1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4 * of PCI-SCSI IO processors.
6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
7 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
9 * This driver is derived from the Linux sym53c8xx driver.
10 * Copyright (C) 1998-2000 Gerard Roudier
12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
13 * a port of the FreeBSD ncr driver to Linux-1.2.13.
15 * The original ncr driver has been written for 386bsd and FreeBSD by
16 * Wolfgang Stanglmeier <wolf@cologne.de>
17 * Stefan Esser <se@mi.Uni-Koeln.de>
18 * Copyright (C) 1994 Wolfgang Stanglmeier
20 * Other major contributions:
22 * NVRAM detection and reading.
23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
25 *-----------------------------------------------------------------------------
28 #include <linux/slab.h>
29 #include <asm/param.h> /* for timeouts in units of HZ */
32 #include "sym_nvram.h"
35 #define SYM_DEBUG_GENERIC_SUPPORT
39 * Needed function prototypes.
41 static void sym_int_ma (struct sym_hcb
*np
);
42 static void sym_int_sir(struct sym_hcb
*);
43 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
);
44 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
);
45 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
);
46 static void sym_complete_error (struct sym_hcb
*np
, struct sym_ccb
*cp
);
47 static void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
);
48 static int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
);
51 * Print a buffer in hexadecimal format with a ".\n" at end.
53 static void sym_printl_hex(u_char
*p
, int n
)
60 static void sym_print_msg(struct sym_ccb
*cp
, char *label
, u_char
*msg
)
62 sym_print_addr(cp
->cmd
, "%s: ", label
);
68 static void sym_print_nego_msg(struct sym_hcb
*np
, int target
, char *label
, u_char
*msg
)
70 struct sym_tcb
*tp
= &np
->target
[target
];
71 dev_info(&tp
->starget
->dev
, "%s: ", label
);
78 * Print something that tells about extended errors.
80 void sym_print_xerr(struct scsi_cmnd
*cmd
, int x_status
)
82 if (x_status
& XE_PARITY_ERR
) {
83 sym_print_addr(cmd
, "unrecovered SCSI parity error.\n");
85 if (x_status
& XE_EXTRA_DATA
) {
86 sym_print_addr(cmd
, "extraneous data discarded.\n");
88 if (x_status
& XE_BAD_PHASE
) {
89 sym_print_addr(cmd
, "illegal scsi phase (4/5).\n");
91 if (x_status
& XE_SODL_UNRUN
) {
92 sym_print_addr(cmd
, "ODD transfer in DATA OUT phase.\n");
94 if (x_status
& XE_SWIDE_OVRUN
) {
95 sym_print_addr(cmd
, "ODD transfer in DATA IN phase.\n");
100 * Return a string for SCSI BUS mode.
102 static char *sym_scsi_bus_mode(int mode
)
105 case SMODE_HVD
: return "HVD";
106 case SMODE_SE
: return "SE";
107 case SMODE_LVD
: return "LVD";
113 * Soft reset the chip.
115 * Raising SRST when the chip is running may cause
116 * problems on dual function chips (see below).
117 * On the other hand, LVD devices need some delay
118 * to settle and report actual BUS mode in STEST4.
120 static void sym_chip_reset (struct sym_hcb
*np
)
122 OUTB(np
, nc_istat
, SRST
);
125 OUTB(np
, nc_istat
, 0);
127 udelay(2000); /* For BUS MODE to settle */
131 * Really soft reset the chip.:)
133 * Some 896 and 876 chip revisions may hang-up if we set
134 * the SRST (soft reset) bit at the wrong time when SCRIPTS
136 * So, we need to abort the current operation prior to
137 * soft resetting the chip.
139 static void sym_soft_reset (struct sym_hcb
*np
)
144 if (!(np
->features
& FE_ISTAT1
) || !(INB(np
, nc_istat1
) & SCRUN
))
147 OUTB(np
, nc_istat
, CABRT
);
148 for (i
= 100000 ; i
; --i
) {
149 istat
= INB(np
, nc_istat
);
153 else if (istat
& DIP
) {
154 if (INB(np
, nc_dstat
) & ABRT
)
159 OUTB(np
, nc_istat
, 0);
161 printf("%s: unable to abort current chip operation, "
162 "ISTAT=0x%02x.\n", sym_name(np
), istat
);
168 * Start reset process.
170 * The interrupt handler will reinitialize the chip.
172 static void sym_start_reset(struct sym_hcb
*np
)
174 sym_reset_scsi_bus(np
, 1);
177 int sym_reset_scsi_bus(struct sym_hcb
*np
, int enab_int
)
182 sym_soft_reset(np
); /* Soft reset the chip */
184 OUTW(np
, nc_sien
, RST
);
186 * Enable Tolerant, reset IRQD if present and
187 * properly set IRQ mode, prior to resetting the bus.
189 OUTB(np
, nc_stest3
, TE
);
190 OUTB(np
, nc_dcntl
, (np
->rv_dcntl
& IRQM
));
191 OUTB(np
, nc_scntl1
, CRST
);
195 if (!SYM_SETUP_SCSI_BUS_CHECK
)
198 * Check for no terminators or SCSI bus shorts to ground.
199 * Read SCSI data bus, data parity bits and control signals.
200 * We are expecting RESET to be TRUE and other signals to be
203 term
= INB(np
, nc_sstat0
);
204 term
= ((term
& 2) << 7) + ((term
& 1) << 17); /* rst sdp0 */
205 term
|= ((INB(np
, nc_sstat2
) & 0x01) << 26) | /* sdp1 */
206 ((INW(np
, nc_sbdl
) & 0xff) << 9) | /* d7-0 */
207 ((INW(np
, nc_sbdl
) & 0xff00) << 10) | /* d15-8 */
208 INB(np
, nc_sbcl
); /* req ack bsy sel atn msg cd io */
213 if (term
!= (2<<7)) {
214 printf("%s: suspicious SCSI data while resetting the BUS.\n",
216 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
217 "0x%lx, expecting 0x%lx\n",
219 (np
->features
& FE_WIDE
) ? "dp1,d15-8," : "",
220 (u_long
)term
, (u_long
)(2<<7));
221 if (SYM_SETUP_SCSI_BUS_CHECK
== 1)
225 OUTB(np
, nc_scntl1
, 0);
230 * Select SCSI clock frequency
232 static void sym_selectclock(struct sym_hcb
*np
, u_char scntl3
)
235 * If multiplier not present or not selected, leave here.
237 if (np
->multiplier
<= 1) {
238 OUTB(np
, nc_scntl3
, scntl3
);
242 if (sym_verbose
>= 2)
243 printf ("%s: enabling clock multiplier\n", sym_name(np
));
245 OUTB(np
, nc_stest1
, DBLEN
); /* Enable clock multiplier */
247 * Wait for the LCKFRQ bit to be set if supported by the chip.
248 * Otherwise wait 50 micro-seconds (at least).
250 if (np
->features
& FE_LCKFRQ
) {
252 while (!(INB(np
, nc_stest4
) & LCKFRQ
) && --i
> 0)
255 printf("%s: the chip cannot lock the frequency\n",
261 OUTB(np
, nc_stest3
, HSC
); /* Halt the scsi clock */
262 OUTB(np
, nc_scntl3
, scntl3
);
263 OUTB(np
, nc_stest1
, (DBLEN
|DBLSEL
));/* Select clock multiplier */
264 OUTB(np
, nc_stest3
, 0x00); /* Restart scsi clock */
269 * Determine the chip's clock frequency.
271 * This is essential for the negotiation of the synchronous
274 * Note: we have to return the correct value.
275 * THERE IS NO SAFE DEFAULT VALUE.
277 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
278 * 53C860 and 53C875 rev. 1 support fast20 transfers but
279 * do not have a clock doubler and so are provided with a
280 * 80 MHz clock. All other fast20 boards incorporate a doubler
281 * and so should be delivered with a 40 MHz clock.
282 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
283 * clock and provide a clock quadrupler (160 Mhz).
287 * calculate SCSI clock frequency (in KHz)
289 static unsigned getfreq (struct sym_hcb
*np
, int gen
)
295 * Measure GEN timer delay in order
296 * to calculate SCSI clock frequency
298 * This code will never execute too
299 * many loop iterations (if DELAY is
300 * reasonably correct). It could get
301 * too low a delay (too high a freq.)
302 * if the CPU is slow executing the
303 * loop for some reason (an NMI, for
304 * example). For this reason we will
305 * if multiple measurements are to be
306 * performed trust the higher delay
307 * (lower frequency returned).
309 OUTW(np
, nc_sien
, 0); /* mask all scsi interrupts */
310 INW(np
, nc_sist
); /* clear pending scsi interrupt */
311 OUTB(np
, nc_dien
, 0); /* mask all dma interrupts */
312 INW(np
, nc_sist
); /* another one, just to be sure :) */
314 * The C1010-33 core does not report GEN in SIST,
315 * if this interrupt is masked in SIEN.
316 * I don't know yet if the C1010-66 behaves the same way.
318 if (np
->features
& FE_C10
) {
319 OUTW(np
, nc_sien
, GEN
);
320 OUTB(np
, nc_istat1
, SIRQD
);
322 OUTB(np
, nc_scntl3
, 4); /* set pre-scaler to divide by 3 */
323 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
324 OUTB(np
, nc_stime1
, gen
); /* set to nominal delay of 1<<gen * 125us */
325 while (!(INW(np
, nc_sist
) & GEN
) && ms
++ < 100000)
326 udelay(1000/4); /* count in 1/4 of ms */
327 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
329 * Undo C1010-33 specific settings.
331 if (np
->features
& FE_C10
) {
332 OUTW(np
, nc_sien
, 0);
333 OUTB(np
, nc_istat1
, 0);
336 * set prescaler to divide by whatever 0 means
337 * 0 ought to choose divide by 2, but appears
338 * to set divide by 3.5 mode in my 53c810 ...
340 OUTB(np
, nc_scntl3
, 0);
343 * adjust for prescaler, and convert into KHz
345 f
= ms
? ((1 << gen
) * (4340*4)) / ms
: 0;
348 * The C1010-33 result is biased by a factor
349 * of 2/3 compared to earlier chips.
351 if (np
->features
& FE_C10
)
354 if (sym_verbose
>= 2)
355 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
356 sym_name(np
), gen
, ms
/4, f
);
361 static unsigned sym_getfreq (struct sym_hcb
*np
)
366 getfreq (np
, gen
); /* throw away first result */
367 f1
= getfreq (np
, gen
);
368 f2
= getfreq (np
, gen
);
369 if (f1
> f2
) f1
= f2
; /* trust lower result */
374 * Get/probe chip SCSI clock frequency
376 static void sym_getclock (struct sym_hcb
*np
, int mult
)
378 unsigned char scntl3
= np
->sv_scntl3
;
379 unsigned char stest1
= np
->sv_stest1
;
385 * True with 875/895/896/895A with clock multiplier selected
387 if (mult
> 1 && (stest1
& (DBLEN
+DBLSEL
)) == DBLEN
+DBLSEL
) {
388 if (sym_verbose
>= 2)
389 printf ("%s: clock multiplier found\n", sym_name(np
));
390 np
->multiplier
= mult
;
394 * If multiplier not found or scntl3 not 7,5,3,
395 * reset chip and get frequency from general purpose timer.
396 * Otherwise trust scntl3 BIOS setting.
398 if (np
->multiplier
!= mult
|| (scntl3
& 7) < 3 || !(scntl3
& 1)) {
399 OUTB(np
, nc_stest1
, 0); /* make sure doubler is OFF */
400 f1
= sym_getfreq (np
);
403 printf ("%s: chip clock is %uKHz\n", sym_name(np
), f1
);
405 if (f1
< 45000) f1
= 40000;
406 else if (f1
< 55000) f1
= 50000;
409 if (f1
< 80000 && mult
> 1) {
410 if (sym_verbose
>= 2)
411 printf ("%s: clock multiplier assumed\n",
413 np
->multiplier
= mult
;
416 if ((scntl3
& 7) == 3) f1
= 40000;
417 else if ((scntl3
& 7) == 5) f1
= 80000;
420 f1
/= np
->multiplier
;
424 * Compute controller synchronous parameters.
426 f1
*= np
->multiplier
;
431 * Get/probe PCI clock frequency
433 static int sym_getpciclock (struct sym_hcb
*np
)
438 * For now, we only need to know about the actual
439 * PCI BUS clock frequency for C1010-66 chips.
442 if (np
->features
& FE_66MHZ
) {
446 OUTB(np
, nc_stest1
, SCLK
); /* Use the PCI clock as SCSI clock */
448 OUTB(np
, nc_stest1
, 0);
456 * SYMBIOS chip clock divisor table.
458 * Divisors are multiplied by 10,000,000 in order to make
459 * calculations more simple.
462 static const u32 div_10M
[] = {2*_5M
, 3*_5M
, 4*_5M
, 6*_5M
, 8*_5M
, 12*_5M
, 16*_5M
};
465 * Get clock factor and sync divisor for a given
466 * synchronous factor period.
469 sym_getsync(struct sym_hcb
*np
, u_char dt
, u_char sfac
, u_char
*divp
, u_char
*fakp
)
471 u32 clk
= np
->clock_khz
; /* SCSI clock frequency in kHz */
472 int div
= np
->clock_divn
; /* Number of divisors supported */
473 u32 fak
; /* Sync factor in sxfer */
474 u32 per
; /* Period in tenths of ns */
475 u32 kpc
; /* (per * clk) */
479 * Compute the synchronous period in tenths of nano-seconds
481 if (dt
&& sfac
<= 9) per
= 125;
482 else if (sfac
<= 10) per
= 250;
483 else if (sfac
== 11) per
= 303;
484 else if (sfac
== 12) per
= 500;
485 else per
= 40 * sfac
;
493 * For earliest C10 revision 0, we cannot use extra
494 * clocks for the setting of the SCSI clocking.
495 * Note that this limits the lowest sync data transfer
496 * to 5 Mega-transfers per second and may result in
497 * using higher clock divisors.
500 if ((np
->features
& (FE_C10
|FE_U3EN
)) == FE_C10
) {
502 * Look for the lowest clock divisor that allows an
503 * output speed not faster than the period.
507 if (kpc
> (div_10M
[div
] << 2)) {
512 fak
= 0; /* No extra clocks */
513 if (div
== np
->clock_divn
) { /* Are we too fast ? */
523 * Look for the greatest clock divisor that allows an
524 * input speed faster than the period.
527 if (kpc
>= (div_10M
[div
] << 2)) break;
530 * Calculate the lowest clock factor that allows an output
531 * speed not faster than the period, and the max output speed.
532 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
533 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
536 fak
= (kpc
- 1) / (div_10M
[div
] << 1) + 1 - 2;
537 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
539 fak
= (kpc
- 1) / div_10M
[div
] + 1 - 4;
540 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
544 * Check against our hardware limits, or bugs :).
552 * Compute and return sync parameters.
561 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
562 * 128 transfers. All chips support at least 16 transfers
563 * bursts. The 825A, 875 and 895 chips support bursts of up
564 * to 128 transfers and the 895A and 896 support bursts of up
565 * to 64 transfers. All other chips support up to 16
568 * For PCI 32 bit data transfers each transfer is a DWORD.
569 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
571 * We use log base 2 (burst length) as internal code, with
572 * value 0 meaning "burst disabled".
576 * Burst length from burst code.
578 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
581 * Burst code from io register bits.
583 #define burst_code(dmode, ctest4, ctest5) \
584 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
587 * Set initial io register bits from burst code.
589 static inline void sym_init_burst(struct sym_hcb
*np
, u_char bc
)
591 np
->rv_ctest4
&= ~0x80;
592 np
->rv_dmode
&= ~(0x3 << 6);
593 np
->rv_ctest5
&= ~0x4;
596 np
->rv_ctest4
|= 0x80;
600 np
->rv_dmode
|= ((bc
& 0x3) << 6);
601 np
->rv_ctest5
|= (bc
& 0x4);
606 * Save initial settings of some IO registers.
607 * Assumed to have been set by BIOS.
608 * We cannot reset the chip prior to reading the
609 * IO registers, since informations will be lost.
610 * Since the SCRIPTS processor may be running, this
611 * is not safe on paper, but it seems to work quite
614 static void sym_save_initial_setting (struct sym_hcb
*np
)
616 np
->sv_scntl0
= INB(np
, nc_scntl0
) & 0x0a;
617 np
->sv_scntl3
= INB(np
, nc_scntl3
) & 0x07;
618 np
->sv_dmode
= INB(np
, nc_dmode
) & 0xce;
619 np
->sv_dcntl
= INB(np
, nc_dcntl
) & 0xa8;
620 np
->sv_ctest3
= INB(np
, nc_ctest3
) & 0x01;
621 np
->sv_ctest4
= INB(np
, nc_ctest4
) & 0x80;
622 np
->sv_gpcntl
= INB(np
, nc_gpcntl
);
623 np
->sv_stest1
= INB(np
, nc_stest1
);
624 np
->sv_stest2
= INB(np
, nc_stest2
) & 0x20;
625 np
->sv_stest4
= INB(np
, nc_stest4
);
626 if (np
->features
& FE_C10
) { /* Always large DMA fifo + ultra3 */
627 np
->sv_scntl4
= INB(np
, nc_scntl4
);
628 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x04;
631 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x24;
636 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
637 * through the STEST4 IO register.
638 * - For previous generation chips (825/825A/875), the user has to tell us
639 * how to check against HVD, since a 100% safe algorithm is not possible.
641 static void sym_set_bus_mode(struct sym_hcb
*np
, struct sym_nvram
*nvram
)
646 np
->scsi_mode
= SMODE_SE
;
647 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
))
648 np
->scsi_mode
= (np
->sv_stest4
& SMODE
);
649 else if (np
->features
& FE_DIFF
) {
650 if (SYM_SETUP_SCSI_DIFF
== 1) {
652 if (np
->sv_stest2
& 0x20)
653 np
->scsi_mode
= SMODE_HVD
;
654 } else if (nvram
->type
== SYM_SYMBIOS_NVRAM
) {
655 if (!(INB(np
, nc_gpreg
) & 0x08))
656 np
->scsi_mode
= SMODE_HVD
;
658 } else if (SYM_SETUP_SCSI_DIFF
== 2)
659 np
->scsi_mode
= SMODE_HVD
;
661 if (np
->scsi_mode
== SMODE_HVD
)
662 np
->rv_stest2
|= 0x20;
666 * Prepare io register values used by sym_start_up()
667 * according to selected and supported features.
669 static int sym_prepare_setting(struct Scsi_Host
*shost
, struct sym_hcb
*np
, struct sym_nvram
*nvram
)
671 struct sym_data
*sym_data
= shost_priv(shost
);
672 struct pci_dev
*pdev
= sym_data
->pdev
;
677 np
->maxwide
= (np
->features
& FE_WIDE
) ? 1 : 0;
680 * Guess the frequency of the chip's clock.
682 if (np
->features
& (FE_ULTRA3
| FE_ULTRA2
))
683 np
->clock_khz
= 160000;
684 else if (np
->features
& FE_ULTRA
)
685 np
->clock_khz
= 80000;
687 np
->clock_khz
= 40000;
690 * Get the clock multiplier factor.
692 if (np
->features
& FE_QUAD
)
694 else if (np
->features
& FE_DBLR
)
700 * Measure SCSI clock frequency for chips
701 * it may vary from assumed one.
703 if (np
->features
& FE_VARCLK
)
704 sym_getclock(np
, np
->multiplier
);
707 * Divisor to be used for async (timer pre-scaler).
709 i
= np
->clock_divn
- 1;
711 if (10ul * SYM_CONF_MIN_ASYNC
* np
->clock_khz
> div_10M
[i
]) {
719 * The C1010 uses hardwired divisors for async.
720 * So, we just throw away, the async. divisor.:-)
722 if (np
->features
& FE_C10
)
726 * Minimum synchronous period factor supported by the chip.
727 * Btw, 'period' is in tenths of nanoseconds.
729 period
= (4 * div_10M
[0] + np
->clock_khz
- 1) / np
->clock_khz
;
731 if (period
<= 250) np
->minsync
= 10;
732 else if (period
<= 303) np
->minsync
= 11;
733 else if (period
<= 500) np
->minsync
= 12;
734 else np
->minsync
= (period
+ 40 - 1) / 40;
737 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
739 if (np
->minsync
< 25 &&
740 !(np
->features
& (FE_ULTRA
|FE_ULTRA2
|FE_ULTRA3
)))
742 else if (np
->minsync
< 12 &&
743 !(np
->features
& (FE_ULTRA2
|FE_ULTRA3
)))
747 * Maximum synchronous period factor supported by the chip.
749 period
= div64_ul(11 * div_10M
[np
->clock_divn
- 1], 4 * np
->clock_khz
);
750 np
->maxsync
= period
> 2540 ? 254 : period
/ 10;
753 * If chip is a C1010, guess the sync limits in DT mode.
755 if ((np
->features
& (FE_C10
|FE_ULTRA3
)) == (FE_C10
|FE_ULTRA3
)) {
756 if (np
->clock_khz
== 160000) {
759 np
->maxoffs_dt
= nvram
->type
? 62 : 31;
764 * 64 bit addressing (895A/896/1010) ?
766 if (np
->features
& FE_DAC
) {
768 np
->rv_ccntl1
|= (DDAC
);
769 else if (SYM_CONF_DMA_ADDRESSING_MODE
== 1)
770 np
->rv_ccntl1
|= (XTIMOD
| EXTIBMV
);
771 else if (SYM_CONF_DMA_ADDRESSING_MODE
== 2)
772 np
->rv_ccntl1
|= (0 | EXTIBMV
);
776 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
778 if (np
->features
& FE_NOPM
)
779 np
->rv_ccntl0
|= (ENPMJ
);
782 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
783 * In dual channel mode, contention occurs if internal cycles
784 * are used. Disable internal cycles.
786 if (pdev
->device
== PCI_DEVICE_ID_LSI_53C1010_33
&&
787 pdev
->revision
< 0x1)
788 np
->rv_ccntl0
|= DILS
;
791 * Select burst length (dwords)
793 burst_max
= SYM_SETUP_BURST_ORDER
;
794 if (burst_max
== 255)
795 burst_max
= burst_code(np
->sv_dmode
, np
->sv_ctest4
,
799 if (burst_max
> np
->maxburst
)
800 burst_max
= np
->maxburst
;
803 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
804 * This chip and the 860 Rev 1 may wrongly use PCI cache line
805 * based transactions on LOAD/STORE instructions. So we have
806 * to prevent these chips from using such PCI transactions in
807 * this driver. The generic ncr driver that does not use
808 * LOAD/STORE instructions does not need this work-around.
810 if ((pdev
->device
== PCI_DEVICE_ID_NCR_53C810
&&
811 pdev
->revision
>= 0x10 && pdev
->revision
<= 0x11) ||
812 (pdev
->device
== PCI_DEVICE_ID_NCR_53C860
&&
813 pdev
->revision
<= 0x1))
814 np
->features
&= ~(FE_WRIE
|FE_ERL
|FE_ERMP
);
817 * Select all supported special features.
818 * If we are using on-board RAM for scripts, prefetch (PFEN)
819 * does not help, but burst op fetch (BOF) does.
820 * Disabling PFEN makes sure BOF will be used.
822 if (np
->features
& FE_ERL
)
823 np
->rv_dmode
|= ERL
; /* Enable Read Line */
824 if (np
->features
& FE_BOF
)
825 np
->rv_dmode
|= BOF
; /* Burst Opcode Fetch */
826 if (np
->features
& FE_ERMP
)
827 np
->rv_dmode
|= ERMP
; /* Enable Read Multiple */
829 if ((np
->features
& FE_PFEN
) && !np
->ram_ba
)
831 if (np
->features
& FE_PFEN
)
833 np
->rv_dcntl
|= PFEN
; /* Prefetch Enable */
834 if (np
->features
& FE_CLSE
)
835 np
->rv_dcntl
|= CLSE
; /* Cache Line Size Enable */
836 if (np
->features
& FE_WRIE
)
837 np
->rv_ctest3
|= WRIE
; /* Write and Invalidate */
838 if (np
->features
& FE_DFS
)
839 np
->rv_ctest5
|= DFS
; /* Dma Fifo Size */
844 np
->rv_ctest4
|= MPEE
; /* Master parity checking */
845 np
->rv_scntl0
|= 0x0a; /* full arb., ena parity, par->ATN */
848 * Get parity checking, host ID and verbose mode from NVRAM
852 sym_nvram_setup_host(shost
, np
, nvram
);
855 * Get SCSI addr of host adapter (set by bios?).
857 if (np
->myaddr
== 255) {
858 np
->myaddr
= INB(np
, nc_scid
) & 0x07;
860 np
->myaddr
= SYM_SETUP_HOST_ID
;
864 * Prepare initial io register bits for burst length
866 sym_init_burst(np
, burst_max
);
868 sym_set_bus_mode(np
, nvram
);
871 * Set LED support from SCRIPTS.
872 * Ignore this feature for boards known to use a
873 * specific GPIO wiring and for the 895A, 896
874 * and 1010 that drive the LED directly.
876 if ((SYM_SETUP_SCSI_LED
||
877 (nvram
->type
== SYM_SYMBIOS_NVRAM
||
878 (nvram
->type
== SYM_TEKRAM_NVRAM
&&
879 pdev
->device
== PCI_DEVICE_ID_NCR_53C895
))) &&
880 !(np
->features
& FE_LEDC
) && !(np
->sv_gpcntl
& 0x01))
881 np
->features
|= FE_LED0
;
886 switch(SYM_SETUP_IRQ_MODE
& 3) {
888 np
->rv_dcntl
|= IRQM
;
891 np
->rv_dcntl
|= (np
->sv_dcntl
& IRQM
);
898 * Configure targets according to driver setup.
899 * If NVRAM present get targets setup from NVRAM.
901 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
902 struct sym_tcb
*tp
= &np
->target
[i
];
904 tp
->usrflags
|= (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
905 tp
->usrtags
= SYM_SETUP_MAX_TAG
;
906 tp
->usr_width
= np
->maxwide
;
909 sym_nvram_setup_target(tp
, i
, nvram
);
912 tp
->usrflags
&= ~SYM_TAGS_ENABLED
;
916 * Let user know about the settings.
918 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np
),
919 sym_nvram_type(nvram
), np
->myaddr
,
920 (np
->features
& FE_ULTRA3
) ? 80 :
921 (np
->features
& FE_ULTRA2
) ? 40 :
922 (np
->features
& FE_ULTRA
) ? 20 : 10,
923 sym_scsi_bus_mode(np
->scsi_mode
),
924 (np
->rv_scntl0
& 0xa) ? "parity checking" : "NO parity");
926 * Tell him more on demand.
929 printf("%s: %s IRQ line driver%s\n",
931 np
->rv_dcntl
& IRQM
? "totem pole" : "open drain",
932 np
->ram_ba
? ", using on-chip SRAM" : "");
933 printf("%s: using %s firmware.\n", sym_name(np
), np
->fw_name
);
934 if (np
->features
& FE_NOPM
)
935 printf("%s: handling phase mismatch from SCRIPTS.\n",
941 if (sym_verbose
>= 2) {
942 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
943 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
944 sym_name(np
), np
->sv_scntl3
, np
->sv_dmode
, np
->sv_dcntl
,
945 np
->sv_ctest3
, np
->sv_ctest4
, np
->sv_ctest5
);
947 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
948 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
949 sym_name(np
), np
->rv_scntl3
, np
->rv_dmode
, np
->rv_dcntl
,
950 np
->rv_ctest3
, np
->rv_ctest4
, np
->rv_ctest5
);
957 * Test the pci bus snoop logic :-(
959 * Has to be called with interrupts disabled.
961 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
962 static int sym_regtest(struct sym_hcb
*np
)
964 register volatile u32 data
;
966 * chip registers may NOT be cached.
967 * write 0xffffffff to a read only register area,
968 * and try to read it back.
971 OUTL(np
, nc_dstat
, data
);
972 data
= INL(np
, nc_dstat
);
974 if (data
== 0xffffffff) {
976 if ((data
& 0xe2f0fffd) != 0x02000080) {
978 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
985 static inline int sym_regtest(struct sym_hcb
*np
)
991 static int sym_snooptest(struct sym_hcb
*np
)
993 u32 sym_rd
, sym_wr
, sym_bk
, host_rd
, host_wr
, pc
, dstat
;
996 err
= sym_regtest(np
);
1001 * Enable Master Parity Checking as we intend
1002 * to enable it for normal operations.
1004 OUTB(np
, nc_ctest4
, (np
->rv_ctest4
& MPEE
));
1008 pc
= SCRIPTZ_BA(np
, snooptest
);
1012 * Set memory and register.
1014 np
->scratch
= cpu_to_scr(host_wr
);
1015 OUTL(np
, nc_temp
, sym_wr
);
1017 * Start script (exchange values)
1019 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1022 * Wait 'til done (with timeout)
1024 for (i
=0; i
<SYM_SNOOP_TIMEOUT
; i
++)
1025 if (INB(np
, nc_istat
) & (INTF
|SIP
|DIP
))
1027 if (i
>=SYM_SNOOP_TIMEOUT
) {
1028 printf ("CACHE TEST FAILED: timeout.\n");
1032 * Check for fatal DMA errors.
1034 dstat
= INB(np
, nc_dstat
);
1035 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1036 if ((dstat
& MDPE
) && (np
->rv_ctest4
& MPEE
)) {
1037 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1038 "DISABLING MASTER DATA PARITY CHECKING.\n",
1040 np
->rv_ctest4
&= ~MPEE
;
1044 if (dstat
& (MDPE
|BF
|IID
)) {
1045 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat
);
1049 * Save termination position.
1051 pc
= INL(np
, nc_dsp
);
1053 * Read memory and register.
1055 host_rd
= scr_to_cpu(np
->scratch
);
1056 sym_rd
= INL(np
, nc_scratcha
);
1057 sym_bk
= INL(np
, nc_temp
);
1059 * Check termination position.
1061 if (pc
!= SCRIPTZ_BA(np
, snoopend
)+8) {
1062 printf ("CACHE TEST FAILED: script execution failed.\n");
1063 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1064 (u_long
) SCRIPTZ_BA(np
, snooptest
), (u_long
) pc
,
1065 (u_long
) SCRIPTZ_BA(np
, snoopend
) +8);
1071 if (host_wr
!= sym_rd
) {
1072 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1073 (int) host_wr
, (int) sym_rd
);
1076 if (host_rd
!= sym_wr
) {
1077 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1078 (int) sym_wr
, (int) host_rd
);
1081 if (sym_bk
!= sym_wr
) {
1082 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1083 (int) sym_wr
, (int) sym_bk
);
1091 * log message for real hard errors
1093 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1094 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1096 * exception register:
1101 * so: control lines as driven by chip.
1102 * si: control lines as seen by chip.
1103 * sd: scsi data lines as seen by chip.
1106 * sx: sxfer (see the manual)
1107 * s3: scntl3 (see the manual)
1108 * s4: scntl4 (see the manual)
1110 * current script command:
1111 * dsp: script address (relative to start of script).
1112 * dbc: first word of script command.
1114 * First 24 register of the chip:
1117 static void sym_log_hard_error(struct Scsi_Host
*shost
, u_short sist
, u_char dstat
)
1119 struct sym_hcb
*np
= sym_get_hcb(shost
);
1124 u_char
*script_base
;
1127 dsp
= INL(np
, nc_dsp
);
1129 if (dsp
> np
->scripta_ba
&&
1130 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
1131 script_ofs
= dsp
- np
->scripta_ba
;
1132 script_size
= np
->scripta_sz
;
1133 script_base
= (u_char
*) np
->scripta0
;
1134 script_name
= "scripta";
1136 else if (np
->scriptb_ba
< dsp
&&
1137 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
1138 script_ofs
= dsp
- np
->scriptb_ba
;
1139 script_size
= np
->scriptb_sz
;
1140 script_base
= (u_char
*) np
->scriptb0
;
1141 script_name
= "scriptb";
1146 script_name
= "mem";
1149 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1150 sym_name(np
), (unsigned)INB(np
, nc_sdid
)&0x0f, dstat
, sist
,
1151 (unsigned)INB(np
, nc_socl
), (unsigned)INB(np
, nc_sbcl
),
1152 (unsigned)INB(np
, nc_sbdl
), (unsigned)INB(np
, nc_sxfer
),
1153 (unsigned)INB(np
, nc_scntl3
),
1154 (np
->features
& FE_C10
) ? (unsigned)INB(np
, nc_scntl4
) : 0,
1155 script_name
, script_ofs
, (unsigned)INL(np
, nc_dbc
));
1157 if (((script_ofs
& 3) == 0) &&
1158 (unsigned)script_ofs
< script_size
) {
1159 printf ("%s: script cmd = %08x\n", sym_name(np
),
1160 scr_to_cpu((int) *(u32
*)(script_base
+ script_ofs
)));
1163 printf("%s: regdump:", sym_name(np
));
1164 for (i
= 0; i
< 24; i
++)
1165 printf(" %02x", (unsigned)INB_OFF(np
, i
));
1171 if (dstat
& (MDPE
|BF
))
1172 sym_log_bus_error(shost
);
1175 void sym_dump_registers(struct Scsi_Host
*shost
)
1177 struct sym_hcb
*np
= sym_get_hcb(shost
);
1181 sist
= INW(np
, nc_sist
);
1182 dstat
= INB(np
, nc_dstat
);
1183 sym_log_hard_error(shost
, sist
, dstat
);
1186 static struct sym_chip sym_dev_table
[] = {
1187 {PCI_DEVICE_ID_NCR_53C810
, 0x0f, "810", 4, 8, 4, 64,
1190 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1191 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1195 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1196 FE_CACHE_SET
|FE_LDSTR
|FE_PFEN
|FE_BOF
}
1199 {PCI_DEVICE_ID_NCR_53C815
, 0xff, "815", 4, 8, 4, 64,
1202 {PCI_DEVICE_ID_NCR_53C825
, 0x0f, "825", 6, 8, 4, 64,
1203 FE_WIDE
|FE_BOF
|FE_ERL
|FE_DIFF
}
1205 {PCI_DEVICE_ID_NCR_53C825
, 0xff, "825a", 6, 8, 4, 2,
1206 FE_WIDE
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|FE_RAM
|FE_DIFF
}
1208 {PCI_DEVICE_ID_NCR_53C860
, 0xff, "860", 4, 8, 5, 1,
1209 FE_ULTRA
|FE_CACHE_SET
|FE_BOF
|FE_LDSTR
|FE_PFEN
}
1211 {PCI_DEVICE_ID_NCR_53C875
, 0x01, "875", 6, 16, 5, 2,
1212 FE_WIDE
|FE_ULTRA
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1213 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1215 {PCI_DEVICE_ID_NCR_53C875
, 0xff, "875", 6, 16, 5, 2,
1216 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1217 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1219 {PCI_DEVICE_ID_NCR_53C875J
, 0xff, "875J", 6, 16, 5, 2,
1220 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1221 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1223 {PCI_DEVICE_ID_NCR_53C885
, 0xff, "885", 6, 16, 5, 2,
1224 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1225 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1227 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1228 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1229 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|
1233 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1234 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1238 {PCI_DEVICE_ID_NCR_53C896
, 0xff, "896", 6, 31, 7, 4,
1239 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1240 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1242 {PCI_DEVICE_ID_LSI_53C895A
, 0xff, "895a", 6, 31, 7, 4,
1243 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1244 FE_RAM
|FE_RAM8K
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1246 {PCI_DEVICE_ID_LSI_53C875A
, 0xff, "875a", 6, 31, 7, 4,
1247 FE_WIDE
|FE_ULTRA
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1248 FE_RAM
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1250 {PCI_DEVICE_ID_LSI_53C1010_33
, 0x00, "1010-33", 6, 31, 7, 8,
1251 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1252 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1255 {PCI_DEVICE_ID_LSI_53C1010_33
, 0xff, "1010-33", 6, 31, 7, 8,
1256 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1257 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1260 {PCI_DEVICE_ID_LSI_53C1010_66
, 0xff, "1010-66", 6, 31, 7, 8,
1261 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1262 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_66MHZ
|FE_CRC
|
1265 {PCI_DEVICE_ID_LSI_53C1510
, 0xff, "1510d", 6, 31, 7, 4,
1266 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1267 FE_RAM
|FE_IO256
|FE_LEDC
}
1270 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1273 * Look up the chip table.
1275 * Return a pointer to the chip entry if found,
1279 sym_lookup_chip_table (u_short device_id
, u_char revision
)
1281 struct sym_chip
*chip
;
1284 for (i
= 0; i
< sym_num_devs
; i
++) {
1285 chip
= &sym_dev_table
[i
];
1286 if (device_id
!= chip
->device_id
)
1288 if (revision
> chip
->revision_id
)
1296 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1298 * Lookup the 64 bit DMA segments map.
1299 * This is only used if the direct mapping
1300 * has been unsuccessful.
1302 int sym_lookup_dmap(struct sym_hcb
*np
, u32 h
, int s
)
1309 /* Look up existing mappings */
1310 for (i
= SYM_DMAP_SIZE
-1; i
> 0; i
--) {
1311 if (h
== np
->dmap_bah
[i
])
1314 /* If direct mapping is free, get it */
1315 if (!np
->dmap_bah
[s
])
1317 /* Collision -> lookup free mappings */
1318 for (s
= SYM_DMAP_SIZE
-1; s
> 0; s
--) {
1319 if (!np
->dmap_bah
[s
])
1323 panic("sym: ran out of 64 bit DMA segment registers");
1326 np
->dmap_bah
[s
] = h
;
1332 * Update IO registers scratch C..R so they will be
1333 * in sync. with queued CCB expectations.
1335 static void sym_update_dmap_regs(struct sym_hcb
*np
)
1339 if (!np
->dmap_dirty
)
1341 o
= offsetof(struct sym_reg
, nc_scrx
[0]);
1342 for (i
= 0; i
< SYM_DMAP_SIZE
; i
++) {
1343 OUTL_OFF(np
, o
, np
->dmap_bah
[i
]);
1350 /* Enforce all the fiddly SPI rules and the chip limitations */
1351 static void sym_check_goals(struct sym_hcb
*np
, struct scsi_target
*starget
,
1352 struct sym_trans
*goal
)
1354 if (!spi_support_wide(starget
))
1357 if (!spi_support_sync(starget
)) {
1365 if (spi_support_dt(starget
)) {
1366 if (spi_support_dt_only(starget
))
1369 if (goal
->offset
== 0)
1375 /* Some targets fail to properly negotiate DT in SE mode */
1376 if ((np
->scsi_mode
!= SMODE_LVD
) || !(np
->features
& FE_U3EN
))
1380 /* all DT transfers must be wide */
1382 if (goal
->offset
> np
->maxoffs_dt
)
1383 goal
->offset
= np
->maxoffs_dt
;
1384 if (goal
->period
< np
->minsync_dt
)
1385 goal
->period
= np
->minsync_dt
;
1386 if (goal
->period
> np
->maxsync_dt
)
1387 goal
->period
= np
->maxsync_dt
;
1389 goal
->iu
= goal
->qas
= 0;
1390 if (goal
->offset
> np
->maxoffs
)
1391 goal
->offset
= np
->maxoffs
;
1392 if (goal
->period
< np
->minsync
)
1393 goal
->period
= np
->minsync
;
1394 if (goal
->period
> np
->maxsync
)
1395 goal
->period
= np
->maxsync
;
1400 * Prepare the next negotiation message if needed.
1402 * Fill in the part of message buffer that contains the
1403 * negotiation and the nego_status field of the CCB.
1404 * Returns the size of the message in bytes.
1406 static int sym_prepare_nego(struct sym_hcb
*np
, struct sym_ccb
*cp
, u_char
*msgptr
)
1408 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1409 struct scsi_target
*starget
= tp
->starget
;
1410 struct sym_trans
*goal
= &tp
->tgoal
;
1414 sym_check_goals(np
, starget
, goal
);
1417 * Many devices implement PPR in a buggy way, so only use it if we
1420 if (goal
->renego
== NS_PPR
|| (goal
->offset
&&
1421 (goal
->iu
|| goal
->dt
|| goal
->qas
|| (goal
->period
< 0xa)))) {
1423 } else if (goal
->renego
== NS_WIDE
|| goal
->width
) {
1425 } else if (goal
->renego
== NS_SYNC
|| goal
->offset
) {
1428 goal
->check_nego
= 0;
1434 msglen
+= spi_populate_sync_msg(msgptr
+ msglen
, goal
->period
,
1438 msglen
+= spi_populate_width_msg(msgptr
+ msglen
, goal
->width
);
1441 msglen
+= spi_populate_ppr_msg(msgptr
+ msglen
, goal
->period
,
1442 goal
->offset
, goal
->width
,
1443 (goal
->iu
? PPR_OPT_IU
: 0) |
1444 (goal
->dt
? PPR_OPT_DT
: 0) |
1445 (goal
->qas
? PPR_OPT_QAS
: 0));
1449 cp
->nego_status
= nego
;
1452 tp
->nego_cp
= cp
; /* Keep track a nego will be performed */
1453 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
1454 sym_print_nego_msg(np
, cp
->target
,
1455 nego
== NS_SYNC
? "sync msgout" :
1456 nego
== NS_WIDE
? "wide msgout" :
1457 "ppr msgout", msgptr
);
1465 * Insert a job into the start queue.
1467 void sym_put_start_queue(struct sym_hcb
*np
, struct sym_ccb
*cp
)
1471 #ifdef SYM_CONF_IARB_SUPPORT
1473 * If the previously queued CCB is not yet done,
1474 * set the IARB hint. The SCRIPTS will go with IARB
1475 * for this job when starting the previous one.
1476 * We leave devices a chance to win arbitration by
1477 * not using more than 'iarb_max' consecutive
1478 * immediate arbitrations.
1480 if (np
->last_cp
&& np
->iarb_count
< np
->iarb_max
) {
1481 np
->last_cp
->host_flags
|= HF_HINT_IARB
;
1489 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1491 * Make SCRIPTS aware of the 64 bit DMA
1492 * segment registers not being up-to-date.
1495 cp
->host_xflags
|= HX_DMAP_DIRTY
;
1499 * Insert first the idle task and then our job.
1500 * The MBs should ensure proper ordering.
1502 qidx
= np
->squeueput
+ 2;
1503 if (qidx
>= MAX_QUEUE
*2) qidx
= 0;
1505 np
->squeue
[qidx
] = cpu_to_scr(np
->idletask_ba
);
1506 MEMORY_WRITE_BARRIER();
1507 np
->squeue
[np
->squeueput
] = cpu_to_scr(cp
->ccb_ba
);
1509 np
->squeueput
= qidx
;
1511 if (DEBUG_FLAGS
& DEBUG_QUEUE
)
1512 scmd_printk(KERN_DEBUG
, cp
->cmd
, "queuepos=%d\n",
1516 * Script processor may be waiting for reselect.
1519 MEMORY_WRITE_BARRIER();
1520 OUTB(np
, nc_istat
, SIGP
|np
->istat_sem
);
1523 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1525 * Start next ready-to-start CCBs.
1527 void sym_start_next_ccbs(struct sym_hcb
*np
, struct sym_lcb
*lp
, int maxn
)
1533 * Paranoia, as usual. :-)
1535 assert(!lp
->started_tags
|| !lp
->started_no_tag
);
1538 * Try to start as many commands as asked by caller.
1539 * Prevent from having both tagged and untagged
1540 * commands queued to the device at the same time.
1543 qp
= sym_remque_head(&lp
->waiting_ccbq
);
1546 cp
= sym_que_entry(qp
, struct sym_ccb
, link2_ccbq
);
1547 if (cp
->tag
!= NO_TAG
) {
1548 if (lp
->started_no_tag
||
1549 lp
->started_tags
>= lp
->started_max
) {
1550 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1553 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(cp
->ccb_ba
);
1555 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
1558 if (lp
->started_no_tag
|| lp
->started_tags
) {
1559 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1562 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
1564 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
1565 ++lp
->started_no_tag
;
1568 sym_insque_tail(qp
, &lp
->started_ccbq
);
1569 sym_put_start_queue(np
, cp
);
1572 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1575 * The chip may have completed jobs. Look at the DONE QUEUE.
1577 * On paper, memory read barriers may be needed here to
1578 * prevent out of order LOADs by the CPU from having
1579 * prefetched stale data prior to DMA having occurred.
1581 static int sym_wakeup_done (struct sym_hcb
*np
)
1590 /* MEMORY_READ_BARRIER(); */
1592 dsa
= scr_to_cpu(np
->dqueue
[i
]);
1596 if ((i
= i
+2) >= MAX_QUEUE
*2)
1599 cp
= sym_ccb_from_dsa(np
, dsa
);
1601 MEMORY_READ_BARRIER();
1602 sym_complete_ok (np
, cp
);
1606 printf ("%s: bad DSA (%x) in done queue.\n",
1607 sym_name(np
), (u_int
) dsa
);
1615 * Complete all CCBs queued to the COMP queue.
1617 * These CCBs are assumed:
1618 * - Not to be referenced either by devices or
1619 * SCRIPTS-related queues and datas.
1620 * - To have to be completed with an error condition
1623 * The device queue freeze count is incremented
1624 * for each CCB that does not prevent this.
1625 * This function is called when all CCBs involved
1626 * in error handling/recovery have been reaped.
1628 static void sym_flush_comp_queue(struct sym_hcb
*np
, int cam_status
)
1633 while ((qp
= sym_remque_head(&np
->comp_ccbq
)) != NULL
) {
1634 struct scsi_cmnd
*cmd
;
1635 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
1636 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
1637 /* Leave quiet CCBs waiting for resources */
1638 if (cp
->host_status
== HS_WAIT
)
1642 sym_set_cam_status(cmd
, cam_status
);
1643 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1644 if (sym_get_cam_status(cmd
) == DID_SOFT_ERROR
) {
1645 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1646 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
1648 sym_remque(&cp
->link2_ccbq
);
1649 sym_insque_tail(&cp
->link2_ccbq
,
1652 if (cp
->tag
!= NO_TAG
)
1655 --lp
->started_no_tag
;
1662 sym_free_ccb(np
, cp
);
1663 sym_xpt_done(np
, cmd
);
1668 * Complete all active CCBs with error.
1669 * Used on CHIP/SCSI RESET.
1671 static void sym_flush_busy_queue (struct sym_hcb
*np
, int cam_status
)
1674 * Move all active CCBs to the COMP queue
1675 * and flush this queue.
1677 sym_que_splice(&np
->busy_ccbq
, &np
->comp_ccbq
);
1678 sym_que_init(&np
->busy_ccbq
);
1679 sym_flush_comp_queue(np
, cam_status
);
1686 * 0: initialisation.
1687 * 1: SCSI BUS RESET delivered or received.
1688 * 2: SCSI BUS MODE changed.
1690 void sym_start_up(struct Scsi_Host
*shost
, int reason
)
1692 struct sym_data
*sym_data
= shost_priv(shost
);
1693 struct pci_dev
*pdev
= sym_data
->pdev
;
1694 struct sym_hcb
*np
= sym_data
->ncb
;
1699 * Reset chip if asked, otherwise just clear fifos.
1704 OUTB(np
, nc_stest3
, TE
|CSF
);
1705 OUTONB(np
, nc_ctest3
, CLF
);
1711 phys
= np
->squeue_ba
;
1712 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1713 np
->squeue
[i
] = cpu_to_scr(np
->idletask_ba
);
1714 np
->squeue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1716 np
->squeue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1719 * Start at first entry.
1726 phys
= np
->dqueue_ba
;
1727 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1729 np
->dqueue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1731 np
->dqueue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1734 * Start at first entry.
1739 * Install patches in scripts.
1740 * This also let point to first position the start
1741 * and done queue pointers used from SCRIPTS.
1743 np
->fw_patch(shost
);
1746 * Wakeup all pending jobs.
1748 sym_flush_busy_queue(np
, DID_RESET
);
1753 OUTB(np
, nc_istat
, 0x00); /* Remove Reset, abort */
1755 udelay(2000); /* The 895 needs time for the bus mode to settle */
1757 OUTB(np
, nc_scntl0
, np
->rv_scntl0
| 0xc0);
1758 /* full arb., ena parity, par->ATN */
1759 OUTB(np
, nc_scntl1
, 0x00); /* odd parity, and remove CRST!! */
1761 sym_selectclock(np
, np
->rv_scntl3
); /* Select SCSI clock */
1763 OUTB(np
, nc_scid
, RRE
|np
->myaddr
); /* Adapter SCSI address */
1764 OUTW(np
, nc_respid
, 1ul<<np
->myaddr
); /* Id to respond to */
1765 OUTB(np
, nc_istat
, SIGP
); /* Signal Process */
1766 OUTB(np
, nc_dmode
, np
->rv_dmode
); /* Burst length, dma mode */
1767 OUTB(np
, nc_ctest5
, np
->rv_ctest5
); /* Large fifo + large burst */
1769 OUTB(np
, nc_dcntl
, NOCOM
|np
->rv_dcntl
); /* Protect SFBR */
1770 OUTB(np
, nc_ctest3
, np
->rv_ctest3
); /* Write and invalidate */
1771 OUTB(np
, nc_ctest4
, np
->rv_ctest4
); /* Master parity checking */
1773 /* Extended Sreq/Sack filtering not supported on the C10 */
1774 if (np
->features
& FE_C10
)
1775 OUTB(np
, nc_stest2
, np
->rv_stest2
);
1777 OUTB(np
, nc_stest2
, EXT
|np
->rv_stest2
);
1779 OUTB(np
, nc_stest3
, TE
); /* TolerANT enable */
1780 OUTB(np
, nc_stime0
, 0x0c); /* HTH disabled STO 0.25 sec */
1783 * For now, disable AIP generation on C1010-66.
1785 if (pdev
->device
== PCI_DEVICE_ID_LSI_53C1010_66
)
1786 OUTB(np
, nc_aipcntl1
, DISAIP
);
1789 * C10101 rev. 0 errata.
1790 * Errant SGE's when in narrow. Write bits 4 & 5 of
1791 * STEST1 register to disable SGE. We probably should do
1792 * that from SCRIPTS for each selection/reselection, but
1793 * I just don't want. :)
1795 if (pdev
->device
== PCI_DEVICE_ID_LSI_53C1010_33
&&
1797 OUTB(np
, nc_stest1
, INB(np
, nc_stest1
) | 0x30);
1800 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1801 * Disable overlapped arbitration for some dual function devices,
1802 * regardless revision id (kind of post-chip-design feature. ;-))
1804 if (pdev
->device
== PCI_DEVICE_ID_NCR_53C875
)
1805 OUTB(np
, nc_ctest0
, (1<<5));
1806 else if (pdev
->device
== PCI_DEVICE_ID_NCR_53C896
)
1807 np
->rv_ccntl0
|= DPR
;
1810 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1811 * and/or hardware phase mismatch, since only such chips
1812 * seem to support those IO registers.
1814 if (np
->features
& (FE_DAC
|FE_NOPM
)) {
1815 OUTB(np
, nc_ccntl0
, np
->rv_ccntl0
);
1816 OUTB(np
, nc_ccntl1
, np
->rv_ccntl1
);
1819 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1821 * Set up scratch C and DRS IO registers to map the 32 bit
1822 * DMA address range our data structures are located in.
1825 np
->dmap_bah
[0] = 0; /* ??? */
1826 OUTL(np
, nc_scrx
[0], np
->dmap_bah
[0]);
1827 OUTL(np
, nc_drs
, np
->dmap_bah
[0]);
1832 * If phase mismatch handled by scripts (895A/896/1010),
1833 * set PM jump addresses.
1835 if (np
->features
& FE_NOPM
) {
1836 OUTL(np
, nc_pmjad1
, SCRIPTB_BA(np
, pm_handle
));
1837 OUTL(np
, nc_pmjad2
, SCRIPTB_BA(np
, pm_handle
));
1841 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1842 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1844 if (np
->features
& FE_LED0
)
1845 OUTB(np
, nc_gpcntl
, INB(np
, nc_gpcntl
) & ~0x01);
1846 else if (np
->features
& FE_LEDC
)
1847 OUTB(np
, nc_gpcntl
, (INB(np
, nc_gpcntl
) & ~0x41) | 0x20);
1852 OUTW(np
, nc_sien
, STO
|HTH
|MA
|SGE
|UDC
|RST
|PAR
);
1853 OUTB(np
, nc_dien
, MDPE
|BF
|SSI
|SIR
|IID
);
1856 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1857 * Try to eat the spurious SBMC interrupt that may occur when
1858 * we reset the chip but not the SCSI BUS (at initialization).
1860 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
)) {
1861 OUTONW(np
, nc_sien
, SBMC
);
1867 np
->scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
1871 * Fill in target structure.
1872 * Reinitialize usrsync.
1873 * Reinitialize usrwide.
1874 * Prepare sync negotiation according to actual SCSI bus mode.
1876 for (i
=0;i
<SYM_CONF_MAX_TARGET
;i
++) {
1877 struct sym_tcb
*tp
= &np
->target
[i
];
1881 tp
->head
.wval
= np
->rv_scntl3
;
1884 tp
->lun0p
->to_clear
= 0;
1888 for (ln
= 1; ln
< SYM_CONF_MAX_LUN
; ln
++)
1890 tp
->lunmp
[ln
]->to_clear
= 0;
1895 * Download SCSI SCRIPTS to on-chip RAM if present,
1896 * and start script processor.
1897 * We do the download preferently from the CPU.
1898 * For platforms that may not support PCI memory mapping,
1899 * we use simple SCRIPTS that performs MEMORY MOVEs.
1901 phys
= SCRIPTA_BA(np
, init
);
1903 if (sym_verbose
>= 2)
1904 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np
));
1905 memcpy_toio(np
->s
.ramaddr
, np
->scripta0
, np
->scripta_sz
);
1906 if (np
->features
& FE_RAM8K
) {
1907 memcpy_toio(np
->s
.ramaddr
+ 4096, np
->scriptb0
, np
->scriptb_sz
);
1908 phys
= scr_to_cpu(np
->scr_ram_seg
);
1909 OUTL(np
, nc_mmws
, phys
);
1910 OUTL(np
, nc_mmrs
, phys
);
1911 OUTL(np
, nc_sfs
, phys
);
1912 phys
= SCRIPTB_BA(np
, start64
);
1918 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1922 * Notify the XPT about the RESET condition.
1925 sym_xpt_async_bus_reset(np
);
1929 * Switch trans mode for current job and its target.
1931 static void sym_settrans(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
1932 u_char per
, u_char wide
, u_char div
, u_char fak
)
1935 u_char sval
, wval
, uval
;
1936 struct sym_tcb
*tp
= &np
->target
[target
];
1938 assert(target
== (INB(np
, nc_sdid
) & 0x0f));
1940 sval
= tp
->head
.sval
;
1941 wval
= tp
->head
.wval
;
1942 uval
= tp
->head
.uval
;
1945 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1946 sval
, wval
, uval
, np
->rv_scntl3
);
1951 if (!(np
->features
& FE_C10
))
1952 sval
= (sval
& ~0x1f) | ofs
;
1954 sval
= (sval
& ~0x3f) | ofs
;
1957 * Set the sync divisor and extra clock factor.
1960 wval
= (wval
& ~0x70) | ((div
+1) << 4);
1961 if (!(np
->features
& FE_C10
))
1962 sval
= (sval
& ~0xe0) | (fak
<< 5);
1964 uval
= uval
& ~(XCLKH_ST
|XCLKH_DT
|XCLKS_ST
|XCLKS_DT
);
1965 if (fak
>= 1) uval
|= (XCLKH_ST
|XCLKH_DT
);
1966 if (fak
>= 2) uval
|= (XCLKS_ST
|XCLKS_DT
);
1971 * Set the bus width.
1978 * Set misc. ultra enable bits.
1980 if (np
->features
& FE_C10
) {
1981 uval
= uval
& ~(U3EN
|AIPCKEN
);
1983 assert(np
->features
& FE_U3EN
);
1987 wval
= wval
& ~ULTRA
;
1988 if (per
<= 12) wval
|= ULTRA
;
1992 * Stop there if sync parameters are unchanged.
1994 if (tp
->head
.sval
== sval
&&
1995 tp
->head
.wval
== wval
&&
1996 tp
->head
.uval
== uval
)
1998 tp
->head
.sval
= sval
;
1999 tp
->head
.wval
= wval
;
2000 tp
->head
.uval
= uval
;
2003 * Disable extended Sreq/Sack filtering if per < 50.
2004 * Not supported on the C1010.
2006 if (per
< 50 && !(np
->features
& FE_C10
))
2007 OUTOFFB(np
, nc_stest2
, EXT
);
2010 * set actual value and sync_status
2012 OUTB(np
, nc_sxfer
, tp
->head
.sval
);
2013 OUTB(np
, nc_scntl3
, tp
->head
.wval
);
2015 if (np
->features
& FE_C10
) {
2016 OUTB(np
, nc_scntl4
, tp
->head
.uval
);
2020 * patch ALL busy ccbs of this target.
2022 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
2024 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
2025 if (cp
->target
!= target
)
2027 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
2028 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
2029 if (np
->features
& FE_C10
) {
2030 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
2035 static void sym_announce_transfer_rate(struct sym_tcb
*tp
)
2037 struct scsi_target
*starget
= tp
->starget
;
2039 if (tp
->tprint
.period
!= spi_period(starget
) ||
2040 tp
->tprint
.offset
!= spi_offset(starget
) ||
2041 tp
->tprint
.width
!= spi_width(starget
) ||
2042 tp
->tprint
.iu
!= spi_iu(starget
) ||
2043 tp
->tprint
.dt
!= spi_dt(starget
) ||
2044 tp
->tprint
.qas
!= spi_qas(starget
) ||
2045 !tp
->tprint
.check_nego
) {
2046 tp
->tprint
.period
= spi_period(starget
);
2047 tp
->tprint
.offset
= spi_offset(starget
);
2048 tp
->tprint
.width
= spi_width(starget
);
2049 tp
->tprint
.iu
= spi_iu(starget
);
2050 tp
->tprint
.dt
= spi_dt(starget
);
2051 tp
->tprint
.qas
= spi_qas(starget
);
2052 tp
->tprint
.check_nego
= 1;
2054 spi_display_xfer_agreement(starget
);
2059 * We received a WDTR.
2060 * Let everything be aware of the changes.
2062 static void sym_setwide(struct sym_hcb
*np
, int target
, u_char wide
)
2064 struct sym_tcb
*tp
= &np
->target
[target
];
2065 struct scsi_target
*starget
= tp
->starget
;
2067 sym_settrans(np
, target
, 0, 0, 0, wide
, 0, 0);
2070 tp
->tgoal
.renego
= NS_WIDE
;
2072 tp
->tgoal
.renego
= 0;
2073 tp
->tgoal
.check_nego
= 0;
2074 tp
->tgoal
.width
= wide
;
2075 spi_offset(starget
) = 0;
2076 spi_period(starget
) = 0;
2077 spi_width(starget
) = wide
;
2078 spi_iu(starget
) = 0;
2079 spi_dt(starget
) = 0;
2080 spi_qas(starget
) = 0;
2082 if (sym_verbose
>= 3)
2083 sym_announce_transfer_rate(tp
);
2087 * We received a SDTR.
2088 * Let everything be aware of the changes.
2091 sym_setsync(struct sym_hcb
*np
, int target
,
2092 u_char ofs
, u_char per
, u_char div
, u_char fak
)
2094 struct sym_tcb
*tp
= &np
->target
[target
];
2095 struct scsi_target
*starget
= tp
->starget
;
2096 u_char wide
= (tp
->head
.wval
& EWS
) ? BUS_16_BIT
: BUS_8_BIT
;
2098 sym_settrans(np
, target
, 0, ofs
, per
, wide
, div
, fak
);
2101 tp
->tgoal
.renego
= NS_WIDE
;
2103 tp
->tgoal
.renego
= NS_SYNC
;
2105 tp
->tgoal
.renego
= 0;
2106 spi_period(starget
) = per
;
2107 spi_offset(starget
) = ofs
;
2108 spi_iu(starget
) = spi_dt(starget
) = spi_qas(starget
) = 0;
2110 if (!tp
->tgoal
.dt
&& !tp
->tgoal
.iu
&& !tp
->tgoal
.qas
) {
2111 tp
->tgoal
.period
= per
;
2112 tp
->tgoal
.offset
= ofs
;
2113 tp
->tgoal
.check_nego
= 0;
2116 sym_announce_transfer_rate(tp
);
2120 * We received a PPR.
2121 * Let everything be aware of the changes.
2124 sym_setpprot(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
2125 u_char per
, u_char wide
, u_char div
, u_char fak
)
2127 struct sym_tcb
*tp
= &np
->target
[target
];
2128 struct scsi_target
*starget
= tp
->starget
;
2130 sym_settrans(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
2133 tp
->tgoal
.renego
= NS_PPR
;
2135 tp
->tgoal
.renego
= 0;
2136 spi_width(starget
) = tp
->tgoal
.width
= wide
;
2137 spi_period(starget
) = tp
->tgoal
.period
= per
;
2138 spi_offset(starget
) = tp
->tgoal
.offset
= ofs
;
2139 spi_iu(starget
) = tp
->tgoal
.iu
= !!(opts
& PPR_OPT_IU
);
2140 spi_dt(starget
) = tp
->tgoal
.dt
= !!(opts
& PPR_OPT_DT
);
2141 spi_qas(starget
) = tp
->tgoal
.qas
= !!(opts
& PPR_OPT_QAS
);
2142 tp
->tgoal
.check_nego
= 0;
2144 sym_announce_transfer_rate(tp
);
2148 * generic recovery from scsi interrupt
2150 * The doc says that when the chip gets an SCSI interrupt,
2151 * it tries to stop in an orderly fashion, by completing
2152 * an instruction fetch that had started or by flushing
2153 * the DMA fifo for a write to memory that was executing.
2154 * Such a fashion is not enough to know if the instruction
2155 * that was just before the current DSP value has been
2158 * There are some small SCRIPTS sections that deal with
2159 * the start queue and the done queue that may break any
2160 * assomption from the C code if we are interrupted
2161 * inside, so we reset if this happens. Btw, since these
2162 * SCRIPTS sections are executed while the SCRIPTS hasn't
2163 * started SCSI operations, it is very unlikely to happen.
2165 * All the driver data structures are supposed to be
2166 * allocated from the same 4 GB memory window, so there
2167 * is a 1 to 1 relationship between DSA and driver data
2168 * structures. Since we are careful :) to invalidate the
2169 * DSA when we complete a command or when the SCRIPTS
2170 * pushes a DSA into a queue, we can trust it when it
2173 static void sym_recover_scsi_int (struct sym_hcb
*np
, u_char hsts
)
2175 u32 dsp
= INL(np
, nc_dsp
);
2176 u32 dsa
= INL(np
, nc_dsa
);
2177 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2180 * If we haven't been interrupted inside the SCRIPTS
2181 * critical pathes, we can safely restart the SCRIPTS
2182 * and trust the DSA value if it matches a CCB.
2184 if ((!(dsp
> SCRIPTA_BA(np
, getjob_begin
) &&
2185 dsp
< SCRIPTA_BA(np
, getjob_end
) + 1)) &&
2186 (!(dsp
> SCRIPTA_BA(np
, ungetjob
) &&
2187 dsp
< SCRIPTA_BA(np
, reselect
) + 1)) &&
2188 (!(dsp
> SCRIPTB_BA(np
, sel_for_abort
) &&
2189 dsp
< SCRIPTB_BA(np
, sel_for_abort_1
) + 1)) &&
2190 (!(dsp
> SCRIPTA_BA(np
, done
) &&
2191 dsp
< SCRIPTA_BA(np
, done_end
) + 1))) {
2192 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2193 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2195 * If we have a CCB, let the SCRIPTS call us back for
2196 * the handling of the error with SCRATCHA filled with
2197 * STARTPOS. This way, we will be able to freeze the
2198 * device queue and requeue awaiting IOs.
2201 cp
->host_status
= hsts
;
2202 OUTL_DSP(np
, SCRIPTA_BA(np
, complete_error
));
2205 * Otherwise just restart the SCRIPTS.
2208 OUTL(np
, nc_dsa
, 0xffffff);
2209 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
2218 sym_start_reset(np
);
2222 * chip exception handler for selection timeout
2224 static void sym_int_sto (struct sym_hcb
*np
)
2226 u32 dsp
= INL(np
, nc_dsp
);
2228 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("T");
2230 if (dsp
== SCRIPTA_BA(np
, wf_sel_done
) + 8)
2231 sym_recover_scsi_int(np
, HS_SEL_TIMEOUT
);
2233 sym_start_reset(np
);
2237 * chip exception handler for unexpected disconnect
2239 static void sym_int_udc (struct sym_hcb
*np
)
2241 printf ("%s: unexpected disconnect\n", sym_name(np
));
2242 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2246 * chip exception handler for SCSI bus mode change
2248 * spi2-r12 11.2.3 says a transceiver mode change must
2249 * generate a reset event and a device that detects a reset
2250 * event shall initiate a hard reset. It says also that a
2251 * device that detects a mode change shall set data transfer
2252 * mode to eight bit asynchronous, etc...
2253 * So, just reinitializing all except chip should be enough.
2255 static void sym_int_sbmc(struct Scsi_Host
*shost
)
2257 struct sym_hcb
*np
= sym_get_hcb(shost
);
2258 u_char scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
2263 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np
),
2264 sym_scsi_bus_mode(np
->scsi_mode
), sym_scsi_bus_mode(scsi_mode
));
2267 * Should suspend command processing for a few seconds and
2268 * reinitialize all except the chip.
2270 sym_start_up(shost
, 2);
2274 * chip exception handler for SCSI parity error.
2276 * When the chip detects a SCSI parity error and is
2277 * currently executing a (CH)MOV instruction, it does
2278 * not interrupt immediately, but tries to finish the
2279 * transfer of the current scatter entry before
2280 * interrupting. The following situations may occur:
2282 * - The complete scatter entry has been transferred
2283 * without the device having changed phase.
2284 * The chip will then interrupt with the DSP pointing
2285 * to the instruction that follows the MOV.
2287 * - A phase mismatch occurs before the MOV finished
2288 * and phase errors are to be handled by the C code.
2289 * The chip will then interrupt with both PAR and MA
2292 * - A phase mismatch occurs before the MOV finished and
2293 * phase errors are to be handled by SCRIPTS.
2294 * The chip will load the DSP with the phase mismatch
2295 * JUMP address and interrupt the host processor.
2297 static void sym_int_par (struct sym_hcb
*np
, u_short sist
)
2299 u_char hsts
= INB(np
, HS_PRT
);
2300 u32 dsp
= INL(np
, nc_dsp
);
2301 u32 dbc
= INL(np
, nc_dbc
);
2302 u32 dsa
= INL(np
, nc_dsa
);
2303 u_char sbcl
= INB(np
, nc_sbcl
);
2304 u_char cmd
= dbc
>> 24;
2305 int phase
= cmd
& 7;
2306 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2308 if (printk_ratelimit())
2309 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2310 sym_name(np
), hsts
, dbc
, sbcl
);
2313 * Check that the chip is connected to the SCSI BUS.
2315 if (!(INB(np
, nc_scntl1
) & ISCON
)) {
2316 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2321 * If the nexus is not clearly identified, reset the bus.
2322 * We will try to do better later.
2328 * Check instruction was a MOV, direction was INPUT and
2331 if ((cmd
& 0xc0) || !(phase
& 1) || !(sbcl
& 0x8))
2335 * Keep track of the parity error.
2337 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
2338 cp
->xerr_status
|= XE_PARITY_ERR
;
2341 * Prepare the message to send to the device.
2343 np
->msgout
[0] = (phase
== 7) ? M_PARITY
: M_ID_ERROR
;
2346 * If the old phase was DATA IN phase, we have to deal with
2347 * the 3 situations described above.
2348 * For other input phases (MSG IN and STATUS), the device
2349 * must resend the whole thing that failed parity checking
2350 * or signal error. So, jumping to dispatcher should be OK.
2352 if (phase
== 1 || phase
== 5) {
2353 /* Phase mismatch handled by SCRIPTS */
2354 if (dsp
== SCRIPTB_BA(np
, pm_handle
))
2356 /* Phase mismatch handled by the C code */
2359 /* No phase mismatch occurred */
2361 sym_set_script_dp (np
, cp
, dsp
);
2362 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2365 else if (phase
== 7) /* We definitely cannot handle parity errors */
2366 #if 1 /* in message-in phase due to the relection */
2367 goto reset_all
; /* path and various message anticipations. */
2369 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
2372 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2376 sym_start_reset(np
);
2381 * chip exception handler for phase errors.
2383 * We have to construct a new transfer descriptor,
2384 * to transfer the rest of the current block.
2386 static void sym_int_ma (struct sym_hcb
*np
)
2399 u_char hflags
, hflags0
;
2403 dsp
= INL(np
, nc_dsp
);
2404 dbc
= INL(np
, nc_dbc
);
2405 dsa
= INL(np
, nc_dsa
);
2408 rest
= dbc
& 0xffffff;
2412 * locate matching cp if any.
2414 cp
= sym_ccb_from_dsa(np
, dsa
);
2417 * Donnot take into account dma fifo and various buffers in
2418 * INPUT phase since the chip flushes everything before
2419 * raising the MA interrupt for interrupted INPUT phases.
2420 * For DATA IN phase, we will check for the SWIDE later.
2422 if ((cmd
& 7) != 1 && (cmd
& 7) != 5) {
2425 if (np
->features
& FE_DFBC
)
2426 delta
= INW(np
, nc_dfbc
);
2431 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2433 dfifo
= INL(np
, nc_dfifo
);
2436 * Calculate remaining bytes in DMA fifo.
2437 * (CTEST5 = dfifo >> 16)
2439 if (dfifo
& (DFS
<< 16))
2440 delta
= ((((dfifo
>> 8) & 0x300) |
2441 (dfifo
& 0xff)) - rest
) & 0x3ff;
2443 delta
= ((dfifo
& 0xff) - rest
) & 0x7f;
2447 * The data in the dma fifo has not been transferred to
2448 * the target -> add the amount to the rest
2449 * and clear the data.
2450 * Check the sstat2 register in case of wide transfer.
2453 ss0
= INB(np
, nc_sstat0
);
2454 if (ss0
& OLF
) rest
++;
2455 if (!(np
->features
& FE_C10
))
2456 if (ss0
& ORF
) rest
++;
2457 if (cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
)) {
2458 ss2
= INB(np
, nc_sstat2
);
2459 if (ss2
& OLF1
) rest
++;
2460 if (!(np
->features
& FE_C10
))
2461 if (ss2
& ORF1
) rest
++;
2467 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* dma fifo */
2468 OUTB(np
, nc_stest3
, TE
|CSF
); /* scsi fifo */
2472 * log the information
2474 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_PHASE
))
2475 printf ("P%x%x RL=%d D=%d ", cmd
&7, INB(np
, nc_sbcl
)&7,
2476 (unsigned) rest
, (unsigned) delta
);
2479 * try to find the interrupted script command,
2480 * and the address at which to continue.
2484 if (dsp
> np
->scripta_ba
&&
2485 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
2486 vdsp
= (u32
*)((char*)np
->scripta0
+ (dsp
-np
->scripta_ba
-8));
2489 else if (dsp
> np
->scriptb_ba
&&
2490 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
2491 vdsp
= (u32
*)((char*)np
->scriptb0
+ (dsp
-np
->scriptb_ba
-8));
2496 * log the information
2498 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2499 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2500 cp
, (unsigned)dsp
, (unsigned)nxtdsp
, vdsp
, cmd
);
2504 printf ("%s: interrupted SCRIPT address not found.\n",
2510 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2516 * get old startaddress and old length.
2518 oadr
= scr_to_cpu(vdsp
[1]);
2520 if (cmd
& 0x10) { /* Table indirect */
2521 tblp
= (u32
*) ((char*) &cp
->phys
+ oadr
);
2522 olen
= scr_to_cpu(tblp
[0]);
2523 oadr
= scr_to_cpu(tblp
[1]);
2526 olen
= scr_to_cpu(vdsp
[0]) & 0xffffff;
2529 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2530 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2531 (unsigned) (scr_to_cpu(vdsp
[0]) >> 24),
2538 * check cmd against assumed interrupted script command.
2539 * If dt data phase, the MOVE instruction hasn't bit 4 of
2542 if (((cmd
& 2) ? cmd
: (cmd
& ~4)) != (scr_to_cpu(vdsp
[0]) >> 24)) {
2543 sym_print_addr(cp
->cmd
,
2544 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2545 cmd
, scr_to_cpu(vdsp
[0]) >> 24);
2551 * if old phase not dataphase, leave here.
2554 sym_print_addr(cp
->cmd
,
2555 "phase change %x-%x %d@%08x resid=%d.\n",
2556 cmd
&7, INB(np
, nc_sbcl
)&7, (unsigned)olen
,
2557 (unsigned)oadr
, (unsigned)rest
);
2558 goto unexpected_phase
;
2562 * Choose the correct PM save area.
2564 * Look at the PM_SAVE SCRIPT if you want to understand
2565 * this stuff. The equivalent code is implemented in
2566 * SCRIPTS for the 895A, 896 and 1010 that are able to
2567 * handle PM from the SCRIPTS processor.
2569 hflags0
= INB(np
, HF_PRT
);
2572 if (hflags
& (HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
)) {
2573 if (hflags
& HF_IN_PM0
)
2574 nxtdsp
= scr_to_cpu(cp
->phys
.pm0
.ret
);
2575 else if (hflags
& HF_IN_PM1
)
2576 nxtdsp
= scr_to_cpu(cp
->phys
.pm1
.ret
);
2578 if (hflags
& HF_DP_SAVED
)
2579 hflags
^= HF_ACT_PM
;
2582 if (!(hflags
& HF_ACT_PM
)) {
2584 newcmd
= SCRIPTA_BA(np
, pm0_data
);
2588 newcmd
= SCRIPTA_BA(np
, pm1_data
);
2591 hflags
&= ~(HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
);
2592 if (hflags
!= hflags0
)
2593 OUTB(np
, HF_PRT
, hflags
);
2596 * fillin the phase mismatch context
2598 pm
->sg
.addr
= cpu_to_scr(oadr
+ olen
- rest
);
2599 pm
->sg
.size
= cpu_to_scr(rest
);
2600 pm
->ret
= cpu_to_scr(nxtdsp
);
2603 * If we have a SWIDE,
2604 * - prepare the address to write the SWIDE from SCRIPTS,
2605 * - compute the SCRIPTS address to restart from,
2606 * - move current data pointer context by one byte.
2608 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2609 if ((cmd
& 7) == 1 && cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
) &&
2610 (INB(np
, nc_scntl2
) & WSR
)) {
2614 * Set up the table indirect for the MOVE
2615 * of the residual byte and adjust the data
2618 tmp
= scr_to_cpu(pm
->sg
.addr
);
2619 cp
->phys
.wresid
.addr
= cpu_to_scr(tmp
);
2620 pm
->sg
.addr
= cpu_to_scr(tmp
+ 1);
2621 tmp
= scr_to_cpu(pm
->sg
.size
);
2622 cp
->phys
.wresid
.size
= cpu_to_scr((tmp
&0xff000000) | 1);
2623 pm
->sg
.size
= cpu_to_scr(tmp
- 1);
2626 * If only the residual byte is to be moved,
2627 * no PM context is needed.
2629 if ((tmp
&0xffffff) == 1)
2633 * Prepare the address of SCRIPTS that will
2634 * move the residual byte to memory.
2636 nxtdsp
= SCRIPTB_BA(np
, wsr_ma_helper
);
2639 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2640 sym_print_addr(cp
->cmd
, "PM %x %x %x / %x %x %x.\n",
2641 hflags0
, hflags
, newcmd
,
2642 (unsigned)scr_to_cpu(pm
->sg
.addr
),
2643 (unsigned)scr_to_cpu(pm
->sg
.size
),
2644 (unsigned)scr_to_cpu(pm
->ret
));
2648 * Restart the SCRIPTS processor.
2650 sym_set_script_dp (np
, cp
, newcmd
);
2651 OUTL_DSP(np
, nxtdsp
);
2655 * Unexpected phase changes that occurs when the current phase
2656 * is not a DATA IN or DATA OUT phase are due to error conditions.
2657 * Such event may only happen when the SCRIPTS is using a
2658 * multibyte SCSI MOVE.
2660 * Phase change Some possible cause
2662 * COMMAND --> MSG IN SCSI parity error detected by target.
2663 * COMMAND --> STATUS Bad command or refused by target.
2664 * MSG OUT --> MSG IN Message rejected by target.
2665 * MSG OUT --> COMMAND Bogus target that discards extended
2666 * negotiation messages.
2668 * The code below does not care of the new phase and so
2669 * trusts the target. Why to annoy it ?
2670 * If the interrupted phase is COMMAND phase, we restart at
2672 * If a target does not get all the messages after selection,
2673 * the code assumes blindly that the target discards extended
2674 * messages and clears the negotiation status.
2675 * If the target does not want all our response to negotiation,
2676 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2677 * bloat for such a should_not_happen situation).
2678 * In all other situation, we reset the BUS.
2679 * Are these assumptions reasonable ? (Wait and see ...)
2686 case 2: /* COMMAND phase */
2687 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2690 case 3: /* STATUS phase */
2691 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2694 case 6: /* MSG OUT phase */
2696 * If the device may want to use untagged when we want
2697 * tagged, we prepare an IDENTIFY without disc. granted,
2698 * since we will not be able to handle reselect.
2699 * Otherwise, we just don't care.
2701 if (dsp
== SCRIPTA_BA(np
, send_ident
)) {
2702 if (cp
->tag
!= NO_TAG
&& olen
- rest
<= 3) {
2703 cp
->host_status
= HS_BUSY
;
2704 np
->msgout
[0] = IDENTIFY(0, cp
->lun
);
2705 nxtdsp
= SCRIPTB_BA(np
, ident_break_atn
);
2708 nxtdsp
= SCRIPTB_BA(np
, ident_break
);
2710 else if (dsp
== SCRIPTB_BA(np
, send_wdtr
) ||
2711 dsp
== SCRIPTB_BA(np
, send_sdtr
) ||
2712 dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2713 nxtdsp
= SCRIPTB_BA(np
, nego_bad_phase
);
2714 if (dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2715 struct scsi_device
*dev
= cp
->cmd
->device
;
2721 case 7: /* MSG IN phase */
2722 nxtdsp
= SCRIPTA_BA(np
, clrack
);
2728 OUTL_DSP(np
, nxtdsp
);
2733 sym_start_reset(np
);
2737 * chip interrupt handler
2739 * In normal situations, interrupt conditions occur one at
2740 * a time. But when something bad happens on the SCSI BUS,
2741 * the chip may raise several interrupt flags before
2742 * stopping and interrupting the CPU. The additionnal
2743 * interrupt flags are stacked in some extra registers
2744 * after the SIP and/or DIP flag has been raised in the
2745 * ISTAT. After the CPU has read the interrupt condition
2746 * flag from SIST or DSTAT, the chip unstacks the other
2747 * interrupt flags and sets the corresponding bits in
2748 * SIST or DSTAT. Since the chip starts stacking once the
2749 * SIP or DIP flag is set, there is a small window of time
2750 * where the stacking does not occur.
2752 * Typically, multiple interrupt conditions may happen in
2753 * the following situations:
2755 * - SCSI parity error + Phase mismatch (PAR|MA)
2756 * When an parity error is detected in input phase
2757 * and the device switches to msg-in phase inside a
2759 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2760 * When a stupid device does not want to handle the
2761 * recovery of an SCSI parity error.
2762 * - Some combinations of STO, PAR, UDC, ...
2763 * When using non compliant SCSI stuff, when user is
2764 * doing non compliant hot tampering on the BUS, when
2765 * something really bad happens to a device, etc ...
2767 * The heuristic suggested by SYMBIOS to handle
2768 * multiple interrupts is to try unstacking all
2769 * interrupts conditions and to handle them on some
2770 * priority based on error severity.
2771 * This will work when the unstacking has been
2772 * successful, but we cannot be 100 % sure of that,
2773 * since the CPU may have been faster to unstack than
2774 * the chip is able to stack. Hmmm ... But it seems that
2775 * such a situation is very unlikely to happen.
2777 * If this happen, for example STO caught by the CPU
2778 * then UDC happenning before the CPU have restarted
2779 * the SCRIPTS, the driver may wrongly complete the
2780 * same command on UDC, since the SCRIPTS didn't restart
2781 * and the DSA still points to the same command.
2782 * We avoid this situation by setting the DSA to an
2783 * invalid value when the CCB is completed and before
2784 * restarting the SCRIPTS.
2786 * Another issue is that we need some section of our
2787 * recovery procedures to be somehow uninterruptible but
2788 * the SCRIPTS processor does not provides such a
2789 * feature. For this reason, we handle recovery preferently
2790 * from the C code and check against some SCRIPTS critical
2791 * sections from the C code.
2793 * Hopefully, the interrupt handling of the driver is now
2794 * able to resist to weird BUS error conditions, but donnot
2795 * ask me for any guarantee that it will never fail. :-)
2796 * Use at your own decision and risk.
2799 irqreturn_t
sym_interrupt(struct Scsi_Host
*shost
)
2801 struct sym_data
*sym_data
= shost_priv(shost
);
2802 struct sym_hcb
*np
= sym_data
->ncb
;
2803 struct pci_dev
*pdev
= sym_data
->pdev
;
2804 u_char istat
, istatc
;
2809 * interrupt on the fly ?
2810 * (SCRIPTS may still be running)
2812 * A `dummy read' is needed to ensure that the
2813 * clear of the INTF flag reaches the device
2814 * and that posted writes are flushed to memory
2815 * before the scanning of the DONE queue.
2816 * Note that SCRIPTS also (dummy) read to memory
2817 * prior to deliver the INTF interrupt condition.
2819 istat
= INB(np
, nc_istat
);
2821 OUTB(np
, nc_istat
, (istat
& SIGP
) | INTF
| np
->istat_sem
);
2822 istat
|= INB(np
, nc_istat
); /* DUMMY READ */
2823 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("F ");
2824 sym_wakeup_done(np
);
2827 if (!(istat
& (SIP
|DIP
)))
2828 return (istat
& INTF
) ? IRQ_HANDLED
: IRQ_NONE
;
2830 #if 0 /* We should never get this one */
2832 OUTB(np
, nc_istat
, CABRT
);
2836 * PAR and MA interrupts may occur at the same time,
2837 * and we need to know of both in order to handle
2838 * this situation properly. We try to unstack SCSI
2839 * interrupts for that reason. BTW, I dislike a LOT
2840 * such a loop inside the interrupt routine.
2841 * Even if DMA interrupt stacking is very unlikely to
2842 * happen, we also try unstacking these ones, since
2843 * this has no performance impact.
2850 sist
|= INW(np
, nc_sist
);
2852 dstat
|= INB(np
, nc_dstat
);
2853 istatc
= INB(np
, nc_istat
);
2856 /* Prevent deadlock waiting on a condition that may
2858 if (unlikely(sist
== 0xffff && dstat
== 0xff)) {
2859 if (pci_channel_offline(pdev
))
2862 } while (istatc
& (SIP
|DIP
));
2864 if (DEBUG_FLAGS
& DEBUG_TINY
)
2865 printf ("<%d|%x:%x|%x:%x>",
2866 (int)INB(np
, nc_scr0
),
2868 (unsigned)INL(np
, nc_dsp
),
2869 (unsigned)INL(np
, nc_dbc
));
2871 * On paper, a memory read barrier may be needed here to
2872 * prevent out of order LOADs by the CPU from having
2873 * prefetched stale data prior to DMA having occurred.
2874 * And since we are paranoid ... :)
2876 MEMORY_READ_BARRIER();
2879 * First, interrupts we want to service cleanly.
2881 * Phase mismatch (MA) is the most frequent interrupt
2882 * for chip earlier than the 896 and so we have to service
2883 * it as quickly as possible.
2884 * A SCSI parity error (PAR) may be combined with a phase
2885 * mismatch condition (MA).
2886 * Programmed interrupts (SIR) are used to call the C code
2888 * The single step interrupt (SSI) is not used in this
2891 if (!(sist
& (STO
|GEN
|HTH
|SGE
|UDC
|SBMC
|RST
)) &&
2892 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2893 if (sist
& PAR
) sym_int_par (np
, sist
);
2894 else if (sist
& MA
) sym_int_ma (np
);
2895 else if (dstat
& SIR
) sym_int_sir(np
);
2896 else if (dstat
& SSI
) OUTONB_STD();
2897 else goto unknown_int
;
2902 * Now, interrupts that donnot happen in normal
2903 * situations and that we may need to recover from.
2905 * On SCSI RESET (RST), we reset everything.
2906 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2907 * active CCBs with RESET status, prepare all devices
2908 * for negotiating again and restart the SCRIPTS.
2909 * On STO and UDC, we complete the CCB with the corres-
2910 * ponding status and restart the SCRIPTS.
2913 printf("%s: SCSI BUS reset detected.\n", sym_name(np
));
2914 sym_start_up(shost
, 1);
2918 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2919 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2921 if (!(sist
& (GEN
|HTH
|SGE
)) &&
2922 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2923 if (sist
& SBMC
) sym_int_sbmc(shost
);
2924 else if (sist
& STO
) sym_int_sto (np
);
2925 else if (sist
& UDC
) sym_int_udc (np
);
2926 else goto unknown_int
;
2931 * Now, interrupts we are not able to recover cleanly.
2933 * Log message for hard errors.
2937 sym_log_hard_error(shost
, sist
, dstat
);
2939 if ((sist
& (GEN
|HTH
|SGE
)) ||
2940 (dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2941 sym_start_reset(np
);
2947 * We just miss the cause of the interrupt. :(
2948 * Print a message. The timeout will do the real work.
2950 printf( "%s: unknown interrupt(s) ignored, "
2951 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2952 sym_name(np
), istat
, dstat
, sist
);
2957 * Dequeue from the START queue all CCBs that match
2958 * a given target/lun/task condition (-1 means all),
2959 * and move them from the BUSY queue to the COMP queue
2960 * with DID_SOFT_ERROR status condition.
2961 * This function is used during error handling/recovery.
2962 * It is called with SCRIPTS not running.
2965 sym_dequeue_from_squeue(struct sym_hcb
*np
, int i
, int target
, int lun
, int task
)
2971 * Make sure the starting index is within range.
2973 assert((i
>= 0) && (i
< 2*MAX_QUEUE
));
2976 * Walk until end of START queue and dequeue every job
2977 * that matches the target/lun/task condition.
2980 while (i
!= np
->squeueput
) {
2981 cp
= sym_ccb_from_dsa(np
, scr_to_cpu(np
->squeue
[i
]));
2983 #ifdef SYM_CONF_IARB_SUPPORT
2984 /* Forget hints for IARB, they may be no longer relevant */
2985 cp
->host_flags
&= ~HF_HINT_IARB
;
2987 if ((target
== -1 || cp
->target
== target
) &&
2988 (lun
== -1 || cp
->lun
== lun
) &&
2989 (task
== -1 || cp
->tag
== task
)) {
2990 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
2991 sym_set_cam_status(cp
->cmd
, DID_SOFT_ERROR
);
2993 sym_set_cam_status(cp
->cmd
, DID_REQUEUE
);
2995 sym_remque(&cp
->link_ccbq
);
2996 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3000 np
->squeue
[j
] = np
->squeue
[i
];
3001 if ((j
+= 2) >= MAX_QUEUE
*2) j
= 0;
3003 if ((i
+= 2) >= MAX_QUEUE
*2) i
= 0;
3005 if (i
!= j
) /* Copy back the idle task if needed */
3006 np
->squeue
[j
] = np
->squeue
[i
];
3007 np
->squeueput
= j
; /* Update our current start queue pointer */
3013 * chip handler for bad SCSI status condition
3015 * In case of bad SCSI status, we unqueue all the tasks
3016 * currently queued to the controller but not yet started
3017 * and then restart the SCRIPTS processor immediately.
3019 * QUEUE FULL and BUSY conditions are handled the same way.
3020 * Basically all the not yet started tasks are requeued in
3021 * device queue and the queue is frozen until a completion.
3023 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3024 * the CCB of the failed command to prepare a REQUEST SENSE
3025 * SCSI command and queue it to the controller queue.
3027 * SCRATCHA is assumed to have been loaded with STARTPOS
3028 * before the SCRIPTS called the C code.
3030 static void sym_sir_bad_scsi_status(struct sym_hcb
*np
, int num
, struct sym_ccb
*cp
)
3033 u_char s_status
= cp
->ssss_status
;
3034 u_char h_flags
= cp
->host_flags
;
3039 * Compute the index of the next job to start from SCRIPTS.
3041 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3044 * The last CCB queued used for IARB hint may be
3045 * no longer relevant. Forget it.
3047 #ifdef SYM_CONF_IARB_SUPPORT
3053 * Now deal with the SCSI status.
3058 if (sym_verbose
>= 2) {
3059 sym_print_addr(cp
->cmd
, "%s\n",
3060 s_status
== S_BUSY
? "BUSY" : "QUEUE FULL\n");
3063 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3064 sym_complete_error (np
, cp
);
3069 * If we get an SCSI error when requesting sense, give up.
3071 if (h_flags
& HF_SENSE
) {
3072 sym_complete_error (np
, cp
);
3077 * Dequeue all queued CCBs for that device not yet started,
3078 * and restart the SCRIPTS processor immediately.
3080 sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3081 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
3084 * Save some info of the actual IO.
3085 * Compute the data residual.
3087 cp
->sv_scsi_status
= cp
->ssss_status
;
3088 cp
->sv_xerr_status
= cp
->xerr_status
;
3089 cp
->sv_resid
= sym_compute_residual(np
, cp
);
3092 * Prepare all needed data structures for
3093 * requesting sense data.
3096 cp
->scsi_smsg2
[0] = IDENTIFY(0, cp
->lun
);
3100 * If we are currently using anything different from
3101 * async. 8 bit data transfers with that target,
3102 * start a negotiation, since the device may want
3103 * to report us a UNIT ATTENTION condition due to
3104 * a cause we currently ignore, and we donnot want
3105 * to be stuck with WIDE and/or SYNC data transfer.
3107 * cp->nego_status is filled by sym_prepare_nego().
3109 cp
->nego_status
= 0;
3110 msglen
+= sym_prepare_nego(np
, cp
, &cp
->scsi_smsg2
[msglen
]);
3112 * Message table indirect structure.
3114 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg2
);
3115 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
3120 cp
->phys
.cmd
.addr
= CCB_BA(cp
, sensecmd
);
3121 cp
->phys
.cmd
.size
= cpu_to_scr(6);
3124 * patch requested size into sense command
3126 cp
->sensecmd
[0] = REQUEST_SENSE
;
3127 cp
->sensecmd
[1] = 0;
3128 if (cp
->cmd
->device
->scsi_level
<= SCSI_2
&& cp
->lun
<= 7)
3129 cp
->sensecmd
[1] = cp
->lun
<< 5;
3130 cp
->sensecmd
[4] = SYM_SNS_BBUF_LEN
;
3131 cp
->data_len
= SYM_SNS_BBUF_LEN
;
3136 memset(cp
->sns_bbuf
, 0, SYM_SNS_BBUF_LEN
);
3137 cp
->phys
.sense
.addr
= CCB_BA(cp
, sns_bbuf
);
3138 cp
->phys
.sense
.size
= cpu_to_scr(SYM_SNS_BBUF_LEN
);
3141 * requeue the command.
3143 startp
= SCRIPTB_BA(np
, sdata_in
);
3145 cp
->phys
.head
.savep
= cpu_to_scr(startp
);
3146 cp
->phys
.head
.lastp
= cpu_to_scr(startp
);
3147 cp
->startp
= cpu_to_scr(startp
);
3148 cp
->goalp
= cpu_to_scr(startp
+ 16);
3150 cp
->host_xflags
= 0;
3151 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
3152 cp
->ssss_status
= S_ILLEGAL
;
3153 cp
->host_flags
= (HF_SENSE
|HF_DATA_IN
);
3154 cp
->xerr_status
= 0;
3155 cp
->extra_bytes
= 0;
3157 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
3160 * Requeue the command.
3162 sym_put_start_queue(np
, cp
);
3165 * Give back to upper layer everything we have dequeued.
3167 sym_flush_comp_queue(np
, 0);
3173 * After a device has accepted some management message
3174 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3175 * a device signals a UNIT ATTENTION condition, some
3176 * tasks are thrown away by the device. We are required
3177 * to reflect that on our tasks list since the device
3178 * will never complete these tasks.
3180 * This function move from the BUSY queue to the COMP
3181 * queue all disconnected CCBs for a given target that
3182 * match the following criteria:
3183 * - lun=-1 means any logical UNIT otherwise a given one.
3184 * - task=-1 means any task, otherwise a given one.
3186 int sym_clear_tasks(struct sym_hcb
*np
, int cam_status
, int target
, int lun
, int task
)
3188 SYM_QUEHEAD qtmp
, *qp
;
3193 * Move the entire BUSY queue to our temporary queue.
3195 sym_que_init(&qtmp
);
3196 sym_que_splice(&np
->busy_ccbq
, &qtmp
);
3197 sym_que_init(&np
->busy_ccbq
);
3200 * Put all CCBs that matches our criteria into
3201 * the COMP queue and put back other ones into
3204 while ((qp
= sym_remque_head(&qtmp
)) != NULL
) {
3205 struct scsi_cmnd
*cmd
;
3206 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3208 if (cp
->host_status
!= HS_DISCONNECT
||
3209 cp
->target
!= target
||
3210 (lun
!= -1 && cp
->lun
!= lun
) ||
3212 (cp
->tag
!= NO_TAG
&& cp
->scsi_smsg
[2] != task
))) {
3213 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
3216 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3218 /* Preserve the software timeout condition */
3219 if (sym_get_cam_status(cmd
) != DID_TIME_OUT
)
3220 sym_set_cam_status(cmd
, cam_status
);
3223 printf("XXXX TASK @%p CLEARED\n", cp
);
3230 * chip handler for TASKS recovery
3232 * We cannot safely abort a command, while the SCRIPTS
3233 * processor is running, since we just would be in race
3236 * As long as we have tasks to abort, we keep the SEM
3237 * bit set in the ISTAT. When this bit is set, the
3238 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3239 * each time it enters the scheduler.
3241 * If we have to reset a target, clear tasks of a unit,
3242 * or to perform the abort of a disconnected job, we
3243 * restart the SCRIPTS for selecting the target. Once
3244 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3245 * If it loses arbitration, the SCRIPTS will interrupt again
3246 * the next time it will enter its scheduler, and so on ...
3248 * On SIR_TARGET_SELECTED, we scan for the more
3249 * appropriate thing to do:
3251 * - If nothing, we just sent a M_ABORT message to the
3252 * target to get rid of the useless SCSI bus ownership.
3253 * According to the specs, no tasks shall be affected.
3254 * - If the target is to be reset, we send it a M_RESET
3256 * - If a logical UNIT is to be cleared , we send the
3257 * IDENTIFY(lun) + M_ABORT.
3258 * - If an untagged task is to be aborted, we send the
3259 * IDENTIFY(lun) + M_ABORT.
3260 * - If a tagged task is to be aborted, we send the
3261 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3263 * Once our 'kiss of death' :) message has been accepted
3264 * by the target, the SCRIPTS interrupts again
3265 * (SIR_ABORT_SENT). On this interrupt, we complete
3266 * all the CCBs that should have been aborted by the
3267 * target according to our message.
3269 static void sym_sir_task_recovery(struct sym_hcb
*np
, int num
)
3273 struct sym_tcb
*tp
= NULL
; /* gcc isn't quite smart enough yet */
3274 struct scsi_target
*starget
;
3275 int target
=-1, lun
=-1, task
;
3280 * The SCRIPTS processor stopped before starting
3281 * the next command in order to allow us to perform
3282 * some task recovery.
3284 case SIR_SCRIPT_STOPPED
:
3286 * Do we have any target to reset or unit to clear ?
3288 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
3289 tp
= &np
->target
[i
];
3291 (tp
->lun0p
&& tp
->lun0p
->to_clear
)) {
3297 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3298 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3308 * If not, walk the busy queue for any
3309 * disconnected CCB to be aborted.
3312 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3313 cp
= sym_que_entry(qp
,struct sym_ccb
,link_ccbq
);
3314 if (cp
->host_status
!= HS_DISCONNECT
)
3317 target
= cp
->target
;
3324 * If some target is to be selected,
3325 * prepare and start the selection.
3328 tp
= &np
->target
[target
];
3329 np
->abrt_sel
.sel_id
= target
;
3330 np
->abrt_sel
.sel_scntl3
= tp
->head
.wval
;
3331 np
->abrt_sel
.sel_sxfer
= tp
->head
.sval
;
3332 OUTL(np
, nc_dsa
, np
->hcb_ba
);
3333 OUTL_DSP(np
, SCRIPTB_BA(np
, sel_for_abort
));
3338 * Now look for a CCB to abort that haven't started yet.
3339 * Btw, the SCRIPTS processor is still stopped, so
3340 * we are not in race.
3344 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3345 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3346 if (cp
->host_status
!= HS_BUSY
&&
3347 cp
->host_status
!= HS_NEGOTIATE
)
3351 #ifdef SYM_CONF_IARB_SUPPORT
3353 * If we are using IMMEDIATE ARBITRATION, we donnot
3354 * want to cancel the last queued CCB, since the
3355 * SCRIPTS may have anticipated the selection.
3357 if (cp
== np
->last_cp
) {
3362 i
= 1; /* Means we have found some */
3367 * We are done, so we donnot need
3368 * to synchronize with the SCRIPTS anylonger.
3369 * Remove the SEM flag from the ISTAT.
3372 OUTB(np
, nc_istat
, SIGP
);
3376 * Compute index of next position in the start
3377 * queue the SCRIPTS intends to start and dequeue
3378 * all CCBs for that device that haven't been started.
3380 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3381 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3384 * Make sure at least our IO to abort has been dequeued.
3386 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3387 assert(i
&& sym_get_cam_status(cp
->cmd
) == DID_SOFT_ERROR
);
3389 sym_remque(&cp
->link_ccbq
);
3390 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3393 * Keep track in cam status of the reason of the abort.
3395 if (cp
->to_abort
== 2)
3396 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3398 sym_set_cam_status(cp
->cmd
, DID_ABORT
);
3401 * Complete with error everything that we have dequeued.
3403 sym_flush_comp_queue(np
, 0);
3406 * The SCRIPTS processor has selected a target
3407 * we may have some manual recovery to perform for.
3409 case SIR_TARGET_SELECTED
:
3410 target
= INB(np
, nc_sdid
) & 0xf;
3411 tp
= &np
->target
[target
];
3413 np
->abrt_tbl
.addr
= cpu_to_scr(vtobus(np
->abrt_msg
));
3416 * If the target is to be reset, prepare a
3417 * M_RESET message and clear the to_reset flag
3418 * since we donnot expect this operation to fail.
3421 np
->abrt_msg
[0] = M_RESET
;
3422 np
->abrt_tbl
.size
= 1;
3428 * Otherwise, look for some logical unit to be cleared.
3430 if (tp
->lun0p
&& tp
->lun0p
->to_clear
)
3432 else if (tp
->lunmp
) {
3433 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3434 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3442 * If a logical unit is to be cleared, prepare
3443 * an IDENTIFY(lun) + ABORT MESSAGE.
3446 struct sym_lcb
*lp
= sym_lp(tp
, lun
);
3447 lp
->to_clear
= 0; /* We don't expect to fail here */
3448 np
->abrt_msg
[0] = IDENTIFY(0, lun
);
3449 np
->abrt_msg
[1] = M_ABORT
;
3450 np
->abrt_tbl
.size
= 2;
3455 * Otherwise, look for some disconnected job to
3456 * abort for this target.
3460 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3461 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3462 if (cp
->host_status
!= HS_DISCONNECT
)
3464 if (cp
->target
!= target
)
3468 i
= 1; /* Means we have some */
3473 * If we have none, probably since the device has
3474 * completed the command before we won abitration,
3475 * send a M_ABORT message without IDENTIFY.
3476 * According to the specs, the device must just
3477 * disconnect the BUS and not abort any task.
3480 np
->abrt_msg
[0] = M_ABORT
;
3481 np
->abrt_tbl
.size
= 1;
3486 * We have some task to abort.
3487 * Set the IDENTIFY(lun)
3489 np
->abrt_msg
[0] = IDENTIFY(0, cp
->lun
);
3492 * If we want to abort an untagged command, we
3493 * will send a IDENTIFY + M_ABORT.
3494 * Otherwise (tagged command), we will send
3495 * a IDENTITFY + task attributes + ABORT TAG.
3497 if (cp
->tag
== NO_TAG
) {
3498 np
->abrt_msg
[1] = M_ABORT
;
3499 np
->abrt_tbl
.size
= 2;
3501 np
->abrt_msg
[1] = cp
->scsi_smsg
[1];
3502 np
->abrt_msg
[2] = cp
->scsi_smsg
[2];
3503 np
->abrt_msg
[3] = M_ABORT_TAG
;
3504 np
->abrt_tbl
.size
= 4;
3507 * Keep track of software timeout condition, since the
3508 * peripheral driver may not count retries on abort
3509 * conditions not due to timeout.
3511 if (cp
->to_abort
== 2)
3512 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3513 cp
->to_abort
= 0; /* We donnot expect to fail here */
3517 * The target has accepted our message and switched
3518 * to BUS FREE phase as we expected.
3520 case SIR_ABORT_SENT
:
3521 target
= INB(np
, nc_sdid
) & 0xf;
3522 tp
= &np
->target
[target
];
3523 starget
= tp
->starget
;
3526 ** If we didn't abort anything, leave here.
3528 if (np
->abrt_msg
[0] == M_ABORT
)
3532 * If we sent a M_RESET, then a hardware reset has
3533 * been performed by the target.
3534 * - Reset everything to async 8 bit
3535 * - Tell ourself to negotiate next time :-)
3536 * - Prepare to clear all disconnected CCBs for
3537 * this target from our task list (lun=task=-1)
3541 if (np
->abrt_msg
[0] == M_RESET
) {
3543 tp
->head
.wval
= np
->rv_scntl3
;
3545 spi_period(starget
) = 0;
3546 spi_offset(starget
) = 0;
3547 spi_width(starget
) = 0;
3548 spi_iu(starget
) = 0;
3549 spi_dt(starget
) = 0;
3550 spi_qas(starget
) = 0;
3551 tp
->tgoal
.check_nego
= 1;
3552 tp
->tgoal
.renego
= 0;
3556 * Otherwise, check for the LUN and TASK(s)
3557 * concerned by the cancelation.
3558 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3559 * or an ABORT message :-)
3562 lun
= np
->abrt_msg
[0] & 0x3f;
3563 if (np
->abrt_msg
[1] == M_ABORT_TAG
)
3564 task
= np
->abrt_msg
[2];
3568 * Complete all the CCBs the device should have
3569 * aborted due to our 'kiss of death' message.
3571 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3572 sym_dequeue_from_squeue(np
, i
, target
, lun
, -1);
3573 sym_clear_tasks(np
, DID_ABORT
, target
, lun
, task
);
3574 sym_flush_comp_queue(np
, 0);
3577 * If we sent a BDR, make upper layer aware of that.
3579 if (np
->abrt_msg
[0] == M_RESET
)
3580 starget_printk(KERN_NOTICE
, starget
,
3581 "has been reset\n");
3586 * Print to the log the message we intend to send.
3588 if (num
== SIR_TARGET_SELECTED
) {
3589 dev_info(&tp
->starget
->dev
, "control msgout:");
3590 sym_printl_hex(np
->abrt_msg
, np
->abrt_tbl
.size
);
3591 np
->abrt_tbl
.size
= cpu_to_scr(np
->abrt_tbl
.size
);
3595 * Let the SCRIPTS processor continue.
3601 * Gerard's alchemy:) that deals with the data
3602 * pointer for both MDP and the residual calculation.
3604 * I didn't want to bloat the code by more than 200
3605 * lines for the handling of both MDP and the residual.
3606 * This has been achieved by using a data pointer
3607 * representation consisting in an index in the data
3608 * array (dp_sg) and a negative offset (dp_ofs) that
3609 * have the following meaning:
3611 * - dp_sg = SYM_CONF_MAX_SG
3612 * we are at the end of the data script.
3613 * - dp_sg < SYM_CONF_MAX_SG
3614 * dp_sg points to the next entry of the scatter array
3615 * we want to transfer.
3617 * dp_ofs represents the residual of bytes of the
3618 * previous entry scatter entry we will send first.
3620 * no residual to send first.
3622 * The function sym_evaluate_dp() accepts an arbitray
3623 * offset (basically from the MDP message) and returns
3624 * the corresponding values of dp_sg and dp_ofs.
3627 static int sym_evaluate_dp(struct sym_hcb
*np
, struct sym_ccb
*cp
, u32 scr
, int *ofs
)
3630 int dp_ofs
, dp_sg
, dp_sgmin
;
3635 * Compute the resulted data pointer in term of a script
3636 * address within some DATA script and a signed byte offset.
3640 if (dp_scr
== SCRIPTA_BA(np
, pm0_data
))
3642 else if (dp_scr
== SCRIPTA_BA(np
, pm1_data
))
3648 dp_scr
= scr_to_cpu(pm
->ret
);
3649 dp_ofs
-= scr_to_cpu(pm
->sg
.size
) & 0x00ffffff;
3653 * If we are auto-sensing, then we are done.
3655 if (cp
->host_flags
& HF_SENSE
) {
3661 * Deduce the index of the sg entry.
3662 * Keep track of the index of the first valid entry.
3663 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3666 tmp
= scr_to_cpu(cp
->goalp
);
3667 dp_sg
= SYM_CONF_MAX_SG
;
3669 dp_sg
-= (tmp
- 8 - (int)dp_scr
) / (2*4);
3670 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3673 * Move to the sg entry the data pointer belongs to.
3675 * If we are inside the data area, we expect result to be:
3678 * dp_ofs = 0 and dp_sg is the index of the sg entry
3679 * the data pointer belongs to (or the end of the data)
3681 * dp_ofs < 0 and dp_sg is the index of the sg entry
3682 * the data pointer belongs to + 1.
3686 while (dp_sg
> dp_sgmin
) {
3688 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3689 n
= dp_ofs
+ (tmp
& 0xffffff);
3697 else if (dp_ofs
> 0) {
3698 while (dp_sg
< SYM_CONF_MAX_SG
) {
3699 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3700 dp_ofs
-= (tmp
& 0xffffff);
3708 * Make sure the data pointer is inside the data area.
3709 * If not, return some error.
3711 if (dp_sg
< dp_sgmin
|| (dp_sg
== dp_sgmin
&& dp_ofs
< 0))
3713 else if (dp_sg
> SYM_CONF_MAX_SG
||
3714 (dp_sg
== SYM_CONF_MAX_SG
&& dp_ofs
> 0))
3718 * Save the extreme pointer if needed.
3720 if (dp_sg
> cp
->ext_sg
||
3721 (dp_sg
== cp
->ext_sg
&& dp_ofs
> cp
->ext_ofs
)) {
3723 cp
->ext_ofs
= dp_ofs
;
3737 * chip handler for MODIFY DATA POINTER MESSAGE
3739 * We also call this function on IGNORE WIDE RESIDUE
3740 * messages that do not match a SWIDE full condition.
3741 * Btw, we assume in that situation that such a message
3742 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3745 static void sym_modify_dp(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
, int ofs
)
3748 u32 dp_scr
= sym_get_script_dp (np
, cp
);
3756 * Not supported for auto-sense.
3758 if (cp
->host_flags
& HF_SENSE
)
3762 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3763 * to the resulted data pointer.
3765 dp_sg
= sym_evaluate_dp(np
, cp
, dp_scr
, &dp_ofs
);
3770 * And our alchemy:) allows to easily calculate the data
3771 * script address we want to return for the next data phase.
3773 dp_ret
= cpu_to_scr(cp
->goalp
);
3774 dp_ret
= dp_ret
- 8 - (SYM_CONF_MAX_SG
- dp_sg
) * (2*4);
3777 * If offset / scatter entry is zero we donnot need
3778 * a context for the new current data pointer.
3786 * Get a context for the new current data pointer.
3788 hflags
= INB(np
, HF_PRT
);
3790 if (hflags
& HF_DP_SAVED
)
3791 hflags
^= HF_ACT_PM
;
3793 if (!(hflags
& HF_ACT_PM
)) {
3795 dp_scr
= SCRIPTA_BA(np
, pm0_data
);
3799 dp_scr
= SCRIPTA_BA(np
, pm1_data
);
3802 hflags
&= ~(HF_DP_SAVED
);
3804 OUTB(np
, HF_PRT
, hflags
);
3807 * Set up the new current data pointer.
3808 * ofs < 0 there, and for the next data phase, we
3809 * want to transfer part of the data of the sg entry
3810 * corresponding to index dp_sg-1 prior to returning
3811 * to the main data script.
3813 pm
->ret
= cpu_to_scr(dp_ret
);
3814 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].addr
);
3815 tmp
+= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].size
) + dp_ofs
;
3816 pm
->sg
.addr
= cpu_to_scr(tmp
);
3817 pm
->sg
.size
= cpu_to_scr(-dp_ofs
);
3820 sym_set_script_dp (np
, cp
, dp_scr
);
3821 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
3825 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
3830 * chip calculation of the data residual.
3832 * As I used to say, the requirement of data residual
3833 * in SCSI is broken, useless and cannot be achieved
3834 * without huge complexity.
3835 * But most OSes and even the official CAM require it.
3836 * When stupidity happens to be so widely spread inside
3837 * a community, it gets hard to convince.
3839 * Anyway, I don't care, since I am not going to use
3840 * any software that considers this data residual as
3841 * a relevant information. :)
3844 int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
)
3846 int dp_sg
, resid
= 0;
3850 * Check for some data lost or just thrown away.
3851 * We are not required to be quite accurate in this
3852 * situation. Btw, if we are odd for output and the
3853 * device claims some more data, it may well happen
3854 * than our residual be zero. :-)
3856 if (cp
->xerr_status
& (XE_EXTRA_DATA
|XE_SODL_UNRUN
|XE_SWIDE_OVRUN
)) {
3857 if (cp
->xerr_status
& XE_EXTRA_DATA
)
3858 resid
-= cp
->extra_bytes
;
3859 if (cp
->xerr_status
& XE_SODL_UNRUN
)
3861 if (cp
->xerr_status
& XE_SWIDE_OVRUN
)
3866 * If all data has been transferred,
3867 * there is no residual.
3869 if (cp
->phys
.head
.lastp
== cp
->goalp
)
3873 * If no data transfer occurs, or if the data
3874 * pointer is weird, return full residual.
3876 if (cp
->startp
== cp
->phys
.head
.lastp
||
3877 sym_evaluate_dp(np
, cp
, scr_to_cpu(cp
->phys
.head
.lastp
),
3879 return cp
->data_len
- cp
->odd_byte_adjustment
;
3883 * If we were auto-sensing, then we are done.
3885 if (cp
->host_flags
& HF_SENSE
) {
3890 * We are now full comfortable in the computation
3891 * of the data residual (2's complement).
3893 resid
= -cp
->ext_ofs
;
3894 for (dp_sg
= cp
->ext_sg
; dp_sg
< SYM_CONF_MAX_SG
; ++dp_sg
) {
3895 u_int tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3896 resid
+= (tmp
& 0xffffff);
3899 resid
-= cp
->odd_byte_adjustment
;
3902 * Hopefully, the result is not too wrong.
3908 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3910 * When we try to negotiate, we append the negotiation message
3911 * to the identify and (maybe) simple tag message.
3912 * The host status field is set to HS_NEGOTIATE to mark this
3915 * If the target doesn't answer this message immediately
3916 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3917 * will be raised eventually.
3918 * The handler removes the HS_NEGOTIATE status, and sets the
3919 * negotiated value to the default (async / nowide).
3921 * If we receive a matching answer immediately, we check it
3922 * for validity, and set the values.
3924 * If we receive a Reject message immediately, we assume the
3925 * negotiation has failed, and fall back to standard values.
3927 * If we receive a negotiation message while not in HS_NEGOTIATE
3928 * state, it's a target initiated negotiation. We prepare a
3929 * (hopefully) valid answer, set our parameters, and send back
3930 * this answer to the target.
3932 * If the target doesn't fetch the answer (no message out phase),
3933 * we assume the negotiation has failed, and fall back to default
3934 * settings (SIR_NEGO_PROTO interrupt).
3936 * When we set the values, we adjust them in all ccbs belonging
3937 * to this target, in the controller's register, and in the "phys"
3938 * field of the controller's struct sym_hcb.
3942 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3945 sym_sync_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
3947 int target
= cp
->target
;
3948 u_char chg
, ofs
, per
, fak
, div
;
3950 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3951 sym_print_nego_msg(np
, target
, "sync msgin", np
->msgin
);
3955 * Get requested values.
3962 * Check values against our limits.
3965 if (ofs
> np
->maxoffs
)
3966 {chg
= 1; ofs
= np
->maxoffs
;}
3970 if (per
< np
->minsync
)
3971 {chg
= 1; per
= np
->minsync
;}
3975 * Get new chip synchronous parameters value.
3978 if (ofs
&& sym_getsync(np
, 0, per
, &div
, &fak
) < 0)
3981 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3982 sym_print_addr(cp
->cmd
,
3983 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3984 ofs
, per
, div
, fak
, chg
);
3988 * If it was an answer we want to change,
3989 * then it isn't acceptable. Reject it.
3997 sym_setsync (np
, target
, ofs
, per
, div
, fak
);
4000 * It was an answer. We are done.
4006 * It was a request. Prepare an answer message.
4008 spi_populate_sync_msg(np
->msgout
, per
, ofs
);
4010 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4011 sym_print_nego_msg(np
, target
, "sync msgout", np
->msgout
);
4014 np
->msgin
[0] = M_NOOP
;
4019 sym_setsync (np
, target
, 0, 0, 0, 0);
4023 static void sym_sync_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4029 * Request or answer ?
4031 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4032 OUTB(np
, HS_PRT
, HS_BUSY
);
4033 if (cp
->nego_status
&& cp
->nego_status
!= NS_SYNC
)
4039 * Check and apply new values.
4041 result
= sym_sync_nego_check(np
, req
, cp
);
4042 if (result
) /* Not acceptable, reject it */
4044 if (req
) { /* Was a request, send response. */
4045 cp
->nego_status
= NS_SYNC
;
4046 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
4048 else /* Was a response, we are done. */
4049 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4053 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4057 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4060 sym_ppr_nego_check(struct sym_hcb
*np
, int req
, int target
)
4062 struct sym_tcb
*tp
= &np
->target
[target
];
4063 unsigned char fak
, div
;
4066 unsigned char per
= np
->msgin
[3];
4067 unsigned char ofs
= np
->msgin
[5];
4068 unsigned char wide
= np
->msgin
[6];
4069 unsigned char opts
= np
->msgin
[7] & PPR_OPT_MASK
;
4071 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4072 sym_print_nego_msg(np
, target
, "ppr msgin", np
->msgin
);
4076 * Check values against our limits.
4078 if (wide
> np
->maxwide
) {
4082 if (!wide
|| !(np
->features
& FE_U3EN
))
4085 if (opts
!= (np
->msgin
[7] & PPR_OPT_MASK
))
4088 dt
= opts
& PPR_OPT_DT
;
4091 unsigned char maxoffs
= dt
? np
->maxoffs_dt
: np
->maxoffs
;
4092 if (ofs
> maxoffs
) {
4099 unsigned char minsync
= dt
? np
->minsync_dt
: np
->minsync
;
4100 if (per
< minsync
) {
4107 * Get new chip synchronous parameters value.
4110 if (ofs
&& sym_getsync(np
, dt
, per
, &div
, &fak
) < 0)
4114 * If it was an answer we want to change,
4115 * then it isn't acceptable. Reject it.
4123 sym_setpprot(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
4126 * It was an answer. We are done.
4132 * It was a request. Prepare an answer message.
4134 spi_populate_ppr_msg(np
->msgout
, per
, ofs
, wide
, opts
);
4136 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4137 sym_print_nego_msg(np
, target
, "ppr msgout", np
->msgout
);
4140 np
->msgin
[0] = M_NOOP
;
4145 sym_setpprot (np
, target
, 0, 0, 0, 0, 0, 0);
4147 * If it is a device response that should result in
4148 * ST, we may want to try a legacy negotiation later.
4150 if (!req
&& !opts
) {
4151 tp
->tgoal
.period
= per
;
4152 tp
->tgoal
.offset
= ofs
;
4153 tp
->tgoal
.width
= wide
;
4154 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4155 tp
->tgoal
.check_nego
= 1;
4160 static void sym_ppr_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4166 * Request or answer ?
4168 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4169 OUTB(np
, HS_PRT
, HS_BUSY
);
4170 if (cp
->nego_status
&& cp
->nego_status
!= NS_PPR
)
4176 * Check and apply new values.
4178 result
= sym_ppr_nego_check(np
, req
, cp
->target
);
4179 if (result
) /* Not acceptable, reject it */
4181 if (req
) { /* Was a request, send response. */
4182 cp
->nego_status
= NS_PPR
;
4183 OUTL_DSP(np
, SCRIPTB_BA(np
, ppr_resp
));
4185 else /* Was a response, we are done. */
4186 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4190 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4194 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4197 sym_wide_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
4199 int target
= cp
->target
;
4202 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4203 sym_print_nego_msg(np
, target
, "wide msgin", np
->msgin
);
4207 * Get requested values.
4210 wide
= np
->msgin
[3];
4213 * Check values against our limits.
4215 if (wide
> np
->maxwide
) {
4220 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4221 sym_print_addr(cp
->cmd
, "wdtr: wide=%d chg=%d.\n",
4226 * If it was an answer we want to change,
4227 * then it isn't acceptable. Reject it.
4235 sym_setwide (np
, target
, wide
);
4238 * It was an answer. We are done.
4244 * It was a request. Prepare an answer message.
4246 spi_populate_width_msg(np
->msgout
, wide
);
4248 np
->msgin
[0] = M_NOOP
;
4250 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4251 sym_print_nego_msg(np
, target
, "wide msgout", np
->msgout
);
4260 static void sym_wide_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4266 * Request or answer ?
4268 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4269 OUTB(np
, HS_PRT
, HS_BUSY
);
4270 if (cp
->nego_status
&& cp
->nego_status
!= NS_WIDE
)
4276 * Check and apply new values.
4278 result
= sym_wide_nego_check(np
, req
, cp
);
4279 if (result
) /* Not acceptable, reject it */
4281 if (req
) { /* Was a request, send response. */
4282 cp
->nego_status
= NS_WIDE
;
4283 OUTL_DSP(np
, SCRIPTB_BA(np
, wdtr_resp
));
4284 } else { /* Was a response. */
4286 * Negotiate for SYNC immediately after WIDE response.
4287 * This allows to negotiate for both WIDE and SYNC on
4288 * a single SCSI command (Suggested by Justin Gibbs).
4290 if (tp
->tgoal
.offset
) {
4291 spi_populate_sync_msg(np
->msgout
, tp
->tgoal
.period
,
4294 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4295 sym_print_nego_msg(np
, cp
->target
,
4296 "sync msgout", np
->msgout
);
4299 cp
->nego_status
= NS_SYNC
;
4300 OUTB(np
, HS_PRT
, HS_NEGOTIATE
);
4301 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
4304 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4310 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4314 * Reset DT, SYNC or WIDE to default settings.
4316 * Called when a negotiation does not succeed either
4317 * on rejection or on protocol error.
4319 * A target that understands a PPR message should never
4320 * reject it, and messing with it is very unlikely.
4321 * So, if a PPR makes problems, we may just want to
4322 * try a legacy negotiation later.
4324 static void sym_nego_default(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4326 switch (cp
->nego_status
) {
4329 sym_setpprot (np
, cp
->target
, 0, 0, 0, 0, 0, 0);
4331 if (tp
->tgoal
.period
< np
->minsync
)
4332 tp
->tgoal
.period
= np
->minsync
;
4333 if (tp
->tgoal
.offset
> np
->maxoffs
)
4334 tp
->tgoal
.offset
= np
->maxoffs
;
4335 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4336 tp
->tgoal
.check_nego
= 1;
4340 sym_setsync (np
, cp
->target
, 0, 0, 0, 0);
4343 sym_setwide (np
, cp
->target
, 0);
4346 np
->msgin
[0] = M_NOOP
;
4347 np
->msgout
[0] = M_NOOP
;
4348 cp
->nego_status
= 0;
4352 * chip handler for MESSAGE REJECT received in response to
4353 * PPR, WIDE or SYNCHRONOUS negotiation.
4355 static void sym_nego_rejected(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4357 sym_nego_default(np
, tp
, cp
);
4358 OUTB(np
, HS_PRT
, HS_BUSY
);
4361 #define sym_printk(lvl, tp, cp, fmt, v...) do { \
4363 scmd_printk(lvl, cp->cmd, fmt, ##v); \
4365 starget_printk(lvl, tp->starget, fmt, ##v); \
4369 * chip exception handler for programmed interrupts.
4371 static void sym_int_sir(struct sym_hcb
*np
)
4373 u_char num
= INB(np
, nc_dsps
);
4374 u32 dsa
= INL(np
, nc_dsa
);
4375 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
4376 u_char target
= INB(np
, nc_sdid
) & 0x0f;
4377 struct sym_tcb
*tp
= &np
->target
[target
];
4380 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("I#%d", num
);
4383 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4385 * SCRIPTS tell us that we may have to update
4386 * 64 bit DMA segment registers.
4388 case SIR_DMAP_DIRTY
:
4389 sym_update_dmap_regs(np
);
4393 * Command has been completed with error condition
4394 * or has been auto-sensed.
4396 case SIR_COMPLETE_ERROR
:
4397 sym_complete_error(np
, cp
);
4400 * The C code is currently trying to recover from something.
4401 * Typically, user want to abort some command.
4403 case SIR_SCRIPT_STOPPED
:
4404 case SIR_TARGET_SELECTED
:
4405 case SIR_ABORT_SENT
:
4406 sym_sir_task_recovery(np
, num
);
4409 * The device didn't go to MSG OUT phase after having
4410 * been selected with ATN. We do not want to handle that.
4412 case SIR_SEL_ATN_NO_MSG_OUT
:
4413 sym_printk(KERN_WARNING
, tp
, cp
,
4414 "No MSG OUT phase after selection with ATN\n");
4417 * The device didn't switch to MSG IN phase after
4418 * having reselected the initiator.
4420 case SIR_RESEL_NO_MSG_IN
:
4421 sym_printk(KERN_WARNING
, tp
, cp
,
4422 "No MSG IN phase after reselection\n");
4425 * After reselection, the device sent a message that wasn't
4428 case SIR_RESEL_NO_IDENTIFY
:
4429 sym_printk(KERN_WARNING
, tp
, cp
,
4430 "No IDENTIFY after reselection\n");
4433 * The device reselected a LUN we do not know about.
4435 case SIR_RESEL_BAD_LUN
:
4436 np
->msgout
[0] = M_RESET
;
4439 * The device reselected for an untagged nexus and we
4442 case SIR_RESEL_BAD_I_T_L
:
4443 np
->msgout
[0] = M_ABORT
;
4446 * The device reselected for a tagged nexus that we do not have.
4448 case SIR_RESEL_BAD_I_T_L_Q
:
4449 np
->msgout
[0] = M_ABORT_TAG
;
4452 * The SCRIPTS let us know that the device has grabbed
4453 * our message and will abort the job.
4455 case SIR_RESEL_ABORTED
:
4456 np
->lastmsg
= np
->msgout
[0];
4457 np
->msgout
[0] = M_NOOP
;
4458 sym_printk(KERN_WARNING
, tp
, cp
,
4459 "message %x sent on bad reselection\n", np
->lastmsg
);
4462 * The SCRIPTS let us know that a message has been
4463 * successfully sent to the device.
4465 case SIR_MSG_OUT_DONE
:
4466 np
->lastmsg
= np
->msgout
[0];
4467 np
->msgout
[0] = M_NOOP
;
4468 /* Should we really care of that */
4469 if (np
->lastmsg
== M_PARITY
|| np
->lastmsg
== M_ID_ERROR
) {
4471 cp
->xerr_status
&= ~XE_PARITY_ERR
;
4472 if (!cp
->xerr_status
)
4473 OUTOFFB(np
, HF_PRT
, HF_EXT_ERR
);
4478 * The device didn't send a GOOD SCSI status.
4479 * We may have some work to do prior to allow
4480 * the SCRIPTS processor to continue.
4482 case SIR_BAD_SCSI_STATUS
:
4485 sym_sir_bad_scsi_status(np
, num
, cp
);
4488 * We are asked by the SCRIPTS to prepare a
4491 case SIR_REJECT_TO_SEND
:
4492 sym_print_msg(cp
, "M_REJECT to send for ", np
->msgin
);
4493 np
->msgout
[0] = M_REJECT
;
4496 * We have been ODD at the end of a DATA IN
4497 * transfer and the device didn't send a
4498 * IGNORE WIDE RESIDUE message.
4499 * It is a data overrun condition.
4501 case SIR_SWIDE_OVERRUN
:
4503 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4504 cp
->xerr_status
|= XE_SWIDE_OVRUN
;
4508 * We have been ODD at the end of a DATA OUT
4510 * It is a data underrun condition.
4512 case SIR_SODL_UNDERRUN
:
4514 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4515 cp
->xerr_status
|= XE_SODL_UNRUN
;
4519 * The device wants us to tranfer more data than
4520 * expected or in the wrong direction.
4521 * The number of extra bytes is in scratcha.
4522 * It is a data overrun condition.
4524 case SIR_DATA_OVERRUN
:
4526 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4527 cp
->xerr_status
|= XE_EXTRA_DATA
;
4528 cp
->extra_bytes
+= INL(np
, nc_scratcha
);
4532 * The device switched to an illegal phase (4/5).
4536 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4537 cp
->xerr_status
|= XE_BAD_PHASE
;
4541 * We received a message.
4543 case SIR_MSG_RECEIVED
:
4546 switch (np
->msgin
[0]) {
4548 * We received an extended message.
4549 * We handle MODIFY DATA POINTER, SDTR, WDTR
4550 * and reject all other extended messages.
4553 switch (np
->msgin
[2]) {
4555 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4556 sym_print_msg(cp
, "extended msg ",
4558 tmp
= (np
->msgin
[3]<<24) + (np
->msgin
[4]<<16) +
4559 (np
->msgin
[5]<<8) + (np
->msgin
[6]);
4560 sym_modify_dp(np
, tp
, cp
, tmp
);
4563 sym_sync_nego(np
, tp
, cp
);
4566 sym_ppr_nego(np
, tp
, cp
);
4569 sym_wide_nego(np
, tp
, cp
);
4576 * We received a 1/2 byte message not handled from SCRIPTS.
4577 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4578 * RESIDUE messages that haven't been anticipated by
4579 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4580 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4583 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4584 sym_print_msg(cp
, "1 or 2 byte ", np
->msgin
);
4585 if (cp
->host_flags
& HF_SENSE
)
4586 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4588 sym_modify_dp(np
, tp
, cp
, -1);
4591 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
)
4592 sym_nego_rejected(np
, tp
, cp
);
4594 sym_print_addr(cp
->cmd
,
4595 "M_REJECT received (%x:%x).\n",
4596 scr_to_cpu(np
->lastmsg
), np
->msgout
[0]);
4604 * We received an unknown message.
4605 * Ignore all MSG IN phases and reject it.
4608 sym_print_msg(cp
, "WEIRD message received", np
->msgin
);
4609 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_weird
));
4612 * Negotiation failed.
4613 * Target does not send us the reply.
4614 * Remove the HS_NEGOTIATE status.
4616 case SIR_NEGO_FAILED
:
4617 OUTB(np
, HS_PRT
, HS_BUSY
);
4619 * Negotiation failed.
4620 * Target does not want answer message.
4623 case SIR_NEGO_PROTO
:
4624 sym_nego_default(np
, tp
, cp
);
4632 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4635 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4642 * Acquire a control block
4644 struct sym_ccb
*sym_get_ccb (struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, u_char tag_order
)
4646 u_char tn
= cmd
->device
->id
;
4647 u_char ln
= cmd
->device
->lun
;
4648 struct sym_tcb
*tp
= &np
->target
[tn
];
4649 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
4650 u_short tag
= NO_TAG
;
4652 struct sym_ccb
*cp
= NULL
;
4655 * Look for a free CCB
4657 if (sym_que_empty(&np
->free_ccbq
))
4659 qp
= sym_remque_head(&np
->free_ccbq
);
4662 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
4666 * If we have been asked for a tagged command.
4670 * Debugging purpose.
4672 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4673 if (lp
->busy_itl
!= 0)
4677 * Allocate resources for tags if not yet.
4680 sym_alloc_lcb_tags(np
, tn
, ln
);
4685 * Get a tag for this SCSI IO and set up
4686 * the CCB bus address for reselection,
4687 * and count it for this LUN.
4688 * Toggle reselect path to tagged.
4690 if (lp
->busy_itlq
< SYM_CONF_MAX_TASK
) {
4691 tag
= lp
->cb_tags
[lp
->ia_tag
];
4692 if (++lp
->ia_tag
== SYM_CONF_MAX_TASK
)
4695 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4696 lp
->itlq_tbl
[tag
] = cpu_to_scr(cp
->ccb_ba
);
4698 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
4700 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4701 cp
->tags_si
= lp
->tags_si
;
4702 ++lp
->tags_sum
[cp
->tags_si
];
4710 * This command will not be tagged.
4711 * If we already have either a tagged or untagged
4712 * one, refuse to overlap this untagged one.
4716 * Debugging purpose.
4718 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4719 if (lp
->busy_itl
!= 0 || lp
->busy_itlq
!= 0)
4723 * Count this nexus for this LUN.
4724 * Set up the CCB bus address for reselection.
4725 * Toggle reselect path to untagged.
4728 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4729 if (lp
->busy_itl
== 1) {
4730 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
4732 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
4740 * Put the CCB into the busy queue.
4742 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
4743 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4745 sym_remque(&cp
->link2_ccbq
);
4746 sym_insque_tail(&cp
->link2_ccbq
, &lp
->waiting_ccbq
);
4751 cp
->odd_byte_adjustment
= 0;
4753 cp
->order
= tag_order
;
4757 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4758 sym_print_addr(cmd
, "ccb @%p using tag %d.\n", cp
, tag
);
4764 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4769 * Release one control block
4771 void sym_free_ccb (struct sym_hcb
*np
, struct sym_ccb
*cp
)
4773 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
4774 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
4776 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4777 sym_print_addr(cp
->cmd
, "ccb @%p freeing tag %d.\n",
4786 * If tagged, release the tag, set the relect path
4788 if (cp
->tag
!= NO_TAG
) {
4789 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4790 --lp
->tags_sum
[cp
->tags_si
];
4793 * Free the tag value.
4795 lp
->cb_tags
[lp
->if_tag
] = cp
->tag
;
4796 if (++lp
->if_tag
== SYM_CONF_MAX_TASK
)
4799 * Make the reselect path invalid,
4800 * and uncount this CCB.
4802 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(np
->bad_itlq_ba
);
4804 } else { /* Untagged */
4806 * Make the reselect path invalid,
4807 * and uncount this CCB.
4809 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
4813 * If no JOB active, make the LUN reselect path invalid.
4815 if (lp
->busy_itlq
== 0 && lp
->busy_itl
== 0)
4817 cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
4821 * We donnot queue more than 1 ccb per target
4822 * with negotiation at any time. If this ccb was
4823 * used for negotiation, clear this info in the tcb.
4825 if (cp
== tp
->nego_cp
)
4828 #ifdef SYM_CONF_IARB_SUPPORT
4830 * If we just complete the last queued CCB,
4831 * clear this info that is no longer relevant.
4833 if (cp
== np
->last_cp
)
4838 * Make this CCB available.
4841 cp
->host_status
= HS_IDLE
;
4842 sym_remque(&cp
->link_ccbq
);
4843 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4845 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4847 sym_remque(&cp
->link2_ccbq
);
4848 sym_insque_tail(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4850 if (cp
->tag
!= NO_TAG
)
4853 --lp
->started_no_tag
;
4861 * Allocate a CCB from memory and initialize its fixed part.
4863 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
)
4865 struct sym_ccb
*cp
= NULL
;
4869 * Prevent from allocating more CCBs than we can
4870 * queue to the controller.
4872 if (np
->actccbs
>= SYM_CONF_MAX_START
)
4876 * Allocate memory for this CCB.
4878 cp
= sym_calloc_dma(sizeof(struct sym_ccb
), "CCB");
4888 * Compute the bus address of this ccb.
4890 cp
->ccb_ba
= vtobus(cp
);
4893 * Insert this ccb into the hashed list.
4895 hcode
= CCB_HASH_CODE(cp
->ccb_ba
);
4896 cp
->link_ccbh
= np
->ccbh
[hcode
];
4897 np
->ccbh
[hcode
] = cp
;
4900 * Initialyze the start and restart actions.
4902 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
4903 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
4906 * Initilialyze some other fields.
4908 cp
->phys
.smsg_ext
.addr
= cpu_to_scr(HCB_BA(np
, msgin
[2]));
4911 * Chain into free ccb queue.
4913 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4916 * Chain into optionnal lists.
4918 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4919 sym_insque_head(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4924 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
4929 * Look up a CCB from a DSA value.
4931 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
)
4936 hcode
= CCB_HASH_CODE(dsa
);
4937 cp
= np
->ccbh
[hcode
];
4939 if (cp
->ccb_ba
== dsa
)
4948 * Target control block initialisation.
4949 * Nothing important to do at the moment.
4951 static void sym_init_tcb (struct sym_hcb
*np
, u_char tn
)
4953 #if 0 /* Hmmm... this checking looks paranoid. */
4955 * Check some alignments required by the chip.
4957 assert (((offsetof(struct sym_reg
, nc_sxfer
) ^
4958 offsetof(struct sym_tcb
, head
.sval
)) &3) == 0);
4959 assert (((offsetof(struct sym_reg
, nc_scntl3
) ^
4960 offsetof(struct sym_tcb
, head
.wval
)) &3) == 0);
4965 * Lun control block allocation and initialization.
4967 struct sym_lcb
*sym_alloc_lcb (struct sym_hcb
*np
, u_char tn
, u_char ln
)
4969 struct sym_tcb
*tp
= &np
->target
[tn
];
4970 struct sym_lcb
*lp
= NULL
;
4973 * Initialize the target control block if not yet.
4975 sym_init_tcb (np
, tn
);
4978 * Allocate the LCB bus address array.
4979 * Compute the bus address of this table.
4981 if (ln
&& !tp
->luntbl
) {
4982 tp
->luntbl
= sym_calloc_dma(256, "LUNTBL");
4985 memset32(tp
->luntbl
, cpu_to_scr(vtobus(&np
->badlun_sa
)), 64);
4986 tp
->head
.luntbl_sa
= cpu_to_scr(vtobus(tp
->luntbl
));
4990 * Allocate the table of pointers for LUN(s) > 0, if needed.
4992 if (ln
&& !tp
->lunmp
) {
4993 tp
->lunmp
= kcalloc(SYM_CONF_MAX_LUN
, sizeof(struct sym_lcb
*),
5001 * Make it available to the chip.
5003 lp
= sym_calloc_dma(sizeof(struct sym_lcb
), "LCB");
5008 tp
->luntbl
[ln
] = cpu_to_scr(vtobus(lp
));
5012 tp
->head
.lun0_sa
= cpu_to_scr(vtobus(lp
));
5017 * Let the itl task point to error handling.
5019 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
5022 * Set the reselect pattern to our default. :)
5024 lp
->head
.resel_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
5027 * Set user capabilities.
5029 lp
->user_flags
= tp
->usrflags
& (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
5031 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5033 * Initialize device queueing.
5035 sym_que_init(&lp
->waiting_ccbq
);
5036 sym_que_init(&lp
->started_ccbq
);
5037 lp
->started_max
= SYM_CONF_MAX_TASK
;
5038 lp
->started_limit
= SYM_CONF_MAX_TASK
;
5046 * Allocate LCB resources for tagged command queuing.
5048 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
)
5050 struct sym_tcb
*tp
= &np
->target
[tn
];
5051 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
5055 * Allocate the task table and and the tag allocation
5056 * circular buffer. We want both or none.
5058 lp
->itlq_tbl
= sym_calloc_dma(SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5061 lp
->cb_tags
= kcalloc(SYM_CONF_MAX_TASK
, 1, GFP_ATOMIC
);
5063 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5064 lp
->itlq_tbl
= NULL
;
5069 * Initialize the task table with invalid entries.
5071 memset32(lp
->itlq_tbl
, cpu_to_scr(np
->notask_ba
), SYM_CONF_MAX_TASK
);
5074 * Fill up the tag buffer with tag numbers.
5076 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5080 * Make the task table available to SCRIPTS,
5081 * And accept tagged commands now.
5083 lp
->head
.itlq_tbl_sa
= cpu_to_scr(vtobus(lp
->itlq_tbl
));
5091 * Lun control block deallocation. Returns the number of valid remaining LCBs
5094 int sym_free_lcb(struct sym_hcb
*np
, u_char tn
, u_char ln
)
5096 struct sym_tcb
*tp
= &np
->target
[tn
];
5097 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
5104 sym_mfree_dma(tp
->luntbl
, 256, "LUNTBL");
5107 tp
->head
.luntbl_sa
= cpu_to_scr(vtobus(np
->badluntbl
));
5109 tp
->luntbl
[ln
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5110 tp
->lunmp
[ln
] = NULL
;
5114 tp
->head
.lun0_sa
= cpu_to_scr(vtobus(&np
->badlun_sa
));
5118 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5122 sym_mfree_dma(lp
, sizeof(*lp
), "LCB");
5128 * Queue a SCSI IO to the controller.
5130 int sym_queue_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, struct sym_ccb
*cp
)
5132 struct scsi_device
*sdev
= cmd
->device
;
5140 * Keep track of the IO in our CCB.
5145 * Retrieve the target descriptor.
5147 tp
= &np
->target
[cp
->target
];
5150 * Retrieve the lun descriptor.
5152 lp
= sym_lp(tp
, sdev
->lun
);
5154 can_disconnect
= (cp
->tag
!= NO_TAG
) ||
5155 (lp
&& (lp
->curr_flags
& SYM_DISC_ENABLED
));
5157 msgptr
= cp
->scsi_smsg
;
5159 msgptr
[msglen
++] = IDENTIFY(can_disconnect
, sdev
->lun
);
5162 * Build the tag message if present.
5164 if (cp
->tag
!= NO_TAG
) {
5165 u_char order
= cp
->order
;
5173 order
= M_SIMPLE_TAG
;
5175 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5177 * Avoid too much reordering of SCSI commands.
5178 * The algorithm tries to prevent completion of any
5179 * tagged command from being delayed against more
5180 * than 3 times the max number of queued commands.
5182 if (lp
&& lp
->tags_since
> 3*SYM_CONF_MAX_TAG
) {
5183 lp
->tags_si
= !(lp
->tags_si
);
5184 if (lp
->tags_sum
[lp
->tags_si
]) {
5185 order
= M_ORDERED_TAG
;
5186 if ((DEBUG_FLAGS
& DEBUG_TAGS
)||sym_verbose
>1) {
5188 "ordered tag forced.\n");
5194 msgptr
[msglen
++] = order
;
5197 * For less than 128 tags, actual tags are numbered
5198 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5199 * with devices that have problems with #TAG 0 or too
5200 * great #TAG numbers. For more tags (up to 256),
5201 * we use directly our tag number.
5203 #if SYM_CONF_MAX_TASK > (512/4)
5204 msgptr
[msglen
++] = cp
->tag
;
5206 msgptr
[msglen
++] = (cp
->tag
<< 1) + 1;
5211 * Build a negotiation message if needed.
5212 * (nego_status is filled by sym_prepare_nego())
5214 * Always negotiate on INQUIRY and REQUEST SENSE.
5217 cp
->nego_status
= 0;
5218 if ((tp
->tgoal
.check_nego
||
5219 cmd
->cmnd
[0] == INQUIRY
|| cmd
->cmnd
[0] == REQUEST_SENSE
) &&
5220 !tp
->nego_cp
&& lp
) {
5221 msglen
+= sym_prepare_nego(np
, cp
, msgptr
+ msglen
);
5227 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
5228 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTA_BA(np
, resel_dsa
));
5233 cp
->phys
.select
.sel_id
= cp
->target
;
5234 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
5235 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
5236 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
5241 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg
);
5242 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
5247 cp
->host_xflags
= 0;
5248 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
5249 cp
->ssss_status
= S_ILLEGAL
;
5250 cp
->xerr_status
= 0;
5252 cp
->extra_bytes
= 0;
5255 * extreme data pointer.
5256 * shall be positive, so -1 is lower than lowest.:)
5262 * Build the CDB and DATA descriptor block
5265 return sym_setup_data_and_start(np
, cmd
, cp
);
5269 * Reset a SCSI target (all LUNs of this target).
5271 int sym_reset_scsi_target(struct sym_hcb
*np
, int target
)
5275 if (target
== np
->myaddr
|| (u_int
)target
>= SYM_CONF_MAX_TARGET
)
5278 tp
= &np
->target
[target
];
5281 np
->istat_sem
= SEM
;
5282 OUTB(np
, nc_istat
, SIGP
|SEM
);
5290 static int sym_abort_ccb(struct sym_hcb
*np
, struct sym_ccb
*cp
, int timed_out
)
5293 * Check that the IO is active.
5295 if (!cp
|| !cp
->host_status
|| cp
->host_status
== HS_WAIT
)
5299 * If a previous abort didn't succeed in time,
5300 * perform a BUS reset.
5303 sym_reset_scsi_bus(np
, 1);
5308 * Mark the CCB for abort and allow time for.
5310 cp
->to_abort
= timed_out
? 2 : 1;
5313 * Tell the SCRIPTS processor to stop and synchronize with us.
5315 np
->istat_sem
= SEM
;
5316 OUTB(np
, nc_istat
, SIGP
|SEM
);
5320 int sym_abort_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, int timed_out
)
5326 * Look up our CCB control block.
5329 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
5330 struct sym_ccb
*cp2
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5331 if (cp2
->cmd
== cmd
) {
5337 return sym_abort_ccb(np
, cp
, timed_out
);
5341 * Complete execution of a SCSI command with extended
5342 * error, SCSI status error, or having been auto-sensed.
5344 * The SCRIPTS processor is not running there, so we
5345 * can safely access IO registers and remove JOBs from
5347 * SCRATCHA is assumed to have been loaded with STARTPOS
5348 * before the SCRIPTS called the C code.
5350 void sym_complete_error(struct sym_hcb
*np
, struct sym_ccb
*cp
)
5352 struct scsi_device
*sdev
;
5353 struct scsi_cmnd
*cmd
;
5354 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5362 * Paranoid check. :)
5364 if (!cp
|| !cp
->cmd
)
5369 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_RESULT
)) {
5370 dev_info(&sdev
->sdev_gendev
, "CCB=%p STAT=%x/%x/%x\n", cp
,
5371 cp
->host_status
, cp
->ssss_status
, cp
->host_flags
);
5374 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5376 * Get target and lun pointers.
5378 tp
= &np
->target
[cp
->target
];
5379 lp
= sym_lp(tp
, sdev
->lun
);
5383 * Check for extended errors.
5385 if (cp
->xerr_status
) {
5387 sym_print_xerr(cmd
, cp
->xerr_status
);
5388 if (cp
->host_status
== HS_COMPLETE
)
5389 cp
->host_status
= HS_COMP_ERR
;
5393 * Calculate the residual.
5395 resid
= sym_compute_residual(np
, cp
);
5397 if (!SYM_SETUP_RESIDUAL_SUPPORT
) {/* If user does not want residuals */
5398 resid
= 0; /* throw them away. :) */
5403 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5407 * Dequeue all queued CCBs for that device
5408 * not yet started by SCRIPTS.
5410 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
5411 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, sdev
->lun
, -1);
5414 * Restart the SCRIPTS processor.
5416 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
5418 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5419 if (cp
->host_status
== HS_COMPLETE
&&
5420 cp
->ssss_status
== S_QUEUE_FULL
) {
5421 if (!lp
|| lp
->started_tags
- i
< 2)
5424 * Decrease queue depth as needed.
5426 lp
->started_max
= lp
->started_tags
- i
- 1;
5429 if (sym_verbose
>= 2) {
5430 sym_print_addr(cmd
, " queue depth is now %d\n",
5437 cp
->host_status
= HS_BUSY
;
5438 cp
->ssss_status
= S_ILLEGAL
;
5441 * Let's requeue it to device.
5443 sym_set_cam_status(cmd
, DID_SOFT_ERROR
);
5449 * Build result in CAM ccb.
5451 sym_set_cam_result_error(np
, cp
, resid
);
5453 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5457 * Add this one to the COMP queue.
5459 sym_remque(&cp
->link_ccbq
);
5460 sym_insque_head(&cp
->link_ccbq
, &np
->comp_ccbq
);
5463 * Complete all those commands with either error
5464 * or requeue condition.
5466 sym_flush_comp_queue(np
, 0);
5468 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5470 * Donnot start more than 1 command after an error.
5472 sym_start_next_ccbs(np
, lp
, 1);
5477 * Complete execution of a successful SCSI command.
5479 * Only successful commands go to the DONE queue,
5480 * since we need to have the SCRIPTS processor
5481 * stopped on any error condition.
5482 * The SCRIPTS processor is running while we are
5483 * completing successful commands.
5485 void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
)
5487 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5491 struct scsi_cmnd
*cmd
;
5495 * Paranoid check. :)
5497 if (!cp
|| !cp
->cmd
)
5499 assert (cp
->host_status
== HS_COMPLETE
);
5506 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5508 * Get target and lun pointers.
5510 tp
= &np
->target
[cp
->target
];
5511 lp
= sym_lp(tp
, cp
->lun
);
5515 * If all data have been transferred, given than no
5516 * extended error did occur, there is no residual.
5519 if (cp
->phys
.head
.lastp
!= cp
->goalp
)
5520 resid
= sym_compute_residual(np
, cp
);
5523 * Wrong transfer residuals may be worse than just always
5524 * returning zero. User can disable this feature in
5525 * sym53c8xx.h. Residual support is enabled by default.
5527 if (!SYM_SETUP_RESIDUAL_SUPPORT
)
5531 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5535 * Build result in CAM ccb.
5537 sym_set_cam_result_ok(cp
, cmd
, resid
);
5539 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5541 * If max number of started ccbs had been reduced,
5542 * increase it if 200 good status received.
5544 if (lp
&& lp
->started_max
< lp
->started_limit
) {
5546 if (lp
->num_sgood
>= 200) {
5549 if (sym_verbose
>= 2) {
5550 sym_print_addr(cmd
, " queue depth is now %d\n",
5560 sym_free_ccb (np
, cp
);
5562 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564 * Requeue a couple of awaiting scsi commands.
5566 if (!sym_que_empty(&lp
->waiting_ccbq
))
5567 sym_start_next_ccbs(np
, lp
, 2);
5570 * Complete the command.
5572 sym_xpt_done(np
, cmd
);
5576 * Soft-attach the controller.
5578 int sym_hcb_attach(struct Scsi_Host
*shost
, struct sym_fw
*fw
, struct sym_nvram
*nvram
)
5580 struct sym_hcb
*np
= sym_get_hcb(shost
);
5584 * Get some info about the firmware.
5586 np
->scripta_sz
= fw
->a_size
;
5587 np
->scriptb_sz
= fw
->b_size
;
5588 np
->scriptz_sz
= fw
->z_size
;
5589 np
->fw_setup
= fw
->setup
;
5590 np
->fw_patch
= fw
->patch
;
5591 np
->fw_name
= fw
->name
;
5594 * Save setting of some IO registers, so we will
5595 * be able to probe specific implementations.
5597 sym_save_initial_setting (np
);
5600 * Reset the chip now, since it has been reported
5601 * that SCSI clock calibration may not work properly
5602 * if the chip is currently active.
5607 * Prepare controller and devices settings, according
5608 * to chip features, user set-up and driver set-up.
5610 sym_prepare_setting(shost
, np
, nvram
);
5613 * Check the PCI clock frequency.
5614 * Must be performed after prepare_setting since it destroys
5615 * STEST1 that is used to probe for the clock doubler.
5617 i
= sym_getpciclock(np
);
5618 if (i
> 37000 && !(np
->features
& FE_66MHZ
))
5619 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5623 * Allocate the start queue.
5625 np
->squeue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"SQUEUE");
5628 np
->squeue_ba
= vtobus(np
->squeue
);
5631 * Allocate the done queue.
5633 np
->dqueue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"DQUEUE");
5636 np
->dqueue_ba
= vtobus(np
->dqueue
);
5639 * Allocate the target bus address array.
5641 np
->targtbl
= sym_calloc_dma(256, "TARGTBL");
5644 np
->targtbl_ba
= vtobus(np
->targtbl
);
5647 * Allocate SCRIPTS areas.
5649 np
->scripta0
= sym_calloc_dma(np
->scripta_sz
, "SCRIPTA0");
5650 np
->scriptb0
= sym_calloc_dma(np
->scriptb_sz
, "SCRIPTB0");
5651 np
->scriptz0
= sym_calloc_dma(np
->scriptz_sz
, "SCRIPTZ0");
5652 if (!np
->scripta0
|| !np
->scriptb0
|| !np
->scriptz0
)
5656 * Allocate the array of lists of CCBs hashed by DSA.
5658 np
->ccbh
= kcalloc(CCB_HASH_SIZE
, sizeof(*np
->ccbh
), GFP_KERNEL
);
5663 * Initialyze the CCB free and busy queues.
5665 sym_que_init(&np
->free_ccbq
);
5666 sym_que_init(&np
->busy_ccbq
);
5667 sym_que_init(&np
->comp_ccbq
);
5670 * Initialization for optional handling
5671 * of device queueing.
5673 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5674 sym_que_init(&np
->dummy_ccbq
);
5677 * Allocate some CCB. We need at least ONE.
5679 if (!sym_alloc_ccb(np
))
5683 * Calculate BUS addresses where we are going
5684 * to load the SCRIPTS.
5686 np
->scripta_ba
= vtobus(np
->scripta0
);
5687 np
->scriptb_ba
= vtobus(np
->scriptb0
);
5688 np
->scriptz_ba
= vtobus(np
->scriptz0
);
5691 np
->scripta_ba
= np
->ram_ba
;
5692 if (np
->features
& FE_RAM8K
) {
5693 np
->scriptb_ba
= np
->scripta_ba
+ 4096;
5694 #if 0 /* May get useful for 64 BIT PCI addressing */
5695 np
->scr_ram_seg
= cpu_to_scr(np
->scripta_ba
>> 32);
5701 * Copy scripts to controller instance.
5703 memcpy(np
->scripta0
, fw
->a_base
, np
->scripta_sz
);
5704 memcpy(np
->scriptb0
, fw
->b_base
, np
->scriptb_sz
);
5705 memcpy(np
->scriptz0
, fw
->z_base
, np
->scriptz_sz
);
5708 * Setup variable parts in scripts and compute
5709 * scripts bus addresses used from the C code.
5711 np
->fw_setup(np
, fw
);
5714 * Bind SCRIPTS with physical addresses usable by the
5715 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5717 sym_fw_bind_script(np
, (u32
*) np
->scripta0
, np
->scripta_sz
);
5718 sym_fw_bind_script(np
, (u32
*) np
->scriptb0
, np
->scriptb_sz
);
5719 sym_fw_bind_script(np
, (u32
*) np
->scriptz0
, np
->scriptz_sz
);
5721 #ifdef SYM_CONF_IARB_SUPPORT
5723 * If user wants IARB to be set when we win arbitration
5724 * and have other jobs, compute the max number of consecutive
5725 * settings of IARB hints before we leave devices a chance to
5726 * arbitrate for reselection.
5728 #ifdef SYM_SETUP_IARB_MAX
5729 np
->iarb_max
= SYM_SETUP_IARB_MAX
;
5736 * Prepare the idle and invalid task actions.
5738 np
->idletask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5739 np
->idletask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5740 np
->idletask_ba
= vtobus(&np
->idletask
);
5742 np
->notask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5743 np
->notask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5744 np
->notask_ba
= vtobus(&np
->notask
);
5746 np
->bad_itl
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5747 np
->bad_itl
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5748 np
->bad_itl_ba
= vtobus(&np
->bad_itl
);
5750 np
->bad_itlq
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5751 np
->bad_itlq
.restart
= cpu_to_scr(SCRIPTB_BA(np
,bad_i_t_l_q
));
5752 np
->bad_itlq_ba
= vtobus(&np
->bad_itlq
);
5755 * Allocate and prepare the lun JUMP table that is used
5756 * for a target prior the probing of devices (bad lun table).
5757 * A private table will be allocated for the target on the
5758 * first INQUIRY response received.
5760 np
->badluntbl
= sym_calloc_dma(256, "BADLUNTBL");
5764 np
->badlun_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
5765 memset32(np
->badluntbl
, cpu_to_scr(vtobus(&np
->badlun_sa
)), 64);
5768 * Prepare the bus address array that contains the bus
5769 * address of each target control block.
5770 * For now, assume all logical units are wrong. :)
5772 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
5773 np
->targtbl
[i
] = cpu_to_scr(vtobus(&np
->target
[i
]));
5774 np
->target
[i
].head
.luntbl_sa
=
5775 cpu_to_scr(vtobus(np
->badluntbl
));
5776 np
->target
[i
].head
.lun0_sa
=
5777 cpu_to_scr(vtobus(&np
->badlun_sa
));
5781 * Now check the cache handling of the pci chipset.
5783 if (sym_snooptest (np
)) {
5784 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np
));
5789 * Sigh! we are done.
5798 * Free everything that has been allocated for this device.
5800 void sym_hcb_free(struct sym_hcb
*np
)
5808 sym_mfree_dma(np
->scriptz0
, np
->scriptz_sz
, "SCRIPTZ0");
5810 sym_mfree_dma(np
->scriptb0
, np
->scriptb_sz
, "SCRIPTB0");
5812 sym_mfree_dma(np
->scripta0
, np
->scripta_sz
, "SCRIPTA0");
5814 sym_mfree_dma(np
->squeue
, sizeof(u32
)*(MAX_QUEUE
*2), "SQUEUE");
5816 sym_mfree_dma(np
->dqueue
, sizeof(u32
)*(MAX_QUEUE
*2), "DQUEUE");
5819 while ((qp
= sym_remque_head(&np
->free_ccbq
)) != NULL
) {
5820 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5821 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
5827 sym_mfree_dma(np
->badluntbl
, 256,"BADLUNTBL");
5829 for (target
= 0; target
< SYM_CONF_MAX_TARGET
; target
++) {
5830 tp
= &np
->target
[target
];
5832 sym_mfree_dma(tp
->luntbl
, 256, "LUNTBL");
5833 #if SYM_CONF_MAX_LUN > 1
5838 sym_mfree_dma(np
->targtbl
, 256, "TARGTBL");