printf: Remove unused 'bprintf'
[drm/drm-misc.git] / fs / bcachefs / btree_write_buffer.c
blob1639c60dffa0e4166a155017608a565c9f5fd8ad
1 // SPDX-License-Identifier: GPL-2.0
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_locking.h"
6 #include "btree_update.h"
7 #include "btree_update_interior.h"
8 #include "btree_write_buffer.h"
9 #include "disk_accounting.h"
10 #include "error.h"
11 #include "extents.h"
12 #include "journal.h"
13 #include "journal_io.h"
14 #include "journal_reclaim.h"
16 #include <linux/prefetch.h>
17 #include <linux/sort.h>
19 static int bch2_btree_write_buffer_journal_flush(struct journal *,
20 struct journal_entry_pin *, u64);
22 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
24 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
26 return (cmp_int(l->hi, r->hi) ?:
27 cmp_int(l->mi, r->mi) ?:
28 cmp_int(l->lo, r->lo)) >= 0;
31 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
33 #ifdef CONFIG_X86_64
34 int cmp;
36 asm("mov (%[l]), %%rax;"
37 "sub (%[r]), %%rax;"
38 "mov 8(%[l]), %%rax;"
39 "sbb 8(%[r]), %%rax;"
40 "mov 16(%[l]), %%rax;"
41 "sbb 16(%[r]), %%rax;"
42 : "=@ccae" (cmp)
43 : [l] "r" (l), [r] "r" (r)
44 : "rax", "cc");
46 EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
47 return cmp;
48 #else
49 return __wb_key_ref_cmp(l, r);
50 #endif
53 static int wb_key_seq_cmp(const void *_l, const void *_r)
55 const struct btree_write_buffered_key *l = _l;
56 const struct btree_write_buffered_key *r = _r;
58 return cmp_int(l->journal_seq, r->journal_seq);
61 /* Compare excluding idx, the low 24 bits: */
62 static inline bool wb_key_eq(const void *_l, const void *_r)
64 const struct wb_key_ref *l = _l;
65 const struct wb_key_ref *r = _r;
67 return !((l->hi ^ r->hi)|
68 (l->mi ^ r->mi)|
69 ((l->lo >> 24) ^ (r->lo >> 24)));
72 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
74 size_t n = num, a = num / 2;
76 if (!a) /* num < 2 || size == 0 */
77 return;
79 for (;;) {
80 size_t b, c, d;
82 if (a) /* Building heap: sift down --a */
83 --a;
84 else if (--n) /* Sorting: Extract root to --n */
85 swap(base[0], base[n]);
86 else /* Sort complete */
87 break;
90 * Sift element at "a" down into heap. This is the
91 * "bottom-up" variant, which significantly reduces
92 * calls to cmp_func(): we find the sift-down path all
93 * the way to the leaves (one compare per level), then
94 * backtrack to find where to insert the target element.
96 * Because elements tend to sift down close to the leaves,
97 * this uses fewer compares than doing two per level
98 * on the way down. (A bit more than half as many on
99 * average, 3/4 worst-case.)
101 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
102 b = wb_key_ref_cmp(base + c, base + d) ? c : d;
103 if (d == n) /* Special case last leaf with no sibling */
104 b = c;
106 /* Now backtrack from "b" to the correct location for "a" */
107 while (b != a && wb_key_ref_cmp(base + a, base + b))
108 b = (b - 1) / 2;
109 c = b; /* Where "a" belongs */
110 while (b != a) { /* Shift it into place */
111 b = (b - 1) / 2;
112 swap(base[b], base[c]);
117 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
118 struct btree_iter *iter,
119 struct btree_write_buffered_key *wb)
121 struct btree_path *path = btree_iter_path(trans, iter);
123 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
125 trans->journal_res.seq = wb->journal_seq;
127 return bch2_trans_update(trans, iter, &wb->k,
128 BTREE_UPDATE_internal_snapshot_node) ?:
129 bch2_trans_commit(trans, NULL, NULL,
130 BCH_TRANS_COMMIT_no_enospc|
131 BCH_TRANS_COMMIT_no_check_rw|
132 BCH_TRANS_COMMIT_no_journal_res|
133 BCH_TRANS_COMMIT_journal_reclaim);
136 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
137 struct btree_write_buffered_key *wb,
138 bool *write_locked,
139 bool *accounting_accumulated,
140 size_t *fast)
142 struct btree_path *path;
143 int ret;
145 EBUG_ON(!wb->journal_seq);
146 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
147 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
149 ret = bch2_btree_iter_traverse(iter);
150 if (ret)
151 return ret;
153 if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) {
154 struct bkey u;
155 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u);
157 if (k.k->type == KEY_TYPE_accounting)
158 bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k),
159 bkey_s_c_to_accounting(k));
161 *accounting_accumulated = true;
164 * We can't clone a path that has write locks: unshare it now, before
165 * set_pos and traverse():
167 if (btree_iter_path(trans, iter)->ref > 1)
168 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
170 path = btree_iter_path(trans, iter);
172 if (!*write_locked) {
173 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
174 if (ret)
175 return ret;
177 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
178 *write_locked = true;
181 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
182 *write_locked = false;
183 return wb_flush_one_slowpath(trans, iter, wb);
186 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
187 (*fast)++;
188 return 0;
192 * Update a btree with a write buffered key using the journal seq of the
193 * original write buffer insert.
195 * It is not safe to rejournal the key once it has been inserted into the write
196 * buffer because that may break recovery ordering. For example, the key may
197 * have already been modified in the active write buffer in a seq that comes
198 * before the current transaction. If we were to journal this key again and
199 * crash, recovery would process updates in the wrong order.
201 static int
202 btree_write_buffered_insert(struct btree_trans *trans,
203 struct btree_write_buffered_key *wb)
205 struct btree_iter iter;
206 int ret;
208 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
209 BTREE_ITER_cached|BTREE_ITER_intent);
211 trans->journal_res.seq = wb->journal_seq;
213 ret = bch2_btree_iter_traverse(&iter) ?:
214 bch2_trans_update(trans, &iter, &wb->k,
215 BTREE_UPDATE_internal_snapshot_node);
216 bch2_trans_iter_exit(trans, &iter);
217 return ret;
220 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
222 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
223 struct journal *j = &c->journal;
225 if (!wb->inc.keys.nr)
226 return;
228 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
229 bch2_btree_write_buffer_journal_flush);
231 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
232 darray_resize(&wb->sorted, wb->flushing.keys.size);
234 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
235 swap(wb->flushing.keys, wb->inc.keys);
236 goto out;
239 size_t nr = min(darray_room(wb->flushing.keys),
240 wb->sorted.size - wb->flushing.keys.nr);
241 nr = min(nr, wb->inc.keys.nr);
243 memcpy(&darray_top(wb->flushing.keys),
244 wb->inc.keys.data,
245 sizeof(wb->inc.keys.data[0]) * nr);
247 memmove(wb->inc.keys.data,
248 wb->inc.keys.data + nr,
249 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
251 wb->flushing.keys.nr += nr;
252 wb->inc.keys.nr -= nr;
253 out:
254 if (!wb->inc.keys.nr)
255 bch2_journal_pin_drop(j, &wb->inc.pin);
256 else
257 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
258 bch2_btree_write_buffer_journal_flush);
260 if (j->watermark) {
261 spin_lock(&j->lock);
262 bch2_journal_set_watermark(j);
263 spin_unlock(&j->lock);
266 BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
269 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
271 struct bch_fs *c = trans->c;
272 struct journal *j = &c->journal;
273 struct btree_write_buffer *wb = &c->btree_write_buffer;
274 struct btree_iter iter = { NULL };
275 size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0;
276 bool write_locked = false;
277 bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags);
278 int ret = 0;
280 ret = bch2_journal_error(&c->journal);
281 if (ret)
282 return ret;
284 bch2_trans_unlock(trans);
285 bch2_trans_begin(trans);
287 mutex_lock(&wb->inc.lock);
288 move_keys_from_inc_to_flushing(wb);
289 mutex_unlock(&wb->inc.lock);
291 for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
292 wb->sorted.data[i].idx = i;
293 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
294 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
296 wb->sorted.nr = wb->flushing.keys.nr;
299 * We first sort so that we can detect and skip redundant updates, and
300 * then we attempt to flush in sorted btree order, as this is most
301 * efficient.
303 * However, since we're not flushing in the order they appear in the
304 * journal we won't be able to drop our journal pin until everything is
305 * flushed - which means this could deadlock the journal if we weren't
306 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
307 * if it would block taking a journal reservation.
309 * If that happens, simply skip the key so we can optimistically insert
310 * as many keys as possible in the fast path.
312 wb_sort(wb->sorted.data, wb->sorted.nr);
314 darray_for_each(wb->sorted, i) {
315 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
317 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
318 prefetch(&wb->flushing.keys.data[n->idx]);
320 BUG_ON(!k->journal_seq);
322 if (!accounting_replay_done &&
323 k->k.k.type == KEY_TYPE_accounting) {
324 slowpath++;
325 continue;
328 if (i + 1 < &darray_top(wb->sorted) &&
329 wb_key_eq(i, i + 1)) {
330 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
332 if (k->k.k.type == KEY_TYPE_accounting &&
333 n->k.k.type == KEY_TYPE_accounting)
334 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k),
335 bkey_i_to_s_c_accounting(&k->k));
337 overwritten++;
338 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
339 k->journal_seq = 0;
340 continue;
343 if (write_locked) {
344 struct btree_path *path = btree_iter_path(trans, &iter);
346 if (path->btree_id != i->btree ||
347 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
348 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
349 write_locked = false;
351 ret = lockrestart_do(trans,
352 bch2_btree_iter_traverse(&iter) ?:
353 bch2_foreground_maybe_merge(trans, iter.path, 0,
354 BCH_WATERMARK_reclaim|
355 BCH_TRANS_COMMIT_journal_reclaim|
356 BCH_TRANS_COMMIT_no_check_rw|
357 BCH_TRANS_COMMIT_no_enospc));
358 if (ret)
359 goto err;
363 if (!iter.path || iter.btree_id != k->btree) {
364 bch2_trans_iter_exit(trans, &iter);
365 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
366 BTREE_ITER_intent|BTREE_ITER_all_snapshots);
369 bch2_btree_iter_set_pos(&iter, k->k.k.p);
370 btree_iter_path(trans, &iter)->preserve = false;
372 bool accounting_accumulated = false;
373 do {
374 if (race_fault()) {
375 ret = -BCH_ERR_journal_reclaim_would_deadlock;
376 break;
379 ret = wb_flush_one(trans, &iter, k, &write_locked,
380 &accounting_accumulated, &fast);
381 if (!write_locked)
382 bch2_trans_begin(trans);
383 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
385 if (!ret) {
386 k->journal_seq = 0;
387 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
388 slowpath++;
389 ret = 0;
390 } else
391 break;
394 if (write_locked) {
395 struct btree_path *path = btree_iter_path(trans, &iter);
396 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
398 bch2_trans_iter_exit(trans, &iter);
400 if (ret)
401 goto err;
403 if (slowpath) {
405 * Flush in the order they were present in the journal, so that
406 * we can release journal pins:
407 * The fastpath zapped the seq of keys that were successfully flushed so
408 * we can skip those here.
410 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
412 sort(wb->flushing.keys.data,
413 wb->flushing.keys.nr,
414 sizeof(wb->flushing.keys.data[0]),
415 wb_key_seq_cmp, NULL);
417 darray_for_each(wb->flushing.keys, i) {
418 if (!i->journal_seq)
419 continue;
421 if (!accounting_replay_done &&
422 i->k.k.type == KEY_TYPE_accounting) {
423 could_not_insert++;
424 continue;
427 if (!could_not_insert)
428 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
429 bch2_btree_write_buffer_journal_flush);
431 bch2_trans_begin(trans);
433 ret = commit_do(trans, NULL, NULL,
434 BCH_WATERMARK_reclaim|
435 BCH_TRANS_COMMIT_journal_reclaim|
436 BCH_TRANS_COMMIT_no_check_rw|
437 BCH_TRANS_COMMIT_no_enospc|
438 BCH_TRANS_COMMIT_no_journal_res ,
439 btree_write_buffered_insert(trans, i));
440 if (ret)
441 goto err;
443 i->journal_seq = 0;
447 * If journal replay hasn't finished with accounting keys we
448 * can't flush accounting keys at all - condense them and leave
449 * them for next time.
451 * Q: Can the write buffer overflow?
452 * A Shouldn't be any actual risk. It's just new accounting
453 * updates that the write buffer can't flush, and those are only
454 * going to be generated by interior btree node updates as
455 * journal replay has to split/rewrite nodes to make room for
456 * its updates.
458 * And for those new acounting updates, updates to the same
459 * counters get accumulated as they're flushed from the journal
460 * to the write buffer - see the patch for eytzingcer tree
461 * accumulated. So we could only overflow if the number of
462 * distinct counters touched somehow was very large.
464 if (could_not_insert) {
465 struct btree_write_buffered_key *dst = wb->flushing.keys.data;
467 darray_for_each(wb->flushing.keys, i)
468 if (i->journal_seq)
469 *dst++ = *i;
470 wb->flushing.keys.nr = dst - wb->flushing.keys.data;
473 err:
474 if (ret || !could_not_insert) {
475 bch2_journal_pin_drop(j, &wb->flushing.pin);
476 wb->flushing.keys.nr = 0;
479 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
480 trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0);
481 return ret;
484 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
486 struct journal *j = &c->journal;
487 struct journal_buf *buf;
488 int ret = 0;
490 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
491 ret = bch2_journal_keys_to_write_buffer(c, buf);
492 mutex_unlock(&j->buf_lock);
495 return ret;
498 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq,
499 bool *did_work)
501 struct bch_fs *c = trans->c;
502 struct btree_write_buffer *wb = &c->btree_write_buffer;
503 int ret = 0, fetch_from_journal_err;
505 do {
506 bch2_trans_unlock(trans);
508 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
510 *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr;
513 * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
514 * is not guaranteed to empty wb->inc:
516 mutex_lock(&wb->flushing.lock);
517 ret = bch2_btree_write_buffer_flush_locked(trans);
518 mutex_unlock(&wb->flushing.lock);
519 } while (!ret &&
520 (fetch_from_journal_err ||
521 (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
522 (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
524 return ret;
527 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
528 struct journal_entry_pin *_pin, u64 seq)
530 struct bch_fs *c = container_of(j, struct bch_fs, journal);
531 bool did_work = false;
533 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work));
536 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
538 struct bch_fs *c = trans->c;
539 bool did_work = false;
541 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
543 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work);
547 * The write buffer requires flushing when going RO: keys in the journal for the
548 * write buffer don't have a journal pin yet
550 bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c)
552 if (bch2_journal_error(&c->journal))
553 return false;
555 bool did_work = false;
556 bch2_trans_run(c, btree_write_buffer_flush_seq(trans,
557 journal_cur_seq(&c->journal), &did_work));
558 return did_work;
561 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
563 struct bch_fs *c = trans->c;
564 struct btree_write_buffer *wb = &c->btree_write_buffer;
565 int ret = 0;
567 if (mutex_trylock(&wb->flushing.lock)) {
568 ret = bch2_btree_write_buffer_flush_locked(trans);
569 mutex_unlock(&wb->flushing.lock);
572 return ret;
575 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
577 struct bch_fs *c = trans->c;
579 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
580 return -BCH_ERR_erofs_no_writes;
582 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
583 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
584 return ret;
588 * In check and repair code, when checking references to write buffer btrees we
589 * need to issue a flush before we have a definitive error: this issues a flush
590 * if this is a key we haven't yet checked.
592 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans,
593 struct bkey_s_c referring_k,
594 struct bkey_buf *last_flushed)
596 struct bch_fs *c = trans->c;
597 struct bkey_buf tmp;
598 int ret = 0;
600 bch2_bkey_buf_init(&tmp);
602 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) {
603 bch2_bkey_buf_reassemble(&tmp, c, referring_k);
605 if (bkey_is_btree_ptr(referring_k.k)) {
606 bch2_trans_unlock(trans);
607 bch2_btree_interior_updates_flush(c);
610 ret = bch2_btree_write_buffer_flush_sync(trans);
611 if (ret)
612 goto err;
614 bch2_bkey_buf_copy(last_flushed, c, tmp.k);
615 ret = -BCH_ERR_transaction_restart_write_buffer_flush;
617 err:
618 bch2_bkey_buf_exit(&tmp, c);
619 return ret;
622 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
624 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
625 struct btree_write_buffer *wb = &c->btree_write_buffer;
626 int ret;
628 mutex_lock(&wb->flushing.lock);
629 do {
630 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
631 } while (!ret && bch2_btree_write_buffer_should_flush(c));
632 mutex_unlock(&wb->flushing.lock);
634 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
637 static void wb_accounting_sort(struct btree_write_buffer *wb)
639 eytzinger0_sort(wb->accounting.data, wb->accounting.nr,
640 sizeof(wb->accounting.data[0]),
641 wb_key_cmp, NULL);
644 int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree,
645 struct bkey_i_accounting *k)
647 struct btree_write_buffer *wb = &c->btree_write_buffer;
648 struct btree_write_buffered_key new = { .btree = btree };
650 bkey_copy(&new.k, &k->k_i);
652 int ret = darray_push(&wb->accounting, new);
653 if (ret)
654 return ret;
656 wb_accounting_sort(wb);
657 return 0;
660 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
661 struct journal_keys_to_wb *dst,
662 enum btree_id btree, struct bkey_i *k)
664 struct btree_write_buffer *wb = &c->btree_write_buffer;
665 int ret;
666 retry:
667 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
668 if (!ret && dst->wb == &wb->flushing)
669 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
671 if (unlikely(ret)) {
672 if (dst->wb == &c->btree_write_buffer.flushing) {
673 mutex_unlock(&dst->wb->lock);
674 dst->wb = &c->btree_write_buffer.inc;
675 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
676 bch2_btree_write_buffer_journal_flush);
677 goto retry;
680 return ret;
683 dst->room = darray_room(dst->wb->keys);
684 if (dst->wb == &wb->flushing)
685 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
686 BUG_ON(!dst->room);
687 BUG_ON(!dst->seq);
689 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
690 wb_k->journal_seq = dst->seq;
691 wb_k->btree = btree;
692 bkey_copy(&wb_k->k, k);
693 dst->wb->keys.nr++;
694 dst->room--;
695 return 0;
698 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
700 struct btree_write_buffer *wb = &c->btree_write_buffer;
702 if (mutex_trylock(&wb->flushing.lock)) {
703 mutex_lock(&wb->inc.lock);
704 move_keys_from_inc_to_flushing(wb);
707 * Attempt to skip wb->inc, and add keys directly to
708 * wb->flushing, saving us a copy later:
711 if (!wb->inc.keys.nr) {
712 dst->wb = &wb->flushing;
713 } else {
714 mutex_unlock(&wb->flushing.lock);
715 dst->wb = &wb->inc;
717 } else {
718 mutex_lock(&wb->inc.lock);
719 dst->wb = &wb->inc;
722 dst->room = darray_room(dst->wb->keys);
723 if (dst->wb == &wb->flushing)
724 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
725 dst->seq = seq;
727 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
728 bch2_btree_write_buffer_journal_flush);
730 darray_for_each(wb->accounting, i)
731 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k));
734 int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
736 struct btree_write_buffer *wb = &c->btree_write_buffer;
737 unsigned live_accounting_keys = 0;
738 int ret = 0;
740 darray_for_each(wb->accounting, i)
741 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) {
742 i->journal_seq = dst->seq;
743 live_accounting_keys++;
744 ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k);
745 if (ret)
746 break;
749 if (live_accounting_keys * 2 < wb->accounting.nr) {
750 struct btree_write_buffered_key *dst = wb->accounting.data;
752 darray_for_each(wb->accounting, src)
753 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k)))
754 *dst++ = *src;
755 wb->accounting.nr = dst - wb->accounting.data;
756 wb_accounting_sort(wb);
759 if (!dst->wb->keys.nr)
760 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
762 if (bch2_btree_write_buffer_should_flush(c) &&
763 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
764 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
765 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
767 if (dst->wb == &wb->flushing)
768 mutex_unlock(&wb->flushing.lock);
769 mutex_unlock(&wb->inc.lock);
771 return ret;
774 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
776 struct journal_keys_to_wb dst;
777 int ret = 0;
779 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
781 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
782 jset_entry_for_each_key(entry, k) {
783 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
784 if (ret)
785 goto out;
788 entry->type = BCH_JSET_ENTRY_btree_keys;
791 spin_lock(&c->journal.lock);
792 buf->need_flush_to_write_buffer = false;
793 spin_unlock(&c->journal.lock);
794 out:
795 ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret;
796 return ret;
799 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
801 if (wb->keys.size >= new_size)
802 return 0;
804 if (!mutex_trylock(&wb->lock))
805 return -EINTR;
807 int ret = darray_resize(&wb->keys, new_size);
808 mutex_unlock(&wb->lock);
809 return ret;
812 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
814 struct btree_write_buffer *wb = &c->btree_write_buffer;
816 return wb_keys_resize(&wb->flushing, new_size) ?:
817 wb_keys_resize(&wb->inc, new_size);
820 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
822 struct btree_write_buffer *wb = &c->btree_write_buffer;
824 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
825 !bch2_journal_error(&c->journal));
827 darray_exit(&wb->accounting);
828 darray_exit(&wb->sorted);
829 darray_exit(&wb->flushing.keys);
830 darray_exit(&wb->inc.keys);
833 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
835 struct btree_write_buffer *wb = &c->btree_write_buffer;
837 mutex_init(&wb->inc.lock);
838 mutex_init(&wb->flushing.lock);
839 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
841 /* Will be resized by journal as needed: */
842 unsigned initial_size = 1 << 16;
844 return darray_make_room(&wb->inc.keys, initial_size) ?:
845 darray_make_room(&wb->flushing.keys, initial_size) ?:
846 darray_make_room(&wb->sorted, initial_size);