printf: Remove unused 'bprintf'
[drm/drm-misc.git] / drivers / spi / spi-intel.c
blobb0dcdb6fb8fa9fedbc2ebfafe15459e31fb82dbc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel PCH/PCU SPI flash driver.
5 * Copyright (C) 2016 - 2022, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 */
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
19 #include "spi-intel.h"
21 /* Offsets are from @ispi->base */
22 #define BFPREG 0x00
24 #define HSFSTS_CTL 0x04
25 #define HSFSTS_CTL_FSMIE BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT 24
27 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
29 #define HSFSTS_CTL_FCYCLE_SHIFT 17
30 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDSFDP (0x05 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
41 #define HSFSTS_CTL_FGO BIT(16)
42 #define HSFSTS_CTL_FLOCKDN BIT(15)
43 #define HSFSTS_CTL_FDV BIT(14)
44 #define HSFSTS_CTL_SCIP BIT(5)
45 #define HSFSTS_CTL_AEL BIT(2)
46 #define HSFSTS_CTL_FCERR BIT(1)
47 #define HSFSTS_CTL_FDONE BIT(0)
49 #define FADDR 0x08
50 #define DLOCK 0x0c
51 #define FDATA(n) (0x10 + ((n) * 4))
53 #define FRACC 0x50
55 #define FREG(n) (0x54 + ((n) * 4))
56 #define FREG_BASE_MASK GENMASK(14, 0)
57 #define FREG_LIMIT_SHIFT 16
58 #define FREG_LIMIT_MASK GENMASK(30, 16)
60 /* Offset is from @ispi->pregs */
61 #define PR(n) ((n) * 4)
62 #define PR_WPE BIT(31)
63 #define PR_LIMIT_SHIFT 16
64 #define PR_LIMIT_MASK GENMASK(30, 16)
65 #define PR_RPE BIT(15)
66 #define PR_BASE_MASK GENMASK(14, 0)
68 /* Offsets are from @ispi->sregs */
69 #define SSFSTS_CTL 0x00
70 #define SSFSTS_CTL_FSMIE BIT(23)
71 #define SSFSTS_CTL_DS BIT(22)
72 #define SSFSTS_CTL_DBC_SHIFT 16
73 #define SSFSTS_CTL_SPOP BIT(11)
74 #define SSFSTS_CTL_ACS BIT(10)
75 #define SSFSTS_CTL_SCGO BIT(9)
76 #define SSFSTS_CTL_COP_SHIFT 12
77 #define SSFSTS_CTL_FRS BIT(7)
78 #define SSFSTS_CTL_DOFRS BIT(6)
79 #define SSFSTS_CTL_AEL BIT(4)
80 #define SSFSTS_CTL_FCERR BIT(3)
81 #define SSFSTS_CTL_FDONE BIT(2)
82 #define SSFSTS_CTL_SCIP BIT(0)
84 #define PREOP_OPTYPE 0x04
85 #define OPMENU0 0x08
86 #define OPMENU1 0x0c
88 #define OPTYPE_READ_NO_ADDR 0
89 #define OPTYPE_WRITE_NO_ADDR 1
90 #define OPTYPE_READ_WITH_ADDR 2
91 #define OPTYPE_WRITE_WITH_ADDR 3
93 /* CPU specifics */
94 #define BYT_PR 0x74
95 #define BYT_SSFSTS_CTL 0x90
96 #define BYT_FREG_NUM 5
97 #define BYT_PR_NUM 5
99 #define LPT_PR 0x74
100 #define LPT_SSFSTS_CTL 0x90
101 #define LPT_FREG_NUM 5
102 #define LPT_PR_NUM 5
104 #define BXT_PR 0x84
105 #define BXT_SSFSTS_CTL 0xa0
106 #define BXT_FREG_NUM 12
107 #define BXT_PR_NUM 5
109 #define CNL_PR 0x84
110 #define CNL_FREG_NUM 6
111 #define CNL_PR_NUM 5
113 #define LVSCC 0xc4
114 #define UVSCC 0xc8
115 #define ERASE_OPCODE_SHIFT 8
116 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
117 #define ERASE_64K_OPCODE_SHIFT 16
118 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT)
120 /* Flash descriptor fields */
121 #define FLVALSIG_MAGIC 0x0ff0a55a
122 #define FLMAP0_NC_MASK GENMASK(9, 8)
123 #define FLMAP0_NC_SHIFT 8
124 #define FLMAP0_FCBA_MASK GENMASK(7, 0)
126 #define FLCOMP_C0DEN_MASK GENMASK(3, 0)
127 #define FLCOMP_C0DEN_512K 0x00
128 #define FLCOMP_C0DEN_1M 0x01
129 #define FLCOMP_C0DEN_2M 0x02
130 #define FLCOMP_C0DEN_4M 0x03
131 #define FLCOMP_C0DEN_8M 0x04
132 #define FLCOMP_C0DEN_16M 0x05
133 #define FLCOMP_C0DEN_32M 0x06
134 #define FLCOMP_C0DEN_64M 0x07
136 #define INTEL_SPI_TIMEOUT 5000 /* ms */
137 #define INTEL_SPI_FIFO_SZ 64
140 * struct intel_spi - Driver private data
141 * @dev: Device pointer
142 * @info: Pointer to board specific info
143 * @base: Beginning of MMIO space
144 * @pregs: Start of protection registers
145 * @sregs: Start of software sequencer registers
146 * @host: Pointer to the SPI controller structure
147 * @nregions: Maximum number of regions
148 * @pr_num: Maximum number of protected range registers
149 * @chip0_size: Size of the first flash chip in bytes
150 * @locked: Is SPI setting locked
151 * @protected: Whether the regions are write protected
152 * @bios_locked: Is BIOS region locked
153 * @swseq_reg: Use SW sequencer in register reads/writes
154 * @swseq_erase: Use SW sequencer in erase operation
155 * @atomic_preopcode: Holds preopcode when atomic sequence is requested
156 * @opcodes: Opcodes which are supported. This are programmed by BIOS
157 * before it locks down the controller.
158 * @mem_ops: Pointer to SPI MEM ops supported by the controller
160 struct intel_spi {
161 struct device *dev;
162 const struct intel_spi_boardinfo *info;
163 void __iomem *base;
164 void __iomem *pregs;
165 void __iomem *sregs;
166 struct spi_controller *host;
167 size_t nregions;
168 size_t pr_num;
169 size_t chip0_size;
170 bool locked;
171 bool protected;
172 bool bios_locked;
173 bool swseq_reg;
174 bool swseq_erase;
175 u8 atomic_preopcode;
176 u8 opcodes[8];
177 const struct intel_spi_mem_op *mem_ops;
180 struct intel_spi_mem_op {
181 struct spi_mem_op mem_op;
182 u32 replacement_op;
183 int (*exec_op)(struct intel_spi *ispi,
184 const struct spi_mem *mem,
185 const struct intel_spi_mem_op *iop,
186 const struct spi_mem_op *op);
189 static bool writeable;
190 module_param(writeable, bool, 0);
191 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
193 static void intel_spi_dump_regs(struct intel_spi *ispi)
195 u32 value;
196 int i;
198 dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
200 value = readl(ispi->base + HSFSTS_CTL);
201 dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
202 if (value & HSFSTS_CTL_FLOCKDN)
203 dev_dbg(ispi->dev, "-> Locked\n");
205 dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
206 dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
208 for (i = 0; i < 16; i++)
209 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
210 i, readl(ispi->base + FDATA(i)));
212 dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
214 for (i = 0; i < ispi->nregions; i++)
215 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
216 readl(ispi->base + FREG(i)));
217 for (i = 0; i < ispi->pr_num; i++)
218 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
219 readl(ispi->pregs + PR(i)));
221 if (ispi->sregs) {
222 value = readl(ispi->sregs + SSFSTS_CTL);
223 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
224 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
225 readl(ispi->sregs + PREOP_OPTYPE));
226 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
227 readl(ispi->sregs + OPMENU0));
228 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
229 readl(ispi->sregs + OPMENU1));
232 dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
233 dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
235 dev_dbg(ispi->dev, "Protected regions:\n");
236 for (i = 0; i < ispi->pr_num; i++) {
237 u32 base, limit;
239 value = readl(ispi->pregs + PR(i));
240 if (!(value & (PR_WPE | PR_RPE)))
241 continue;
243 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
244 base = value & PR_BASE_MASK;
246 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
247 i, base << 12, (limit << 12) | 0xfff,
248 value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
251 dev_dbg(ispi->dev, "Flash regions:\n");
252 for (i = 0; i < ispi->nregions; i++) {
253 u32 region, base, limit;
255 region = readl(ispi->base + FREG(i));
256 base = region & FREG_BASE_MASK;
257 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
259 if (base >= limit || (i > 0 && limit == 0))
260 dev_dbg(ispi->dev, " %02d disabled\n", i);
261 else
262 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
263 i, base << 12, (limit << 12) | 0xfff);
266 dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
267 ispi->swseq_reg ? 'S' : 'H');
268 dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
269 ispi->swseq_erase ? 'S' : 'H');
272 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
273 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
275 size_t bytes;
276 int i = 0;
278 if (size > INTEL_SPI_FIFO_SZ)
279 return -EINVAL;
281 while (size > 0) {
282 bytes = min_t(size_t, size, 4);
283 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
284 size -= bytes;
285 buf += bytes;
286 i++;
289 return 0;
292 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
293 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
294 size_t size)
296 size_t bytes;
297 int i = 0;
299 if (size > INTEL_SPI_FIFO_SZ)
300 return -EINVAL;
302 while (size > 0) {
303 bytes = min_t(size_t, size, 4);
304 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
305 size -= bytes;
306 buf += bytes;
307 i++;
310 return 0;
313 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
315 u32 val;
317 return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
318 !(val & HSFSTS_CTL_SCIP), 0,
319 INTEL_SPI_TIMEOUT * 1000);
322 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
324 u32 val;
326 return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
327 !(val & SSFSTS_CTL_SCIP), 0,
328 INTEL_SPI_TIMEOUT * 1000);
331 static bool intel_spi_set_writeable(struct intel_spi *ispi)
333 if (!ispi->info->set_writeable)
334 return false;
336 return ispi->info->set_writeable(ispi->base, ispi->info->data);
339 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
341 int i;
342 int preop;
344 if (ispi->locked) {
345 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
346 if (ispi->opcodes[i] == opcode)
347 return i;
349 return -EINVAL;
352 /* The lock is off, so just use index 0 */
353 writel(opcode, ispi->sregs + OPMENU0);
354 preop = readw(ispi->sregs + PREOP_OPTYPE);
355 writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
357 return 0;
360 static int intel_spi_hw_cycle(struct intel_spi *ispi,
361 const struct intel_spi_mem_op *iop, size_t len)
363 u32 val, status;
364 int ret;
366 if (!iop->replacement_op)
367 return -EINVAL;
369 val = readl(ispi->base + HSFSTS_CTL);
370 val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
371 val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
372 val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
373 val |= HSFSTS_CTL_FGO;
374 val |= iop->replacement_op;
375 writel(val, ispi->base + HSFSTS_CTL);
377 ret = intel_spi_wait_hw_busy(ispi);
378 if (ret)
379 return ret;
381 status = readl(ispi->base + HSFSTS_CTL);
382 if (status & HSFSTS_CTL_FCERR)
383 return -EIO;
384 else if (status & HSFSTS_CTL_AEL)
385 return -EACCES;
387 return 0;
390 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
391 int optype)
393 u32 val = 0, status;
394 u8 atomic_preopcode;
395 int ret;
397 ret = intel_spi_opcode_index(ispi, opcode, optype);
398 if (ret < 0)
399 return ret;
402 * Always clear it after each SW sequencer operation regardless
403 * of whether it is successful or not.
405 atomic_preopcode = ispi->atomic_preopcode;
406 ispi->atomic_preopcode = 0;
408 /* Only mark 'Data Cycle' bit when there is data to be transferred */
409 if (len > 0)
410 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
411 val |= ret << SSFSTS_CTL_COP_SHIFT;
412 val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
413 val |= SSFSTS_CTL_SCGO;
414 if (atomic_preopcode) {
415 u16 preop;
417 switch (optype) {
418 case OPTYPE_WRITE_NO_ADDR:
419 case OPTYPE_WRITE_WITH_ADDR:
420 /* Pick matching preopcode for the atomic sequence */
421 preop = readw(ispi->sregs + PREOP_OPTYPE);
422 if ((preop & 0xff) == atomic_preopcode)
423 ; /* Do nothing */
424 else if ((preop >> 8) == atomic_preopcode)
425 val |= SSFSTS_CTL_SPOP;
426 else
427 return -EINVAL;
429 /* Enable atomic sequence */
430 val |= SSFSTS_CTL_ACS;
431 break;
433 default:
434 return -EINVAL;
437 writel(val, ispi->sregs + SSFSTS_CTL);
439 ret = intel_spi_wait_sw_busy(ispi);
440 if (ret)
441 return ret;
443 status = readl(ispi->sregs + SSFSTS_CTL);
444 if (status & SSFSTS_CTL_FCERR)
445 return -EIO;
446 else if (status & SSFSTS_CTL_AEL)
447 return -EACCES;
449 return 0;
452 static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
453 const struct spi_mem *mem)
455 /* Pick up the correct start address */
456 if (!mem)
457 return 0;
458 return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0;
461 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
462 const struct intel_spi_mem_op *iop,
463 const struct spi_mem_op *op)
465 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
466 size_t nbytes = op->data.nbytes;
467 u8 opcode = op->cmd.opcode;
468 int ret;
470 writel(addr, ispi->base + FADDR);
472 if (ispi->swseq_reg)
473 ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
474 OPTYPE_READ_NO_ADDR);
475 else
476 ret = intel_spi_hw_cycle(ispi, iop, nbytes);
478 if (ret)
479 return ret;
481 return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
484 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
485 const struct intel_spi_mem_op *iop,
486 const struct spi_mem_op *op)
488 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
489 size_t nbytes = op->data.nbytes;
490 u8 opcode = op->cmd.opcode;
491 int ret;
494 * This is handled with atomic operation and preop code in Intel
495 * controller so we only verify that it is available. If the
496 * controller is not locked, program the opcode to the PREOP
497 * register for later use.
499 * When hardware sequencer is used there is no need to program
500 * any opcodes (it handles them automatically as part of a command).
502 if (opcode == SPINOR_OP_WREN) {
503 u16 preop;
505 if (!ispi->swseq_reg)
506 return 0;
508 preop = readw(ispi->sregs + PREOP_OPTYPE);
509 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
510 if (ispi->locked)
511 return -EINVAL;
512 writel(opcode, ispi->sregs + PREOP_OPTYPE);
516 * This enables atomic sequence on next SW sycle. Will
517 * be cleared after next operation.
519 ispi->atomic_preopcode = opcode;
520 return 0;
524 * We hope that HW sequencer will do the right thing automatically and
525 * with the SW sequencer we cannot use preopcode anyway, so just ignore
526 * the Write Disable operation and pretend it was completed
527 * successfully.
529 if (opcode == SPINOR_OP_WRDI)
530 return 0;
532 writel(addr, ispi->base + FADDR);
534 /* Write the value beforehand */
535 ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
536 if (ret)
537 return ret;
539 if (ispi->swseq_reg)
540 return intel_spi_sw_cycle(ispi, opcode, nbytes,
541 OPTYPE_WRITE_NO_ADDR);
542 return intel_spi_hw_cycle(ispi, iop, nbytes);
545 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
546 const struct intel_spi_mem_op *iop,
547 const struct spi_mem_op *op)
549 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
550 size_t block_size, nbytes = op->data.nbytes;
551 void *read_buf = op->data.buf.in;
552 u32 val, status;
553 int ret;
556 * Atomic sequence is not expected with HW sequencer reads. Make
557 * sure it is cleared regardless.
559 if (WARN_ON_ONCE(ispi->atomic_preopcode))
560 ispi->atomic_preopcode = 0;
562 while (nbytes > 0) {
563 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
565 /* Read cannot cross 4K boundary */
566 block_size = min_t(loff_t, addr + block_size,
567 round_up(addr + 1, SZ_4K)) - addr;
569 writel(addr, ispi->base + FADDR);
571 val = readl(ispi->base + HSFSTS_CTL);
572 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
573 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
574 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
575 val |= HSFSTS_CTL_FCYCLE_READ;
576 val |= HSFSTS_CTL_FGO;
577 writel(val, ispi->base + HSFSTS_CTL);
579 ret = intel_spi_wait_hw_busy(ispi);
580 if (ret)
581 return ret;
583 status = readl(ispi->base + HSFSTS_CTL);
584 if (status & HSFSTS_CTL_FCERR)
585 ret = -EIO;
586 else if (status & HSFSTS_CTL_AEL)
587 ret = -EACCES;
589 if (ret < 0) {
590 dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
591 return ret;
594 ret = intel_spi_read_block(ispi, read_buf, block_size);
595 if (ret)
596 return ret;
598 nbytes -= block_size;
599 addr += block_size;
600 read_buf += block_size;
603 return 0;
606 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
607 const struct intel_spi_mem_op *iop,
608 const struct spi_mem_op *op)
610 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
611 size_t block_size, nbytes = op->data.nbytes;
612 const void *write_buf = op->data.buf.out;
613 u32 val, status;
614 int ret;
616 /* Not needed with HW sequencer write, make sure it is cleared */
617 ispi->atomic_preopcode = 0;
619 while (nbytes > 0) {
620 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
622 /* Write cannot cross 4K boundary */
623 block_size = min_t(loff_t, addr + block_size,
624 round_up(addr + 1, SZ_4K)) - addr;
626 writel(addr, ispi->base + FADDR);
628 val = readl(ispi->base + HSFSTS_CTL);
629 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
630 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
631 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
632 val |= HSFSTS_CTL_FCYCLE_WRITE;
634 ret = intel_spi_write_block(ispi, write_buf, block_size);
635 if (ret) {
636 dev_err(ispi->dev, "failed to write block\n");
637 return ret;
640 /* Start the write now */
641 val |= HSFSTS_CTL_FGO;
642 writel(val, ispi->base + HSFSTS_CTL);
644 ret = intel_spi_wait_hw_busy(ispi);
645 if (ret) {
646 dev_err(ispi->dev, "timeout\n");
647 return ret;
650 status = readl(ispi->base + HSFSTS_CTL);
651 if (status & HSFSTS_CTL_FCERR)
652 ret = -EIO;
653 else if (status & HSFSTS_CTL_AEL)
654 ret = -EACCES;
656 if (ret < 0) {
657 dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
658 return ret;
661 nbytes -= block_size;
662 addr += block_size;
663 write_buf += block_size;
666 return 0;
669 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
670 const struct intel_spi_mem_op *iop,
671 const struct spi_mem_op *op)
673 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
674 u8 opcode = op->cmd.opcode;
675 u32 val, status;
676 int ret;
678 writel(addr, ispi->base + FADDR);
680 if (ispi->swseq_erase)
681 return intel_spi_sw_cycle(ispi, opcode, 0,
682 OPTYPE_WRITE_WITH_ADDR);
684 /* Not needed with HW sequencer erase, make sure it is cleared */
685 ispi->atomic_preopcode = 0;
687 val = readl(ispi->base + HSFSTS_CTL);
688 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
689 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
690 val |= HSFSTS_CTL_FGO;
691 val |= iop->replacement_op;
692 writel(val, ispi->base + HSFSTS_CTL);
694 ret = intel_spi_wait_hw_busy(ispi);
695 if (ret)
696 return ret;
698 status = readl(ispi->base + HSFSTS_CTL);
699 if (status & HSFSTS_CTL_FCERR)
700 return -EIO;
701 if (status & HSFSTS_CTL_AEL)
702 return -EACCES;
704 return 0;
707 static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
709 op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ);
710 return 0;
713 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
714 const struct spi_mem_op *op)
716 if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
717 iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
718 iop->mem_op.cmd.dtr != op->cmd.dtr)
719 return false;
721 if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
722 iop->mem_op.addr.dtr != op->addr.dtr)
723 return false;
725 if (iop->mem_op.data.dir != op->data.dir ||
726 iop->mem_op.data.dtr != op->data.dtr)
727 return false;
729 if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
730 if (iop->mem_op.data.buswidth != op->data.buswidth)
731 return false;
734 return true;
737 static const struct intel_spi_mem_op *
738 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
740 const struct intel_spi_mem_op *iop;
742 for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
743 if (iop->mem_op.cmd.opcode == op->cmd.opcode &&
744 intel_spi_cmp_mem_op(iop, op))
745 return iop;
748 return NULL;
751 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
752 const struct spi_mem_op *op)
754 struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
755 const struct intel_spi_mem_op *iop;
757 iop = intel_spi_match_mem_op(ispi, op);
758 if (!iop) {
759 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
760 return false;
764 * For software sequencer check that the opcode is actually
765 * present in the opmenu if it is locked.
767 if (ispi->swseq_reg && ispi->locked) {
768 int i;
770 /* Check if it is in the locked opcodes list */
771 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
772 if (ispi->opcodes[i] == op->cmd.opcode)
773 return true;
776 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
777 return false;
780 return true;
783 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
785 struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
786 const struct intel_spi_mem_op *iop;
788 iop = intel_spi_match_mem_op(ispi, op);
789 if (!iop)
790 return -EOPNOTSUPP;
792 return iop->exec_op(ispi, mem, iop, op);
795 static const char *intel_spi_get_name(struct spi_mem *mem)
797 const struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
800 * Return name of the flash controller device to be compatible
801 * with the MTD version.
803 return dev_name(ispi->dev);
806 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
808 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
809 const struct intel_spi_mem_op *iop;
811 iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
812 if (!iop)
813 return -EOPNOTSUPP;
815 desc->priv = (void *)iop;
816 return 0;
819 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
820 size_t len, void *buf)
822 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
823 const struct intel_spi_mem_op *iop = desc->priv;
824 struct spi_mem_op op = desc->info.op_tmpl;
825 int ret;
827 /* Fill in the gaps */
828 op.addr.val = offs;
829 op.data.nbytes = len;
830 op.data.buf.in = buf;
832 ret = iop->exec_op(ispi, desc->mem, iop, &op);
833 return ret ? ret : len;
836 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
837 size_t len, const void *buf)
839 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
840 const struct intel_spi_mem_op *iop = desc->priv;
841 struct spi_mem_op op = desc->info.op_tmpl;
842 int ret;
844 op.addr.val = offs;
845 op.data.nbytes = len;
846 op.data.buf.out = buf;
848 ret = iop->exec_op(ispi, desc->mem, iop, &op);
849 return ret ? ret : len;
852 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
853 .adjust_op_size = intel_spi_adjust_op_size,
854 .supports_op = intel_spi_supports_mem_op,
855 .exec_op = intel_spi_exec_mem_op,
856 .get_name = intel_spi_get_name,
857 .dirmap_create = intel_spi_dirmap_create,
858 .dirmap_read = intel_spi_dirmap_read,
859 .dirmap_write = intel_spi_dirmap_write,
862 #define INTEL_SPI_OP_ADDR(__nbytes) \
864 .nbytes = __nbytes, \
867 #define INTEL_SPI_OP_NO_DATA \
869 .dir = SPI_MEM_NO_DATA, \
872 #define INTEL_SPI_OP_DATA_IN(__buswidth) \
874 .dir = SPI_MEM_DATA_IN, \
875 .buswidth = __buswidth, \
878 #define INTEL_SPI_OP_DATA_OUT(__buswidth) \
880 .dir = SPI_MEM_DATA_OUT, \
881 .buswidth = __buswidth, \
884 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \
886 .mem_op = { \
887 .cmd = __cmd, \
888 .addr = __addr, \
889 .data = __data, \
890 }, \
891 .exec_op = __exec_op, \
894 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
896 .mem_op = { \
897 .cmd = __cmd, \
898 .addr = __addr, \
899 .data = __data, \
900 }, \
901 .exec_op = __exec_op, \
902 .replacement_op = __repl, \
906 * The controller handles pretty much everything internally based on the
907 * SFDP data but we want to make sure we only support the operations
908 * actually possible. Only check buswidth and transfer direction, the
909 * core validates data.
911 #define INTEL_SPI_GENERIC_OPS \
912 /* Status register operations */ \
913 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \
914 SPI_MEM_OP_NO_ADDR, \
915 INTEL_SPI_OP_DATA_IN(1), \
916 intel_spi_read_reg, \
917 HSFSTS_CTL_FCYCLE_RDID), \
918 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \
919 SPI_MEM_OP_NO_ADDR, \
920 INTEL_SPI_OP_DATA_IN(1), \
921 intel_spi_read_reg, \
922 HSFSTS_CTL_FCYCLE_RDSR), \
923 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \
924 SPI_MEM_OP_NO_ADDR, \
925 INTEL_SPI_OP_DATA_OUT(1), \
926 intel_spi_write_reg, \
927 HSFSTS_CTL_FCYCLE_WRSR), \
928 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1), \
929 INTEL_SPI_OP_ADDR(3), \
930 INTEL_SPI_OP_DATA_IN(1), \
931 intel_spi_read_reg, \
932 HSFSTS_CTL_FCYCLE_RDSFDP), \
933 /* Normal read */ \
934 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
935 INTEL_SPI_OP_ADDR(3), \
936 INTEL_SPI_OP_DATA_IN(1), \
937 intel_spi_read), \
938 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
939 INTEL_SPI_OP_ADDR(3), \
940 INTEL_SPI_OP_DATA_IN(2), \
941 intel_spi_read), \
942 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
943 INTEL_SPI_OP_ADDR(3), \
944 INTEL_SPI_OP_DATA_IN(4), \
945 intel_spi_read), \
946 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
947 INTEL_SPI_OP_ADDR(4), \
948 INTEL_SPI_OP_DATA_IN(1), \
949 intel_spi_read), \
950 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
951 INTEL_SPI_OP_ADDR(4), \
952 INTEL_SPI_OP_DATA_IN(2), \
953 intel_spi_read), \
954 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
955 INTEL_SPI_OP_ADDR(4), \
956 INTEL_SPI_OP_DATA_IN(4), \
957 intel_spi_read), \
958 /* Fast read */ \
959 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
960 INTEL_SPI_OP_ADDR(3), \
961 INTEL_SPI_OP_DATA_IN(1), \
962 intel_spi_read), \
963 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
964 INTEL_SPI_OP_ADDR(3), \
965 INTEL_SPI_OP_DATA_IN(2), \
966 intel_spi_read), \
967 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
968 INTEL_SPI_OP_ADDR(3), \
969 INTEL_SPI_OP_DATA_IN(4), \
970 intel_spi_read), \
971 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
972 INTEL_SPI_OP_ADDR(4), \
973 INTEL_SPI_OP_DATA_IN(1), \
974 intel_spi_read), \
975 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
976 INTEL_SPI_OP_ADDR(4), \
977 INTEL_SPI_OP_DATA_IN(2), \
978 intel_spi_read), \
979 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
980 INTEL_SPI_OP_ADDR(4), \
981 INTEL_SPI_OP_DATA_IN(4), \
982 intel_spi_read), \
983 /* Read with 4-byte address opcode */ \
984 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
985 INTEL_SPI_OP_ADDR(4), \
986 INTEL_SPI_OP_DATA_IN(1), \
987 intel_spi_read), \
988 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
989 INTEL_SPI_OP_ADDR(4), \
990 INTEL_SPI_OP_DATA_IN(2), \
991 intel_spi_read), \
992 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
993 INTEL_SPI_OP_ADDR(4), \
994 INTEL_SPI_OP_DATA_IN(4), \
995 intel_spi_read), \
996 /* Fast read with 4-byte address opcode */ \
997 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
998 INTEL_SPI_OP_ADDR(4), \
999 INTEL_SPI_OP_DATA_IN(1), \
1000 intel_spi_read), \
1001 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
1002 INTEL_SPI_OP_ADDR(4), \
1003 INTEL_SPI_OP_DATA_IN(2), \
1004 intel_spi_read), \
1005 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
1006 INTEL_SPI_OP_ADDR(4), \
1007 INTEL_SPI_OP_DATA_IN(4), \
1008 intel_spi_read), \
1009 /* Write operations */ \
1010 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
1011 INTEL_SPI_OP_ADDR(3), \
1012 INTEL_SPI_OP_DATA_OUT(1), \
1013 intel_spi_write), \
1014 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
1015 INTEL_SPI_OP_ADDR(4), \
1016 INTEL_SPI_OP_DATA_OUT(1), \
1017 intel_spi_write), \
1018 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \
1019 INTEL_SPI_OP_ADDR(4), \
1020 INTEL_SPI_OP_DATA_OUT(1), \
1021 intel_spi_write), \
1022 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \
1023 SPI_MEM_OP_NO_ADDR, \
1024 SPI_MEM_OP_NO_DATA, \
1025 intel_spi_write_reg), \
1026 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \
1027 SPI_MEM_OP_NO_ADDR, \
1028 SPI_MEM_OP_NO_DATA, \
1029 intel_spi_write_reg), \
1030 /* Erase operations */ \
1031 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
1032 INTEL_SPI_OP_ADDR(3), \
1033 SPI_MEM_OP_NO_DATA, \
1034 intel_spi_erase, \
1035 HSFSTS_CTL_FCYCLE_ERASE), \
1036 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
1037 INTEL_SPI_OP_ADDR(4), \
1038 SPI_MEM_OP_NO_DATA, \
1039 intel_spi_erase, \
1040 HSFSTS_CTL_FCYCLE_ERASE), \
1041 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \
1042 INTEL_SPI_OP_ADDR(4), \
1043 SPI_MEM_OP_NO_DATA, \
1044 intel_spi_erase, \
1045 HSFSTS_CTL_FCYCLE_ERASE) \
1047 static const struct intel_spi_mem_op generic_mem_ops[] = {
1048 INTEL_SPI_GENERIC_OPS,
1049 { },
1052 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1053 INTEL_SPI_GENERIC_OPS,
1054 /* 64k sector erase operations */
1055 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1056 INTEL_SPI_OP_ADDR(3),
1057 SPI_MEM_OP_NO_DATA,
1058 intel_spi_erase,
1059 HSFSTS_CTL_FCYCLE_ERASE_64K),
1060 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1061 INTEL_SPI_OP_ADDR(4),
1062 SPI_MEM_OP_NO_DATA,
1063 intel_spi_erase,
1064 HSFSTS_CTL_FCYCLE_ERASE_64K),
1065 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1066 INTEL_SPI_OP_ADDR(4),
1067 SPI_MEM_OP_NO_DATA,
1068 intel_spi_erase,
1069 HSFSTS_CTL_FCYCLE_ERASE_64K),
1070 { },
1073 static int intel_spi_init(struct intel_spi *ispi)
1075 u32 opmenu0, opmenu1, lvscc, uvscc, val;
1076 bool erase_64k = false;
1077 int i;
1079 switch (ispi->info->type) {
1080 case INTEL_SPI_BYT:
1081 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1082 ispi->pregs = ispi->base + BYT_PR;
1083 ispi->nregions = BYT_FREG_NUM;
1084 ispi->pr_num = BYT_PR_NUM;
1085 ispi->swseq_reg = true;
1086 break;
1088 case INTEL_SPI_LPT:
1089 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1090 ispi->pregs = ispi->base + LPT_PR;
1091 ispi->nregions = LPT_FREG_NUM;
1092 ispi->pr_num = LPT_PR_NUM;
1093 ispi->swseq_reg = true;
1094 break;
1096 case INTEL_SPI_BXT:
1097 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1098 ispi->pregs = ispi->base + BXT_PR;
1099 ispi->nregions = BXT_FREG_NUM;
1100 ispi->pr_num = BXT_PR_NUM;
1101 erase_64k = true;
1102 break;
1104 case INTEL_SPI_CNL:
1105 ispi->sregs = NULL;
1106 ispi->pregs = ispi->base + CNL_PR;
1107 ispi->nregions = CNL_FREG_NUM;
1108 ispi->pr_num = CNL_PR_NUM;
1109 erase_64k = true;
1110 break;
1112 default:
1113 return -EINVAL;
1116 ispi->bios_locked = true;
1117 /* Try to disable BIOS write protection if user asked to do so */
1118 if (writeable) {
1119 if (intel_spi_set_writeable(ispi))
1120 ispi->bios_locked = false;
1121 else
1122 dev_warn(ispi->dev, "can't disable chip write protection\n");
1125 /* Disable #SMI generation from HW sequencer */
1126 val = readl(ispi->base + HSFSTS_CTL);
1127 val &= ~HSFSTS_CTL_FSMIE;
1128 writel(val, ispi->base + HSFSTS_CTL);
1131 * Determine whether erase operation should use HW or SW sequencer.
1133 * The HW sequencer has a predefined list of opcodes, with only the
1134 * erase opcode being programmable in LVSCC and UVSCC registers.
1135 * If these registers don't contain a valid erase opcode, erase
1136 * cannot be done using HW sequencer.
1138 lvscc = readl(ispi->base + LVSCC);
1139 uvscc = readl(ispi->base + UVSCC);
1140 if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1141 ispi->swseq_erase = true;
1142 /* SPI controller on Intel BXT supports 64K erase opcode */
1143 if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1144 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1145 !(uvscc & ERASE_64K_OPCODE_MASK))
1146 erase_64k = false;
1148 if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1149 dev_err(ispi->dev, "software sequencer not supported, but required\n");
1150 return -EINVAL;
1154 * Some controllers can only do basic operations using hardware
1155 * sequencer. All other operations are supposed to be carried out
1156 * using software sequencer.
1158 if (ispi->swseq_reg) {
1159 /* Disable #SMI generation from SW sequencer */
1160 val = readl(ispi->sregs + SSFSTS_CTL);
1161 val &= ~SSFSTS_CTL_FSMIE;
1162 writel(val, ispi->sregs + SSFSTS_CTL);
1165 /* Check controller's lock status */
1166 val = readl(ispi->base + HSFSTS_CTL);
1167 ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1169 if (ispi->locked && ispi->sregs) {
1171 * BIOS programs allowed opcodes and then locks down the
1172 * register. So read back what opcodes it decided to support.
1173 * That's the set we are going to support as well.
1175 opmenu0 = readl(ispi->sregs + OPMENU0);
1176 opmenu1 = readl(ispi->sregs + OPMENU1);
1178 if (opmenu0 && opmenu1) {
1179 for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1180 ispi->opcodes[i] = opmenu0 >> i * 8;
1181 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1186 if (erase_64k) {
1187 dev_dbg(ispi->dev, "Using erase_64k memory operations");
1188 ispi->mem_ops = erase_64k_mem_ops;
1189 } else {
1190 dev_dbg(ispi->dev, "Using generic memory operations");
1191 ispi->mem_ops = generic_mem_ops;
1194 intel_spi_dump_regs(ispi);
1195 return 0;
1198 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1199 unsigned int base, unsigned int limit)
1201 int i;
1203 for (i = 0; i < ispi->pr_num; i++) {
1204 u32 pr_base, pr_limit, pr_value;
1206 pr_value = readl(ispi->pregs + PR(i));
1207 if (!(pr_value & (PR_WPE | PR_RPE)))
1208 continue;
1210 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1211 pr_base = pr_value & PR_BASE_MASK;
1213 if (pr_base >= base && pr_limit <= limit)
1214 return true;
1217 return false;
1221 * There will be a single partition holding all enabled flash regions. We
1222 * call this "BIOS".
1224 static void intel_spi_fill_partition(struct intel_spi *ispi,
1225 struct mtd_partition *part)
1227 u64 end;
1228 int i;
1230 memset(part, 0, sizeof(*part));
1232 /* Start from the mandatory descriptor region */
1233 part->size = 4096;
1234 part->name = "BIOS";
1237 * Now try to find where this partition ends based on the flash
1238 * region registers.
1240 for (i = 1; i < ispi->nregions; i++) {
1241 u32 region, base, limit;
1243 region = readl(ispi->base + FREG(i));
1244 base = region & FREG_BASE_MASK;
1245 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1247 if (base >= limit || limit == 0)
1248 continue;
1251 * If any of the regions have protection bits set, make the
1252 * whole partition read-only to be on the safe side.
1254 * Also if the user did not ask the chip to be writeable
1255 * mask the bit too.
1257 if (!writeable || intel_spi_is_protected(ispi, base, limit)) {
1258 part->mask_flags |= MTD_WRITEABLE;
1259 ispi->protected = true;
1262 end = (limit << 12) + 4096;
1263 if (end > part->size)
1264 part->size = end;
1268 * Regions can refer to the second chip too so in this case we
1269 * just make the BIOS partition to occupy the whole chip.
1271 if (ispi->chip0_size && part->size > ispi->chip0_size)
1272 part->size = MTDPART_SIZ_FULL;
1275 static int intel_spi_read_desc(struct intel_spi *ispi)
1277 struct spi_mem_op op =
1278 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1279 SPI_MEM_OP_ADDR(3, 0, 0),
1280 SPI_MEM_OP_NO_DUMMY,
1281 SPI_MEM_OP_DATA_IN(0, NULL, 0));
1282 u32 buf[2], nc, fcba, flcomp;
1283 ssize_t ret;
1285 op.addr.val = 0x10;
1286 op.data.buf.in = buf;
1287 op.data.nbytes = sizeof(buf);
1289 ret = intel_spi_read(ispi, NULL, NULL, &op);
1290 if (ret) {
1291 dev_warn(ispi->dev, "failed to read descriptor\n");
1292 return ret;
1295 dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1296 dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1298 if (buf[0] != FLVALSIG_MAGIC) {
1299 dev_warn(ispi->dev, "descriptor signature not valid\n");
1300 return -ENODEV;
1303 fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1304 dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1306 op.addr.val = fcba;
1307 op.data.buf.in = &flcomp;
1308 op.data.nbytes = sizeof(flcomp);
1310 ret = intel_spi_read(ispi, NULL, NULL, &op);
1311 if (ret) {
1312 dev_warn(ispi->dev, "failed to read FLCOMP\n");
1313 return -ENODEV;
1316 dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1318 switch (flcomp & FLCOMP_C0DEN_MASK) {
1319 case FLCOMP_C0DEN_512K:
1320 ispi->chip0_size = SZ_512K;
1321 break;
1322 case FLCOMP_C0DEN_1M:
1323 ispi->chip0_size = SZ_1M;
1324 break;
1325 case FLCOMP_C0DEN_2M:
1326 ispi->chip0_size = SZ_2M;
1327 break;
1328 case FLCOMP_C0DEN_4M:
1329 ispi->chip0_size = SZ_4M;
1330 break;
1331 case FLCOMP_C0DEN_8M:
1332 ispi->chip0_size = SZ_8M;
1333 break;
1334 case FLCOMP_C0DEN_16M:
1335 ispi->chip0_size = SZ_16M;
1336 break;
1337 case FLCOMP_C0DEN_32M:
1338 ispi->chip0_size = SZ_32M;
1339 break;
1340 case FLCOMP_C0DEN_64M:
1341 ispi->chip0_size = SZ_64M;
1342 break;
1343 default:
1344 return -EINVAL;
1347 dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1349 nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1350 if (!nc)
1351 ispi->host->num_chipselect = 1;
1352 else if (nc == 1)
1353 ispi->host->num_chipselect = 2;
1354 else
1355 return -EINVAL;
1357 dev_dbg(ispi->dev, "%u flash components found\n",
1358 ispi->host->num_chipselect);
1359 return 0;
1362 static int intel_spi_populate_chip(struct intel_spi *ispi)
1364 struct flash_platform_data *pdata;
1365 struct mtd_partition *parts;
1366 struct spi_board_info chip;
1367 int ret;
1369 ret = intel_spi_read_desc(ispi);
1370 if (ret)
1371 return ret;
1373 pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1374 if (!pdata)
1375 return -ENOMEM;
1377 pdata->nr_parts = 1;
1378 pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1379 sizeof(*pdata->parts), GFP_KERNEL);
1380 if (!pdata->parts)
1381 return -ENOMEM;
1383 intel_spi_fill_partition(ispi, pdata->parts);
1385 memset(&chip, 0, sizeof(chip));
1386 snprintf(chip.modalias, 8, "spi-nor");
1387 chip.platform_data = pdata;
1389 if (!spi_new_device(ispi->host, &chip))
1390 return -ENODEV;
1392 /* Add the second chip if present */
1393 if (ispi->host->num_chipselect < 2)
1394 return 0;
1396 pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1397 if (!pdata)
1398 return -ENOMEM;
1400 pdata->name = devm_kasprintf(ispi->dev, GFP_KERNEL, "%s-chip1",
1401 dev_name(ispi->dev));
1402 if (!pdata->name)
1403 return -ENOMEM;
1405 pdata->nr_parts = 1;
1406 parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*parts),
1407 GFP_KERNEL);
1408 if (!parts)
1409 return -ENOMEM;
1411 parts[0].size = MTDPART_SIZ_FULL;
1412 parts[0].name = "BIOS1";
1413 pdata->parts = parts;
1415 chip.platform_data = pdata;
1416 chip.chip_select = 1;
1418 if (!spi_new_device(ispi->host, &chip))
1419 return -ENODEV;
1420 return 0;
1423 static ssize_t intel_spi_protected_show(struct device *dev,
1424 struct device_attribute *attr, char *buf)
1426 struct intel_spi *ispi = dev_get_drvdata(dev);
1428 return sysfs_emit(buf, "%d\n", ispi->protected);
1430 static DEVICE_ATTR_ADMIN_RO(intel_spi_protected);
1432 static ssize_t intel_spi_locked_show(struct device *dev,
1433 struct device_attribute *attr, char *buf)
1435 struct intel_spi *ispi = dev_get_drvdata(dev);
1437 return sysfs_emit(buf, "%d\n", ispi->locked);
1439 static DEVICE_ATTR_ADMIN_RO(intel_spi_locked);
1441 static ssize_t intel_spi_bios_locked_show(struct device *dev,
1442 struct device_attribute *attr, char *buf)
1444 struct intel_spi *ispi = dev_get_drvdata(dev);
1446 return sysfs_emit(buf, "%d\n", ispi->bios_locked);
1448 static DEVICE_ATTR_ADMIN_RO(intel_spi_bios_locked);
1450 static struct attribute *intel_spi_attrs[] = {
1451 &dev_attr_intel_spi_protected.attr,
1452 &dev_attr_intel_spi_locked.attr,
1453 &dev_attr_intel_spi_bios_locked.attr,
1454 NULL
1457 static const struct attribute_group intel_spi_attr_group = {
1458 .attrs = intel_spi_attrs,
1461 const struct attribute_group *intel_spi_groups[] = {
1462 &intel_spi_attr_group,
1463 NULL
1465 EXPORT_SYMBOL_GPL(intel_spi_groups);
1468 * intel_spi_probe() - Probe the Intel SPI flash controller
1469 * @dev: Pointer to the parent device
1470 * @mem: MMIO resource
1471 * @info: Platform specific information
1473 * Probes Intel SPI flash controller and creates the flash chip device.
1474 * Returns %0 on success and negative errno in case of failure.
1476 int intel_spi_probe(struct device *dev, struct resource *mem,
1477 const struct intel_spi_boardinfo *info)
1479 struct spi_controller *host;
1480 struct intel_spi *ispi;
1481 int ret;
1483 host = devm_spi_alloc_host(dev, sizeof(*ispi));
1484 if (!host)
1485 return -ENOMEM;
1487 host->mem_ops = &intel_spi_mem_ops;
1489 ispi = spi_controller_get_devdata(host);
1491 ispi->base = devm_ioremap_resource(dev, mem);
1492 if (IS_ERR(ispi->base))
1493 return PTR_ERR(ispi->base);
1495 ispi->dev = dev;
1496 ispi->host = host;
1497 ispi->info = info;
1499 ret = intel_spi_init(ispi);
1500 if (ret)
1501 return ret;
1503 ret = devm_spi_register_controller(dev, host);
1504 if (ret)
1505 return ret;
1507 dev_set_drvdata(dev, ispi);
1508 return intel_spi_populate_chip(ispi);
1510 EXPORT_SYMBOL_GPL(intel_spi_probe);
1512 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1513 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1514 MODULE_LICENSE("GPL v2");