printf: Remove unused 'bprintf'
[drm/drm-misc.git] / fs / btrfs / file.c
blob588c353d296935d6cc100e5d48d1a1d8671b3d8c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
41 * Helper to fault in page and copy. This should go away and be replaced with
42 * calls into generic code.
44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 struct folio *folio, struct iov_iter *i)
47 size_t copied = 0;
48 size_t total_copied = 0;
49 int offset = offset_in_page(pos);
51 while (write_bytes > 0) {
52 size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
54 * Copy data from userspace to the current page
56 copied = copy_folio_from_iter_atomic(folio, offset, count, i);
58 /* Flush processor's dcache for this page */
59 flush_dcache_folio(folio);
62 * if we get a partial write, we can end up with
63 * partially up to date page. These add
64 * a lot of complexity, so make sure they don't
65 * happen by forcing this copy to be retried.
67 * The rest of the btrfs_file_write code will fall
68 * back to page at a time copies after we return 0.
70 if (unlikely(copied < count)) {
71 if (!folio_test_uptodate(folio)) {
72 iov_iter_revert(i, copied);
73 copied = 0;
75 if (!copied)
76 break;
79 write_bytes -= copied;
80 total_copied += copied;
81 offset += copied;
83 return total_copied;
87 * Unlock folio after btrfs_file_write() is done with it.
89 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
90 u64 pos, u64 copied)
92 u64 block_start = round_down(pos, fs_info->sectorsize);
93 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
95 ASSERT(block_len <= U32_MAX);
97 * Folio checked is some magic around finding folios that have been
98 * modified without going through btrfs_dirty_folio(). Clear it here.
99 * There should be no need to mark the pages accessed as
100 * prepare_one_folio() should have marked them accessed in
101 * prepare_one_folio() via find_or_create_page()
103 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
104 folio_unlock(folio);
105 folio_put(folio);
109 * After btrfs_copy_from_user(), update the following things for delalloc:
110 * - Mark newly dirtied folio as DELALLOC in the io tree.
111 * Used to advise which range is to be written back.
112 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
113 * - Update inode size for past EOF write
115 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
116 size_t write_bytes, struct extent_state **cached, bool noreserve)
118 struct btrfs_fs_info *fs_info = inode->root->fs_info;
119 int ret = 0;
120 u64 num_bytes;
121 u64 start_pos;
122 u64 end_of_last_block;
123 u64 end_pos = pos + write_bytes;
124 loff_t isize = i_size_read(&inode->vfs_inode);
125 unsigned int extra_bits = 0;
127 if (write_bytes == 0)
128 return 0;
130 if (noreserve)
131 extra_bits |= EXTENT_NORESERVE;
133 start_pos = round_down(pos, fs_info->sectorsize);
134 num_bytes = round_up(write_bytes + pos - start_pos,
135 fs_info->sectorsize);
136 ASSERT(num_bytes <= U32_MAX);
137 ASSERT(folio_pos(folio) <= pos &&
138 folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
140 end_of_last_block = start_pos + num_bytes - 1;
143 * The pages may have already been dirty, clear out old accounting so
144 * we can set things up properly
146 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
147 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
148 cached);
150 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
151 extra_bits, cached);
152 if (ret)
153 return ret;
155 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
156 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
157 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
160 * we've only changed i_size in ram, and we haven't updated
161 * the disk i_size. There is no need to log the inode
162 * at this time.
164 if (end_pos > isize)
165 i_size_write(&inode->vfs_inode, end_pos);
166 return 0;
170 * this is very complex, but the basic idea is to drop all extents
171 * in the range start - end. hint_block is filled in with a block number
172 * that would be a good hint to the block allocator for this file.
174 * If an extent intersects the range but is not entirely inside the range
175 * it is either truncated or split. Anything entirely inside the range
176 * is deleted from the tree.
178 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
179 * to deal with that. We set the field 'bytes_found' of the arguments structure
180 * with the number of allocated bytes found in the target range, so that the
181 * caller can update the inode's number of bytes in an atomic way when
182 * replacing extents in a range to avoid races with stat(2).
184 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
185 struct btrfs_root *root, struct btrfs_inode *inode,
186 struct btrfs_drop_extents_args *args)
188 struct btrfs_fs_info *fs_info = root->fs_info;
189 struct extent_buffer *leaf;
190 struct btrfs_file_extent_item *fi;
191 struct btrfs_key key;
192 struct btrfs_key new_key;
193 u64 ino = btrfs_ino(inode);
194 u64 search_start = args->start;
195 u64 disk_bytenr = 0;
196 u64 num_bytes = 0;
197 u64 extent_offset = 0;
198 u64 extent_end = 0;
199 u64 last_end = args->start;
200 int del_nr = 0;
201 int del_slot = 0;
202 int extent_type;
203 int recow;
204 int ret;
205 int modify_tree = -1;
206 int update_refs;
207 int found = 0;
208 struct btrfs_path *path = args->path;
210 args->bytes_found = 0;
211 args->extent_inserted = false;
213 /* Must always have a path if ->replace_extent is true */
214 ASSERT(!(args->replace_extent && !args->path));
216 if (!path) {
217 path = btrfs_alloc_path();
218 if (!path) {
219 ret = -ENOMEM;
220 goto out;
224 if (args->drop_cache)
225 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
227 if (args->start >= inode->disk_i_size && !args->replace_extent)
228 modify_tree = 0;
230 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
231 while (1) {
232 recow = 0;
233 ret = btrfs_lookup_file_extent(trans, root, path, ino,
234 search_start, modify_tree);
235 if (ret < 0)
236 break;
237 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
238 leaf = path->nodes[0];
239 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
240 if (key.objectid == ino &&
241 key.type == BTRFS_EXTENT_DATA_KEY)
242 path->slots[0]--;
244 ret = 0;
245 next_slot:
246 leaf = path->nodes[0];
247 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
248 BUG_ON(del_nr > 0);
249 ret = btrfs_next_leaf(root, path);
250 if (ret < 0)
251 break;
252 if (ret > 0) {
253 ret = 0;
254 break;
256 leaf = path->nodes[0];
257 recow = 1;
260 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
262 if (key.objectid > ino)
263 break;
264 if (WARN_ON_ONCE(key.objectid < ino) ||
265 key.type < BTRFS_EXTENT_DATA_KEY) {
266 ASSERT(del_nr == 0);
267 path->slots[0]++;
268 goto next_slot;
270 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
271 break;
273 fi = btrfs_item_ptr(leaf, path->slots[0],
274 struct btrfs_file_extent_item);
275 extent_type = btrfs_file_extent_type(leaf, fi);
277 if (extent_type == BTRFS_FILE_EXTENT_REG ||
278 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
279 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
280 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
281 extent_offset = btrfs_file_extent_offset(leaf, fi);
282 extent_end = key.offset +
283 btrfs_file_extent_num_bytes(leaf, fi);
284 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
285 extent_end = key.offset +
286 btrfs_file_extent_ram_bytes(leaf, fi);
287 } else {
288 /* can't happen */
289 BUG();
293 * Don't skip extent items representing 0 byte lengths. They
294 * used to be created (bug) if while punching holes we hit
295 * -ENOSPC condition. So if we find one here, just ensure we
296 * delete it, otherwise we would insert a new file extent item
297 * with the same key (offset) as that 0 bytes length file
298 * extent item in the call to setup_items_for_insert() later
299 * in this function.
301 if (extent_end == key.offset && extent_end >= search_start) {
302 last_end = extent_end;
303 goto delete_extent_item;
306 if (extent_end <= search_start) {
307 path->slots[0]++;
308 goto next_slot;
311 found = 1;
312 search_start = max(key.offset, args->start);
313 if (recow || !modify_tree) {
314 modify_tree = -1;
315 btrfs_release_path(path);
316 continue;
320 * | - range to drop - |
321 * | -------- extent -------- |
323 if (args->start > key.offset && args->end < extent_end) {
324 BUG_ON(del_nr > 0);
325 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
326 ret = -EOPNOTSUPP;
327 break;
330 memcpy(&new_key, &key, sizeof(new_key));
331 new_key.offset = args->start;
332 ret = btrfs_duplicate_item(trans, root, path,
333 &new_key);
334 if (ret == -EAGAIN) {
335 btrfs_release_path(path);
336 continue;
338 if (ret < 0)
339 break;
341 leaf = path->nodes[0];
342 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
343 struct btrfs_file_extent_item);
344 btrfs_set_file_extent_num_bytes(leaf, fi,
345 args->start - key.offset);
347 fi = btrfs_item_ptr(leaf, path->slots[0],
348 struct btrfs_file_extent_item);
350 extent_offset += args->start - key.offset;
351 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
352 btrfs_set_file_extent_num_bytes(leaf, fi,
353 extent_end - args->start);
354 btrfs_mark_buffer_dirty(trans, leaf);
356 if (update_refs && disk_bytenr > 0) {
357 struct btrfs_ref ref = {
358 .action = BTRFS_ADD_DELAYED_REF,
359 .bytenr = disk_bytenr,
360 .num_bytes = num_bytes,
361 .parent = 0,
362 .owning_root = btrfs_root_id(root),
363 .ref_root = btrfs_root_id(root),
365 btrfs_init_data_ref(&ref, new_key.objectid,
366 args->start - extent_offset,
367 0, false);
368 ret = btrfs_inc_extent_ref(trans, &ref);
369 if (ret) {
370 btrfs_abort_transaction(trans, ret);
371 break;
374 key.offset = args->start;
377 * From here on out we will have actually dropped something, so
378 * last_end can be updated.
380 last_end = extent_end;
383 * | ---- range to drop ----- |
384 * | -------- extent -------- |
386 if (args->start <= key.offset && args->end < extent_end) {
387 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
388 ret = -EOPNOTSUPP;
389 break;
392 memcpy(&new_key, &key, sizeof(new_key));
393 new_key.offset = args->end;
394 btrfs_set_item_key_safe(trans, path, &new_key);
396 extent_offset += args->end - key.offset;
397 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
398 btrfs_set_file_extent_num_bytes(leaf, fi,
399 extent_end - args->end);
400 btrfs_mark_buffer_dirty(trans, leaf);
401 if (update_refs && disk_bytenr > 0)
402 args->bytes_found += args->end - key.offset;
403 break;
406 search_start = extent_end;
408 * | ---- range to drop ----- |
409 * | -------- extent -------- |
411 if (args->start > key.offset && args->end >= extent_end) {
412 BUG_ON(del_nr > 0);
413 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
414 ret = -EOPNOTSUPP;
415 break;
418 btrfs_set_file_extent_num_bytes(leaf, fi,
419 args->start - key.offset);
420 btrfs_mark_buffer_dirty(trans, leaf);
421 if (update_refs && disk_bytenr > 0)
422 args->bytes_found += extent_end - args->start;
423 if (args->end == extent_end)
424 break;
426 path->slots[0]++;
427 goto next_slot;
431 * | ---- range to drop ----- |
432 * | ------ extent ------ |
434 if (args->start <= key.offset && args->end >= extent_end) {
435 delete_extent_item:
436 if (del_nr == 0) {
437 del_slot = path->slots[0];
438 del_nr = 1;
439 } else {
440 BUG_ON(del_slot + del_nr != path->slots[0]);
441 del_nr++;
444 if (update_refs &&
445 extent_type == BTRFS_FILE_EXTENT_INLINE) {
446 args->bytes_found += extent_end - key.offset;
447 extent_end = ALIGN(extent_end,
448 fs_info->sectorsize);
449 } else if (update_refs && disk_bytenr > 0) {
450 struct btrfs_ref ref = {
451 .action = BTRFS_DROP_DELAYED_REF,
452 .bytenr = disk_bytenr,
453 .num_bytes = num_bytes,
454 .parent = 0,
455 .owning_root = btrfs_root_id(root),
456 .ref_root = btrfs_root_id(root),
458 btrfs_init_data_ref(&ref, key.objectid,
459 key.offset - extent_offset,
460 0, false);
461 ret = btrfs_free_extent(trans, &ref);
462 if (ret) {
463 btrfs_abort_transaction(trans, ret);
464 break;
466 args->bytes_found += extent_end - key.offset;
469 if (args->end == extent_end)
470 break;
472 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
473 path->slots[0]++;
474 goto next_slot;
477 ret = btrfs_del_items(trans, root, path, del_slot,
478 del_nr);
479 if (ret) {
480 btrfs_abort_transaction(trans, ret);
481 break;
484 del_nr = 0;
485 del_slot = 0;
487 btrfs_release_path(path);
488 continue;
491 BUG();
494 if (!ret && del_nr > 0) {
496 * Set path->slots[0] to first slot, so that after the delete
497 * if items are move off from our leaf to its immediate left or
498 * right neighbor leafs, we end up with a correct and adjusted
499 * path->slots[0] for our insertion (if args->replace_extent).
501 path->slots[0] = del_slot;
502 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
503 if (ret)
504 btrfs_abort_transaction(trans, ret);
507 leaf = path->nodes[0];
509 * If btrfs_del_items() was called, it might have deleted a leaf, in
510 * which case it unlocked our path, so check path->locks[0] matches a
511 * write lock.
513 if (!ret && args->replace_extent &&
514 path->locks[0] == BTRFS_WRITE_LOCK &&
515 btrfs_leaf_free_space(leaf) >=
516 sizeof(struct btrfs_item) + args->extent_item_size) {
518 key.objectid = ino;
519 key.type = BTRFS_EXTENT_DATA_KEY;
520 key.offset = args->start;
521 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
522 struct btrfs_key slot_key;
524 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
525 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
526 path->slots[0]++;
528 btrfs_setup_item_for_insert(trans, root, path, &key,
529 args->extent_item_size);
530 args->extent_inserted = true;
533 if (!args->path)
534 btrfs_free_path(path);
535 else if (!args->extent_inserted)
536 btrfs_release_path(path);
537 out:
538 args->drop_end = found ? min(args->end, last_end) : args->end;
540 return ret;
543 static int extent_mergeable(struct extent_buffer *leaf, int slot,
544 u64 objectid, u64 bytenr, u64 orig_offset,
545 u64 *start, u64 *end)
547 struct btrfs_file_extent_item *fi;
548 struct btrfs_key key;
549 u64 extent_end;
551 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
552 return 0;
554 btrfs_item_key_to_cpu(leaf, &key, slot);
555 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
556 return 0;
558 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
559 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
560 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
561 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
562 btrfs_file_extent_compression(leaf, fi) ||
563 btrfs_file_extent_encryption(leaf, fi) ||
564 btrfs_file_extent_other_encoding(leaf, fi))
565 return 0;
567 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
568 if ((*start && *start != key.offset) || (*end && *end != extent_end))
569 return 0;
571 *start = key.offset;
572 *end = extent_end;
573 return 1;
577 * Mark extent in the range start - end as written.
579 * This changes extent type from 'pre-allocated' to 'regular'. If only
580 * part of extent is marked as written, the extent will be split into
581 * two or three.
583 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
584 struct btrfs_inode *inode, u64 start, u64 end)
586 struct btrfs_root *root = inode->root;
587 struct extent_buffer *leaf;
588 struct btrfs_path *path;
589 struct btrfs_file_extent_item *fi;
590 struct btrfs_ref ref = { 0 };
591 struct btrfs_key key;
592 struct btrfs_key new_key;
593 u64 bytenr;
594 u64 num_bytes;
595 u64 extent_end;
596 u64 orig_offset;
597 u64 other_start;
598 u64 other_end;
599 u64 split;
600 int del_nr = 0;
601 int del_slot = 0;
602 int recow;
603 int ret = 0;
604 u64 ino = btrfs_ino(inode);
606 path = btrfs_alloc_path();
607 if (!path)
608 return -ENOMEM;
609 again:
610 recow = 0;
611 split = start;
612 key.objectid = ino;
613 key.type = BTRFS_EXTENT_DATA_KEY;
614 key.offset = split;
616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
617 if (ret < 0)
618 goto out;
619 if (ret > 0 && path->slots[0] > 0)
620 path->slots[0]--;
622 leaf = path->nodes[0];
623 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
624 if (key.objectid != ino ||
625 key.type != BTRFS_EXTENT_DATA_KEY) {
626 ret = -EINVAL;
627 btrfs_abort_transaction(trans, ret);
628 goto out;
630 fi = btrfs_item_ptr(leaf, path->slots[0],
631 struct btrfs_file_extent_item);
632 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
633 ret = -EINVAL;
634 btrfs_abort_transaction(trans, ret);
635 goto out;
637 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
638 if (key.offset > start || extent_end < end) {
639 ret = -EINVAL;
640 btrfs_abort_transaction(trans, ret);
641 goto out;
644 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
645 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
646 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
647 memcpy(&new_key, &key, sizeof(new_key));
649 if (start == key.offset && end < extent_end) {
650 other_start = 0;
651 other_end = start;
652 if (extent_mergeable(leaf, path->slots[0] - 1,
653 ino, bytenr, orig_offset,
654 &other_start, &other_end)) {
655 new_key.offset = end;
656 btrfs_set_item_key_safe(trans, path, &new_key);
657 fi = btrfs_item_ptr(leaf, path->slots[0],
658 struct btrfs_file_extent_item);
659 btrfs_set_file_extent_generation(leaf, fi,
660 trans->transid);
661 btrfs_set_file_extent_num_bytes(leaf, fi,
662 extent_end - end);
663 btrfs_set_file_extent_offset(leaf, fi,
664 end - orig_offset);
665 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
666 struct btrfs_file_extent_item);
667 btrfs_set_file_extent_generation(leaf, fi,
668 trans->transid);
669 btrfs_set_file_extent_num_bytes(leaf, fi,
670 end - other_start);
671 btrfs_mark_buffer_dirty(trans, leaf);
672 goto out;
676 if (start > key.offset && end == extent_end) {
677 other_start = end;
678 other_end = 0;
679 if (extent_mergeable(leaf, path->slots[0] + 1,
680 ino, bytenr, orig_offset,
681 &other_start, &other_end)) {
682 fi = btrfs_item_ptr(leaf, path->slots[0],
683 struct btrfs_file_extent_item);
684 btrfs_set_file_extent_num_bytes(leaf, fi,
685 start - key.offset);
686 btrfs_set_file_extent_generation(leaf, fi,
687 trans->transid);
688 path->slots[0]++;
689 new_key.offset = start;
690 btrfs_set_item_key_safe(trans, path, &new_key);
692 fi = btrfs_item_ptr(leaf, path->slots[0],
693 struct btrfs_file_extent_item);
694 btrfs_set_file_extent_generation(leaf, fi,
695 trans->transid);
696 btrfs_set_file_extent_num_bytes(leaf, fi,
697 other_end - start);
698 btrfs_set_file_extent_offset(leaf, fi,
699 start - orig_offset);
700 btrfs_mark_buffer_dirty(trans, leaf);
701 goto out;
705 while (start > key.offset || end < extent_end) {
706 if (key.offset == start)
707 split = end;
709 new_key.offset = split;
710 ret = btrfs_duplicate_item(trans, root, path, &new_key);
711 if (ret == -EAGAIN) {
712 btrfs_release_path(path);
713 goto again;
715 if (ret < 0) {
716 btrfs_abort_transaction(trans, ret);
717 goto out;
720 leaf = path->nodes[0];
721 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
722 struct btrfs_file_extent_item);
723 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
724 btrfs_set_file_extent_num_bytes(leaf, fi,
725 split - key.offset);
727 fi = btrfs_item_ptr(leaf, path->slots[0],
728 struct btrfs_file_extent_item);
730 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
731 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
732 btrfs_set_file_extent_num_bytes(leaf, fi,
733 extent_end - split);
734 btrfs_mark_buffer_dirty(trans, leaf);
736 ref.action = BTRFS_ADD_DELAYED_REF;
737 ref.bytenr = bytenr;
738 ref.num_bytes = num_bytes;
739 ref.parent = 0;
740 ref.owning_root = btrfs_root_id(root);
741 ref.ref_root = btrfs_root_id(root);
742 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
743 ret = btrfs_inc_extent_ref(trans, &ref);
744 if (ret) {
745 btrfs_abort_transaction(trans, ret);
746 goto out;
749 if (split == start) {
750 key.offset = start;
751 } else {
752 if (start != key.offset) {
753 ret = -EINVAL;
754 btrfs_abort_transaction(trans, ret);
755 goto out;
757 path->slots[0]--;
758 extent_end = end;
760 recow = 1;
763 other_start = end;
764 other_end = 0;
766 ref.action = BTRFS_DROP_DELAYED_REF;
767 ref.bytenr = bytenr;
768 ref.num_bytes = num_bytes;
769 ref.parent = 0;
770 ref.owning_root = btrfs_root_id(root);
771 ref.ref_root = btrfs_root_id(root);
772 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
773 if (extent_mergeable(leaf, path->slots[0] + 1,
774 ino, bytenr, orig_offset,
775 &other_start, &other_end)) {
776 if (recow) {
777 btrfs_release_path(path);
778 goto again;
780 extent_end = other_end;
781 del_slot = path->slots[0] + 1;
782 del_nr++;
783 ret = btrfs_free_extent(trans, &ref);
784 if (ret) {
785 btrfs_abort_transaction(trans, ret);
786 goto out;
789 other_start = 0;
790 other_end = start;
791 if (extent_mergeable(leaf, path->slots[0] - 1,
792 ino, bytenr, orig_offset,
793 &other_start, &other_end)) {
794 if (recow) {
795 btrfs_release_path(path);
796 goto again;
798 key.offset = other_start;
799 del_slot = path->slots[0];
800 del_nr++;
801 ret = btrfs_free_extent(trans, &ref);
802 if (ret) {
803 btrfs_abort_transaction(trans, ret);
804 goto out;
807 if (del_nr == 0) {
808 fi = btrfs_item_ptr(leaf, path->slots[0],
809 struct btrfs_file_extent_item);
810 btrfs_set_file_extent_type(leaf, fi,
811 BTRFS_FILE_EXTENT_REG);
812 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
813 btrfs_mark_buffer_dirty(trans, leaf);
814 } else {
815 fi = btrfs_item_ptr(leaf, del_slot - 1,
816 struct btrfs_file_extent_item);
817 btrfs_set_file_extent_type(leaf, fi,
818 BTRFS_FILE_EXTENT_REG);
819 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
820 btrfs_set_file_extent_num_bytes(leaf, fi,
821 extent_end - key.offset);
822 btrfs_mark_buffer_dirty(trans, leaf);
824 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
825 if (ret < 0) {
826 btrfs_abort_transaction(trans, ret);
827 goto out;
830 out:
831 btrfs_free_path(path);
832 return ret;
836 * On error return an unlocked folio and the error value
837 * On success return a locked folio and 0
839 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
840 u64 len, bool force_uptodate)
842 u64 clamp_start = max_t(u64, pos, folio_pos(folio));
843 u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
844 int ret = 0;
846 if (folio_test_uptodate(folio))
847 return 0;
849 if (!force_uptodate &&
850 IS_ALIGNED(clamp_start, PAGE_SIZE) &&
851 IS_ALIGNED(clamp_end, PAGE_SIZE))
852 return 0;
854 ret = btrfs_read_folio(NULL, folio);
855 if (ret)
856 return ret;
857 folio_lock(folio);
858 if (!folio_test_uptodate(folio)) {
859 folio_unlock(folio);
860 return -EIO;
864 * Since btrfs_read_folio() will unlock the folio before it returns,
865 * there is a window where btrfs_release_folio() can be called to
866 * release the page. Here we check both inode mapping and page
867 * private to make sure the page was not released.
869 * The private flag check is essential for subpage as we need to store
870 * extra bitmap using folio private.
872 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
873 folio_unlock(folio);
874 return -EAGAIN;
876 return 0;
879 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
881 gfp_t gfp;
883 gfp = btrfs_alloc_write_mask(inode->i_mapping);
884 if (nowait) {
885 gfp &= ~__GFP_DIRECT_RECLAIM;
886 gfp |= GFP_NOWAIT;
889 return gfp;
893 * Get folio into the page cache and lock it.
895 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
896 loff_t pos, size_t write_bytes,
897 bool force_uptodate, bool nowait)
899 unsigned long index = pos >> PAGE_SHIFT;
900 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
901 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
902 struct folio *folio;
903 int ret = 0;
905 again:
906 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
907 if (IS_ERR(folio)) {
908 if (nowait)
909 ret = -EAGAIN;
910 else
911 ret = PTR_ERR(folio);
912 return ret;
914 /* Only support page sized folio yet. */
915 ASSERT(folio_order(folio) == 0);
916 ret = set_folio_extent_mapped(folio);
917 if (ret < 0) {
918 folio_unlock(folio);
919 folio_put(folio);
920 return ret;
922 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
923 if (ret) {
924 /* The folio is already unlocked. */
925 folio_put(folio);
926 if (!nowait && ret == -EAGAIN) {
927 ret = 0;
928 goto again;
930 return ret;
932 *folio_ret = folio;
933 return 0;
937 * Locks the extent and properly waits for data=ordered extents to finish
938 * before allowing the folios to be modified if need.
940 * Return:
941 * 1 - the extent is locked
942 * 0 - the extent is not locked, and everything is OK
943 * -EAGAIN - need to prepare the folios again
945 static noinline int
946 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
947 loff_t pos, size_t write_bytes,
948 u64 *lockstart, u64 *lockend, bool nowait,
949 struct extent_state **cached_state)
951 struct btrfs_fs_info *fs_info = inode->root->fs_info;
952 u64 start_pos;
953 u64 last_pos;
954 int ret = 0;
956 start_pos = round_down(pos, fs_info->sectorsize);
957 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
959 if (start_pos < inode->vfs_inode.i_size) {
960 struct btrfs_ordered_extent *ordered;
962 if (nowait) {
963 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
964 cached_state)) {
965 folio_unlock(folio);
966 folio_put(folio);
967 return -EAGAIN;
969 } else {
970 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
973 ordered = btrfs_lookup_ordered_range(inode, start_pos,
974 last_pos - start_pos + 1);
975 if (ordered &&
976 ordered->file_offset + ordered->num_bytes > start_pos &&
977 ordered->file_offset <= last_pos) {
978 unlock_extent(&inode->io_tree, start_pos, last_pos,
979 cached_state);
980 folio_unlock(folio);
981 folio_put(folio);
982 btrfs_start_ordered_extent(ordered);
983 btrfs_put_ordered_extent(ordered);
984 return -EAGAIN;
986 if (ordered)
987 btrfs_put_ordered_extent(ordered);
989 *lockstart = start_pos;
990 *lockend = last_pos;
991 ret = 1;
995 * We should be called after prepare_one_folio() which should have locked
996 * all pages in the range.
998 WARN_ON(!folio_test_locked(folio));
1000 return ret;
1004 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1006 * @pos: File offset.
1007 * @write_bytes: The length to write, will be updated to the nocow writeable
1008 * range.
1010 * This function will flush ordered extents in the range to ensure proper
1011 * nocow checks.
1013 * Return:
1014 * > 0 If we can nocow, and updates @write_bytes.
1015 * 0 If we can't do a nocow write.
1016 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1017 * root is in progress.
1018 * < 0 If an error happened.
1020 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1022 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1023 size_t *write_bytes, bool nowait)
1025 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1026 struct btrfs_root *root = inode->root;
1027 struct extent_state *cached_state = NULL;
1028 u64 lockstart, lockend;
1029 u64 num_bytes;
1030 int ret;
1032 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1033 return 0;
1035 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1036 return -EAGAIN;
1038 lockstart = round_down(pos, fs_info->sectorsize);
1039 lockend = round_up(pos + *write_bytes,
1040 fs_info->sectorsize) - 1;
1041 num_bytes = lockend - lockstart + 1;
1043 if (nowait) {
1044 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1045 &cached_state)) {
1046 btrfs_drew_write_unlock(&root->snapshot_lock);
1047 return -EAGAIN;
1049 } else {
1050 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1051 &cached_state);
1053 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1054 NULL, nowait, false);
1055 if (ret <= 0)
1056 btrfs_drew_write_unlock(&root->snapshot_lock);
1057 else
1058 *write_bytes = min_t(size_t, *write_bytes ,
1059 num_bytes - pos + lockstart);
1060 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1062 return ret;
1065 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1067 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1070 int btrfs_write_check(struct kiocb *iocb, size_t count)
1072 struct file *file = iocb->ki_filp;
1073 struct inode *inode = file_inode(file);
1074 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1075 loff_t pos = iocb->ki_pos;
1076 int ret;
1077 loff_t oldsize;
1078 loff_t start_pos;
1081 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1082 * prealloc flags, as without those flags we always have to COW. We will
1083 * later check if we can really COW into the target range (using
1084 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1086 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1087 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1088 return -EAGAIN;
1090 ret = file_remove_privs(file);
1091 if (ret)
1092 return ret;
1095 * We reserve space for updating the inode when we reserve space for the
1096 * extent we are going to write, so we will enospc out there. We don't
1097 * need to start yet another transaction to update the inode as we will
1098 * update the inode when we finish writing whatever data we write.
1100 if (!IS_NOCMTIME(inode)) {
1101 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1102 inode_inc_iversion(inode);
1105 start_pos = round_down(pos, fs_info->sectorsize);
1106 oldsize = i_size_read(inode);
1107 if (start_pos > oldsize) {
1108 /* Expand hole size to cover write data, preventing empty gap */
1109 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1111 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1112 if (ret)
1113 return ret;
1116 return 0;
1119 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
1121 struct file *file = iocb->ki_filp;
1122 loff_t pos;
1123 struct inode *inode = file_inode(file);
1124 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1125 struct extent_changeset *data_reserved = NULL;
1126 u64 release_bytes = 0;
1127 u64 lockstart;
1128 u64 lockend;
1129 size_t num_written = 0;
1130 ssize_t ret;
1131 loff_t old_isize = i_size_read(inode);
1132 unsigned int ilock_flags = 0;
1133 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1134 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1135 bool only_release_metadata = false;
1137 if (nowait)
1138 ilock_flags |= BTRFS_ILOCK_TRY;
1140 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1141 if (ret < 0)
1142 return ret;
1144 ret = generic_write_checks(iocb, i);
1145 if (ret <= 0)
1146 goto out;
1148 ret = btrfs_write_check(iocb, ret);
1149 if (ret < 0)
1150 goto out;
1152 pos = iocb->ki_pos;
1153 while (iov_iter_count(i) > 0) {
1154 struct extent_state *cached_state = NULL;
1155 size_t offset = offset_in_page(pos);
1156 size_t sector_offset;
1157 size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
1158 size_t reserve_bytes;
1159 size_t copied;
1160 size_t dirty_sectors;
1161 size_t num_sectors;
1162 struct folio *folio = NULL;
1163 int extents_locked;
1164 bool force_page_uptodate = false;
1167 * Fault pages before locking them in prepare_one_folio()
1168 * to avoid recursive lock
1170 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1171 ret = -EFAULT;
1172 break;
1175 only_release_metadata = false;
1176 sector_offset = pos & (fs_info->sectorsize - 1);
1178 extent_changeset_release(data_reserved);
1179 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1180 &data_reserved, pos,
1181 write_bytes, nowait);
1182 if (ret < 0) {
1183 int can_nocow;
1185 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1186 ret = -EAGAIN;
1187 break;
1191 * If we don't have to COW at the offset, reserve
1192 * metadata only. write_bytes may get smaller than
1193 * requested here.
1195 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1196 &write_bytes, nowait);
1197 if (can_nocow < 0)
1198 ret = can_nocow;
1199 if (can_nocow > 0)
1200 ret = 0;
1201 if (ret)
1202 break;
1203 only_release_metadata = true;
1206 reserve_bytes = round_up(write_bytes + sector_offset,
1207 fs_info->sectorsize);
1208 WARN_ON(reserve_bytes == 0);
1209 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1210 reserve_bytes,
1211 reserve_bytes, nowait);
1212 if (ret) {
1213 if (!only_release_metadata)
1214 btrfs_free_reserved_data_space(BTRFS_I(inode),
1215 data_reserved, pos,
1216 write_bytes);
1217 else
1218 btrfs_check_nocow_unlock(BTRFS_I(inode));
1220 if (nowait && ret == -ENOSPC)
1221 ret = -EAGAIN;
1222 break;
1225 release_bytes = reserve_bytes;
1226 again:
1227 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1228 if (ret) {
1229 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1230 break;
1233 ret = prepare_one_folio(inode, &folio, pos, write_bytes,
1234 force_page_uptodate, false);
1235 if (ret) {
1236 btrfs_delalloc_release_extents(BTRFS_I(inode),
1237 reserve_bytes);
1238 break;
1241 extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
1242 folio, pos, write_bytes, &lockstart,
1243 &lockend, nowait, &cached_state);
1244 if (extents_locked < 0) {
1245 if (!nowait && extents_locked == -EAGAIN)
1246 goto again;
1248 btrfs_delalloc_release_extents(BTRFS_I(inode),
1249 reserve_bytes);
1250 ret = extents_locked;
1251 break;
1254 copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
1256 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1257 dirty_sectors = round_up(copied + sector_offset,
1258 fs_info->sectorsize);
1259 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1261 if (copied == 0) {
1262 force_page_uptodate = true;
1263 dirty_sectors = 0;
1264 } else {
1265 force_page_uptodate = false;
1268 if (num_sectors > dirty_sectors) {
1269 /* release everything except the sectors we dirtied */
1270 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1271 if (only_release_metadata) {
1272 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1273 release_bytes, true);
1274 } else {
1275 u64 release_start = round_up(pos + copied,
1276 fs_info->sectorsize);
1277 btrfs_delalloc_release_space(BTRFS_I(inode),
1278 data_reserved, release_start,
1279 release_bytes, true);
1283 release_bytes = round_up(copied + sector_offset,
1284 fs_info->sectorsize);
1286 ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
1287 &cached_state, only_release_metadata);
1290 * If we have not locked the extent range, because the range's
1291 * start offset is >= i_size, we might still have a non-NULL
1292 * cached extent state, acquired while marking the extent range
1293 * as delalloc through btrfs_dirty_page(). Therefore free any
1294 * possible cached extent state to avoid a memory leak.
1296 if (extents_locked)
1297 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1298 lockend, &cached_state);
1299 else
1300 free_extent_state(cached_state);
1302 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1303 if (ret) {
1304 btrfs_drop_folio(fs_info, folio, pos, copied);
1305 break;
1308 release_bytes = 0;
1309 if (only_release_metadata)
1310 btrfs_check_nocow_unlock(BTRFS_I(inode));
1312 btrfs_drop_folio(fs_info, folio, pos, copied);
1314 cond_resched();
1316 pos += copied;
1317 num_written += copied;
1320 if (release_bytes) {
1321 if (only_release_metadata) {
1322 btrfs_check_nocow_unlock(BTRFS_I(inode));
1323 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1324 release_bytes, true);
1325 } else {
1326 btrfs_delalloc_release_space(BTRFS_I(inode),
1327 data_reserved,
1328 round_down(pos, fs_info->sectorsize),
1329 release_bytes, true);
1333 extent_changeset_free(data_reserved);
1334 if (num_written > 0) {
1335 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1336 iocb->ki_pos += num_written;
1338 out:
1339 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1340 return num_written ? num_written : ret;
1343 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1344 const struct btrfs_ioctl_encoded_io_args *encoded)
1346 struct file *file = iocb->ki_filp;
1347 struct inode *inode = file_inode(file);
1348 loff_t count;
1349 ssize_t ret;
1351 btrfs_inode_lock(BTRFS_I(inode), 0);
1352 count = encoded->len;
1353 ret = generic_write_checks_count(iocb, &count);
1354 if (ret == 0 && count != encoded->len) {
1356 * The write got truncated by generic_write_checks_count(). We
1357 * can't do a partial encoded write.
1359 ret = -EFBIG;
1361 if (ret || encoded->len == 0)
1362 goto out;
1364 ret = btrfs_write_check(iocb, encoded->len);
1365 if (ret < 0)
1366 goto out;
1368 ret = btrfs_do_encoded_write(iocb, from, encoded);
1369 out:
1370 btrfs_inode_unlock(BTRFS_I(inode), 0);
1371 return ret;
1374 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1375 const struct btrfs_ioctl_encoded_io_args *encoded)
1377 struct file *file = iocb->ki_filp;
1378 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1379 ssize_t num_written, num_sync;
1382 * If the fs flips readonly due to some impossible error, although we
1383 * have opened a file as writable, we have to stop this write operation
1384 * to ensure consistency.
1386 if (BTRFS_FS_ERROR(inode->root->fs_info))
1387 return -EROFS;
1389 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1390 return -EOPNOTSUPP;
1392 if (encoded) {
1393 num_written = btrfs_encoded_write(iocb, from, encoded);
1394 num_sync = encoded->len;
1395 } else if (iocb->ki_flags & IOCB_DIRECT) {
1396 num_written = btrfs_direct_write(iocb, from);
1397 num_sync = num_written;
1398 } else {
1399 num_written = btrfs_buffered_write(iocb, from);
1400 num_sync = num_written;
1403 btrfs_set_inode_last_sub_trans(inode);
1405 if (num_sync > 0) {
1406 num_sync = generic_write_sync(iocb, num_sync);
1407 if (num_sync < 0)
1408 num_written = num_sync;
1411 return num_written;
1414 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1416 return btrfs_do_write_iter(iocb, from, NULL);
1419 int btrfs_release_file(struct inode *inode, struct file *filp)
1421 struct btrfs_file_private *private = filp->private_data;
1423 if (private) {
1424 kfree(private->filldir_buf);
1425 free_extent_state(private->llseek_cached_state);
1426 kfree(private);
1427 filp->private_data = NULL;
1431 * Set by setattr when we are about to truncate a file from a non-zero
1432 * size to a zero size. This tries to flush down new bytes that may
1433 * have been written if the application were using truncate to replace
1434 * a file in place.
1436 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1437 &BTRFS_I(inode)->runtime_flags))
1438 filemap_flush(inode->i_mapping);
1439 return 0;
1442 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1444 int ret;
1445 struct blk_plug plug;
1448 * This is only called in fsync, which would do synchronous writes, so
1449 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1450 * multiple disks using raid profile, a large IO can be split to
1451 * several segments of stripe length (currently 64K).
1453 blk_start_plug(&plug);
1454 ret = btrfs_fdatawrite_range(inode, start, end);
1455 blk_finish_plug(&plug);
1457 return ret;
1460 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1462 struct btrfs_inode *inode = ctx->inode;
1463 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1465 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1466 list_empty(&ctx->ordered_extents))
1467 return true;
1470 * If we are doing a fast fsync we can not bail out if the inode's
1471 * last_trans is <= then the last committed transaction, because we only
1472 * update the last_trans of the inode during ordered extent completion,
1473 * and for a fast fsync we don't wait for that, we only wait for the
1474 * writeback to complete.
1476 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1477 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1478 list_empty(&ctx->ordered_extents)))
1479 return true;
1481 return false;
1485 * fsync call for both files and directories. This logs the inode into
1486 * the tree log instead of forcing full commits whenever possible.
1488 * It needs to call filemap_fdatawait so that all ordered extent updates are
1489 * in the metadata btree are up to date for copying to the log.
1491 * It drops the inode mutex before doing the tree log commit. This is an
1492 * important optimization for directories because holding the mutex prevents
1493 * new operations on the dir while we write to disk.
1495 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1497 struct dentry *dentry = file_dentry(file);
1498 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1499 struct btrfs_root *root = inode->root;
1500 struct btrfs_fs_info *fs_info = root->fs_info;
1501 struct btrfs_trans_handle *trans;
1502 struct btrfs_log_ctx ctx;
1503 int ret = 0, err;
1504 u64 len;
1505 bool full_sync;
1506 bool skip_ilock = false;
1508 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1509 skip_ilock = true;
1510 current->journal_info = NULL;
1511 btrfs_assert_inode_locked(inode);
1514 trace_btrfs_sync_file(file, datasync);
1516 btrfs_init_log_ctx(&ctx, inode);
1519 * Always set the range to a full range, otherwise we can get into
1520 * several problems, from missing file extent items to represent holes
1521 * when not using the NO_HOLES feature, to log tree corruption due to
1522 * races between hole detection during logging and completion of ordered
1523 * extents outside the range, to missing checksums due to ordered extents
1524 * for which we flushed only a subset of their pages.
1526 start = 0;
1527 end = LLONG_MAX;
1528 len = (u64)LLONG_MAX + 1;
1531 * We write the dirty pages in the range and wait until they complete
1532 * out of the ->i_mutex. If so, we can flush the dirty pages by
1533 * multi-task, and make the performance up. See
1534 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1536 ret = start_ordered_ops(inode, start, end);
1537 if (ret)
1538 goto out;
1540 if (skip_ilock)
1541 down_write(&inode->i_mmap_lock);
1542 else
1543 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1545 atomic_inc(&root->log_batch);
1548 * Before we acquired the inode's lock and the mmap lock, someone may
1549 * have dirtied more pages in the target range. We need to make sure
1550 * that writeback for any such pages does not start while we are logging
1551 * the inode, because if it does, any of the following might happen when
1552 * we are not doing a full inode sync:
1554 * 1) We log an extent after its writeback finishes but before its
1555 * checksums are added to the csum tree, leading to -EIO errors
1556 * when attempting to read the extent after a log replay.
1558 * 2) We can end up logging an extent before its writeback finishes.
1559 * Therefore after the log replay we will have a file extent item
1560 * pointing to an unwritten extent (and no data checksums as well).
1562 * So trigger writeback for any eventual new dirty pages and then we
1563 * wait for all ordered extents to complete below.
1565 ret = start_ordered_ops(inode, start, end);
1566 if (ret) {
1567 if (skip_ilock)
1568 up_write(&inode->i_mmap_lock);
1569 else
1570 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1571 goto out;
1575 * Always check for the full sync flag while holding the inode's lock,
1576 * to avoid races with other tasks. The flag must be either set all the
1577 * time during logging or always off all the time while logging.
1578 * We check the flag here after starting delalloc above, because when
1579 * running delalloc the full sync flag may be set if we need to drop
1580 * extra extent map ranges due to temporary memory allocation failures.
1582 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1585 * We have to do this here to avoid the priority inversion of waiting on
1586 * IO of a lower priority task while holding a transaction open.
1588 * For a full fsync we wait for the ordered extents to complete while
1589 * for a fast fsync we wait just for writeback to complete, and then
1590 * attach the ordered extents to the transaction so that a transaction
1591 * commit waits for their completion, to avoid data loss if we fsync,
1592 * the current transaction commits before the ordered extents complete
1593 * and a power failure happens right after that.
1595 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1596 * logical address recorded in the ordered extent may change. We need
1597 * to wait for the IO to stabilize the logical address.
1599 if (full_sync || btrfs_is_zoned(fs_info)) {
1600 ret = btrfs_wait_ordered_range(inode, start, len);
1601 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1602 } else {
1604 * Get our ordered extents as soon as possible to avoid doing
1605 * checksum lookups in the csum tree, and use instead the
1606 * checksums attached to the ordered extents.
1608 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1609 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1610 if (ret)
1611 goto out_release_extents;
1614 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1615 * starting and waiting for writeback, because for buffered IO
1616 * it may have been set during the end IO callback
1617 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1618 * case an error happened and we need to wait for ordered
1619 * extents to complete so that any extent maps that point to
1620 * unwritten locations are dropped and we don't log them.
1622 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1623 ret = btrfs_wait_ordered_range(inode, start, len);
1626 if (ret)
1627 goto out_release_extents;
1629 atomic_inc(&root->log_batch);
1631 if (skip_inode_logging(&ctx)) {
1633 * We've had everything committed since the last time we were
1634 * modified so clear this flag in case it was set for whatever
1635 * reason, it's no longer relevant.
1637 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1639 * An ordered extent might have started before and completed
1640 * already with io errors, in which case the inode was not
1641 * updated and we end up here. So check the inode's mapping
1642 * for any errors that might have happened since we last
1643 * checked called fsync.
1645 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1646 goto out_release_extents;
1649 btrfs_init_log_ctx_scratch_eb(&ctx);
1652 * We use start here because we will need to wait on the IO to complete
1653 * in btrfs_sync_log, which could require joining a transaction (for
1654 * example checking cross references in the nocow path). If we use join
1655 * here we could get into a situation where we're waiting on IO to
1656 * happen that is blocked on a transaction trying to commit. With start
1657 * we inc the extwriter counter, so we wait for all extwriters to exit
1658 * before we start blocking joiners. This comment is to keep somebody
1659 * from thinking they are super smart and changing this to
1660 * btrfs_join_transaction *cough*Josef*cough*.
1662 trans = btrfs_start_transaction(root, 0);
1663 if (IS_ERR(trans)) {
1664 ret = PTR_ERR(trans);
1665 goto out_release_extents;
1667 trans->in_fsync = true;
1669 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1671 * Scratch eb no longer needed, release before syncing log or commit
1672 * transaction, to avoid holding unnecessary memory during such long
1673 * operations.
1675 if (ctx.scratch_eb) {
1676 free_extent_buffer(ctx.scratch_eb);
1677 ctx.scratch_eb = NULL;
1679 btrfs_release_log_ctx_extents(&ctx);
1680 if (ret < 0) {
1681 /* Fallthrough and commit/free transaction. */
1682 ret = BTRFS_LOG_FORCE_COMMIT;
1685 /* we've logged all the items and now have a consistent
1686 * version of the file in the log. It is possible that
1687 * someone will come in and modify the file, but that's
1688 * fine because the log is consistent on disk, and we
1689 * have references to all of the file's extents
1691 * It is possible that someone will come in and log the
1692 * file again, but that will end up using the synchronization
1693 * inside btrfs_sync_log to keep things safe.
1695 if (skip_ilock)
1696 up_write(&inode->i_mmap_lock);
1697 else
1698 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1700 if (ret == BTRFS_NO_LOG_SYNC) {
1701 ret = btrfs_end_transaction(trans);
1702 goto out;
1705 /* We successfully logged the inode, attempt to sync the log. */
1706 if (!ret) {
1707 ret = btrfs_sync_log(trans, root, &ctx);
1708 if (!ret) {
1709 ret = btrfs_end_transaction(trans);
1710 goto out;
1715 * At this point we need to commit the transaction because we had
1716 * btrfs_need_log_full_commit() or some other error.
1718 * If we didn't do a full sync we have to stop the trans handle, wait on
1719 * the ordered extents, start it again and commit the transaction. If
1720 * we attempt to wait on the ordered extents here we could deadlock with
1721 * something like fallocate() that is holding the extent lock trying to
1722 * start a transaction while some other thread is trying to commit the
1723 * transaction while we (fsync) are currently holding the transaction
1724 * open.
1726 if (!full_sync) {
1727 ret = btrfs_end_transaction(trans);
1728 if (ret)
1729 goto out;
1730 ret = btrfs_wait_ordered_range(inode, start, len);
1731 if (ret)
1732 goto out;
1735 * This is safe to use here because we're only interested in
1736 * making sure the transaction that had the ordered extents is
1737 * committed. We aren't waiting on anything past this point,
1738 * we're purely getting the transaction and committing it.
1740 trans = btrfs_attach_transaction_barrier(root);
1741 if (IS_ERR(trans)) {
1742 ret = PTR_ERR(trans);
1745 * We committed the transaction and there's no currently
1746 * running transaction, this means everything we care
1747 * about made it to disk and we are done.
1749 if (ret == -ENOENT)
1750 ret = 0;
1751 goto out;
1755 ret = btrfs_commit_transaction(trans);
1756 out:
1757 free_extent_buffer(ctx.scratch_eb);
1758 ASSERT(list_empty(&ctx.list));
1759 ASSERT(list_empty(&ctx.conflict_inodes));
1760 err = file_check_and_advance_wb_err(file);
1761 if (!ret)
1762 ret = err;
1763 return ret > 0 ? -EIO : ret;
1765 out_release_extents:
1766 btrfs_release_log_ctx_extents(&ctx);
1767 if (skip_ilock)
1768 up_write(&inode->i_mmap_lock);
1769 else
1770 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1771 goto out;
1775 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1776 * called from a page fault handler when a page is first dirtied. Hence we must
1777 * be careful to check for EOF conditions here. We set the page up correctly
1778 * for a written page which means we get ENOSPC checking when writing into
1779 * holes and correct delalloc and unwritten extent mapping on filesystems that
1780 * support these features.
1782 * We are not allowed to take the i_mutex here so we have to play games to
1783 * protect against truncate races as the page could now be beyond EOF. Because
1784 * truncate_setsize() writes the inode size before removing pages, once we have
1785 * the page lock we can determine safely if the page is beyond EOF. If it is not
1786 * beyond EOF, then the page is guaranteed safe against truncation until we
1787 * unlock the page.
1789 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1791 struct page *page = vmf->page;
1792 struct folio *folio = page_folio(page);
1793 struct inode *inode = file_inode(vmf->vma->vm_file);
1794 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1795 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1796 struct btrfs_ordered_extent *ordered;
1797 struct extent_state *cached_state = NULL;
1798 struct extent_changeset *data_reserved = NULL;
1799 unsigned long zero_start;
1800 loff_t size;
1801 vm_fault_t ret;
1802 int ret2;
1803 int reserved = 0;
1804 u64 reserved_space;
1805 u64 page_start;
1806 u64 page_end;
1807 u64 end;
1809 ASSERT(folio_order(folio) == 0);
1811 reserved_space = PAGE_SIZE;
1813 sb_start_pagefault(inode->i_sb);
1814 page_start = folio_pos(folio);
1815 page_end = page_start + folio_size(folio) - 1;
1816 end = page_end;
1819 * Reserving delalloc space after obtaining the page lock can lead to
1820 * deadlock. For example, if a dirty page is locked by this function
1821 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1822 * dirty page write out, then the btrfs_writepages() function could
1823 * end up waiting indefinitely to get a lock on the page currently
1824 * being processed by btrfs_page_mkwrite() function.
1826 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1827 page_start, reserved_space);
1828 if (!ret2) {
1829 ret2 = file_update_time(vmf->vma->vm_file);
1830 reserved = 1;
1832 if (ret2) {
1833 ret = vmf_error(ret2);
1834 if (reserved)
1835 goto out;
1836 goto out_noreserve;
1839 /* Make the VM retry the fault. */
1840 ret = VM_FAULT_NOPAGE;
1841 again:
1842 down_read(&BTRFS_I(inode)->i_mmap_lock);
1843 folio_lock(folio);
1844 size = i_size_read(inode);
1846 if ((folio->mapping != inode->i_mapping) ||
1847 (page_start >= size)) {
1848 /* Page got truncated out from underneath us. */
1849 goto out_unlock;
1851 folio_wait_writeback(folio);
1853 lock_extent(io_tree, page_start, page_end, &cached_state);
1854 ret2 = set_folio_extent_mapped(folio);
1855 if (ret2 < 0) {
1856 ret = vmf_error(ret2);
1857 unlock_extent(io_tree, page_start, page_end, &cached_state);
1858 goto out_unlock;
1862 * We can't set the delalloc bits if there are pending ordered
1863 * extents. Drop our locks and wait for them to finish.
1865 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1866 if (ordered) {
1867 unlock_extent(io_tree, page_start, page_end, &cached_state);
1868 folio_unlock(folio);
1869 up_read(&BTRFS_I(inode)->i_mmap_lock);
1870 btrfs_start_ordered_extent(ordered);
1871 btrfs_put_ordered_extent(ordered);
1872 goto again;
1875 if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1876 reserved_space = round_up(size - page_start, fs_info->sectorsize);
1877 if (reserved_space < PAGE_SIZE) {
1878 end = page_start + reserved_space - 1;
1879 btrfs_delalloc_release_space(BTRFS_I(inode),
1880 data_reserved, page_start,
1881 PAGE_SIZE - reserved_space, true);
1886 * page_mkwrite gets called when the page is firstly dirtied after it's
1887 * faulted in, but write(2) could also dirty a page and set delalloc
1888 * bits, thus in this case for space account reason, we still need to
1889 * clear any delalloc bits within this page range since we have to
1890 * reserve data&meta space before lock_page() (see above comments).
1892 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1893 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1894 EXTENT_DEFRAG, &cached_state);
1896 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1897 &cached_state);
1898 if (ret2) {
1899 unlock_extent(io_tree, page_start, page_end, &cached_state);
1900 ret = VM_FAULT_SIGBUS;
1901 goto out_unlock;
1904 /* Page is wholly or partially inside EOF. */
1905 if (page_start + folio_size(folio) > size)
1906 zero_start = offset_in_folio(folio, size);
1907 else
1908 zero_start = PAGE_SIZE;
1910 if (zero_start != PAGE_SIZE)
1911 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1913 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
1914 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1915 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1917 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1919 unlock_extent(io_tree, page_start, page_end, &cached_state);
1920 up_read(&BTRFS_I(inode)->i_mmap_lock);
1922 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1923 sb_end_pagefault(inode->i_sb);
1924 extent_changeset_free(data_reserved);
1925 return VM_FAULT_LOCKED;
1927 out_unlock:
1928 folio_unlock(folio);
1929 up_read(&BTRFS_I(inode)->i_mmap_lock);
1930 out:
1931 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1932 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1933 reserved_space, (ret != 0));
1934 out_noreserve:
1935 sb_end_pagefault(inode->i_sb);
1936 extent_changeset_free(data_reserved);
1937 return ret;
1940 static const struct vm_operations_struct btrfs_file_vm_ops = {
1941 .fault = filemap_fault,
1942 .map_pages = filemap_map_pages,
1943 .page_mkwrite = btrfs_page_mkwrite,
1946 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1948 struct address_space *mapping = filp->f_mapping;
1950 if (!mapping->a_ops->read_folio)
1951 return -ENOEXEC;
1953 file_accessed(filp);
1954 vma->vm_ops = &btrfs_file_vm_ops;
1956 return 0;
1959 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1960 int slot, u64 start, u64 end)
1962 struct btrfs_file_extent_item *fi;
1963 struct btrfs_key key;
1965 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1966 return 0;
1968 btrfs_item_key_to_cpu(leaf, &key, slot);
1969 if (key.objectid != btrfs_ino(inode) ||
1970 key.type != BTRFS_EXTENT_DATA_KEY)
1971 return 0;
1973 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1975 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1976 return 0;
1978 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1979 return 0;
1981 if (key.offset == end)
1982 return 1;
1983 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1984 return 1;
1985 return 0;
1988 static int fill_holes(struct btrfs_trans_handle *trans,
1989 struct btrfs_inode *inode,
1990 struct btrfs_path *path, u64 offset, u64 end)
1992 struct btrfs_fs_info *fs_info = trans->fs_info;
1993 struct btrfs_root *root = inode->root;
1994 struct extent_buffer *leaf;
1995 struct btrfs_file_extent_item *fi;
1996 struct extent_map *hole_em;
1997 struct btrfs_key key;
1998 int ret;
2000 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2001 goto out;
2003 key.objectid = btrfs_ino(inode);
2004 key.type = BTRFS_EXTENT_DATA_KEY;
2005 key.offset = offset;
2007 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2008 if (ret <= 0) {
2010 * We should have dropped this offset, so if we find it then
2011 * something has gone horribly wrong.
2013 if (ret == 0)
2014 ret = -EINVAL;
2015 return ret;
2018 leaf = path->nodes[0];
2019 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2020 u64 num_bytes;
2022 path->slots[0]--;
2023 fi = btrfs_item_ptr(leaf, path->slots[0],
2024 struct btrfs_file_extent_item);
2025 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2026 end - offset;
2027 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2028 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2029 btrfs_set_file_extent_offset(leaf, fi, 0);
2030 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2031 btrfs_mark_buffer_dirty(trans, leaf);
2032 goto out;
2035 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2036 u64 num_bytes;
2038 key.offset = offset;
2039 btrfs_set_item_key_safe(trans, path, &key);
2040 fi = btrfs_item_ptr(leaf, path->slots[0],
2041 struct btrfs_file_extent_item);
2042 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2043 offset;
2044 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2045 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2046 btrfs_set_file_extent_offset(leaf, fi, 0);
2047 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2048 btrfs_mark_buffer_dirty(trans, leaf);
2049 goto out;
2051 btrfs_release_path(path);
2053 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2054 end - offset);
2055 if (ret)
2056 return ret;
2058 out:
2059 btrfs_release_path(path);
2061 hole_em = alloc_extent_map();
2062 if (!hole_em) {
2063 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2064 btrfs_set_inode_full_sync(inode);
2065 } else {
2066 hole_em->start = offset;
2067 hole_em->len = end - offset;
2068 hole_em->ram_bytes = hole_em->len;
2070 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2071 hole_em->disk_num_bytes = 0;
2072 hole_em->generation = trans->transid;
2074 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2075 free_extent_map(hole_em);
2076 if (ret)
2077 btrfs_set_inode_full_sync(inode);
2080 return 0;
2084 * Find a hole extent on given inode and change start/len to the end of hole
2085 * extent.(hole/vacuum extent whose em->start <= start &&
2086 * em->start + em->len > start)
2087 * When a hole extent is found, return 1 and modify start/len.
2089 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2091 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2092 struct extent_map *em;
2093 int ret = 0;
2095 em = btrfs_get_extent(inode, NULL,
2096 round_down(*start, fs_info->sectorsize),
2097 round_up(*len, fs_info->sectorsize));
2098 if (IS_ERR(em))
2099 return PTR_ERR(em);
2101 /* Hole or vacuum extent(only exists in no-hole mode) */
2102 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2103 ret = 1;
2104 *len = em->start + em->len > *start + *len ?
2105 0 : *start + *len - em->start - em->len;
2106 *start = em->start + em->len;
2108 free_extent_map(em);
2109 return ret;
2112 static void btrfs_punch_hole_lock_range(struct inode *inode,
2113 const u64 lockstart,
2114 const u64 lockend,
2115 struct extent_state **cached_state)
2118 * For subpage case, if the range is not at page boundary, we could
2119 * have pages at the leading/tailing part of the range.
2120 * This could lead to dead loop since filemap_range_has_page()
2121 * will always return true.
2122 * So here we need to do extra page alignment for
2123 * filemap_range_has_page().
2125 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2126 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2128 while (1) {
2129 truncate_pagecache_range(inode, lockstart, lockend);
2131 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2132 cached_state);
2134 * We can't have ordered extents in the range, nor dirty/writeback
2135 * pages, because we have locked the inode's VFS lock in exclusive
2136 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2137 * we have flushed all delalloc in the range and we have waited
2138 * for any ordered extents in the range to complete.
2139 * We can race with anyone reading pages from this range, so after
2140 * locking the range check if we have pages in the range, and if
2141 * we do, unlock the range and retry.
2143 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2144 page_lockend))
2145 break;
2147 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2148 cached_state);
2151 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2154 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2155 struct btrfs_inode *inode,
2156 struct btrfs_path *path,
2157 struct btrfs_replace_extent_info *extent_info,
2158 const u64 replace_len,
2159 const u64 bytes_to_drop)
2161 struct btrfs_fs_info *fs_info = trans->fs_info;
2162 struct btrfs_root *root = inode->root;
2163 struct btrfs_file_extent_item *extent;
2164 struct extent_buffer *leaf;
2165 struct btrfs_key key;
2166 int slot;
2167 int ret;
2169 if (replace_len == 0)
2170 return 0;
2172 if (extent_info->disk_offset == 0 &&
2173 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2174 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2175 return 0;
2178 key.objectid = btrfs_ino(inode);
2179 key.type = BTRFS_EXTENT_DATA_KEY;
2180 key.offset = extent_info->file_offset;
2181 ret = btrfs_insert_empty_item(trans, root, path, &key,
2182 sizeof(struct btrfs_file_extent_item));
2183 if (ret)
2184 return ret;
2185 leaf = path->nodes[0];
2186 slot = path->slots[0];
2187 write_extent_buffer(leaf, extent_info->extent_buf,
2188 btrfs_item_ptr_offset(leaf, slot),
2189 sizeof(struct btrfs_file_extent_item));
2190 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2191 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2192 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2193 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2194 if (extent_info->is_new_extent)
2195 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2196 btrfs_mark_buffer_dirty(trans, leaf);
2197 btrfs_release_path(path);
2199 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2200 replace_len);
2201 if (ret)
2202 return ret;
2204 /* If it's a hole, nothing more needs to be done. */
2205 if (extent_info->disk_offset == 0) {
2206 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2207 return 0;
2210 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2212 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2213 key.objectid = extent_info->disk_offset;
2214 key.type = BTRFS_EXTENT_ITEM_KEY;
2215 key.offset = extent_info->disk_len;
2216 ret = btrfs_alloc_reserved_file_extent(trans, root,
2217 btrfs_ino(inode),
2218 extent_info->file_offset,
2219 extent_info->qgroup_reserved,
2220 &key);
2221 } else {
2222 struct btrfs_ref ref = {
2223 .action = BTRFS_ADD_DELAYED_REF,
2224 .bytenr = extent_info->disk_offset,
2225 .num_bytes = extent_info->disk_len,
2226 .owning_root = btrfs_root_id(root),
2227 .ref_root = btrfs_root_id(root),
2229 u64 ref_offset;
2231 ref_offset = extent_info->file_offset - extent_info->data_offset;
2232 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2233 ret = btrfs_inc_extent_ref(trans, &ref);
2236 extent_info->insertions++;
2238 return ret;
2242 * The respective range must have been previously locked, as well as the inode.
2243 * The end offset is inclusive (last byte of the range).
2244 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2245 * the file range with an extent.
2246 * When not punching a hole, we don't want to end up in a state where we dropped
2247 * extents without inserting a new one, so we must abort the transaction to avoid
2248 * a corruption.
2250 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2251 struct btrfs_path *path, const u64 start,
2252 const u64 end,
2253 struct btrfs_replace_extent_info *extent_info,
2254 struct btrfs_trans_handle **trans_out)
2256 struct btrfs_drop_extents_args drop_args = { 0 };
2257 struct btrfs_root *root = inode->root;
2258 struct btrfs_fs_info *fs_info = root->fs_info;
2259 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2260 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2261 struct btrfs_trans_handle *trans = NULL;
2262 struct btrfs_block_rsv *rsv;
2263 unsigned int rsv_count;
2264 u64 cur_offset;
2265 u64 len = end - start;
2266 int ret = 0;
2268 if (end <= start)
2269 return -EINVAL;
2271 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2272 if (!rsv) {
2273 ret = -ENOMEM;
2274 goto out;
2276 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2277 rsv->failfast = true;
2280 * 1 - update the inode
2281 * 1 - removing the extents in the range
2282 * 1 - adding the hole extent if no_holes isn't set or if we are
2283 * replacing the range with a new extent
2285 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2286 rsv_count = 3;
2287 else
2288 rsv_count = 2;
2290 trans = btrfs_start_transaction(root, rsv_count);
2291 if (IS_ERR(trans)) {
2292 ret = PTR_ERR(trans);
2293 trans = NULL;
2294 goto out_free;
2297 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2298 min_size, false);
2299 if (WARN_ON(ret))
2300 goto out_trans;
2301 trans->block_rsv = rsv;
2303 cur_offset = start;
2304 drop_args.path = path;
2305 drop_args.end = end + 1;
2306 drop_args.drop_cache = true;
2307 while (cur_offset < end) {
2308 drop_args.start = cur_offset;
2309 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2310 /* If we are punching a hole decrement the inode's byte count */
2311 if (!extent_info)
2312 btrfs_update_inode_bytes(inode, 0,
2313 drop_args.bytes_found);
2314 if (ret != -ENOSPC) {
2316 * The only time we don't want to abort is if we are
2317 * attempting to clone a partial inline extent, in which
2318 * case we'll get EOPNOTSUPP. However if we aren't
2319 * clone we need to abort no matter what, because if we
2320 * got EOPNOTSUPP via prealloc then we messed up and
2321 * need to abort.
2323 if (ret &&
2324 (ret != -EOPNOTSUPP ||
2325 (extent_info && extent_info->is_new_extent)))
2326 btrfs_abort_transaction(trans, ret);
2327 break;
2330 trans->block_rsv = &fs_info->trans_block_rsv;
2332 if (!extent_info && cur_offset < drop_args.drop_end &&
2333 cur_offset < ino_size) {
2334 ret = fill_holes(trans, inode, path, cur_offset,
2335 drop_args.drop_end);
2336 if (ret) {
2338 * If we failed then we didn't insert our hole
2339 * entries for the area we dropped, so now the
2340 * fs is corrupted, so we must abort the
2341 * transaction.
2343 btrfs_abort_transaction(trans, ret);
2344 break;
2346 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2348 * We are past the i_size here, but since we didn't
2349 * insert holes we need to clear the mapped area so we
2350 * know to not set disk_i_size in this area until a new
2351 * file extent is inserted here.
2353 ret = btrfs_inode_clear_file_extent_range(inode,
2354 cur_offset,
2355 drop_args.drop_end - cur_offset);
2356 if (ret) {
2358 * We couldn't clear our area, so we could
2359 * presumably adjust up and corrupt the fs, so
2360 * we need to abort.
2362 btrfs_abort_transaction(trans, ret);
2363 break;
2367 if (extent_info &&
2368 drop_args.drop_end > extent_info->file_offset) {
2369 u64 replace_len = drop_args.drop_end -
2370 extent_info->file_offset;
2372 ret = btrfs_insert_replace_extent(trans, inode, path,
2373 extent_info, replace_len,
2374 drop_args.bytes_found);
2375 if (ret) {
2376 btrfs_abort_transaction(trans, ret);
2377 break;
2379 extent_info->data_len -= replace_len;
2380 extent_info->data_offset += replace_len;
2381 extent_info->file_offset += replace_len;
2385 * We are releasing our handle on the transaction, balance the
2386 * dirty pages of the btree inode and flush delayed items, and
2387 * then get a new transaction handle, which may now point to a
2388 * new transaction in case someone else may have committed the
2389 * transaction we used to replace/drop file extent items. So
2390 * bump the inode's iversion and update mtime and ctime except
2391 * if we are called from a dedupe context. This is because a
2392 * power failure/crash may happen after the transaction is
2393 * committed and before we finish replacing/dropping all the
2394 * file extent items we need.
2396 inode_inc_iversion(&inode->vfs_inode);
2398 if (!extent_info || extent_info->update_times)
2399 inode_set_mtime_to_ts(&inode->vfs_inode,
2400 inode_set_ctime_current(&inode->vfs_inode));
2402 ret = btrfs_update_inode(trans, inode);
2403 if (ret)
2404 break;
2406 btrfs_end_transaction(trans);
2407 btrfs_btree_balance_dirty(fs_info);
2409 trans = btrfs_start_transaction(root, rsv_count);
2410 if (IS_ERR(trans)) {
2411 ret = PTR_ERR(trans);
2412 trans = NULL;
2413 break;
2416 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2417 rsv, min_size, false);
2418 if (WARN_ON(ret))
2419 break;
2420 trans->block_rsv = rsv;
2422 cur_offset = drop_args.drop_end;
2423 len = end - cur_offset;
2424 if (!extent_info && len) {
2425 ret = find_first_non_hole(inode, &cur_offset, &len);
2426 if (unlikely(ret < 0))
2427 break;
2428 if (ret && !len) {
2429 ret = 0;
2430 break;
2436 * If we were cloning, force the next fsync to be a full one since we
2437 * we replaced (or just dropped in the case of cloning holes when
2438 * NO_HOLES is enabled) file extent items and did not setup new extent
2439 * maps for the replacement extents (or holes).
2441 if (extent_info && !extent_info->is_new_extent)
2442 btrfs_set_inode_full_sync(inode);
2444 if (ret)
2445 goto out_trans;
2447 trans->block_rsv = &fs_info->trans_block_rsv;
2449 * If we are using the NO_HOLES feature we might have had already an
2450 * hole that overlaps a part of the region [lockstart, lockend] and
2451 * ends at (or beyond) lockend. Since we have no file extent items to
2452 * represent holes, drop_end can be less than lockend and so we must
2453 * make sure we have an extent map representing the existing hole (the
2454 * call to __btrfs_drop_extents() might have dropped the existing extent
2455 * map representing the existing hole), otherwise the fast fsync path
2456 * will not record the existence of the hole region
2457 * [existing_hole_start, lockend].
2459 if (drop_args.drop_end <= end)
2460 drop_args.drop_end = end + 1;
2462 * Don't insert file hole extent item if it's for a range beyond eof
2463 * (because it's useless) or if it represents a 0 bytes range (when
2464 * cur_offset == drop_end).
2466 if (!extent_info && cur_offset < ino_size &&
2467 cur_offset < drop_args.drop_end) {
2468 ret = fill_holes(trans, inode, path, cur_offset,
2469 drop_args.drop_end);
2470 if (ret) {
2471 /* Same comment as above. */
2472 btrfs_abort_transaction(trans, ret);
2473 goto out_trans;
2475 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2476 /* See the comment in the loop above for the reasoning here. */
2477 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2478 drop_args.drop_end - cur_offset);
2479 if (ret) {
2480 btrfs_abort_transaction(trans, ret);
2481 goto out_trans;
2485 if (extent_info) {
2486 ret = btrfs_insert_replace_extent(trans, inode, path,
2487 extent_info, extent_info->data_len,
2488 drop_args.bytes_found);
2489 if (ret) {
2490 btrfs_abort_transaction(trans, ret);
2491 goto out_trans;
2495 out_trans:
2496 if (!trans)
2497 goto out_free;
2499 trans->block_rsv = &fs_info->trans_block_rsv;
2500 if (ret)
2501 btrfs_end_transaction(trans);
2502 else
2503 *trans_out = trans;
2504 out_free:
2505 btrfs_free_block_rsv(fs_info, rsv);
2506 out:
2507 return ret;
2510 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2512 struct inode *inode = file_inode(file);
2513 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2514 struct btrfs_root *root = BTRFS_I(inode)->root;
2515 struct extent_state *cached_state = NULL;
2516 struct btrfs_path *path;
2517 struct btrfs_trans_handle *trans = NULL;
2518 u64 lockstart;
2519 u64 lockend;
2520 u64 tail_start;
2521 u64 tail_len;
2522 u64 orig_start = offset;
2523 int ret = 0;
2524 bool same_block;
2525 u64 ino_size;
2526 bool truncated_block = false;
2527 bool updated_inode = false;
2529 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2531 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2532 if (ret)
2533 goto out_only_mutex;
2535 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2536 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2537 if (ret < 0)
2538 goto out_only_mutex;
2539 if (ret && !len) {
2540 /* Already in a large hole */
2541 ret = 0;
2542 goto out_only_mutex;
2545 ret = file_modified(file);
2546 if (ret)
2547 goto out_only_mutex;
2549 lockstart = round_up(offset, fs_info->sectorsize);
2550 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2551 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2552 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2554 * We needn't truncate any block which is beyond the end of the file
2555 * because we are sure there is no data there.
2558 * Only do this if we are in the same block and we aren't doing the
2559 * entire block.
2561 if (same_block && len < fs_info->sectorsize) {
2562 if (offset < ino_size) {
2563 truncated_block = true;
2564 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2566 } else {
2567 ret = 0;
2569 goto out_only_mutex;
2572 /* zero back part of the first block */
2573 if (offset < ino_size) {
2574 truncated_block = true;
2575 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2576 if (ret) {
2577 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2578 return ret;
2582 /* Check the aligned pages after the first unaligned page,
2583 * if offset != orig_start, which means the first unaligned page
2584 * including several following pages are already in holes,
2585 * the extra check can be skipped */
2586 if (offset == orig_start) {
2587 /* after truncate page, check hole again */
2588 len = offset + len - lockstart;
2589 offset = lockstart;
2590 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2591 if (ret < 0)
2592 goto out_only_mutex;
2593 if (ret && !len) {
2594 ret = 0;
2595 goto out_only_mutex;
2597 lockstart = offset;
2600 /* Check the tail unaligned part is in a hole */
2601 tail_start = lockend + 1;
2602 tail_len = offset + len - tail_start;
2603 if (tail_len) {
2604 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2605 if (unlikely(ret < 0))
2606 goto out_only_mutex;
2607 if (!ret) {
2608 /* zero the front end of the last page */
2609 if (tail_start + tail_len < ino_size) {
2610 truncated_block = true;
2611 ret = btrfs_truncate_block(BTRFS_I(inode),
2612 tail_start + tail_len,
2613 0, 1);
2614 if (ret)
2615 goto out_only_mutex;
2620 if (lockend < lockstart) {
2621 ret = 0;
2622 goto out_only_mutex;
2625 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2627 path = btrfs_alloc_path();
2628 if (!path) {
2629 ret = -ENOMEM;
2630 goto out;
2633 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2634 lockend, NULL, &trans);
2635 btrfs_free_path(path);
2636 if (ret)
2637 goto out;
2639 ASSERT(trans != NULL);
2640 inode_inc_iversion(inode);
2641 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2642 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2643 updated_inode = true;
2644 btrfs_end_transaction(trans);
2645 btrfs_btree_balance_dirty(fs_info);
2646 out:
2647 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2648 &cached_state);
2649 out_only_mutex:
2650 if (!updated_inode && truncated_block && !ret) {
2652 * If we only end up zeroing part of a page, we still need to
2653 * update the inode item, so that all the time fields are
2654 * updated as well as the necessary btrfs inode in memory fields
2655 * for detecting, at fsync time, if the inode isn't yet in the
2656 * log tree or it's there but not up to date.
2658 struct timespec64 now = inode_set_ctime_current(inode);
2660 inode_inc_iversion(inode);
2661 inode_set_mtime_to_ts(inode, now);
2662 trans = btrfs_start_transaction(root, 1);
2663 if (IS_ERR(trans)) {
2664 ret = PTR_ERR(trans);
2665 } else {
2666 int ret2;
2668 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2669 ret2 = btrfs_end_transaction(trans);
2670 if (!ret)
2671 ret = ret2;
2674 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2675 return ret;
2678 /* Helper structure to record which range is already reserved */
2679 struct falloc_range {
2680 struct list_head list;
2681 u64 start;
2682 u64 len;
2686 * Helper function to add falloc range
2688 * Caller should have locked the larger range of extent containing
2689 * [start, len)
2691 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2693 struct falloc_range *range = NULL;
2695 if (!list_empty(head)) {
2697 * As fallocate iterates by bytenr order, we only need to check
2698 * the last range.
2700 range = list_last_entry(head, struct falloc_range, list);
2701 if (range->start + range->len == start) {
2702 range->len += len;
2703 return 0;
2707 range = kmalloc(sizeof(*range), GFP_KERNEL);
2708 if (!range)
2709 return -ENOMEM;
2710 range->start = start;
2711 range->len = len;
2712 list_add_tail(&range->list, head);
2713 return 0;
2716 static int btrfs_fallocate_update_isize(struct inode *inode,
2717 const u64 end,
2718 const int mode)
2720 struct btrfs_trans_handle *trans;
2721 struct btrfs_root *root = BTRFS_I(inode)->root;
2722 int ret;
2723 int ret2;
2725 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2726 return 0;
2728 trans = btrfs_start_transaction(root, 1);
2729 if (IS_ERR(trans))
2730 return PTR_ERR(trans);
2732 inode_set_ctime_current(inode);
2733 i_size_write(inode, end);
2734 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2735 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2736 ret2 = btrfs_end_transaction(trans);
2738 return ret ? ret : ret2;
2741 enum {
2742 RANGE_BOUNDARY_WRITTEN_EXTENT,
2743 RANGE_BOUNDARY_PREALLOC_EXTENT,
2744 RANGE_BOUNDARY_HOLE,
2747 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2748 u64 offset)
2750 const u64 sectorsize = inode->root->fs_info->sectorsize;
2751 struct extent_map *em;
2752 int ret;
2754 offset = round_down(offset, sectorsize);
2755 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2756 if (IS_ERR(em))
2757 return PTR_ERR(em);
2759 if (em->disk_bytenr == EXTENT_MAP_HOLE)
2760 ret = RANGE_BOUNDARY_HOLE;
2761 else if (em->flags & EXTENT_FLAG_PREALLOC)
2762 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2763 else
2764 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2766 free_extent_map(em);
2767 return ret;
2770 static int btrfs_zero_range(struct inode *inode,
2771 loff_t offset,
2772 loff_t len,
2773 const int mode)
2775 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2776 struct extent_map *em;
2777 struct extent_changeset *data_reserved = NULL;
2778 int ret;
2779 u64 alloc_hint = 0;
2780 const u64 sectorsize = fs_info->sectorsize;
2781 u64 alloc_start = round_down(offset, sectorsize);
2782 u64 alloc_end = round_up(offset + len, sectorsize);
2783 u64 bytes_to_reserve = 0;
2784 bool space_reserved = false;
2786 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2787 alloc_end - alloc_start);
2788 if (IS_ERR(em)) {
2789 ret = PTR_ERR(em);
2790 goto out;
2794 * Avoid hole punching and extent allocation for some cases. More cases
2795 * could be considered, but these are unlikely common and we keep things
2796 * as simple as possible for now. Also, intentionally, if the target
2797 * range contains one or more prealloc extents together with regular
2798 * extents and holes, we drop all the existing extents and allocate a
2799 * new prealloc extent, so that we get a larger contiguous disk extent.
2801 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2802 const u64 em_end = em->start + em->len;
2804 if (em_end >= offset + len) {
2806 * The whole range is already a prealloc extent,
2807 * do nothing except updating the inode's i_size if
2808 * needed.
2810 free_extent_map(em);
2811 ret = btrfs_fallocate_update_isize(inode, offset + len,
2812 mode);
2813 goto out;
2816 * Part of the range is already a prealloc extent, so operate
2817 * only on the remaining part of the range.
2819 alloc_start = em_end;
2820 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2821 len = offset + len - alloc_start;
2822 offset = alloc_start;
2823 alloc_hint = extent_map_block_start(em) + em->len;
2825 free_extent_map(em);
2827 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2828 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2829 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2830 if (IS_ERR(em)) {
2831 ret = PTR_ERR(em);
2832 goto out;
2835 if (em->flags & EXTENT_FLAG_PREALLOC) {
2836 free_extent_map(em);
2837 ret = btrfs_fallocate_update_isize(inode, offset + len,
2838 mode);
2839 goto out;
2841 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2842 free_extent_map(em);
2843 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2845 if (!ret)
2846 ret = btrfs_fallocate_update_isize(inode,
2847 offset + len,
2848 mode);
2849 return ret;
2851 free_extent_map(em);
2852 alloc_start = round_down(offset, sectorsize);
2853 alloc_end = alloc_start + sectorsize;
2854 goto reserve_space;
2857 alloc_start = round_up(offset, sectorsize);
2858 alloc_end = round_down(offset + len, sectorsize);
2861 * For unaligned ranges, check the pages at the boundaries, they might
2862 * map to an extent, in which case we need to partially zero them, or
2863 * they might map to a hole, in which case we need our allocation range
2864 * to cover them.
2866 if (!IS_ALIGNED(offset, sectorsize)) {
2867 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2868 offset);
2869 if (ret < 0)
2870 goto out;
2871 if (ret == RANGE_BOUNDARY_HOLE) {
2872 alloc_start = round_down(offset, sectorsize);
2873 ret = 0;
2874 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2875 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2876 if (ret)
2877 goto out;
2878 } else {
2879 ret = 0;
2883 if (!IS_ALIGNED(offset + len, sectorsize)) {
2884 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2885 offset + len);
2886 if (ret < 0)
2887 goto out;
2888 if (ret == RANGE_BOUNDARY_HOLE) {
2889 alloc_end = round_up(offset + len, sectorsize);
2890 ret = 0;
2891 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2892 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2893 0, 1);
2894 if (ret)
2895 goto out;
2896 } else {
2897 ret = 0;
2901 reserve_space:
2902 if (alloc_start < alloc_end) {
2903 struct extent_state *cached_state = NULL;
2904 const u64 lockstart = alloc_start;
2905 const u64 lockend = alloc_end - 1;
2907 bytes_to_reserve = alloc_end - alloc_start;
2908 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2909 bytes_to_reserve);
2910 if (ret < 0)
2911 goto out;
2912 space_reserved = true;
2913 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2914 &cached_state);
2915 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2916 alloc_start, bytes_to_reserve);
2917 if (ret) {
2918 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2919 lockend, &cached_state);
2920 goto out;
2922 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2923 alloc_end - alloc_start,
2924 fs_info->sectorsize,
2925 offset + len, &alloc_hint);
2926 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2927 &cached_state);
2928 /* btrfs_prealloc_file_range releases reserved space on error */
2929 if (ret) {
2930 space_reserved = false;
2931 goto out;
2934 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2935 out:
2936 if (ret && space_reserved)
2937 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2938 alloc_start, bytes_to_reserve);
2939 extent_changeset_free(data_reserved);
2941 return ret;
2944 static long btrfs_fallocate(struct file *file, int mode,
2945 loff_t offset, loff_t len)
2947 struct inode *inode = file_inode(file);
2948 struct extent_state *cached_state = NULL;
2949 struct extent_changeset *data_reserved = NULL;
2950 struct falloc_range *range;
2951 struct falloc_range *tmp;
2952 LIST_HEAD(reserve_list);
2953 u64 cur_offset;
2954 u64 last_byte;
2955 u64 alloc_start;
2956 u64 alloc_end;
2957 u64 alloc_hint = 0;
2958 u64 locked_end;
2959 u64 actual_end = 0;
2960 u64 data_space_needed = 0;
2961 u64 data_space_reserved = 0;
2962 u64 qgroup_reserved = 0;
2963 struct extent_map *em;
2964 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2965 int ret;
2967 /* Do not allow fallocate in ZONED mode */
2968 if (btrfs_is_zoned(inode_to_fs_info(inode)))
2969 return -EOPNOTSUPP;
2971 alloc_start = round_down(offset, blocksize);
2972 alloc_end = round_up(offset + len, blocksize);
2973 cur_offset = alloc_start;
2975 /* Make sure we aren't being give some crap mode */
2976 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2977 FALLOC_FL_ZERO_RANGE))
2978 return -EOPNOTSUPP;
2980 if (mode & FALLOC_FL_PUNCH_HOLE)
2981 return btrfs_punch_hole(file, offset, len);
2983 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2985 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2986 ret = inode_newsize_ok(inode, offset + len);
2987 if (ret)
2988 goto out;
2991 ret = file_modified(file);
2992 if (ret)
2993 goto out;
2996 * TODO: Move these two operations after we have checked
2997 * accurate reserved space, or fallocate can still fail but
2998 * with page truncated or size expanded.
3000 * But that's a minor problem and won't do much harm BTW.
3002 if (alloc_start > inode->i_size) {
3003 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3004 alloc_start);
3005 if (ret)
3006 goto out;
3007 } else if (offset + len > inode->i_size) {
3009 * If we are fallocating from the end of the file onward we
3010 * need to zero out the end of the block if i_size lands in the
3011 * middle of a block.
3013 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3014 if (ret)
3015 goto out;
3019 * We have locked the inode at the VFS level (in exclusive mode) and we
3020 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3021 * locking the file range, flush all dealloc in the range and wait for
3022 * all ordered extents in the range to complete. After this we can lock
3023 * the file range and, due to the previous locking we did, we know there
3024 * can't be more delalloc or ordered extents in the range.
3026 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3027 alloc_end - alloc_start);
3028 if (ret)
3029 goto out;
3031 if (mode & FALLOC_FL_ZERO_RANGE) {
3032 ret = btrfs_zero_range(inode, offset, len, mode);
3033 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3034 return ret;
3037 locked_end = alloc_end - 1;
3038 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3039 &cached_state);
3041 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3043 /* First, check if we exceed the qgroup limit */
3044 while (cur_offset < alloc_end) {
3045 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3046 alloc_end - cur_offset);
3047 if (IS_ERR(em)) {
3048 ret = PTR_ERR(em);
3049 break;
3051 last_byte = min(extent_map_end(em), alloc_end);
3052 actual_end = min_t(u64, extent_map_end(em), offset + len);
3053 last_byte = ALIGN(last_byte, blocksize);
3054 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3055 (cur_offset >= inode->i_size &&
3056 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3057 const u64 range_len = last_byte - cur_offset;
3059 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3060 if (ret < 0) {
3061 free_extent_map(em);
3062 break;
3064 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3065 &data_reserved, cur_offset, range_len);
3066 if (ret < 0) {
3067 free_extent_map(em);
3068 break;
3070 qgroup_reserved += range_len;
3071 data_space_needed += range_len;
3073 free_extent_map(em);
3074 cur_offset = last_byte;
3077 if (!ret && data_space_needed > 0) {
3079 * We are safe to reserve space here as we can't have delalloc
3080 * in the range, see above.
3082 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3083 data_space_needed);
3084 if (!ret)
3085 data_space_reserved = data_space_needed;
3089 * If ret is still 0, means we're OK to fallocate.
3090 * Or just cleanup the list and exit.
3092 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3093 if (!ret) {
3094 ret = btrfs_prealloc_file_range(inode, mode,
3095 range->start,
3096 range->len, blocksize,
3097 offset + len, &alloc_hint);
3099 * btrfs_prealloc_file_range() releases space even
3100 * if it returns an error.
3102 data_space_reserved -= range->len;
3103 qgroup_reserved -= range->len;
3104 } else if (data_space_reserved > 0) {
3105 btrfs_free_reserved_data_space(BTRFS_I(inode),
3106 data_reserved, range->start,
3107 range->len);
3108 data_space_reserved -= range->len;
3109 qgroup_reserved -= range->len;
3110 } else if (qgroup_reserved > 0) {
3111 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3112 range->start, range->len, NULL);
3113 qgroup_reserved -= range->len;
3115 list_del(&range->list);
3116 kfree(range);
3118 if (ret < 0)
3119 goto out_unlock;
3122 * We didn't need to allocate any more space, but we still extended the
3123 * size of the file so we need to update i_size and the inode item.
3125 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3126 out_unlock:
3127 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3128 &cached_state);
3129 out:
3130 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3131 extent_changeset_free(data_reserved);
3132 return ret;
3136 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3137 * that has unflushed and/or flushing delalloc. There might be other adjacent
3138 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3139 * looping while it gets adjacent subranges, and merging them together.
3141 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3142 struct extent_state **cached_state,
3143 bool *search_io_tree,
3144 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3146 u64 len = end + 1 - start;
3147 u64 delalloc_len = 0;
3148 struct btrfs_ordered_extent *oe;
3149 u64 oe_start;
3150 u64 oe_end;
3153 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3154 * means we have delalloc (dirty pages) for which writeback has not
3155 * started yet.
3157 if (*search_io_tree) {
3158 spin_lock(&inode->lock);
3159 if (inode->delalloc_bytes > 0) {
3160 spin_unlock(&inode->lock);
3161 *delalloc_start_ret = start;
3162 delalloc_len = count_range_bits(&inode->io_tree,
3163 delalloc_start_ret, end,
3164 len, EXTENT_DELALLOC, 1,
3165 cached_state);
3166 } else {
3167 spin_unlock(&inode->lock);
3171 if (delalloc_len > 0) {
3173 * If delalloc was found then *delalloc_start_ret has a sector size
3174 * aligned value (rounded down).
3176 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3178 if (*delalloc_start_ret == start) {
3179 /* Delalloc for the whole range, nothing more to do. */
3180 if (*delalloc_end_ret == end)
3181 return true;
3182 /* Else trim our search range for ordered extents. */
3183 start = *delalloc_end_ret + 1;
3184 len = end + 1 - start;
3186 } else {
3187 /* No delalloc, future calls don't need to search again. */
3188 *search_io_tree = false;
3192 * Now also check if there's any ordered extent in the range.
3193 * We do this because:
3195 * 1) When delalloc is flushed, the file range is locked, we clear the
3196 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3197 * an ordered extent for the write. So we might just have been called
3198 * after delalloc is flushed and before the ordered extent completes
3199 * and inserts the new file extent item in the subvolume's btree;
3201 * 2) We may have an ordered extent created by flushing delalloc for a
3202 * subrange that starts before the subrange we found marked with
3203 * EXTENT_DELALLOC in the io tree.
3205 * We could also use the extent map tree to find such delalloc that is
3206 * being flushed, but using the ordered extents tree is more efficient
3207 * because it's usually much smaller as ordered extents are removed from
3208 * the tree once they complete. With the extent maps, we mau have them
3209 * in the extent map tree for a very long time, and they were either
3210 * created by previous writes or loaded by read operations.
3212 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3213 if (!oe)
3214 return (delalloc_len > 0);
3216 /* The ordered extent may span beyond our search range. */
3217 oe_start = max(oe->file_offset, start);
3218 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3220 btrfs_put_ordered_extent(oe);
3222 /* Don't have unflushed delalloc, return the ordered extent range. */
3223 if (delalloc_len == 0) {
3224 *delalloc_start_ret = oe_start;
3225 *delalloc_end_ret = oe_end;
3226 return true;
3230 * We have both unflushed delalloc (io_tree) and an ordered extent.
3231 * If the ranges are adjacent returned a combined range, otherwise
3232 * return the leftmost range.
3234 if (oe_start < *delalloc_start_ret) {
3235 if (oe_end < *delalloc_start_ret)
3236 *delalloc_end_ret = oe_end;
3237 *delalloc_start_ret = oe_start;
3238 } else if (*delalloc_end_ret + 1 == oe_start) {
3239 *delalloc_end_ret = oe_end;
3242 return true;
3246 * Check if there's delalloc in a given range.
3248 * @inode: The inode.
3249 * @start: The start offset of the range. It does not need to be
3250 * sector size aligned.
3251 * @end: The end offset (inclusive value) of the search range.
3252 * It does not need to be sector size aligned.
3253 * @cached_state: Extent state record used for speeding up delalloc
3254 * searches in the inode's io_tree. Can be NULL.
3255 * @delalloc_start_ret: Output argument, set to the start offset of the
3256 * subrange found with delalloc (may not be sector size
3257 * aligned).
3258 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3259 * of the subrange found with delalloc.
3261 * Returns true if a subrange with delalloc is found within the given range, and
3262 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3263 * end offsets of the subrange.
3265 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3266 struct extent_state **cached_state,
3267 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3269 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3270 u64 prev_delalloc_end = 0;
3271 bool search_io_tree = true;
3272 bool ret = false;
3274 while (cur_offset <= end) {
3275 u64 delalloc_start;
3276 u64 delalloc_end;
3277 bool delalloc;
3279 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3280 cached_state, &search_io_tree,
3281 &delalloc_start,
3282 &delalloc_end);
3283 if (!delalloc)
3284 break;
3286 if (prev_delalloc_end == 0) {
3287 /* First subrange found. */
3288 *delalloc_start_ret = max(delalloc_start, start);
3289 *delalloc_end_ret = delalloc_end;
3290 ret = true;
3291 } else if (delalloc_start == prev_delalloc_end + 1) {
3292 /* Subrange adjacent to the previous one, merge them. */
3293 *delalloc_end_ret = delalloc_end;
3294 } else {
3295 /* Subrange not adjacent to the previous one, exit. */
3296 break;
3299 prev_delalloc_end = delalloc_end;
3300 cur_offset = delalloc_end + 1;
3301 cond_resched();
3304 return ret;
3308 * Check if there's a hole or delalloc range in a range representing a hole (or
3309 * prealloc extent) found in the inode's subvolume btree.
3311 * @inode: The inode.
3312 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3313 * @start: Start offset of the hole region. It does not need to be sector
3314 * size aligned.
3315 * @end: End offset (inclusive value) of the hole region. It does not
3316 * need to be sector size aligned.
3317 * @start_ret: Return parameter, used to set the start of the subrange in the
3318 * hole that matches the search criteria (seek mode), if such
3319 * subrange is found (return value of the function is true).
3320 * The value returned here may not be sector size aligned.
3322 * Returns true if a subrange matching the given seek mode is found, and if one
3323 * is found, it updates @start_ret with the start of the subrange.
3325 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3326 struct extent_state **cached_state,
3327 u64 start, u64 end, u64 *start_ret)
3329 u64 delalloc_start;
3330 u64 delalloc_end;
3331 bool delalloc;
3333 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3334 &delalloc_start, &delalloc_end);
3335 if (delalloc && whence == SEEK_DATA) {
3336 *start_ret = delalloc_start;
3337 return true;
3340 if (delalloc && whence == SEEK_HOLE) {
3342 * We found delalloc but it starts after out start offset. So we
3343 * have a hole between our start offset and the delalloc start.
3345 if (start < delalloc_start) {
3346 *start_ret = start;
3347 return true;
3350 * Delalloc range starts at our start offset.
3351 * If the delalloc range's length is smaller than our range,
3352 * then it means we have a hole that starts where the delalloc
3353 * subrange ends.
3355 if (delalloc_end < end) {
3356 *start_ret = delalloc_end + 1;
3357 return true;
3360 /* There's delalloc for the whole range. */
3361 return false;
3364 if (!delalloc && whence == SEEK_HOLE) {
3365 *start_ret = start;
3366 return true;
3370 * No delalloc in the range and we are seeking for data. The caller has
3371 * to iterate to the next extent item in the subvolume btree.
3373 return false;
3376 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3378 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3379 struct btrfs_file_private *private;
3380 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3381 struct extent_state *cached_state = NULL;
3382 struct extent_state **delalloc_cached_state;
3383 const loff_t i_size = i_size_read(&inode->vfs_inode);
3384 const u64 ino = btrfs_ino(inode);
3385 struct btrfs_root *root = inode->root;
3386 struct btrfs_path *path;
3387 struct btrfs_key key;
3388 u64 last_extent_end;
3389 u64 lockstart;
3390 u64 lockend;
3391 u64 start;
3392 int ret;
3393 bool found = false;
3395 if (i_size == 0 || offset >= i_size)
3396 return -ENXIO;
3399 * Quick path. If the inode has no prealloc extents and its number of
3400 * bytes used matches its i_size, then it can not have holes.
3402 if (whence == SEEK_HOLE &&
3403 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3404 inode_get_bytes(&inode->vfs_inode) == i_size)
3405 return i_size;
3407 spin_lock(&inode->lock);
3408 private = file->private_data;
3409 spin_unlock(&inode->lock);
3411 if (private && private->owner_task != current) {
3413 * Not allocated by us, don't use it as its cached state is used
3414 * by the task that allocated it and we don't want neither to
3415 * mess with it nor get incorrect results because it reflects an
3416 * invalid state for the current task.
3418 private = NULL;
3419 } else if (!private) {
3420 private = kzalloc(sizeof(*private), GFP_KERNEL);
3422 * No worries if memory allocation failed.
3423 * The private structure is used only for speeding up multiple
3424 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3425 * so everything will still be correct.
3427 if (private) {
3428 bool free = false;
3430 private->owner_task = current;
3432 spin_lock(&inode->lock);
3433 if (file->private_data)
3434 free = true;
3435 else
3436 file->private_data = private;
3437 spin_unlock(&inode->lock);
3439 if (free) {
3440 kfree(private);
3441 private = NULL;
3446 if (private)
3447 delalloc_cached_state = &private->llseek_cached_state;
3448 else
3449 delalloc_cached_state = NULL;
3452 * offset can be negative, in this case we start finding DATA/HOLE from
3453 * the very start of the file.
3455 start = max_t(loff_t, 0, offset);
3457 lockstart = round_down(start, fs_info->sectorsize);
3458 lockend = round_up(i_size, fs_info->sectorsize);
3459 if (lockend <= lockstart)
3460 lockend = lockstart + fs_info->sectorsize;
3461 lockend--;
3463 path = btrfs_alloc_path();
3464 if (!path)
3465 return -ENOMEM;
3466 path->reada = READA_FORWARD;
3468 key.objectid = ino;
3469 key.type = BTRFS_EXTENT_DATA_KEY;
3470 key.offset = start;
3472 last_extent_end = lockstart;
3474 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3476 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3477 if (ret < 0) {
3478 goto out;
3479 } else if (ret > 0 && path->slots[0] > 0) {
3480 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3481 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3482 path->slots[0]--;
3485 while (start < i_size) {
3486 struct extent_buffer *leaf = path->nodes[0];
3487 struct btrfs_file_extent_item *extent;
3488 u64 extent_end;
3489 u8 type;
3491 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3492 ret = btrfs_next_leaf(root, path);
3493 if (ret < 0)
3494 goto out;
3495 else if (ret > 0)
3496 break;
3498 leaf = path->nodes[0];
3501 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3502 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3503 break;
3505 extent_end = btrfs_file_extent_end(path);
3508 * In the first iteration we may have a slot that points to an
3509 * extent that ends before our start offset, so skip it.
3511 if (extent_end <= start) {
3512 path->slots[0]++;
3513 continue;
3516 /* We have an implicit hole, NO_HOLES feature is likely set. */
3517 if (last_extent_end < key.offset) {
3518 u64 search_start = last_extent_end;
3519 u64 found_start;
3522 * First iteration, @start matches @offset and it's
3523 * within the hole.
3525 if (start == offset)
3526 search_start = offset;
3528 found = find_desired_extent_in_hole(inode, whence,
3529 delalloc_cached_state,
3530 search_start,
3531 key.offset - 1,
3532 &found_start);
3533 if (found) {
3534 start = found_start;
3535 break;
3538 * Didn't find data or a hole (due to delalloc) in the
3539 * implicit hole range, so need to analyze the extent.
3543 extent = btrfs_item_ptr(leaf, path->slots[0],
3544 struct btrfs_file_extent_item);
3545 type = btrfs_file_extent_type(leaf, extent);
3548 * Can't access the extent's disk_bytenr field if this is an
3549 * inline extent, since at that offset, it's where the extent
3550 * data starts.
3552 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3553 (type == BTRFS_FILE_EXTENT_REG &&
3554 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3556 * Explicit hole or prealloc extent, search for delalloc.
3557 * A prealloc extent is treated like a hole.
3559 u64 search_start = key.offset;
3560 u64 found_start;
3563 * First iteration, @start matches @offset and it's
3564 * within the hole.
3566 if (start == offset)
3567 search_start = offset;
3569 found = find_desired_extent_in_hole(inode, whence,
3570 delalloc_cached_state,
3571 search_start,
3572 extent_end - 1,
3573 &found_start);
3574 if (found) {
3575 start = found_start;
3576 break;
3579 * Didn't find data or a hole (due to delalloc) in the
3580 * implicit hole range, so need to analyze the next
3581 * extent item.
3583 } else {
3585 * Found a regular or inline extent.
3586 * If we are seeking for data, adjust the start offset
3587 * and stop, we're done.
3589 if (whence == SEEK_DATA) {
3590 start = max_t(u64, key.offset, offset);
3591 found = true;
3592 break;
3595 * Else, we are seeking for a hole, check the next file
3596 * extent item.
3600 start = extent_end;
3601 last_extent_end = extent_end;
3602 path->slots[0]++;
3603 if (fatal_signal_pending(current)) {
3604 ret = -EINTR;
3605 goto out;
3607 cond_resched();
3610 /* We have an implicit hole from the last extent found up to i_size. */
3611 if (!found && start < i_size) {
3612 found = find_desired_extent_in_hole(inode, whence,
3613 delalloc_cached_state, start,
3614 i_size - 1, &start);
3615 if (!found)
3616 start = i_size;
3619 out:
3620 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3621 btrfs_free_path(path);
3623 if (ret < 0)
3624 return ret;
3626 if (whence == SEEK_DATA && start >= i_size)
3627 return -ENXIO;
3629 return min_t(loff_t, start, i_size);
3632 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3634 struct inode *inode = file->f_mapping->host;
3636 switch (whence) {
3637 default:
3638 return generic_file_llseek(file, offset, whence);
3639 case SEEK_DATA:
3640 case SEEK_HOLE:
3641 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3642 offset = find_desired_extent(file, offset, whence);
3643 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3644 break;
3647 if (offset < 0)
3648 return offset;
3650 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3653 static int btrfs_file_open(struct inode *inode, struct file *filp)
3655 int ret;
3657 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3659 ret = fsverity_file_open(inode, filp);
3660 if (ret)
3661 return ret;
3662 return generic_file_open(inode, filp);
3665 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3667 ssize_t ret = 0;
3669 if (iocb->ki_flags & IOCB_DIRECT) {
3670 ret = btrfs_direct_read(iocb, to);
3671 if (ret < 0 || !iov_iter_count(to) ||
3672 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3673 return ret;
3676 return filemap_read(iocb, to, ret);
3679 const struct file_operations btrfs_file_operations = {
3680 .llseek = btrfs_file_llseek,
3681 .read_iter = btrfs_file_read_iter,
3682 .splice_read = filemap_splice_read,
3683 .write_iter = btrfs_file_write_iter,
3684 .splice_write = iter_file_splice_write,
3685 .mmap = btrfs_file_mmap,
3686 .open = btrfs_file_open,
3687 .release = btrfs_release_file,
3688 .get_unmapped_area = thp_get_unmapped_area,
3689 .fsync = btrfs_sync_file,
3690 .fallocate = btrfs_fallocate,
3691 .unlocked_ioctl = btrfs_ioctl,
3692 #ifdef CONFIG_COMPAT
3693 .compat_ioctl = btrfs_compat_ioctl,
3694 #endif
3695 .remap_file_range = btrfs_remap_file_range,
3696 .uring_cmd = btrfs_uring_cmd,
3697 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3700 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3702 struct address_space *mapping = inode->vfs_inode.i_mapping;
3703 int ret;
3706 * So with compression we will find and lock a dirty page and clear the
3707 * first one as dirty, setup an async extent, and immediately return
3708 * with the entire range locked but with nobody actually marked with
3709 * writeback. So we can't just filemap_write_and_wait_range() and
3710 * expect it to work since it will just kick off a thread to do the
3711 * actual work. So we need to call filemap_fdatawrite_range _again_
3712 * since it will wait on the page lock, which won't be unlocked until
3713 * after the pages have been marked as writeback and so we're good to go
3714 * from there. We have to do this otherwise we'll miss the ordered
3715 * extents and that results in badness. Please Josef, do not think you
3716 * know better and pull this out at some point in the future, it is
3717 * right and you are wrong.
3719 ret = filemap_fdatawrite_range(mapping, start, end);
3720 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3721 ret = filemap_fdatawrite_range(mapping, start, end);
3723 return ret;