1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Polling/bitbanging SPI host controller controller driver utilities
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/time64.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi_bitbang.h>
19 #define SPI_BITBANG_CS_DELAY 100
22 /*----------------------------------------------------------------------*/
25 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
26 * Use this for GPIO or shift-register level hardware APIs.
28 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
29 * to glue code. These bitbang setup() and cleanup() routines are always
30 * used, though maybe they're called from controller-aware code.
32 * chipselect() and friends may use spi_device->controller_data and
33 * controller registers as appropriate.
36 * NOTE: SPI controller pins can often be used as GPIO pins instead,
37 * which means you could use a bitbang driver either to get hardware
38 * working quickly, or testing for differences that aren't speed related.
41 typedef unsigned int (*spi_bb_txrx_bufs_fn
)(struct spi_device
*, spi_bb_txrx_word_fn
,
42 unsigned int, struct spi_transfer
*,
45 struct spi_bitbang_cs
{
46 unsigned int nsecs
; /* (clock cycle time) / 2 */
47 spi_bb_txrx_word_fn txrx_word
;
48 spi_bb_txrx_bufs_fn txrx_bufs
;
51 static unsigned int bitbang_txrx_8(struct spi_device
*spi
,
52 spi_bb_txrx_word_fn txrx_word
,
54 struct spi_transfer
*t
,
57 struct spi_bitbang
*bitbang
;
58 unsigned int bits
= t
->bits_per_word
;
59 unsigned int count
= t
->len
;
60 const u8
*tx
= t
->tx_buf
;
63 bitbang
= spi_controller_get_devdata(spi
->controller
);
64 while (likely(count
> 0)) {
70 word
= spi
->mode
& SPI_MOSI_IDLE_HIGH
? 0xFF : 0;
71 word
= txrx_word(spi
, ns
, word
, bits
, flags
);
76 if (bitbang
->set_mosi_idle
)
77 bitbang
->set_mosi_idle(spi
);
79 return t
->len
- count
;
82 static unsigned int bitbang_txrx_16(struct spi_device
*spi
,
83 spi_bb_txrx_word_fn txrx_word
,
85 struct spi_transfer
*t
,
88 struct spi_bitbang
*bitbang
;
89 unsigned int bits
= t
->bits_per_word
;
90 unsigned int count
= t
->len
;
91 const u16
*tx
= t
->tx_buf
;
94 bitbang
= spi_controller_get_devdata(spi
->controller
);
95 while (likely(count
> 1)) {
101 word
= spi
->mode
& SPI_MOSI_IDLE_HIGH
? 0xFFFF : 0;
102 word
= txrx_word(spi
, ns
, word
, bits
, flags
);
107 if (bitbang
->set_mosi_idle
)
108 bitbang
->set_mosi_idle(spi
);
110 return t
->len
- count
;
113 static unsigned int bitbang_txrx_32(struct spi_device
*spi
,
114 spi_bb_txrx_word_fn txrx_word
,
116 struct spi_transfer
*t
,
119 struct spi_bitbang
*bitbang
;
120 unsigned int bits
= t
->bits_per_word
;
121 unsigned int count
= t
->len
;
122 const u32
*tx
= t
->tx_buf
;
125 bitbang
= spi_controller_get_devdata(spi
->controller
);
126 while (likely(count
> 3)) {
132 word
= spi
->mode
& SPI_MOSI_IDLE_HIGH
? 0xFFFFFFFF : 0;
133 word
= txrx_word(spi
, ns
, word
, bits
, flags
);
138 if (bitbang
->set_mosi_idle
)
139 bitbang
->set_mosi_idle(spi
);
141 return t
->len
- count
;
144 int spi_bitbang_setup_transfer(struct spi_device
*spi
, struct spi_transfer
*t
)
146 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
151 bits_per_word
= t
->bits_per_word
;
158 /* spi_transfer level calls that work per-word */
160 bits_per_word
= spi
->bits_per_word
;
161 if (bits_per_word
<= 8)
162 cs
->txrx_bufs
= bitbang_txrx_8
;
163 else if (bits_per_word
<= 16)
164 cs
->txrx_bufs
= bitbang_txrx_16
;
165 else if (bits_per_word
<= 32)
166 cs
->txrx_bufs
= bitbang_txrx_32
;
170 /* nsecs = (clock period)/2 */
172 hz
= spi
->max_speed_hz
;
174 cs
->nsecs
= (NSEC_PER_SEC
/ 2) / hz
;
175 if (cs
->nsecs
> (MAX_UDELAY_MS
* NSEC_PER_MSEC
))
181 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer
);
184 * spi_bitbang_setup - default setup for per-word I/O loops
186 int spi_bitbang_setup(struct spi_device
*spi
)
188 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
189 struct spi_bitbang
*bitbang
;
190 bool initial_setup
= false;
193 bitbang
= spi_controller_get_devdata(spi
->controller
);
196 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
199 spi
->controller_state
= cs
;
200 initial_setup
= true;
203 /* per-word shift register access, in hardware or bitbanging */
204 cs
->txrx_word
= bitbang
->txrx_word
[spi
->mode
& (SPI_CPOL
|SPI_CPHA
)];
205 if (!cs
->txrx_word
) {
210 if (bitbang
->setup_transfer
) {
211 retval
= bitbang
->setup_transfer(spi
, NULL
);
216 if (bitbang
->set_mosi_idle
)
217 bitbang
->set_mosi_idle(spi
);
219 dev_dbg(&spi
->dev
, "%s, %u nsec/bit\n", __func__
, 2 * cs
->nsecs
);
228 EXPORT_SYMBOL_GPL(spi_bitbang_setup
);
231 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
233 void spi_bitbang_cleanup(struct spi_device
*spi
)
235 kfree(spi
->controller_state
);
237 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup
);
239 static int spi_bitbang_bufs(struct spi_device
*spi
, struct spi_transfer
*t
)
241 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
242 unsigned int nsecs
= cs
->nsecs
;
243 struct spi_bitbang
*bitbang
;
245 bitbang
= spi_controller_get_devdata(spi
->controller
);
246 if (bitbang
->set_line_direction
) {
249 err
= bitbang
->set_line_direction(spi
, !!(t
->tx_buf
));
254 if (spi
->mode
& SPI_3WIRE
) {
257 flags
= t
->tx_buf
? SPI_CONTROLLER_NO_RX
: SPI_CONTROLLER_NO_TX
;
258 return cs
->txrx_bufs(spi
, cs
->txrx_word
, nsecs
, t
, flags
);
260 return cs
->txrx_bufs(spi
, cs
->txrx_word
, nsecs
, t
, 0);
263 /*----------------------------------------------------------------------*/
266 * SECOND PART ... simple transfer queue runner.
268 * This costs a task context per controller, running the queue by
269 * performing each transfer in sequence. Smarter hardware can queue
270 * several DMA transfers at once, and process several controller queues
271 * in parallel; this driver doesn't match such hardware very well.
273 * Drivers can provide word-at-a-time i/o primitives, or provide
274 * transfer-at-a-time ones to leverage dma or fifo hardware.
277 static int spi_bitbang_prepare_hardware(struct spi_controller
*spi
)
279 struct spi_bitbang
*bitbang
;
281 bitbang
= spi_controller_get_devdata(spi
);
283 mutex_lock(&bitbang
->lock
);
285 mutex_unlock(&bitbang
->lock
);
290 static int spi_bitbang_transfer_one(struct spi_controller
*ctlr
,
291 struct spi_device
*spi
,
292 struct spi_transfer
*transfer
)
294 struct spi_bitbang
*bitbang
= spi_controller_get_devdata(ctlr
);
297 if (bitbang
->setup_transfer
) {
298 status
= bitbang
->setup_transfer(spi
, transfer
);
304 status
= bitbang
->txrx_bufs(spi
, transfer
);
306 if (status
== transfer
->len
)
308 else if (status
>= 0)
312 spi_finalize_current_transfer(ctlr
);
317 static int spi_bitbang_unprepare_hardware(struct spi_controller
*spi
)
319 struct spi_bitbang
*bitbang
;
321 bitbang
= spi_controller_get_devdata(spi
);
323 mutex_lock(&bitbang
->lock
);
325 mutex_unlock(&bitbang
->lock
);
330 static void spi_bitbang_set_cs(struct spi_device
*spi
, bool enable
)
332 struct spi_bitbang
*bitbang
= spi_controller_get_devdata(spi
->controller
);
334 /* SPI core provides CS high / low, but bitbang driver
336 * spi device driver takes care of handling SPI_CS_HIGH
338 enable
= (!!(spi
->mode
& SPI_CS_HIGH
) == enable
);
340 ndelay(SPI_BITBANG_CS_DELAY
);
341 bitbang
->chipselect(spi
, enable
? BITBANG_CS_ACTIVE
:
342 BITBANG_CS_INACTIVE
);
343 ndelay(SPI_BITBANG_CS_DELAY
);
346 /*----------------------------------------------------------------------*/
348 int spi_bitbang_init(struct spi_bitbang
*bitbang
)
350 struct spi_controller
*ctlr
= bitbang
->ctlr
;
356 * We only need the chipselect callback if we are actually using it.
357 * If we just use GPIO descriptors, it is surplus. If the
358 * SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the
359 * driver-specific chipselect routine.
361 custom_cs
= (!ctlr
->use_gpio_descriptors
||
362 (ctlr
->flags
& SPI_CONTROLLER_GPIO_SS
));
364 if (custom_cs
&& !bitbang
->chipselect
)
367 mutex_init(&bitbang
->lock
);
369 if (!ctlr
->mode_bits
)
370 ctlr
->mode_bits
= SPI_CPOL
| SPI_CPHA
| bitbang
->flags
;
372 if (ctlr
->transfer
|| ctlr
->transfer_one_message
)
375 ctlr
->prepare_transfer_hardware
= spi_bitbang_prepare_hardware
;
376 ctlr
->unprepare_transfer_hardware
= spi_bitbang_unprepare_hardware
;
377 ctlr
->transfer_one
= spi_bitbang_transfer_one
;
379 * When using GPIO descriptors, the ->set_cs() callback doesn't even
380 * get called unless SPI_CONTROLLER_GPIO_SS is set.
383 ctlr
->set_cs
= spi_bitbang_set_cs
;
385 if (!bitbang
->txrx_bufs
) {
386 bitbang
->use_dma
= 0;
387 bitbang
->txrx_bufs
= spi_bitbang_bufs
;
389 if (!bitbang
->setup_transfer
)
390 bitbang
->setup_transfer
=
391 spi_bitbang_setup_transfer
;
392 ctlr
->setup
= spi_bitbang_setup
;
393 ctlr
->cleanup
= spi_bitbang_cleanup
;
399 EXPORT_SYMBOL_GPL(spi_bitbang_init
);
402 * spi_bitbang_start - start up a polled/bitbanging SPI host controller driver
403 * @bitbang: driver handle
405 * Caller should have zero-initialized all parts of the structure, and then
406 * provided callbacks for chip selection and I/O loops. If the host controller has
407 * a transfer method, its final step should call spi_bitbang_transfer(); or,
408 * that's the default if the transfer routine is not initialized. It should
409 * also set up the bus number and number of chipselects.
411 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
412 * hardware that basically exposes a shift register) or per-spi_transfer
413 * (which takes better advantage of hardware like fifos or DMA engines).
415 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup(),
416 * spi_bitbang_cleanup() and spi_bitbang_setup_transfer() to handle those SPI
417 * host controller methods. Those methods are the defaults if the bitbang->txrx_bufs
418 * routine isn't initialized.
420 * This routine registers the spi_controller, which will process requests in a
421 * dedicated task, keeping IRQs unblocked most of the time. To stop
422 * processing those requests, call spi_bitbang_stop().
424 * On success, this routine will take a reference to the controller. The caller
425 * is responsible for calling spi_bitbang_stop() to decrement the reference and
426 * spi_controller_put() as counterpart of spi_alloc_host() to prevent a memory
429 int spi_bitbang_start(struct spi_bitbang
*bitbang
)
431 struct spi_controller
*ctlr
= bitbang
->ctlr
;
434 ret
= spi_bitbang_init(bitbang
);
438 /* driver may get busy before register() returns, especially
439 * if someone registered boardinfo for devices
441 ret
= spi_register_controller(spi_controller_get(ctlr
));
443 spi_controller_put(ctlr
);
447 EXPORT_SYMBOL_GPL(spi_bitbang_start
);
450 * spi_bitbang_stop - stops the task providing spi communication
452 void spi_bitbang_stop(struct spi_bitbang
*bitbang
)
454 spi_unregister_controller(bitbang
->ctlr
);
456 EXPORT_SYMBOL_GPL(spi_bitbang_stop
);
458 MODULE_LICENSE("GPL");
459 MODULE_DESCRIPTION("Utilities for Bitbanging SPI host controllers");