1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_JOURNAL_H
3 #define _BCACHEFS_JOURNAL_H
8 * The primary purpose of the journal is to log updates (insertions) to the
9 * b-tree, to avoid having to do synchronous updates to the b-tree on disk.
11 * Without the journal, the b-tree is always internally consistent on
12 * disk - and in fact, in the earliest incarnations bcache didn't have a journal
13 * but did handle unclean shutdowns by doing all index updates synchronously
16 * Updates to interior nodes still happen synchronously and without the journal
17 * (for simplicity) - this may change eventually but updates to interior nodes
18 * are rare enough it's not a huge priority.
20 * This means the journal is relatively separate from the b-tree; it consists of
21 * just a list of keys and journal replay consists of just redoing those
22 * insertions in same order that they appear in the journal.
26 * For synchronous updates (where we're waiting on the index update to hit
27 * disk), the journal entry will be written out immediately (or as soon as
28 * possible, if the write for the previous journal entry was still in flight).
30 * Synchronous updates are specified by passing a closure (@flush_cl) to
31 * bch2_btree_insert() or bch_btree_insert_node(), which then pass that parameter
32 * down to the journalling code. That closure will wait on the journal write to
33 * complete (via closure_wait()).
35 * If the index update wasn't synchronous, the journal entry will be
36 * written out after 10 ms have elapsed, by default (the delay_ms field
41 * A journal entry is variable size (struct jset), it's got a fixed length
42 * header and then a variable number of struct jset_entry entries.
44 * Journal entries are identified by monotonically increasing 64 bit sequence
45 * numbers - jset->seq; other places in the code refer to this sequence number.
47 * A jset_entry entry contains one or more bkeys (which is what gets inserted
48 * into the b-tree). We need a container to indicate which b-tree the key is
49 * for; also, the roots of the various b-trees are stored in jset_entry entries
50 * (one for each b-tree) - this lets us add new b-tree types without changing
53 * We also keep some things in the journal header that are logically part of the
54 * superblock - all the things that are frequently updated. This is for future
55 * bcache on raw flash support; the superblock (which will become another
56 * journal) can't be moved or wear leveled, so it contains just enough
57 * information to find the main journal, and the superblock only has to be
58 * rewritten when we want to move/wear level the main journal.
60 * JOURNAL LAYOUT ON DISK:
62 * The journal is written to a ringbuffer of buckets (which is kept in the
63 * superblock); the individual buckets are not necessarily contiguous on disk
64 * which means that journal entries are not allowed to span buckets, but also
65 * that we can resize the journal at runtime if desired (unimplemented).
67 * The journal buckets exist in the same pool as all the other buckets that are
68 * managed by the allocator and garbage collection - garbage collection marks
69 * the journal buckets as metadata buckets.
71 * OPEN/DIRTY JOURNAL ENTRIES:
73 * Open/dirty journal entries are journal entries that contain b-tree updates
74 * that have not yet been written out to the b-tree on disk. We have to track
75 * which journal entries are dirty, and we also have to avoid wrapping around
76 * the journal and overwriting old but still dirty journal entries with new
79 * On disk, this is represented with the "last_seq" field of struct jset;
80 * last_seq is the first sequence number that journal replay has to replay.
82 * To avoid overwriting dirty journal entries on disk, we keep a mapping (in
83 * journal_device->seq) of for each journal bucket, the highest sequence number
84 * any journal entry it contains. Then, by comparing that against last_seq we
85 * can determine whether that journal bucket contains dirty journal entries or
88 * To track which journal entries are dirty, we maintain a fifo of refcounts
89 * (where each entry corresponds to a specific sequence number) - when a ref
90 * goes to 0, that journal entry is no longer dirty.
92 * Journalling of index updates is done at the same time as the b-tree itself is
93 * being modified (see btree_insert_key()); when we add the key to the journal
94 * the pending b-tree write takes a ref on the journal entry the key was added
95 * to. If a pending b-tree write would need to take refs on multiple dirty
96 * journal entries, it only keeps the ref on the oldest one (since a newer
97 * journal entry will still be replayed if an older entry was dirty).
101 * There are two ways the journal could fill up; either we could run out of
102 * space to write to, or we could have too many open journal entries and run out
103 * of room in the fifo of refcounts. Since those refcounts are decremented
104 * without any locking we can't safely resize that fifo, so we handle it the
107 * If the journal fills up, we start flushing dirty btree nodes until we can
108 * allocate space for a journal write again - preferentially flushing btree
109 * nodes that are pinning the oldest journal entries first.
112 #include <linux/hash.h>
114 #include "journal_types.h"
118 static inline void journal_wake(struct journal
*j
)
121 closure_wake_up(&j
->async_wait
);
124 static inline struct journal_buf
*journal_cur_buf(struct journal
*j
)
126 return j
->buf
+ j
->reservations
.idx
;
129 /* Sequence number of oldest dirty journal entry */
131 static inline u64
journal_last_seq(struct journal
*j
)
136 static inline u64
journal_cur_seq(struct journal
*j
)
138 return atomic64_read(&j
->seq
);
141 static inline u64
journal_last_unwritten_seq(struct journal
*j
)
143 return j
->seq_ondisk
+ 1;
146 static inline int journal_state_count(union journal_res_state s
, int idx
)
149 case 0: return s
.buf0_count
;
150 case 1: return s
.buf1_count
;
151 case 2: return s
.buf2_count
;
152 case 3: return s
.buf3_count
;
157 static inline void journal_state_inc(union journal_res_state
*s
)
159 s
->buf0_count
+= s
->idx
== 0;
160 s
->buf1_count
+= s
->idx
== 1;
161 s
->buf2_count
+= s
->idx
== 2;
162 s
->buf3_count
+= s
->idx
== 3;
166 * Amount of space that will be taken up by some keys in the journal (i.e.
167 * including the jset header)
169 static inline unsigned jset_u64s(unsigned u64s
)
171 return u64s
+ sizeof(struct jset_entry
) / sizeof(u64
);
174 static inline int journal_entry_overhead(struct journal
*j
)
176 return sizeof(struct jset
) / sizeof(u64
) + j
->entry_u64s_reserved
;
179 static inline struct jset_entry
*
180 bch2_journal_add_entry_noreservation(struct journal_buf
*buf
, size_t u64s
)
182 struct jset
*jset
= buf
->data
;
183 struct jset_entry
*entry
= vstruct_idx(jset
, le32_to_cpu(jset
->u64s
));
185 memset(entry
, 0, sizeof(*entry
));
186 entry
->u64s
= cpu_to_le16(u64s
);
188 le32_add_cpu(&jset
->u64s
, jset_u64s(u64s
));
193 static inline struct jset_entry
*
194 journal_res_entry(struct journal
*j
, struct journal_res
*res
)
196 return vstruct_idx(j
->buf
[res
->idx
].data
, res
->offset
);
199 static inline unsigned journal_entry_init(struct jset_entry
*entry
, unsigned type
,
200 enum btree_id id
, unsigned level
,
203 entry
->u64s
= cpu_to_le16(u64s
);
204 entry
->btree_id
= id
;
205 entry
->level
= level
;
210 return jset_u64s(u64s
);
213 static inline unsigned journal_entry_set(struct jset_entry
*entry
, unsigned type
,
214 enum btree_id id
, unsigned level
,
215 const void *data
, unsigned u64s
)
217 unsigned ret
= journal_entry_init(entry
, type
, id
, level
, u64s
);
219 memcpy_u64s_small(entry
->_data
, data
, u64s
);
223 static inline struct jset_entry
*
224 bch2_journal_add_entry(struct journal
*j
, struct journal_res
*res
,
225 unsigned type
, enum btree_id id
,
226 unsigned level
, unsigned u64s
)
228 struct jset_entry
*entry
= journal_res_entry(j
, res
);
229 unsigned actual
= journal_entry_init(entry
, type
, id
, level
, u64s
);
232 EBUG_ON(actual
> res
->u64s
);
234 res
->offset
+= actual
;
239 static inline bool journal_entry_empty(struct jset
*j
)
241 if (j
->seq
!= j
->last_seq
)
244 vstruct_for_each(j
, i
)
245 if (i
->type
== BCH_JSET_ENTRY_btree_keys
&& i
->u64s
)
251 * Drop reference on a buffer index and return true if the count has hit zero.
253 static inline union journal_res_state
journal_state_buf_put(struct journal
*j
, unsigned idx
)
255 union journal_res_state s
;
257 s
.v
= atomic64_sub_return(((union journal_res_state
) {
258 .buf0_count
= idx
== 0,
259 .buf1_count
= idx
== 1,
260 .buf2_count
= idx
== 2,
261 .buf3_count
= idx
== 3,
262 }).v
, &j
->reservations
.counter
);
266 bool bch2_journal_entry_close(struct journal
*);
267 void bch2_journal_do_writes(struct journal
*);
268 void bch2_journal_buf_put_final(struct journal
*, u64
);
270 static inline void __bch2_journal_buf_put(struct journal
*j
, unsigned idx
, u64 seq
)
272 union journal_res_state s
;
274 s
= journal_state_buf_put(j
, idx
);
275 if (!journal_state_count(s
, idx
))
276 bch2_journal_buf_put_final(j
, seq
);
279 static inline void bch2_journal_buf_put(struct journal
*j
, unsigned idx
, u64 seq
)
281 union journal_res_state s
;
283 s
= journal_state_buf_put(j
, idx
);
284 if (!journal_state_count(s
, idx
)) {
286 bch2_journal_buf_put_final(j
, seq
);
287 spin_unlock(&j
->lock
);
292 * This function releases the journal write structure so other threads can
293 * then proceed to add their keys as well.
295 static inline void bch2_journal_res_put(struct journal
*j
,
296 struct journal_res
*res
)
301 lock_release(&j
->res_map
, _THIS_IP_
);
304 bch2_journal_add_entry(j
, res
,
305 BCH_JSET_ENTRY_btree_keys
,
308 bch2_journal_buf_put(j
, res
->idx
, res
->seq
);
313 int bch2_journal_res_get_slowpath(struct journal
*, struct journal_res
*,
316 /* First bits for BCH_WATERMARK: */
317 enum journal_res_flags
{
318 __JOURNAL_RES_GET_NONBLOCK
= BCH_WATERMARK_BITS
,
319 __JOURNAL_RES_GET_CHECK
,
322 #define JOURNAL_RES_GET_NONBLOCK (1 << __JOURNAL_RES_GET_NONBLOCK)
323 #define JOURNAL_RES_GET_CHECK (1 << __JOURNAL_RES_GET_CHECK)
325 static inline int journal_res_get_fast(struct journal
*j
,
326 struct journal_res
*res
,
329 union journal_res_state old
, new;
331 old
.v
= atomic64_read(&j
->reservations
.counter
);
336 * Check if there is still room in the current journal
339 if (new.cur_entry_offset
+ res
->u64s
> j
->cur_entry_u64s
)
342 EBUG_ON(!journal_state_count(new, new.idx
));
344 if ((flags
& BCH_WATERMARK_MASK
) < j
->watermark
)
347 new.cur_entry_offset
+= res
->u64s
;
348 journal_state_inc(&new);
351 * If the refcount would overflow, we have to wait:
352 * XXX - tracepoint this:
354 if (!journal_state_count(new, new.idx
))
357 if (flags
& JOURNAL_RES_GET_CHECK
)
359 } while (!atomic64_try_cmpxchg(&j
->reservations
.counter
,
364 res
->offset
= old
.cur_entry_offset
;
365 res
->seq
= le64_to_cpu(j
->buf
[old
.idx
].data
->seq
);
369 static inline int bch2_journal_res_get(struct journal
*j
, struct journal_res
*res
,
370 unsigned u64s
, unsigned flags
)
375 EBUG_ON(!test_bit(JOURNAL_running
, &j
->flags
));
379 if (journal_res_get_fast(j
, res
, flags
))
382 ret
= bch2_journal_res_get_slowpath(j
, res
, flags
);
386 if (!(flags
& JOURNAL_RES_GET_CHECK
)) {
387 lock_acquire_shared(&j
->res_map
, 0,
388 (flags
& JOURNAL_RES_GET_NONBLOCK
) != 0,
395 /* journal_entry_res: */
397 void bch2_journal_entry_res_resize(struct journal
*,
398 struct journal_entry_res
*,
401 int bch2_journal_flush_seq_async(struct journal
*, u64
, struct closure
*);
402 void bch2_journal_flush_async(struct journal
*, struct closure
*);
404 int bch2_journal_flush_seq(struct journal
*, u64
, unsigned);
405 int bch2_journal_flush(struct journal
*);
406 bool bch2_journal_noflush_seq(struct journal
*, u64
);
407 int bch2_journal_meta(struct journal
*);
409 void bch2_journal_halt(struct journal
*);
411 static inline int bch2_journal_error(struct journal
*j
)
413 return j
->reservations
.cur_entry_offset
== JOURNAL_ENTRY_ERROR_VAL
419 static inline void bch2_journal_set_replay_done(struct journal
*j
)
421 BUG_ON(!test_bit(JOURNAL_running
, &j
->flags
));
422 set_bit(JOURNAL_replay_done
, &j
->flags
);
425 void bch2_journal_unblock(struct journal
*);
426 void bch2_journal_block(struct journal
*);
427 struct journal_buf
*bch2_next_write_buffer_flush_journal_buf(struct journal
*j
, u64 max_seq
);
429 void __bch2_journal_debug_to_text(struct printbuf
*, struct journal
*);
430 void bch2_journal_debug_to_text(struct printbuf
*, struct journal
*);
431 void bch2_journal_pins_to_text(struct printbuf
*, struct journal
*);
432 bool bch2_journal_seq_pins_to_text(struct printbuf
*, struct journal
*, u64
*);
434 int bch2_set_nr_journal_buckets(struct bch_fs
*, struct bch_dev
*,
436 int bch2_dev_journal_alloc(struct bch_dev
*, bool);
437 int bch2_fs_journal_alloc(struct bch_fs
*);
439 void bch2_dev_journal_stop(struct journal
*, struct bch_dev
*);
441 void bch2_fs_journal_stop(struct journal
*);
442 int bch2_fs_journal_start(struct journal
*, u64
);
444 void bch2_dev_journal_exit(struct bch_dev
*);
445 int bch2_dev_journal_init(struct bch_dev
*, struct bch_sb
*);
446 void bch2_fs_journal_exit(struct journal
*);
447 int bch2_fs_journal_init(struct journal
*);
449 #endif /* _BCACHEFS_JOURNAL_H */