));
2864 if (DEBUG_FLAGS & DEBUG_TINY)
2865 printf ("<%d|%x:%x|%x:%x>",
2866 (int)INB(np, nc_scr0),
2867 dstat,sist,
2868 (unsigned)INL(np, nc_dsp),
2869 (unsigned)INL(np, nc_dbc));
2871 * On paper, a memory read barrier may be needed here to
2872 * prevent out of order LOADs by the CPU from having
2873 * prefetched stale data prior to DMA having occurred.
2874 * And since we are paranoid ... :)
2876 MEMORY_READ_BARRIER();
2879 * First, interrupts we want to service cleanly.
2881 * Phase mismatch (MA) is the most frequent interrupt
2882 * for chip earlier than the 896 and so we have to service
2883 * it as quickly as possible.
2884 * A SCSI parity error (PAR) may be combined with a phase
2885 * mismatch condition (MA).
2886 * Programmed interrupts (SIR) are used to call the C code
2887 * from SCRIPTS.
2888 * The single step interrupt (SSI) is not used in this
2889 * driver.
2891 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2892 !(dstat & (MDPE|BF|ABRT|IID))) {
2893 if (sist & PAR) sym_int_par (np, sist);
2894 else if (sist & MA) sym_int_ma (np);
2895 else if (dstat & SIR) sym_int_sir(np);
2896 else if (dstat & SSI) OUTONB_STD();
2897 else goto unknown_int;
2898 return IRQ_HANDLED;
2902 * Now, interrupts that donnot happen in normal
2903 * situations and that we may need to recover from.
2905 * On SCSI RESET (RST), we reset everything.
2906 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2907 * active CCBs with RESET status, prepare all devices
2908 * for negotiating again and restart the SCRIPTS.
2909 * On STO and UDC, we complete the CCB with the corres-
2910 * ponding status and restart the SCRIPTS.
2912 if (sist & RST) {
2913 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2914 sym_start_up(shost, 1);
2915 return IRQ_HANDLED;
2918 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2919 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2921 if (!(sist & (GEN|HTH|SGE)) &&
2922 !(dstat & (MDPE|BF|ABRT|IID))) {
2923 if (sist & SBMC) sym_int_sbmc(shost);
2924 else if (sist & STO) sym_int_sto (np);
2925 else if (sist & UDC) sym_int_udc (np);
2926 else goto unknown_int;
2927 return IRQ_HANDLED;
2931 * Now, interrupts we are not able to recover cleanly.
2933 * Log message for hard errors.
2934 * Reset everything.
2937 sym_log_hard_error(shost, sist, dstat);
2939 if ((sist & (GEN|HTH|SGE)) ||
2940 (dstat & (MDPE|BF|ABRT|IID))) {
2941 sym_start_reset(np);
2942 return IRQ_HANDLED;
2945 unknown_int:
2947 * We just miss the cause of the interrupt. :(
2948 * Print a message. The timeout will do the real work.
2950 printf( "%s: unknown interrupt(s) ignored, "
2951 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2952 sym_name(np), istat, dstat, sist);
2953 return IRQ_NONE;
2957 * Dequeue from the START queue all CCBs that match
2958 * a given target/lun/task condition (-1 means all),
2959 * and move them from the BUSY queue to the COMP queue
2960 * with DID_SOFT_ERROR status condition.
2961 * This function is used during error handling/recovery.
2962 * It is called with SCRIPTS not running.
2964 static int
2965 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2967 int j;
2968 struct sym_ccb *cp;
2971 * Make sure the starting index is within range.
2973 assert((i >= 0) && (i < 2*MAX_QUEUE));
2976 * Walk until end of START queue and dequeue every job
2977 * that matches the target/lun/task condition.
2979 j = i;
2980 while (i != np->squeueput) {
2981 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2982 assert(cp);
2983 #ifdef SYM_CONF_IARB_SUPPORT
2984 /* Forget hints for IARB, they may be no longer relevant */
2985 cp->host_flags &= ~HF_HINT_IARB;
2986 #endif
2987 if ((target == -1 || cp->target == target) &&
2988 (lun == -1 || cp->lun == lun) &&
2989 (task == -1 || cp->tag == task)) {
2990 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
2991 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2992 #else
2993 sym_set_cam_status(cp->cmd, DID_REQUEUE);
2994 #endif
2995 sym_remque(&cp->link_ccbq);
2996 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2998 else {
2999 if (i != j)
3000 np->squeue[j] = np->squeue[i];
3001 if ((j += 2) >= MAX_QUEUE*2) j = 0;
3003 if ((i += 2) >= MAX_QUEUE*2) i = 0;
3005 if (i != j) /* Copy back the idle task if needed */
3006 np->squeue[j] = np->squeue[i];
3007 np->squeueput = j; /* Update our current start queue pointer */
3009 return (i - j) / 2;
3013 * chip handler for bad SCSI status condition
3015 * In case of bad SCSI status, we unqueue all the tasks
3016 * currently queued to the controller but not yet started
3017 * and then restart the SCRIPTS processor immediately.
3019 * QUEUE FULL and BUSY conditions are handled the same way.
3020 * Basically all the not yet started tasks are requeued in
3021 * device queue and the queue is frozen until a completion.
3023 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3024 * the CCB of the failed command to prepare a REQUEST SENSE
3025 * SCSI command and queue it to the controller queue.
3027 * SCRATCHA is assumed to have been loaded with STARTPOS
3028 * before the SCRIPTS called the C code.
3030 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3032 u32 startp;
3033 u_char s_status = cp->ssss_status;
3034 u_char h_flags = cp->host_flags;
3035 int msglen;
3036 int i;
3039 * Compute the index of the next job to start from SCRIPTS.
3041 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3044 * The last CCB queued used for IARB hint may be
3045 * no longer relevant. Forget it.
3047 #ifdef SYM_CONF_IARB_SUPPORT
3048 if (np->last_cp)
3049 np->last_cp = 0;
3050 #endif
3053 * Now deal with the SCSI status.
3055 switch(s_status) {
3056 case S_BUSY:
3057 case S_QUEUE_FULL:
3058 if (sym_verbose >= 2) {
3059 sym_print_addr(cp->cmd, "%s\n",
3060 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3062 fallthrough;
3063 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3064 sym_complete_error (np, cp);
3065 break;
3066 case S_TERMINATED:
3067 case S_CHECK_COND:
3069 * If we get an SCSI error when requesting sense, give up.
3071 if (h_flags & HF_SENSE) {
3072 sym_complete_error (np, cp);
3073 break;
3077 * Dequeue all queued CCBs for that device not yet started,
3078 * and restart the SCRIPTS processor immediately.
3080 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3081 OUTL_DSP(np, SCRIPTA_BA(np, start));
3084 * Save some info of the actual IO.
3085 * Compute the data residual.
3087 cp->sv_scsi_status = cp->ssss_status;
3088 cp->sv_xerr_status = cp->xerr_status;
3089 cp->sv_resid = sym_compute_residual(np, cp);
3092 * Prepare all needed data structures for
3093 * requesting sense data.
3096 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3097 msglen = 1;
3100 * If we are currently using anything different from
3101 * async. 8 bit data transfers with that target,
3102 * start a negotiation, since the device may want
3103 * to report us a UNIT ATTENTION condition due to
3104 * a cause we currently ignore, and we donnot want
3105 * to be stuck with WIDE and/or SYNC data transfer.
3107 * cp->nego_status is filled by sym_prepare_nego().
3109 cp->nego_status = 0;
3110 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3112 * Message table indirect structure.
3114 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
3115 cp->phys.smsg.size = cpu_to_scr(msglen);
3118 * sense command
3120 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
3121 cp->phys.cmd.size = cpu_to_scr(6);
3124 * patch requested size into sense command
3126 cp->sensecmd[0] = REQUEST_SENSE;
3127 cp->sensecmd[1] = 0;
3128 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3129 cp->sensecmd[1] = cp->lun << 5;
3130 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3131 cp->data_len = SYM_SNS_BBUF_LEN;
3134 * sense data
3136 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3137 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
3138 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3141 * requeue the command.
3143 startp = SCRIPTB_BA(np, sdata_in);
3145 cp->phys.head.savep = cpu_to_scr(startp);
3146 cp->phys.head.lastp = cpu_to_scr(startp);
3147 cp->startp = cpu_to_scr(startp);
3148 cp->goalp = cpu_to_scr(startp + 16);
3150 cp->host_xflags = 0;
3151 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3152 cp->ssss_status = S_ILLEGAL;
3153 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3154 cp->xerr_status = 0;
3155 cp->extra_bytes = 0;
3157 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3160 * Requeue the command.
3162 sym_put_start_queue(np, cp);
3165 * Give back to upper layer everything we have dequeued.
3167 sym_flush_comp_queue(np, 0);
3168 break;
3173 * After a device has accepted some management message
3174 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3175 * a device signals a UNIT ATTENTION condition, some
3176 * tasks are thrown away by the device. We are required
3177 * to reflect that on our tasks list since the device
3178 * will never complete these tasks.
3180 * This function move from the BUSY queue to the COMP
3181 * queue all disconnected CCBs for a given target that
3182 * match the following criteria:
3183 * - lun=-1 means any logical UNIT otherwise a given one.
3184 * - task=-1 means any task, otherwise a given one.
3186 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3188 SYM_QUEHEAD qtmp, *qp;
3189 int i = 0;
3190 struct sym_ccb *cp;
3193 * Move the entire BUSY queue to our temporary queue.
3195 sym_que_init(&qtmp);
3196 sym_que_splice(&np->busy_ccbq, &qtmp);
3197 sym_que_init(&np->busy_ccbq);
3200 * Put all CCBs that matches our criteria into
3201 * the COMP queue and put back other ones into
3202 * the BUSY queue.
3204 while ((qp = sym_remque_head(&qtmp)) != NULL) {
3205 struct scsi_cmnd *cmd;
3206 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3207 cmd = cp->cmd;
3208 if (cp->host_status != HS_DISCONNECT ||
3209 cp->target != target ||
3210 (lun != -1 && cp->lun != lun) ||
3211 (task != -1 &&
3212 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3213 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3214 continue;
3216 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3218 /* Preserve the software timeout condition */
3219 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3220 sym_set_cam_status(cmd, cam_status);
3221 ++i;
3222 #if 0
3223 printf("XXXX TASK @%p CLEARED\n", cp);
3224 #endif
3226 return i;
3230 * chip handler for TASKS recovery
3232 * We cannot safely abort a command, while the SCRIPTS
3233 * processor is running, since we just would be in race
3234 * with it.
3236 * As long as we have tasks to abort, we keep the SEM
3237 * bit set in the ISTAT. When this bit is set, the
3238 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3239 * each time it enters the scheduler.
3241 * If we have to reset a target, clear tasks of a unit,
3242 * or to perform the abort of a disconnected job, we
3243 * restart the SCRIPTS for selecting the target. Once
3244 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3245 * If it loses arbitration, the SCRIPTS will interrupt again
3246 * the next time it will enter its scheduler, and so on ...
3248 * On SIR_TARGET_SELECTED, we scan for the more
3249 * appropriate thing to do:
3251 * - If nothing, we just sent a M_ABORT message to the
3252 * target to get rid of the useless SCSI bus ownership.
3253 * According to the specs, no tasks shall be affected.
3254 * - If the target is to be reset, we send it a M_RESET
3255 * message.
3256 * - If a logical UNIT is to be cleared , we send the
3257 * IDENTIFY(lun) + M_ABORT.
3258 * - If an untagged task is to be aborted, we send the
3259 * IDENTIFY(lun) + M_ABORT.
3260 * - If a tagged task is to be aborted, we send the
3261 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3263 * Once our 'kiss of death' :) message has been accepted
3264 * by the target, the SCRIPTS interrupts again
3265 * (SIR_ABORT_SENT). On this interrupt, we complete
3266 * all the CCBs that should have been aborted by the
3267 * target according to our message.
3269 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3271 SYM_QUEHEAD *qp;
3272 struct sym_ccb *cp;
3273 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3274 struct scsi_target *starget;
3275 int target=-1, lun=-1, task;
3276 int i, k;
3278 switch(num) {
3280 * The SCRIPTS processor stopped before starting
3281 * the next command in order to allow us to perform
3282 * some task recovery.
3284 case SIR_SCRIPT_STOPPED:
3286 * Do we have any target to reset or unit to clear ?
3288 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3289 tp = &np->target[i];
3290 if (tp->to_reset ||
3291 (tp->lun0p && tp->lun0p->to_clear)) {
3292 target = i;
3293 break;
3295 if (!tp->lunmp)
3296 continue;
3297 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3298 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3299 target = i;
3300 break;
3303 if (target != -1)
3304 break;
3308 * If not, walk the busy queue for any
3309 * disconnected CCB to be aborted.
3311 if (target == -1) {
3312 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3313 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3314 if (cp->host_status != HS_DISCONNECT)
3315 continue;
3316 if (cp->to_abort) {
3317 target = cp->target;
3318 break;
3324 * If some target is to be selected,
3325 * prepare and start the selection.
3327 if (target != -1) {
3328 tp = &np->target[target];
3329 np->abrt_sel.sel_id = target;
3330 np->abrt_sel.sel_scntl3 = tp->head.wval;
3331 np->abrt_sel.sel_sxfer = tp->head.sval;
3332 OUTL(np, nc_dsa, np->hcb_ba);
3333 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3334 return;
3338 * Now look for a CCB to abort that haven't started yet.
3339 * Btw, the SCRIPTS processor is still stopped, so
3340 * we are not in race.
3342 i = 0;
3343 cp = NULL;
3344 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3345 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3346 if (cp->host_status != HS_BUSY &&
3347 cp->host_status != HS_NEGOTIATE)
3348 continue;
3349 if (!cp->to_abort)
3350 continue;
3351 #ifdef SYM_CONF_IARB_SUPPORT
3353 * If we are using IMMEDIATE ARBITRATION, we donnot
3354 * want to cancel the last queued CCB, since the
3355 * SCRIPTS may have anticipated the selection.
3357 if (cp == np->last_cp) {
3358 cp->to_abort = 0;
3359 continue;
3361 #endif
3362 i = 1; /* Means we have found some */
3363 break;
3365 if (!i) {
3367 * We are done, so we donnot need
3368 * to synchronize with the SCRIPTS anylonger.
3369 * Remove the SEM flag from the ISTAT.
3371 np->istat_sem = 0;
3372 OUTB(np, nc_istat, SIGP);
3373 break;
3376 * Compute index of next position in the start
3377 * queue the SCRIPTS intends to start and dequeue
3378 * all CCBs for that device that haven't been started.
3380 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3381 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3384 * Make sure at least our IO to abort has been dequeued.
3386 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3387 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3388 #else
3389 sym_remque(&cp->link_ccbq);
3390 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3391 #endif
3393 * Keep track in cam status of the reason of the abort.
3395 if (cp->to_abort == 2)
3396 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3397 else
3398 sym_set_cam_status(cp->cmd, DID_ABORT);
3401 * Complete with error everything that we have dequeued.
3403 sym_flush_comp_queue(np, 0);
3404 break;
3406 * The SCRIPTS processor has selected a target
3407 * we may have some manual recovery to perform for.
3409 case SIR_TARGET_SELECTED:
3410 target = INB(np, nc_sdid) & 0xf;
3411 tp = &np->target[target];
3413 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3416 * If the target is to be reset, prepare a
3417 * M_RESET message and clear the to_reset flag
3418 * since we donnot expect this operation to fail.
3420 if (tp->to_reset) {
3421 np->abrt_msg[0] = M_RESET;
3422 np->abrt_tbl.size = 1;
3423 tp->to_reset = 0;
3424 break;
3428 * Otherwise, look for some logical unit to be cleared.
3430 if (tp->lun0p && tp->lun0p->to_clear)
3431 lun = 0;
3432 else if (tp->lunmp) {
3433 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3434 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3435 lun = k;
3436 break;
3442 * If a logical unit is to be cleared, prepare
3443 * an IDENTIFY(lun) + ABORT MESSAGE.
3445 if (lun != -1) {
3446 struct sym_lcb *lp = sym_lp(tp, lun);
3447 lp->to_clear = 0; /* We don't expect to fail here */
3448 np->abrt_msg[0] = IDENTIFY(0, lun);
3449 np->abrt_msg[1] = M_ABORT;
3450 np->abrt_tbl.size = 2;
3451 break;
3455 * Otherwise, look for some disconnected job to
3456 * abort for this target.
3458 i = 0;
3459 cp = NULL;
3460 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3461 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3462 if (cp->host_status != HS_DISCONNECT)
3463 continue;
3464 if (cp->target != target)
3465 continue;
3466 if (!cp->to_abort)
3467 continue;
3468 i = 1; /* Means we have some */
3469 break;
3473 * If we have none, probably since the device has
3474 * completed the command before we won abitration,
3475 * send a M_ABORT message without IDENTIFY.
3476 * According to the specs, the device must just
3477 * disconnect the BUS and not abort any task.
3479 if (!i) {
3480 np->abrt_msg[0] = M_ABORT;
3481 np->abrt_tbl.size = 1;
3482 break;
3486 * We have some task to abort.
3487 * Set the IDENTIFY(lun)
3489 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3492 * If we want to abort an untagged command, we
3493 * will send a IDENTIFY + M_ABORT.
3494 * Otherwise (tagged command), we will send
3495 * a IDENTITFY + task attributes + ABORT TAG.
3497 if (cp->tag == NO_TAG) {
3498 np->abrt_msg[1] = M_ABORT;
3499 np->abrt_tbl.size = 2;
3500 } else {
3501 np->abrt_msg[1] = cp->scsi_smsg[1];
3502 np->abrt_msg[2] = cp->scsi_smsg[2];
3503 np->abrt_msg[3] = M_ABORT_TAG;
3504 np->abrt_tbl.size = 4;
3507 * Keep track of software timeout condition, since the
3508 * peripheral driver may not count retries on abort
3509 * conditions not due to timeout.
3511 if (cp->to_abort == 2)
3512 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3513 cp->to_abort = 0; /* We donnot expect to fail here */
3514 break;
3517 * The target has accepted our message and switched
3518 * to BUS FREE phase as we expected.
3520 case SIR_ABORT_SENT:
3521 target = INB(np, nc_sdid) & 0xf;
3522 tp = &np->target[target];
3523 starget = tp->starget;
3526 ** If we didn't abort anything, leave here.
3528 if (np->abrt_msg[0] == M_ABORT)
3529 break;
3532 * If we sent a M_RESET, then a hardware reset has
3533 * been performed by the target.
3534 * - Reset everything to async 8 bit
3535 * - Tell ourself to negotiate next time :-)
3536 * - Prepare to clear all disconnected CCBs for
3537 * this target from our task list (lun=task=-1)
3539 lun = -1;
3540 task = -1;
3541 if (np->abrt_msg[0] == M_RESET) {
3542 tp->head.sval = 0;
3543 tp->head.wval = np->rv_scntl3;
3544 tp->head.uval = 0;
3545 spi_period(starget) = 0;
3546 spi_offset(starget) = 0;
3547 spi_width(starget) = 0;
3548 spi_iu(starget) = 0;
3549 spi_dt(starget) = 0;
3550 spi_qas(starget) = 0;
3551 tp->tgoal.check_nego = 1;
3552 tp->tgoal.renego = 0;
3556 * Otherwise, check for the LUN and TASK(s)
3557 * concerned by the cancelation.
3558 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3559 * or an ABORT message :-)
3561 else {
3562 lun = np->abrt_msg[0] & 0x3f;
3563 if (np->abrt_msg[1] == M_ABORT_TAG)
3564 task = np->abrt_msg[2];
3568 * Complete all the CCBs the device should have
3569 * aborted due to our 'kiss of death' message.
3571 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3572 sym_dequeue_from_squeue(np, i, target, lun, -1);
3573 sym_clear_tasks(np, DID_ABORT, target, lun, task);
3574 sym_flush_comp_queue(np, 0);
3577 * If we sent a BDR, make upper layer aware of that.
3579 if (np->abrt_msg[0] == M_RESET)
3580 starget_printk(KERN_NOTICE, starget,
3581 "has been reset\n");
3582 break;
3586 * Print to the log the message we intend to send.
3588 if (num == SIR_TARGET_SELECTED) {
3589 dev_info(&tp->starget->dev, "control msgout:");
3590 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3591 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3595 * Let the SCRIPTS processor continue.
3597 OUTONB_STD();
3601 * Gerard's alchemy:) that deals with the data
3602 * pointer for both MDP and the residual calculation.
3604 * I didn't want to bloat the code by more than 200
3605 * lines for the handling of both MDP and the residual.
3606 * This has been achieved by using a data pointer
3607 * representation consisting in an index in the data
3608 * array (dp_sg) and a negative offset (dp_ofs) that
3609 * have the following meaning:
3611 * - dp_sg = SYM_CONF_MAX_SG
3612 * we are at the end of the data script.
3613 * - dp_sg < SYM_CONF_MAX_SG
3614 * dp_sg points to the next entry of the scatter array
3615 * we want to transfer.
3616 * - dp_ofs < 0
3617 * dp_ofs represents the residual of bytes of the
3618 * previous entry scatter entry we will send first.
3619 * - dp_ofs = 0
3620 * no residual to send first.
3622 * The function sym_evaluate_dp() accepts an arbitray
3623 * offset (basically from the MDP message) and returns
3624 * the corresponding values of dp_sg and dp_ofs.
3627 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3629 u32 dp_scr;
3630 int dp_ofs, dp_sg, dp_sgmin;
3631 int tmp;
3632 struct sym_pmc *pm;
3635 * Compute the resulted data pointer in term of a script
3636 * address within some DATA script and a signed byte offset.
3638 dp_scr = scr;
3639 dp_ofs = *ofs;
3640 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3641 pm = &cp->phys.pm0;
3642 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3643 pm = &cp->phys.pm1;
3644 else
3645 pm = NULL;
3647 if (pm) {
3648 dp_scr = scr_to_cpu(pm->ret);
3649 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3653 * If we are auto-sensing, then we are done.
3655 if (cp->host_flags & HF_SENSE) {
3656 *ofs = dp_ofs;
3657 return 0;
3661 * Deduce the index of the sg entry.
3662 * Keep track of the index of the first valid entry.
3663 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3664 * end of the data.
3666 tmp = scr_to_cpu(cp->goalp);
3667 dp_sg = SYM_CONF_MAX_SG;
3668 if (dp_scr != tmp)
3669 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3670 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3673 * Move to the sg entry the data pointer belongs to.
3675 * If we are inside the data area, we expect result to be:
3677 * Either,
3678 * dp_ofs = 0 and dp_sg is the index of the sg entry
3679 * the data pointer belongs to (or the end of the data)
3680 * Or,
3681 * dp_ofs < 0 and dp_sg is the index of the sg entry
3682 * the data pointer belongs to + 1.
3684 if (dp_ofs < 0) {
3685 int n;
3686 while (dp_sg > dp_sgmin) {
3687 --dp_sg;
3688 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3689 n = dp_ofs + (tmp & 0xffffff);
3690 if (n > 0) {
3691 ++dp_sg;
3692 break;
3694 dp_ofs = n;
3697 else if (dp_ofs > 0) {
3698 while (dp_sg < SYM_CONF_MAX_SG) {
3699 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3700 dp_ofs -= (tmp & 0xffffff);
3701 ++dp_sg;
3702 if (dp_ofs <= 0)
3703 break;
3708 * Make sure the data pointer is inside the data area.
3709 * If not, return some error.
3711 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3712 goto out_err;
3713 else if (dp_sg > SYM_CONF_MAX_SG ||
3714 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3715 goto out_err;
3718 * Save the extreme pointer if needed.
3720 if (dp_sg > cp->ext_sg ||
3721 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3722 cp->ext_sg = dp_sg;
3723 cp->ext_ofs = dp_ofs;
3727 * Return data.
3729 *ofs = dp_ofs;
3730 return dp_sg;
3732 out_err:
3733 return -1;
3737 * chip handler for MODIFY DATA POINTER MESSAGE
3739 * We also call this function on IGNORE WIDE RESIDUE
3740 * messages that do not match a SWIDE full condition.
3741 * Btw, we assume in that situation that such a message
3742 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3745 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3747 int dp_ofs = ofs;
3748 u32 dp_scr = sym_get_script_dp (np, cp);
3749 u32 dp_ret;
3750 u32 tmp;
3751 u_char hflags;
3752 int dp_sg;
3753 struct sym_pmc *pm;
3756 * Not supported for auto-sense.
3758 if (cp->host_flags & HF_SENSE)
3759 goto out_reject;
3762 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3763 * to the resulted data pointer.
3765 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3766 if (dp_sg < 0)
3767 goto out_reject;
3770 * And our alchemy:) allows to easily calculate the data
3771 * script address we want to return for the next data phase.
3773 dp_ret = cpu_to_scr(cp->goalp);
3774 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3777 * If offset / scatter entry is zero we donnot need
3778 * a context for the new current data pointer.
3780 if (dp_ofs == 0) {
3781 dp_scr = dp_ret;
3782 goto out_ok;
3786 * Get a context for the new current data pointer.
3788 hflags = INB(np, HF_PRT);
3790 if (hflags & HF_DP_SAVED)
3791 hflags ^= HF_ACT_PM;
3793 if (!(hflags & HF_ACT_PM)) {
3794 pm = &cp->phys.pm0;
3795 dp_scr = SCRIPTA_BA(np, pm0_data);
3797 else {
3798 pm = &cp->phys.pm1;
3799 dp_scr = SCRIPTA_BA(np, pm1_data);
3802 hflags &= ~(HF_DP_SAVED);
3804 OUTB(np, HF_PRT, hflags);
3807 * Set up the new current data pointer.
3808 * ofs < 0 there, and for the next data phase, we
3809 * want to transfer part of the data of the sg entry
3810 * corresponding to index dp_sg-1 prior to returning
3811 * to the main data script.
3813 pm->ret = cpu_to_scr(dp_ret);
3814 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3815 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3816 pm->sg.addr = cpu_to_scr(tmp);
3817 pm->sg.size = cpu_to_scr(-dp_ofs);
3819 out_ok:
3820 sym_set_script_dp (np, cp, dp_scr);
3821 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3822 return;
3824 out_reject:
3825 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3830 * chip calculation of the data residual.
3832 * As I used to say, the requirement of data residual
3833 * in SCSI is broken, useless and cannot be achieved
3834 * without huge complexity.
3835 * But most OSes and even the official CAM require it.
3836 * When stupidity happens to be so widely spread inside
3837 * a community, it gets hard to convince.
3839 * Anyway, I don't care, since I am not going to use
3840 * any software that considers this data residual as
3841 * a relevant information. :)
3844 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3846 int dp_sg, resid = 0;
3847 int dp_ofs = 0;
3850 * Check for some data lost or just thrown away.
3851 * We are not required to be quite accurate in this
3852 * situation. Btw, if we are odd for output and the
3853 * device claims some more data, it may well happen
3854 * than our residual be zero. :-)
3856 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3857 if (cp->xerr_status & XE_EXTRA_DATA)
3858 resid -= cp->extra_bytes;
3859 if (cp->xerr_status & XE_SODL_UNRUN)
3860 ++resid;
3861 if (cp->xerr_status & XE_SWIDE_OVRUN)
3862 --resid;
3866 * If all data has been transferred,
3867 * there is no residual.
3869 if (cp->phys.head.lastp == cp->goalp)
3870 return resid;
3873 * If no data transfer occurs, or if the data
3874 * pointer is weird, return full residual.
3876 if (cp->startp == cp->phys.head.lastp ||
3877 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3878 &dp_ofs) < 0) {
3879 return cp->data_len - cp->odd_byte_adjustment;
3883 * If we were auto-sensing, then we are done.
3885 if (cp->host_flags & HF_SENSE) {
3886 return -dp_ofs;
3890 * We are now full comfortable in the computation
3891 * of the data residual (2's complement).
3893 resid = -cp->ext_ofs;
3894 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3895 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3896 resid += (tmp & 0xffffff);
3899 resid -= cp->odd_byte_adjustment;
3902 * Hopefully, the result is not too wrong.
3904 return resid;
3908 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3910 * When we try to negotiate, we append the negotiation message
3911 * to the identify and (maybe) simple tag message.
3912 * The host status field is set to HS_NEGOTIATE to mark this
3913 * situation.
3915 * If the target doesn't answer this message immediately
3916 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3917 * will be raised eventually.
3918 * The handler removes the HS_NEGOTIATE status, and sets the
3919 * negotiated value to the default (async / nowide).
3921 * If we receive a matching answer immediately, we check it
3922 * for validity, and set the values.
3924 * If we receive a Reject message immediately, we assume the
3925 * negotiation has failed, and fall back to standard values.
3927 * If we receive a negotiation message while not in HS_NEGOTIATE
3928 * state, it's a target initiated negotiation. We prepare a
3929 * (hopefully) valid answer, set our parameters, and send back
3930 * this answer to the target.
3932 * If the target doesn't fetch the answer (no message out phase),
3933 * we assume the negotiation has failed, and fall back to default
3934 * settings (SIR_NEGO_PROTO interrupt).
3936 * When we set the values, we adjust them in all ccbs belonging
3937 * to this target, in the controller's register, and in the "phys"
3938 * field of the controller's struct sym_hcb.
3942 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3944 static int
3945 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3947 int target = cp->target;
3948 u_char chg, ofs, per, fak, div;
3950 if (DEBUG_FLAGS & DEBUG_NEGO) {
3951 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3955 * Get requested values.
3957 chg = 0;
3958 per = np->msgin[3];
3959 ofs = np->msgin[4];
3962 * Check values against our limits.
3964 if (ofs) {
3965 if (ofs > np->maxoffs)
3966 {chg = 1; ofs = np->maxoffs;}
3969 if (ofs) {
3970 if (per < np->minsync)
3971 {chg = 1; per = np->minsync;}
3975 * Get new chip synchronous parameters value.
3977 div = fak = 0;
3978 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3979 goto reject_it;
3981 if (DEBUG_FLAGS & DEBUG_NEGO) {
3982 sym_print_addr(cp->cmd,
3983 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3984 ofs, per, div, fak, chg);
3988 * If it was an answer we want to change,
3989 * then it isn't acceptable. Reject it.
3991 if (!req && chg)
3992 goto reject_it;
3995 * Apply new values.
3997 sym_setsync (np, target, ofs, per, div, fak);
4000 * It was an answer. We are done.
4002 if (!req)
4003 return 0;
4006 * It was a request. Prepare an answer message.
4008 spi_populate_sync_msg(np->msgout, per, ofs);
4010 if (DEBUG_FLAGS & DEBUG_NEGO) {
4011 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4014 np->msgin [0] = M_NOOP;
4016 return 0;
4018 reject_it:
4019 sym_setsync (np, target, 0, 0, 0, 0);
4020 return -1;
4023 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4025 int req = 1;
4026 int result;
4029 * Request or answer ?
4031 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4032 OUTB(np, HS_PRT, HS_BUSY);
4033 if (cp->nego_status && cp->nego_status != NS_SYNC)
4034 goto reject_it;
4035 req = 0;
4039 * Check and apply new values.
4041 result = sym_sync_nego_check(np, req, cp);
4042 if (result) /* Not acceptable, reject it */
4043 goto reject_it;
4044 if (req) { /* Was a request, send response. */
4045 cp->nego_status = NS_SYNC;
4046 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4048 else /* Was a response, we are done. */
4049 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4050 return;
4052 reject_it:
4053 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4057 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4059 static int
4060 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4062 struct sym_tcb *tp = &np->target[target];
4063 unsigned char fak, div;
4064 int dt, chg = 0;
4066 unsigned char per = np->msgin[3];
4067 unsigned char ofs = np->msgin[5];
4068 unsigned char wide = np->msgin[6];
4069 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4071 if (DEBUG_FLAGS & DEBUG_NEGO) {
4072 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4076 * Check values against our limits.
4078 if (wide > np->maxwide) {
4079 chg = 1;
4080 wide = np->maxwide;
4082 if (!wide || !(np->features & FE_U3EN))
4083 opts = 0;
4085 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4086 chg = 1;
4088 dt = opts & PPR_OPT_DT;
4090 if (ofs) {
4091 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4092 if (ofs > maxoffs) {
4093 chg = 1;
4094 ofs = maxoffs;
4098 if (ofs) {
4099 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4100 if (per < minsync) {
4101 chg = 1;
4102 per = minsync;
4107 * Get new chip synchronous parameters value.
4109 div = fak = 0;
4110 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4111 goto reject_it;
4114 * If it was an answer we want to change,
4115 * then it isn't acceptable. Reject it.
4117 if (!req && chg)
4118 goto reject_it;
4121 * Apply new values.
4123 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4126 * It was an answer. We are done.
4128 if (!req)
4129 return 0;
4132 * It was a request. Prepare an answer message.
4134 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4136 if (DEBUG_FLAGS & DEBUG_NEGO) {
4137 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4140 np->msgin [0] = M_NOOP;
4142 return 0;
4144 reject_it:
4145 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4147 * If it is a device response that should result in
4148 * ST, we may want to try a legacy negotiation later.
4150 if (!req && !opts) {
4151 tp->tgoal.period = per;
4152 tp->tgoal.offset = ofs;
4153 tp->tgoal.width = wide;
4154 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4155 tp->tgoal.check_nego = 1;
4157 return -1;
4160 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4162 int req = 1;
4163 int result;
4166 * Request or answer ?
4168 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4169 OUTB(np, HS_PRT, HS_BUSY);
4170 if (cp->nego_status && cp->nego_status != NS_PPR)
4171 goto reject_it;
4172 req = 0;
4176 * Check and apply new values.
4178 result = sym_ppr_nego_check(np, req, cp->target);
4179 if (result) /* Not acceptable, reject it */
4180 goto reject_it;
4181 if (req) { /* Was a request, send response. */
4182 cp->nego_status = NS_PPR;
4183 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4185 else /* Was a response, we are done. */
4186 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4187 return;
4189 reject_it:
4190 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4194 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4196 static int
4197 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4199 int target = cp->target;
4200 u_char chg, wide;
4202 if (DEBUG_FLAGS & DEBUG_NEGO) {
4203 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4207 * Get requested values.
4209 chg = 0;
4210 wide = np->msgin[3];
4213 * Check values against our limits.
4215 if (wide > np->maxwide) {
4216 chg = 1;
4217 wide = np->maxwide;
4220 if (DEBUG_FLAGS & DEBUG_NEGO) {
4221 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4222 wide, chg);
4226 * If it was an answer we want to change,
4227 * then it isn't acceptable. Reject it.
4229 if (!req && chg)
4230 goto reject_it;
4233 * Apply new values.
4235 sym_setwide (np, target, wide);
4238 * It was an answer. We are done.
4240 if (!req)
4241 return 0;
4244 * It was a request. Prepare an answer message.
4246 spi_populate_width_msg(np->msgout, wide);
4248 np->msgin [0] = M_NOOP;
4250 if (DEBUG_FLAGS & DEBUG_NEGO) {
4251 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4254 return 0;
4256 reject_it:
4257 return -1;
4260 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4262 int req = 1;
4263 int result;
4266 * Request or answer ?
4268 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4269 OUTB(np, HS_PRT, HS_BUSY);
4270 if (cp->nego_status && cp->nego_status != NS_WIDE)
4271 goto reject_it;
4272 req = 0;
4276 * Check and apply new values.
4278 result = sym_wide_nego_check(np, req, cp);
4279 if (result) /* Not acceptable, reject it */
4280 goto reject_it;
4281 if (req) { /* Was a request, send response. */
4282 cp->nego_status = NS_WIDE;
4283 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4284 } else { /* Was a response. */
4286 * Negotiate for SYNC immediately after WIDE response.
4287 * This allows to negotiate for both WIDE and SYNC on
4288 * a single SCSI command (Suggested by Justin Gibbs).
4290 if (tp->tgoal.offset) {
4291 spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4292 tp->tgoal.offset);
4294 if (DEBUG_FLAGS & DEBUG_NEGO) {
4295 sym_print_nego_msg(np, cp->target,
4296 "sync msgout", np->msgout);
4299 cp->nego_status = NS_SYNC;
4300 OUTB(np, HS_PRT, HS_NEGOTIATE);
4301 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4302 return;
4303 } else
4304 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4307 return;
4309 reject_it:
4310 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4314 * Reset DT, SYNC or WIDE to default settings.
4316 * Called when a negotiation does not succeed either
4317 * on rejection or on protocol error.
4319 * A target that understands a PPR message should never
4320 * reject it, and messing with it is very unlikely.
4321 * So, if a PPR makes problems, we may just want to
4322 * try a legacy negotiation later.
4324 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4326 switch (cp->nego_status) {
4327 case NS_PPR:
4328 #if 0
4329 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4330 #else
4331 if (tp->tgoal.period < np->minsync)
4332 tp->tgoal.period = np->minsync;
4333 if (tp->tgoal.offset > np->maxoffs)
4334 tp->tgoal.offset = np->maxoffs;
4335 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4336 tp->tgoal.check_nego = 1;
4337 #endif
4338 break;
4339 case NS_SYNC:
4340 sym_setsync (np, cp->target, 0, 0, 0, 0);
4341 break;
4342 case NS_WIDE:
4343 sym_setwide (np, cp->target, 0);
4344 break;
4346 np->msgin [0] = M_NOOP;
4347 np->msgout[0] = M_NOOP;
4348 cp->nego_status = 0;
4352 * chip handler for MESSAGE REJECT received in response to
4353 * PPR, WIDE or SYNCHRONOUS negotiation.
4355 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4357 sym_nego_default(np, tp, cp);
4358 OUTB(np, HS_PRT, HS_BUSY);
4361 #define sym_printk(lvl, tp, cp, fmt, v...) do { \
4362 if (cp) \
4363 scmd_printk(lvl, cp->cmd, fmt, ##v); \
4364 else \
4365 starget_printk(lvl, tp->starget, fmt, ##v); \
4366 } while (0)
4369 * chip exception handler for programmed interrupts.
4371 static void sym_int_sir(struct sym_hcb *np)
4373 u_char num = INB(np, nc_dsps);
4374 u32 dsa = INL(np, nc_dsa);
4375 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4376 u_char target = INB(np, nc_sdid) & 0x0f;
4377 struct sym_tcb *tp = &np->target[target];
4378 int tmp;
4380 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4382 switch (num) {
4383 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4385 * SCRIPTS tell us that we may have to update
4386 * 64 bit DMA segment registers.
4388 case SIR_DMAP_DIRTY:
4389 sym_update_dmap_regs(np);
4390 goto out;
4391 #endif
4393 * Command has been completed with error condition
4394 * or has been auto-sensed.
4396 case SIR_COMPLETE_ERROR:
4397 sym_complete_error(np, cp);
4398 return;
4400 * The C code is currently trying to recover from something.
4401 * Typically, user want to abort some command.
4403 case SIR_SCRIPT_STOPPED:
4404 case SIR_TARGET_SELECTED:
4405 case SIR_ABORT_SENT:
4406 sym_sir_task_recovery(np, num);
4407 return;
4409 * The device didn't go to MSG OUT phase after having
4410 * been selected with ATN. We do not want to handle that.
4412 case SIR_SEL_ATN_NO_MSG_OUT:
4413 sym_printk(KERN_WARNING, tp, cp,
4414 "No MSG OUT phase after selection with ATN\n");
4415 goto out_stuck;
4417 * The device didn't switch to MSG IN phase after
4418 * having reselected the initiator.
4420 case SIR_RESEL_NO_MSG_IN:
4421 sym_printk(KERN_WARNING, tp, cp,
4422 "No MSG IN phase after reselection\n");
4423 goto out_stuck;
4425 * After reselection, the device sent a message that wasn't
4426 * an IDENTIFY.
4428 case SIR_RESEL_NO_IDENTIFY:
4429 sym_printk(KERN_WARNING, tp, cp,
4430 "No IDENTIFY after reselection\n");
4431 goto out_stuck;
4433 * The device reselected a LUN we do not know about.
4435 case SIR_RESEL_BAD_LUN:
4436 np->msgout[0] = M_RESET;
4437 goto out;
4439 * The device reselected for an untagged nexus and we
4440 * haven't any.
4442 case SIR_RESEL_BAD_I_T_L:
4443 np->msgout[0] = M_ABORT;
4444 goto out;
4446 * The device reselected for a tagged nexus that we do not have.
4448 case SIR_RESEL_BAD_I_T_L_Q:
4449 np->msgout[0] = M_ABORT_TAG;
4450 goto out;
4452 * The SCRIPTS let us know that the device has grabbed
4453 * our message and will abort the job.
4455 case SIR_RESEL_ABORTED:
4456 np->lastmsg = np->msgout[0];
4457 np->msgout[0] = M_NOOP;
4458 sym_printk(KERN_WARNING, tp, cp,
4459 "message %x sent on bad reselection\n", np->lastmsg);
4460 goto out;
4462 * The SCRIPTS let us know that a message has been
4463 * successfully sent to the device.
4465 case SIR_MSG_OUT_DONE:
4466 np->lastmsg = np->msgout[0];
4467 np->msgout[0] = M_NOOP;
4468 /* Should we really care of that */
4469 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4470 if (cp) {
4471 cp->xerr_status &= ~XE_PARITY_ERR;
4472 if (!cp->xerr_status)
4473 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4476 goto out;
4478 * The device didn't send a GOOD SCSI status.
4479 * We may have some work to do prior to allow
4480 * the SCRIPTS processor to continue.
4482 case SIR_BAD_SCSI_STATUS:
4483 if (!cp)
4484 goto out;
4485 sym_sir_bad_scsi_status(np, num, cp);
4486 return;
4488 * We are asked by the SCRIPTS to prepare a
4489 * REJECT message.
4491 case SIR_REJECT_TO_SEND:
4492 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4493 np->msgout[0] = M_REJECT;
4494 goto out;
4496 * We have been ODD at the end of a DATA IN
4497 * transfer and the device didn't send a
4498 * IGNORE WIDE RESIDUE message.
4499 * It is a data overrun condition.
4501 case SIR_SWIDE_OVERRUN:
4502 if (cp) {
4503 OUTONB(np, HF_PRT, HF_EXT_ERR);
4504 cp->xerr_status |= XE_SWIDE_OVRUN;
4506 goto out;
4508 * We have been ODD at the end of a DATA OUT
4509 * transfer.
4510 * It is a data underrun condition.
4512 case SIR_SODL_UNDERRUN:
4513 if (cp) {
4514 OUTONB(np, HF_PRT, HF_EXT_ERR);
4515 cp->xerr_status |= XE_SODL_UNRUN;
4517 goto out;
4519 * The device wants us to tranfer more data than
4520 * expected or in the wrong direction.
4521 * The number of extra bytes is in scratcha.
4522 * It is a data overrun condition.
4524 case SIR_DATA_OVERRUN:
4525 if (cp) {
4526 OUTONB(np, HF_PRT, HF_EXT_ERR);
4527 cp->xerr_status |= XE_EXTRA_DATA;
4528 cp->extra_bytes += INL(np, nc_scratcha);
4530 goto out;
4532 * The device switched to an illegal phase (4/5).
4534 case SIR_BAD_PHASE:
4535 if (cp) {
4536 OUTONB(np, HF_PRT, HF_EXT_ERR);
4537 cp->xerr_status |= XE_BAD_PHASE;
4539 goto out;
4541 * We received a message.
4543 case SIR_MSG_RECEIVED:
4544 if (!cp)
4545 goto out_stuck;
4546 switch (np->msgin [0]) {
4548 * We received an extended message.
4549 * We handle MODIFY DATA POINTER, SDTR, WDTR
4550 * and reject all other extended messages.
4552 case M_EXTENDED:
4553 switch (np->msgin [2]) {
4554 case M_X_MODIFY_DP:
4555 if (DEBUG_FLAGS & DEBUG_POINTER)
4556 sym_print_msg(cp, "extended msg ",
4557 np->msgin);
4558 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4559 (np->msgin[5]<<8) + (np->msgin[6]);
4560 sym_modify_dp(np, tp, cp, tmp);
4561 return;
4562 case M_X_SYNC_REQ:
4563 sym_sync_nego(np, tp, cp);
4564 return;
4565 case M_X_PPR_REQ:
4566 sym_ppr_nego(np, tp, cp);
4567 return;
4568 case M_X_WIDE_REQ:
4569 sym_wide_nego(np, tp, cp);
4570 return;
4571 default:
4572 goto out_reject;
4574 break;
4576 * We received a 1/2 byte message not handled from SCRIPTS.
4577 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4578 * RESIDUE messages that haven't been anticipated by
4579 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4580 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4582 case M_IGN_RESIDUE:
4583 if (DEBUG_FLAGS & DEBUG_POINTER)
4584 sym_print_msg(cp, "1 or 2 byte ", np->msgin);
4585 if (cp->host_flags & HF_SENSE)
4586 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4587 else
4588 sym_modify_dp(np, tp, cp, -1);
4589 return;
4590 case M_REJECT:
4591 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4592 sym_nego_rejected(np, tp, cp);
4593 else {
4594 sym_print_addr(cp->cmd,
4595 "M_REJECT received (%x:%x).\n",
4596 scr_to_cpu(np->lastmsg), np->msgout[0]);
4598 goto out_clrack;
4599 default:
4600 goto out_reject;
4602 break;
4604 * We received an unknown message.
4605 * Ignore all MSG IN phases and reject it.
4607 case SIR_MSG_WEIRD:
4608 sym_print_msg(cp, "WEIRD message received", np->msgin);
4609 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4610 return;
4612 * Negotiation failed.
4613 * Target does not send us the reply.
4614 * Remove the HS_NEGOTIATE status.
4616 case SIR_NEGO_FAILED:
4617 OUTB(np, HS_PRT, HS_BUSY);
4619 * Negotiation failed.
4620 * Target does not want answer message.
4622 fallthrough;
4623 case SIR_NEGO_PROTO:
4624 sym_nego_default(np, tp, cp);
4625 goto out;
4628 out:
4629 OUTONB_STD();
4630 return;
4631 out_reject:
4632 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4633 return;
4634 out_clrack:
4635 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4636 return;
4637 out_stuck:
4638 return;
4642 * Acquire a control block
4644 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4646 u_char tn = cmd->device->id;
4647 u_char ln = cmd->device->lun;
4648 struct sym_tcb *tp = &np->target[tn];
4649 struct sym_lcb *lp = sym_lp(tp, ln);
4650 u_short tag = NO_TAG;
4651 SYM_QUEHEAD *qp;
4652 struct sym_ccb *cp = NULL;
4655 * Look for a free CCB
4657 if (sym_que_empty(&np->free_ccbq))
4658 sym_alloc_ccb(np);
4659 qp = sym_remque_head(&np->free_ccbq);
4660 if (!qp)
4661 goto out;
4662 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4666 * If we have been asked for a tagged command.
4668 if (tag_order) {
4670 * Debugging purpose.
4672 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4673 if (lp->busy_itl != 0)
4674 goto out_free;
4675 #endif
4677 * Allocate resources for tags if not yet.
4679 if (!lp->cb_tags) {
4680 sym_alloc_lcb_tags(np, tn, ln);
4681 if (!lp->cb_tags)
4682 goto out_free;
4685 * Get a tag for this SCSI IO and set up
4686 * the CCB bus address for reselection,
4687 * and count it for this LUN.
4688 * Toggle reselect path to tagged.
4690 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4691 tag = lp->cb_tags[lp->ia_tag];
4692 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4693 lp->ia_tag = 0;
4694 ++lp->busy_itlq;
4695 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4696 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4697 lp->head.resel_sa =
4698 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4699 #endif
4700 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4701 cp->tags_si = lp->tags_si;
4702 ++lp->tags_sum[cp->tags_si];
4703 ++lp->tags_since;
4704 #endif
4706 else
4707 goto out_free;
4710 * This command will not be tagged.
4711 * If we already have either a tagged or untagged
4712 * one, refuse to overlap this untagged one.
4714 else {
4716 * Debugging purpose.
4718 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4719 if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4720 goto out_free;
4721 #endif
4723 * Count this nexus for this LUN.
4724 * Set up the CCB bus address for reselection.
4725 * Toggle reselect path to untagged.
4727 ++lp->busy_itl;
4728 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4729 if (lp->busy_itl == 1) {
4730 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4731 lp->head.resel_sa =
4732 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4734 else
4735 goto out_free;
4736 #endif
4740 * Put the CCB into the busy queue.
4742 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4743 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4744 if (lp) {
4745 sym_remque(&cp->link2_ccbq);
4746 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4749 #endif
4750 cp->to_abort = 0;
4751 cp->odd_byte_adjustment = 0;
4752 cp->tag = tag;
4753 cp->order = tag_order;
4754 cp->target = tn;
4755 cp->lun = ln;
4757 if (DEBUG_FLAGS & DEBUG_TAGS) {
4758 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4761 out:
4762 return cp;
4763 out_free:
4764 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4765 return NULL;
4769 * Release one control block
4771 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4773 struct sym_tcb *tp = &np->target[cp->target];
4774 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4776 if (DEBUG_FLAGS & DEBUG_TAGS) {
4777 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4778 cp, cp->tag);
4782 * If LCB available,
4784 if (lp) {
4786 * If tagged, release the tag, set the relect path
4788 if (cp->tag != NO_TAG) {
4789 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4790 --lp->tags_sum[cp->tags_si];
4791 #endif
4793 * Free the tag value.
4795 lp->cb_tags[lp->if_tag] = cp->tag;
4796 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4797 lp->if_tag = 0;
4799 * Make the reselect path invalid,
4800 * and uncount this CCB.
4802 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4803 --lp->busy_itlq;
4804 } else { /* Untagged */
4806 * Make the reselect path invalid,
4807 * and uncount this CCB.
4809 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4810 --lp->busy_itl;
4813 * If no JOB active, make the LUN reselect path invalid.
4815 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4816 lp->head.resel_sa =
4817 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4821 * We donnot queue more than 1 ccb per target
4822 * with negotiation at any time. If this ccb was
4823 * used for negotiation, clear this info in the tcb.
4825 if (cp == tp->nego_cp)
4826 tp->nego_cp = NULL;
4828 #ifdef SYM_CONF_IARB_SUPPORT
4830 * If we just complete the last queued CCB,
4831 * clear this info that is no longer relevant.
4833 if (cp == np->last_cp)
4834 np->last_cp = 0;
4835 #endif
4838 * Make this CCB available.
4840 cp->cmd = NULL;
4841 cp->host_status = HS_IDLE;
4842 sym_remque(&cp->link_ccbq);
4843 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4845 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4846 if (lp) {
4847 sym_remque(&cp->link2_ccbq);
4848 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4849 if (cp->started) {
4850 if (cp->tag != NO_TAG)
4851 --lp->started_tags;
4852 else
4853 --lp->started_no_tag;
4856 cp->started = 0;
4857 #endif
4861 * Allocate a CCB from memory and initialize its fixed part.
4863 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4865 struct sym_ccb *cp = NULL;
4866 int hcode;
4869 * Prevent from allocating more CCBs than we can
4870 * queue to the controller.
4872 if (np->actccbs >= SYM_CONF_MAX_START)
4873 return NULL;
4876 * Allocate memory for this CCB.
4878 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4879 if (!cp)
4880 goto out_free;
4883 * Count it.
4885 np->actccbs++;
4888 * Compute the bus address of this ccb.
4890 cp->ccb_ba = vtobus(cp);
4893 * Insert this ccb into the hashed list.
4895 hcode = CCB_HASH_CODE(cp->ccb_ba);
4896 cp->link_ccbh = np->ccbh[hcode];
4897 np->ccbh[hcode] = cp;
4900 * Initialyze the start and restart actions.
4902 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4903 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4906 * Initilialyze some other fields.
4908 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4911 * Chain into free ccb queue.
4913 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4916 * Chain into optionnal lists.
4918 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4919 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4920 #endif
4921 return cp;
4922 out_free:
4923 if (cp)
4924 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4925 return NULL;
4929 * Look up a CCB from a DSA value.
4931 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4933 int hcode;
4934 struct sym_ccb *cp;
4936 hcode = CCB_HASH_CODE(dsa);
4937 cp = np->ccbh[hcode];
4938 while (cp) {
4939 if (cp->ccb_ba == dsa)
4940 break;
4941 cp = cp->link_ccbh;
4944 return cp;
4948 * Target control block initialisation.
4949 * Nothing important to do at the moment.
4951 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4953 #if 0 /* Hmmm... this checking looks paranoid. */
4955 * Check some alignments required by the chip.
4957 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4958 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4959 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4960 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4961 #endif
4965 * Lun control block allocation and initialization.
4967 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4969 struct sym_tcb *tp = &np->target[tn];
4970 struct sym_lcb *lp = NULL;
4973 * Initialize the target control block if not yet.
4975 sym_init_tcb (np, tn);
4978 * Allocate the LCB bus address array.
4979 * Compute the bus address of this table.
4981 if (ln && !tp->luntbl) {
4982 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4983 if (!tp->luntbl)
4984 goto fail;
4985 memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
4986 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4990 * Allocate the table of pointers for LUN(s) > 0, if needed.
4992 if (ln && !tp->lunmp) {
4993 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4994 GFP_ATOMIC);
4995 if (!tp->lunmp)
4996 goto fail;
5000 * Allocate the lcb.
5001 * Make it available to the chip.
5003 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5004 if (!lp)
5005 goto fail;
5006 if (ln) {
5007 tp->lunmp[ln] = lp;
5008 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5010 else {
5011 tp->lun0p = lp;
5012 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5014 tp->nlcb++;
5017 * Let the itl task point to error handling.
5019 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5022 * Set the reselect pattern to our default. :)
5024 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5027 * Set user capabilities.
5029 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5031 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5033 * Initialize device queueing.
5035 sym_que_init(&lp->waiting_ccbq);
5036 sym_que_init(&lp->started_ccbq);
5037 lp->started_max = SYM_CONF_MAX_TASK;
5038 lp->started_limit = SYM_CONF_MAX_TASK;
5039 #endif
5041 fail:
5042 return lp;
5046 * Allocate LCB resources for tagged command queuing.
5048 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5050 struct sym_tcb *tp = &np->target[tn];
5051 struct sym_lcb *lp = sym_lp(tp, ln);
5052 int i;
5055 * Allocate the task table and and the tag allocation
5056 * circular buffer. We want both or none.
5058 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5059 if (!lp->itlq_tbl)
5060 goto fail;
5061 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5062 if (!lp->cb_tags) {
5063 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5064 lp->itlq_tbl = NULL;
5065 goto fail;
5069 * Initialize the task table with invalid entries.
5071 memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK);
5074 * Fill up the tag buffer with tag numbers.
5076 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5077 lp->cb_tags[i] = i;
5080 * Make the task table available to SCRIPTS,
5081 * And accept tagged commands now.
5083 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5085 return;
5086 fail:
5087 return;
5091 * Lun control block deallocation. Returns the number of valid remaining LCBs
5092 * for the target.
5094 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5096 struct sym_tcb *tp = &np->target[tn];
5097 struct sym_lcb *lp = sym_lp(tp, ln);
5099 tp->nlcb--;
5101 if (ln) {
5102 if (!tp->nlcb) {
5103 kfree(tp->lunmp);
5104 sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5105 tp->lunmp = NULL;
5106 tp->luntbl = NULL;
5107 tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5108 } else {
5109 tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5110 tp->lunmp[ln] = NULL;
5112 } else {
5113 tp->lun0p = NULL;
5114 tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5117 if (lp->itlq_tbl) {
5118 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5119 kfree(lp->cb_tags);
5122 sym_mfree_dma(lp, sizeof(*lp), "LCB");
5124 return tp->nlcb;
5128 * Queue a SCSI IO to the controller.
5130 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5132 struct scsi_device *sdev = cmd->device;
5133 struct sym_tcb *tp;
5134 struct sym_lcb *lp;
5135 u_char *msgptr;
5136 u_int msglen;
5137 int can_disconnect;
5140 * Keep track of the IO in our CCB.
5142 cp->cmd = cmd;
5145 * Retrieve the target descriptor.
5147 tp = &np->target[cp->target];
5150 * Retrieve the lun descriptor.
5152 lp = sym_lp(tp, sdev->lun);
5154 can_disconnect = (cp->tag != NO_TAG) ||
5155 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5157 msgptr = cp->scsi_smsg;
5158 msglen = 0;
5159 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5162 * Build the tag message if present.
5164 if (cp->tag != NO_TAG) {
5165 u_char order = cp->order;
5167 switch(order) {
5168 case M_ORDERED_TAG:
5169 break;
5170 case M_HEAD_TAG:
5171 break;
5172 default:
5173 order = M_SIMPLE_TAG;
5175 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5177 * Avoid too much reordering of SCSI commands.
5178 * The algorithm tries to prevent completion of any
5179 * tagged command from being delayed against more
5180 * than 3 times the max number of queued commands.
5182 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5183 lp->tags_si = !(lp->tags_si);
5184 if (lp->tags_sum[lp->tags_si]) {
5185 order = M_ORDERED_TAG;
5186 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5187 sym_print_addr(cmd,
5188 "ordered tag forced.\n");
5191 lp->tags_since = 0;
5193 #endif
5194 msgptr[msglen++] = order;
5197 * For less than 128 tags, actual tags are numbered
5198 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5199 * with devices that have problems with #TAG 0 or too
5200 * great #TAG numbers. For more tags (up to 256),
5201 * we use directly our tag number.
5203 #if SYM_CONF_MAX_TASK > (512/4)
5204 msgptr[msglen++] = cp->tag;
5205 #else
5206 msgptr[msglen++] = (cp->tag << 1) + 1;
5207 #endif
5211 * Build a negotiation message if needed.
5212 * (nego_status is filled by sym_prepare_nego())
5214 * Always negotiate on INQUIRY and REQUEST SENSE.
5217 cp->nego_status = 0;
5218 if ((tp->tgoal.check_nego ||
5219 cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5220 !tp->nego_cp && lp) {
5221 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5225 * Startqueue
5227 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5228 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5231 * select
5233 cp->phys.select.sel_id = cp->target;
5234 cp->phys.select.sel_scntl3 = tp->head.wval;
5235 cp->phys.select.sel_sxfer = tp->head.sval;
5236 cp->phys.select.sel_scntl4 = tp->head.uval;
5239 * message
5241 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
5242 cp->phys.smsg.size = cpu_to_scr(msglen);
5245 * status
5247 cp->host_xflags = 0;
5248 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5249 cp->ssss_status = S_ILLEGAL;
5250 cp->xerr_status = 0;
5251 cp->host_flags = 0;
5252 cp->extra_bytes = 0;
5255 * extreme data pointer.
5256 * shall be positive, so -1 is lower than lowest.:)
5258 cp->ext_sg = -1;
5259 cp->ext_ofs = 0;
5262 * Build the CDB and DATA descriptor block
5263 * and start the IO.
5265 return sym_setup_data_and_start(np, cmd, cp);
5269 * Reset a SCSI target (all LUNs of this target).
5271 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5273 struct sym_tcb *tp;
5275 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5276 return -1;
5278 tp = &np->target[target];
5279 tp->to_reset = 1;
5281 np->istat_sem = SEM;
5282 OUTB(np, nc_istat, SIGP|SEM);
5284 return 0;
5288 * Abort a SCSI IO.
5290 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5293 * Check that the IO is active.
5295 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5296 return -1;
5299 * If a previous abort didn't succeed in time,
5300 * perform a BUS reset.
5302 if (cp->to_abort) {
5303 sym_reset_scsi_bus(np, 1);
5304 return 0;
5308 * Mark the CCB for abort and allow time for.
5310 cp->to_abort = timed_out ? 2 : 1;
5313 * Tell the SCRIPTS processor to stop and synchronize with us.
5315 np->istat_sem = SEM;
5316 OUTB(np, nc_istat, SIGP|SEM);
5317 return 0;
5320 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5322 struct sym_ccb *cp;
5323 SYM_QUEHEAD *qp;
5326 * Look up our CCB control block.
5328 cp = NULL;
5329 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5330 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5331 if (cp2->cmd == cmd) {
5332 cp = cp2;
5333 break;
5337 return sym_abort_ccb(np, cp, timed_out);
5341 * Complete execution of a SCSI command with extended
5342 * error, SCSI status error, or having been auto-sensed.
5344 * The SCRIPTS processor is not running there, so we
5345 * can safely access IO registers and remove JOBs from
5346 * the START queue.
5347 * SCRATCHA is assumed to have been loaded with STARTPOS
5348 * before the SCRIPTS called the C code.
5350 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5352 struct scsi_device *sdev;
5353 struct scsi_cmnd *cmd;
5354 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5355 struct sym_tcb *tp;
5356 struct sym_lcb *lp;
5357 #endif
5358 int resid;
5359 int i;
5362 * Paranoid check. :)
5364 if (!cp || !cp->cmd)
5365 return;
5367 cmd = cp->cmd;
5368 sdev = cmd->device;
5369 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5370 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5371 cp->host_status, cp->ssss_status, cp->host_flags);
5374 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5376 * Get target and lun pointers.
5378 tp = &np->target[cp->target];
5379 lp = sym_lp(tp, sdev->lun);
5380 #endif
5383 * Check for extended errors.
5385 if (cp->xerr_status) {
5386 if (sym_verbose)
5387 sym_print_xerr(cmd, cp->xerr_status);
5388 if (cp->host_status == HS_COMPLETE)
5389 cp->host_status = HS_COMP_ERR;
5393 * Calculate the residual.
5395 resid = sym_compute_residual(np, cp);
5397 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5398 resid = 0; /* throw them away. :) */
5399 cp->sv_resid = 0;
5401 #ifdef DEBUG_2_0_X
5402 if (resid)
5403 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5404 #endif
5407 * Dequeue all queued CCBs for that device
5408 * not yet started by SCRIPTS.
5410 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5411 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5414 * Restart the SCRIPTS processor.
5416 OUTL_DSP(np, SCRIPTA_BA(np, start));
5418 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5419 if (cp->host_status == HS_COMPLETE &&
5420 cp->ssss_status == S_QUEUE_FULL) {
5421 if (!lp || lp->started_tags - i < 2)
5422 goto weirdness;
5424 * Decrease queue depth as needed.
5426 lp->started_max = lp->started_tags - i - 1;
5427 lp->num_sgood = 0;
5429 if (sym_verbose >= 2) {
5430 sym_print_addr(cmd, " queue depth is now %d\n",
5431 lp->started_max);
5435 * Repair the CCB.
5437 cp->host_status = HS_BUSY;
5438 cp->ssss_status = S_ILLEGAL;
5441 * Let's requeue it to device.
5443 sym_set_cam_status(cmd, DID_SOFT_ERROR);
5444 goto finish;
5446 weirdness:
5447 #endif
5449 * Build result in CAM ccb.
5451 sym_set_cam_result_error(np, cp, resid);
5453 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5454 finish:
5455 #endif
5457 * Add this one to the COMP queue.
5459 sym_remque(&cp->link_ccbq);
5460 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5463 * Complete all those commands with either error
5464 * or requeue condition.
5466 sym_flush_comp_queue(np, 0);
5468 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5470 * Donnot start more than 1 command after an error.
5472 sym_start_next_ccbs(np, lp, 1);
5473 #endif
5477 * Complete execution of a successful SCSI command.
5479 * Only successful commands go to the DONE queue,
5480 * since we need to have the SCRIPTS processor
5481 * stopped on any error condition.
5482 * The SCRIPTS processor is running while we are
5483 * completing successful commands.
5485 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5487 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5488 struct sym_tcb *tp;
5489 struct sym_lcb *lp;
5490 #endif
5491 struct scsi_cmnd *cmd;
5492 int resid;
5495 * Paranoid check. :)
5497 if (!cp || !cp->cmd)
5498 return;
5499 assert (cp->host_status == HS_COMPLETE);
5502 * Get user command.
5504 cmd = cp->cmd;
5506 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5508 * Get target and lun pointers.
5510 tp = &np->target[cp->target];
5511 lp = sym_lp(tp, cp->lun);
5512 #endif
5515 * If all data have been transferred, given than no
5516 * extended error did occur, there is no residual.
5518 resid = 0;
5519 if (cp->phys.head.lastp != cp->goalp)
5520 resid = sym_compute_residual(np, cp);
5523 * Wrong transfer residuals may be worse than just always
5524 * returning zero. User can disable this feature in
5525 * sym53c8xx.h. Residual support is enabled by default.
5527 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5528 resid = 0;
5529 #ifdef DEBUG_2_0_X
5530 if (resid)
5531 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5532 #endif
5535 * Build result in CAM ccb.
5537 sym_set_cam_result_ok(cp, cmd, resid);
5539 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5541 * If max number of started ccbs had been reduced,
5542 * increase it if 200 good status received.
5544 if (lp && lp->started_max < lp->started_limit) {
5545 ++lp->num_sgood;
5546 if (lp->num_sgood >= 200) {
5547 lp->num_sgood = 0;
5548 ++lp->started_max;
5549 if (sym_verbose >= 2) {
5550 sym_print_addr(cmd, " queue depth is now %d\n",
5551 lp->started_max);
5555 #endif
5558 * Free our CCB.
5560 sym_free_ccb (np, cp);
5562 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564 * Requeue a couple of awaiting scsi commands.
5566 if (!sym_que_empty(&lp->waiting_ccbq))
5567 sym_start_next_ccbs(np, lp, 2);
5568 #endif
5570 * Complete the command.
5572 sym_xpt_done(np, cmd);
5576 * Soft-attach the controller.
5578 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5580 struct sym_hcb *np = sym_get_hcb(shost);
5581 int i;
5584 * Get some info about the firmware.
5586 np->scripta_sz = fw->a_size;
5587 np->scriptb_sz = fw->b_size;
5588 np->scriptz_sz = fw->z_size;
5589 np->fw_setup = fw->setup;
5590 np->fw_patch = fw->patch;
5591 np->fw_name = fw->name;
5594 * Save setting of some IO registers, so we will
5595 * be able to probe specific implementations.
5597 sym_save_initial_setting (np);
5600 * Reset the chip now, since it has been reported
5601 * that SCSI clock calibration may not work properly
5602 * if the chip is currently active.
5604 sym_chip_reset(np);
5607 * Prepare controller and devices settings, according
5608 * to chip features, user set-up and driver set-up.
5610 sym_prepare_setting(shost, np, nvram);
5613 * Check the PCI clock frequency.
5614 * Must be performed after prepare_setting since it destroys
5615 * STEST1 that is used to probe for the clock doubler.
5617 i = sym_getpciclock(np);
5618 if (i > 37000 && !(np->features & FE_66MHZ))
5619 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5620 sym_name(np), i);
5623 * Allocate the start queue.
5625 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5626 if (!np->squeue)
5627 goto attach_failed;
5628 np->squeue_ba = vtobus(np->squeue);
5631 * Allocate the done queue.
5633 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5634 if (!np->dqueue)
5635 goto attach_failed;
5636 np->dqueue_ba = vtobus(np->dqueue);
5639 * Allocate the target bus address array.
5641 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5642 if (!np->targtbl)
5643 goto attach_failed;
5644 np->targtbl_ba = vtobus(np->targtbl);
5647 * Allocate SCRIPTS areas.
5649 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5650 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5651 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5652 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5653 goto attach_failed;
5656 * Allocate the array of lists of CCBs hashed by DSA.
5658 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(*np->ccbh), GFP_KERNEL);
5659 if (!np->ccbh)
5660 goto attach_failed;
5663 * Initialyze the CCB free and busy queues.
5665 sym_que_init(&np->free_ccbq);
5666 sym_que_init(&np->busy_ccbq);
5667 sym_que_init(&np->comp_ccbq);
5670 * Initialization for optional handling
5671 * of device queueing.
5673 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5674 sym_que_init(&np->dummy_ccbq);
5675 #endif
5677 * Allocate some CCB. We need at least ONE.
5679 if (!sym_alloc_ccb(np))
5680 goto attach_failed;
5683 * Calculate BUS addresses where we are going
5684 * to load the SCRIPTS.
5686 np->scripta_ba = vtobus(np->scripta0);
5687 np->scriptb_ba = vtobus(np->scriptb0);
5688 np->scriptz_ba = vtobus(np->scriptz0);
5690 if (np->ram_ba) {
5691 np->scripta_ba = np->ram_ba;
5692 if (np->features & FE_RAM8K) {
5693 np->scriptb_ba = np->scripta_ba + 4096;
5694 #if 0 /* May get useful for 64 BIT PCI addressing */
5695 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5696 #endif
5701 * Copy scripts to controller instance.
5703 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5704 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5705 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5708 * Setup variable parts in scripts and compute
5709 * scripts bus addresses used from the C code.
5711 np->fw_setup(np, fw);
5714 * Bind SCRIPTS with physical addresses usable by the
5715 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5717 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5718 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5719 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5721 #ifdef SYM_CONF_IARB_SUPPORT
5723 * If user wants IARB to be set when we win arbitration
5724 * and have other jobs, compute the max number of consecutive
5725 * settings of IARB hints before we leave devices a chance to
5726 * arbitrate for reselection.
5728 #ifdef SYM_SETUP_IARB_MAX
5729 np->iarb_max = SYM_SETUP_IARB_MAX;
5730 #else
5731 np->iarb_max = 4;
5732 #endif
5733 #endif
5736 * Prepare the idle and invalid task actions.
5738 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5739 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5740 np->idletask_ba = vtobus(&np->idletask);
5742 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5743 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5744 np->notask_ba = vtobus(&np->notask);
5746 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5747 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5748 np->bad_itl_ba = vtobus(&np->bad_itl);
5750 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5751 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5752 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5755 * Allocate and prepare the lun JUMP table that is used
5756 * for a target prior the probing of devices (bad lun table).
5757 * A private table will be allocated for the target on the
5758 * first INQUIRY response received.
5760 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5761 if (!np->badluntbl)
5762 goto attach_failed;
5764 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5765 memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
5768 * Prepare the bus address array that contains the bus
5769 * address of each target control block.
5770 * For now, assume all logical units are wrong. :)
5772 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5773 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5774 np->target[i].head.luntbl_sa =
5775 cpu_to_scr(vtobus(np->badluntbl));
5776 np->target[i].head.lun0_sa =
5777 cpu_to_scr(vtobus(&np->badlun_sa));
5781 * Now check the cache handling of the pci chipset.
5783 if (sym_snooptest (np)) {
5784 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5785 goto attach_failed;
5789 * Sigh! we are done.
5791 return 0;
5793 attach_failed:
5794 return -ENXIO;
5798 * Free everything that has been allocated for this device.
5800 void sym_hcb_free(struct sym_hcb *np)
5802 SYM_QUEHEAD *qp;
5803 struct sym_ccb *cp;
5804 struct sym_tcb *tp;
5805 int target;
5807 if (np->scriptz0)
5808 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5809 if (np->scriptb0)
5810 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5811 if (np->scripta0)
5812 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5813 if (np->squeue)
5814 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5815 if (np->dqueue)
5816 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5818 if (np->actccbs) {
5819 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5820 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5821 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5824 kfree(np->ccbh);
5826 if (np->badluntbl)
5827 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5829 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5830 tp = &np->target[target];
5831 if (tp->luntbl)
5832 sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5833 #if SYM_CONF_MAX_LUN > 1
5834 kfree(tp->lunmp);
5835 #endif
5837 if (np->targtbl)
5838 sym_mfree_dma(np->targtbl, 256, "TARGTBL");