printf: Remove unused 'bprintf'
[drm/drm-misc.git] / fs / btrfs / zoned.c
blob11ed523e528ec2dc233886eb7e2ba0e070dedae1
1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 #include "fs.h"
18 #include "accessors.h"
19 #include "bio.h"
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES 4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
29 * Location of the first zone of superblock logging zone pairs.
31 * - primary superblock: 0B (zone 0)
32 * - first copy: 512G (zone starting at that offset)
33 * - second copy: 4T (zone starting at that offset)
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
46 * Minimum of active zones we need:
48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50 * - 1 zone for tree-log dedicated block group
51 * - 1 zone for relocation
53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58 * We do not expect the zone size to become larger than 8GiB or smaller than
59 * 4MiB in the near future.
61 #define BTRFS_MAX_ZONE_SIZE SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE SZ_4M
64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
71 return (zone->cond == BLK_ZONE_COND_FULL) ||
72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
77 struct blk_zone *zones = data;
79 memcpy(&zones[idx], zone, sizeof(*zone));
81 return 0;
84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85 u64 *wp_ret)
87 bool empty[BTRFS_NR_SB_LOG_ZONES];
88 bool full[BTRFS_NR_SB_LOG_ZONES];
89 sector_t sector;
91 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
94 full[i] = sb_zone_is_full(&zones[i]);
98 * Possible states of log buffer zones
100 * Empty[0] In use[0] Full[0]
101 * Empty[1] * 0 1
102 * In use[1] x x 1
103 * Full[1] 0 0 C
105 * Log position:
106 * *: Special case, no superblock is written
107 * 0: Use write pointer of zones[0]
108 * 1: Use write pointer of zones[1]
109 * C: Compare super blocks from zones[0] and zones[1], use the latest
110 * one determined by generation
111 * x: Invalid state
114 if (empty[0] && empty[1]) {
115 /* Special case to distinguish no superblock to read */
116 *wp_ret = zones[0].start << SECTOR_SHIFT;
117 return -ENOENT;
118 } else if (full[0] && full[1]) {
119 /* Compare two super blocks */
120 struct address_space *mapping = bdev->bd_mapping;
121 struct page *page[BTRFS_NR_SB_LOG_ZONES];
122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
124 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
127 BTRFS_SUPER_INFO_SIZE;
129 page[i] = read_cache_page_gfp(mapping,
130 bytenr >> PAGE_SHIFT, GFP_NOFS);
131 if (IS_ERR(page[i])) {
132 if (i == 1)
133 btrfs_release_disk_super(super[0]);
134 return PTR_ERR(page[i]);
136 super[i] = page_address(page[i]);
139 if (btrfs_super_generation(super[0]) >
140 btrfs_super_generation(super[1]))
141 sector = zones[1].start;
142 else
143 sector = zones[0].start;
145 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146 btrfs_release_disk_super(super[i]);
147 } else if (!full[0] && (empty[1] || full[1])) {
148 sector = zones[0].wp;
149 } else if (full[0]) {
150 sector = zones[1].wp;
151 } else {
152 return -EUCLEAN;
154 *wp_ret = sector << SECTOR_SHIFT;
155 return 0;
159 * Get the first zone number of the superblock mirror
161 static inline u32 sb_zone_number(int shift, int mirror)
163 u64 zone = U64_MAX;
165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166 switch (mirror) {
167 case 0: zone = 0; break;
168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
172 ASSERT(zone <= U32_MAX);
174 return (u32)zone;
177 static inline sector_t zone_start_sector(u32 zone_number,
178 struct block_device *bdev)
180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
183 static inline u64 zone_start_physical(u32 zone_number,
184 struct btrfs_zoned_device_info *zone_info)
186 return (u64)zone_number << zone_info->zone_size_shift;
190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191 * device into static sized chunks and fake a conventional zone on each of
192 * them.
194 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195 struct blk_zone *zones, unsigned int nr_zones)
197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198 sector_t bdev_size = bdev_nr_sectors(device->bdev);
199 unsigned int i;
201 pos >>= SECTOR_SHIFT;
202 for (i = 0; i < nr_zones; i++) {
203 zones[i].start = i * zone_sectors + pos;
204 zones[i].len = zone_sectors;
205 zones[i].capacity = zone_sectors;
206 zones[i].wp = zones[i].start + zone_sectors;
207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208 zones[i].cond = BLK_ZONE_COND_NOT_WP;
210 if (zones[i].wp >= bdev_size) {
211 i++;
212 break;
216 return i;
219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220 struct blk_zone *zones, unsigned int *nr_zones)
222 struct btrfs_zoned_device_info *zinfo = device->zone_info;
223 int ret;
225 if (!*nr_zones)
226 return 0;
228 if (!bdev_is_zoned(device->bdev)) {
229 ret = emulate_report_zones(device, pos, zones, *nr_zones);
230 *nr_zones = ret;
231 return 0;
234 /* Check cache */
235 if (zinfo->zone_cache) {
236 unsigned int i;
237 u32 zno;
239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240 zno = pos >> zinfo->zone_size_shift;
242 * We cannot report zones beyond the zone end. So, it is OK to
243 * cap *nr_zones to at the end.
245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
247 for (i = 0; i < *nr_zones; i++) {
248 struct blk_zone *zone_info;
250 zone_info = &zinfo->zone_cache[zno + i];
251 if (!zone_info->len)
252 break;
255 if (i == *nr_zones) {
256 /* Cache hit on all the zones */
257 memcpy(zones, zinfo->zone_cache + zno,
258 sizeof(*zinfo->zone_cache) * *nr_zones);
259 return 0;
263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264 copy_zone_info_cb, zones);
265 if (ret < 0) {
266 btrfs_err_in_rcu(device->fs_info,
267 "zoned: failed to read zone %llu on %s (devid %llu)",
268 pos, rcu_str_deref(device->name),
269 device->devid);
270 return ret;
272 *nr_zones = ret;
273 if (!ret)
274 return -EIO;
276 /* Populate cache */
277 if (zinfo->zone_cache) {
278 u32 zno = pos >> zinfo->zone_size_shift;
280 memcpy(zinfo->zone_cache + zno, zones,
281 sizeof(*zinfo->zone_cache) * *nr_zones);
284 return 0;
287 /* The emulated zone size is determined from the size of device extent */
288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
290 BTRFS_PATH_AUTO_FREE(path);
291 struct btrfs_root *root = fs_info->dev_root;
292 struct btrfs_key key;
293 struct extent_buffer *leaf;
294 struct btrfs_dev_extent *dext;
295 int ret = 0;
297 key.objectid = 1;
298 key.type = BTRFS_DEV_EXTENT_KEY;
299 key.offset = 0;
301 path = btrfs_alloc_path();
302 if (!path)
303 return -ENOMEM;
305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
306 if (ret < 0)
307 return ret;
309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
310 ret = btrfs_next_leaf(root, path);
311 if (ret < 0)
312 return ret;
313 /* No dev extents at all? Not good */
314 if (ret > 0)
315 return -EUCLEAN;
318 leaf = path->nodes[0];
319 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
320 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
321 return 0;
324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
327 struct btrfs_device *device;
328 int ret = 0;
330 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
331 if (!btrfs_fs_incompat(fs_info, ZONED))
332 return 0;
334 mutex_lock(&fs_devices->device_list_mutex);
335 list_for_each_entry(device, &fs_devices->devices, dev_list) {
336 /* We can skip reading of zone info for missing devices */
337 if (!device->bdev)
338 continue;
340 ret = btrfs_get_dev_zone_info(device, true);
341 if (ret)
342 break;
344 mutex_unlock(&fs_devices->device_list_mutex);
346 return ret;
349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351 struct btrfs_fs_info *fs_info = device->fs_info;
352 struct btrfs_zoned_device_info *zone_info = NULL;
353 struct block_device *bdev = device->bdev;
354 unsigned int max_active_zones;
355 unsigned int nactive;
356 sector_t nr_sectors;
357 sector_t sector = 0;
358 struct blk_zone *zones = NULL;
359 unsigned int i, nreported = 0, nr_zones;
360 sector_t zone_sectors;
361 char *model, *emulated;
362 int ret;
365 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
366 * yet be set.
368 if (!btrfs_fs_incompat(fs_info, ZONED))
369 return 0;
371 if (device->zone_info)
372 return 0;
374 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
375 if (!zone_info)
376 return -ENOMEM;
378 device->zone_info = zone_info;
380 if (!bdev_is_zoned(bdev)) {
381 if (!fs_info->zone_size) {
382 ret = calculate_emulated_zone_size(fs_info);
383 if (ret)
384 goto out;
387 ASSERT(fs_info->zone_size);
388 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
389 } else {
390 zone_sectors = bdev_zone_sectors(bdev);
393 ASSERT(is_power_of_two_u64(zone_sectors));
394 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
396 /* We reject devices with a zone size larger than 8GB */
397 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
398 btrfs_err_in_rcu(fs_info,
399 "zoned: %s: zone size %llu larger than supported maximum %llu",
400 rcu_str_deref(device->name),
401 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
402 ret = -EINVAL;
403 goto out;
404 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
405 btrfs_err_in_rcu(fs_info,
406 "zoned: %s: zone size %llu smaller than supported minimum %u",
407 rcu_str_deref(device->name),
408 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
409 ret = -EINVAL;
410 goto out;
413 nr_sectors = bdev_nr_sectors(bdev);
414 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
415 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
416 if (!IS_ALIGNED(nr_sectors, zone_sectors))
417 zone_info->nr_zones++;
419 max_active_zones = bdev_max_active_zones(bdev);
420 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
421 btrfs_err_in_rcu(fs_info,
422 "zoned: %s: max active zones %u is too small, need at least %u active zones",
423 rcu_str_deref(device->name), max_active_zones,
424 BTRFS_MIN_ACTIVE_ZONES);
425 ret = -EINVAL;
426 goto out;
428 zone_info->max_active_zones = max_active_zones;
430 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
431 if (!zone_info->seq_zones) {
432 ret = -ENOMEM;
433 goto out;
436 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
437 if (!zone_info->empty_zones) {
438 ret = -ENOMEM;
439 goto out;
442 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 if (!zone_info->active_zones) {
444 ret = -ENOMEM;
445 goto out;
448 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
449 if (!zones) {
450 ret = -ENOMEM;
451 goto out;
455 * Enable zone cache only for a zoned device. On a non-zoned device, we
456 * fill the zone info with emulated CONVENTIONAL zones, so no need to
457 * use the cache.
459 if (populate_cache && bdev_is_zoned(device->bdev)) {
460 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
461 sizeof(struct blk_zone));
462 if (!zone_info->zone_cache) {
463 btrfs_err_in_rcu(device->fs_info,
464 "zoned: failed to allocate zone cache for %s",
465 rcu_str_deref(device->name));
466 ret = -ENOMEM;
467 goto out;
471 /* Get zones type */
472 nactive = 0;
473 while (sector < nr_sectors) {
474 nr_zones = BTRFS_REPORT_NR_ZONES;
475 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
476 &nr_zones);
477 if (ret)
478 goto out;
480 for (i = 0; i < nr_zones; i++) {
481 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
482 __set_bit(nreported, zone_info->seq_zones);
483 switch (zones[i].cond) {
484 case BLK_ZONE_COND_EMPTY:
485 __set_bit(nreported, zone_info->empty_zones);
486 break;
487 case BLK_ZONE_COND_IMP_OPEN:
488 case BLK_ZONE_COND_EXP_OPEN:
489 case BLK_ZONE_COND_CLOSED:
490 __set_bit(nreported, zone_info->active_zones);
491 nactive++;
492 break;
494 nreported++;
496 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
499 if (nreported != zone_info->nr_zones) {
500 btrfs_err_in_rcu(device->fs_info,
501 "inconsistent number of zones on %s (%u/%u)",
502 rcu_str_deref(device->name), nreported,
503 zone_info->nr_zones);
504 ret = -EIO;
505 goto out;
508 if (max_active_zones) {
509 if (nactive > max_active_zones) {
510 btrfs_err_in_rcu(device->fs_info,
511 "zoned: %u active zones on %s exceeds max_active_zones %u",
512 nactive, rcu_str_deref(device->name),
513 max_active_zones);
514 ret = -EIO;
515 goto out;
517 atomic_set(&zone_info->active_zones_left,
518 max_active_zones - nactive);
519 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
522 /* Validate superblock log */
523 nr_zones = BTRFS_NR_SB_LOG_ZONES;
524 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
525 u32 sb_zone;
526 u64 sb_wp;
527 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
529 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
530 if (sb_zone + 1 >= zone_info->nr_zones)
531 continue;
533 ret = btrfs_get_dev_zones(device,
534 zone_start_physical(sb_zone, zone_info),
535 &zone_info->sb_zones[sb_pos],
536 &nr_zones);
537 if (ret)
538 goto out;
540 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
541 btrfs_err_in_rcu(device->fs_info,
542 "zoned: failed to read super block log zone info at devid %llu zone %u",
543 device->devid, sb_zone);
544 ret = -EUCLEAN;
545 goto out;
549 * If zones[0] is conventional, always use the beginning of the
550 * zone to record superblock. No need to validate in that case.
552 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
553 BLK_ZONE_TYPE_CONVENTIONAL)
554 continue;
556 ret = sb_write_pointer(device->bdev,
557 &zone_info->sb_zones[sb_pos], &sb_wp);
558 if (ret != -ENOENT && ret) {
559 btrfs_err_in_rcu(device->fs_info,
560 "zoned: super block log zone corrupted devid %llu zone %u",
561 device->devid, sb_zone);
562 ret = -EUCLEAN;
563 goto out;
568 kvfree(zones);
570 if (bdev_is_zoned(bdev)) {
571 model = "host-managed zoned";
572 emulated = "";
573 } else {
574 model = "regular";
575 emulated = "emulated ";
578 btrfs_info_in_rcu(fs_info,
579 "%s block device %s, %u %szones of %llu bytes",
580 model, rcu_str_deref(device->name), zone_info->nr_zones,
581 emulated, zone_info->zone_size);
583 return 0;
585 out:
586 kvfree(zones);
587 btrfs_destroy_dev_zone_info(device);
588 return ret;
591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
593 struct btrfs_zoned_device_info *zone_info = device->zone_info;
595 if (!zone_info)
596 return;
598 bitmap_free(zone_info->active_zones);
599 bitmap_free(zone_info->seq_zones);
600 bitmap_free(zone_info->empty_zones);
601 vfree(zone_info->zone_cache);
602 kfree(zone_info);
603 device->zone_info = NULL;
606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
608 struct btrfs_zoned_device_info *zone_info;
610 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
611 if (!zone_info)
612 return NULL;
614 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
615 if (!zone_info->seq_zones)
616 goto out;
618 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
619 zone_info->nr_zones);
621 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
622 if (!zone_info->empty_zones)
623 goto out;
625 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
626 zone_info->nr_zones);
628 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
629 if (!zone_info->active_zones)
630 goto out;
632 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
633 zone_info->nr_zones);
634 zone_info->zone_cache = NULL;
636 return zone_info;
638 out:
639 bitmap_free(zone_info->seq_zones);
640 bitmap_free(zone_info->empty_zones);
641 bitmap_free(zone_info->active_zones);
642 kfree(zone_info);
643 return NULL;
646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
648 unsigned int nr_zones = 1;
649 int ret;
651 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
652 if (ret != 0 || !nr_zones)
653 return ret ? ret : -EIO;
655 return 0;
658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
660 struct btrfs_device *device;
662 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
663 if (device->bdev && bdev_is_zoned(device->bdev)) {
664 btrfs_err(fs_info,
665 "zoned: mode not enabled but zoned device found: %pg",
666 device->bdev);
667 return -EINVAL;
671 return 0;
674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
676 struct queue_limits *lim = &fs_info->limits;
677 struct btrfs_device *device;
678 u64 zone_size = 0;
679 int ret;
682 * Host-Managed devices can't be used without the ZONED flag. With the
683 * ZONED all devices can be used, using zone emulation if required.
685 if (!btrfs_fs_incompat(fs_info, ZONED))
686 return btrfs_check_for_zoned_device(fs_info);
688 blk_set_stacking_limits(lim);
690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 struct btrfs_zoned_device_info *zone_info = device->zone_info;
693 if (!device->bdev)
694 continue;
696 if (!zone_size) {
697 zone_size = zone_info->zone_size;
698 } else if (zone_info->zone_size != zone_size) {
699 btrfs_err(fs_info,
700 "zoned: unequal block device zone sizes: have %llu found %llu",
701 zone_info->zone_size, zone_size);
702 return -EINVAL;
706 * With the zoned emulation, we can have non-zoned device on the
707 * zoned mode. In this case, we don't have a valid max zone
708 * append size.
710 if (bdev_is_zoned(device->bdev))
711 blk_stack_limits(lim, bdev_limits(device->bdev), 0);
714 ret = blk_validate_limits(lim);
715 if (ret) {
716 btrfs_err(fs_info, "zoned: failed to validate queue limits");
717 return ret;
721 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
722 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
723 * check the alignment here.
725 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
726 btrfs_err(fs_info,
727 "zoned: zone size %llu not aligned to stripe %u",
728 zone_size, BTRFS_STRIPE_LEN);
729 return -EINVAL;
732 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
733 btrfs_err(fs_info, "zoned: mixed block groups not supported");
734 return -EINVAL;
737 fs_info->zone_size = zone_size;
739 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
740 * Technically, we can have multiple pages per segment. But, since
741 * we add the pages one by one to a bio, and cannot increase the
742 * metadata reservation even if it increases the number of extents, it
743 * is safe to stick with the limit.
745 fs_info->max_zone_append_size = ALIGN_DOWN(
746 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
747 (u64)lim->max_sectors << SECTOR_SHIFT,
748 (u64)lim->max_segments << PAGE_SHIFT),
749 fs_info->sectorsize);
750 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
751 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
752 fs_info->max_extent_size = fs_info->max_zone_append_size;
755 * Check mount options here, because we might change fs_info->zoned
756 * from fs_info->zone_size.
758 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
759 if (ret)
760 return ret;
762 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
763 return 0;
766 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
767 unsigned long long *mount_opt)
769 if (!btrfs_is_zoned(info))
770 return 0;
773 * Space cache writing is not COWed. Disable that to avoid write errors
774 * in sequential zones.
776 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
777 btrfs_err(info, "zoned: space cache v1 is not supported");
778 return -EINVAL;
781 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
782 btrfs_err(info, "zoned: NODATACOW not supported");
783 return -EINVAL;
786 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
787 btrfs_info(info,
788 "zoned: async discard ignored and disabled for zoned mode");
789 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
792 return 0;
795 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
796 int rw, u64 *bytenr_ret)
798 u64 wp;
799 int ret;
801 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
802 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
803 return 0;
806 ret = sb_write_pointer(bdev, zones, &wp);
807 if (ret != -ENOENT && ret < 0)
808 return ret;
810 if (rw == WRITE) {
811 struct blk_zone *reset = NULL;
813 if (wp == zones[0].start << SECTOR_SHIFT)
814 reset = &zones[0];
815 else if (wp == zones[1].start << SECTOR_SHIFT)
816 reset = &zones[1];
818 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
819 unsigned int nofs_flags;
821 ASSERT(sb_zone_is_full(reset));
823 nofs_flags = memalloc_nofs_save();
824 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
825 reset->start, reset->len);
826 memalloc_nofs_restore(nofs_flags);
827 if (ret)
828 return ret;
830 reset->cond = BLK_ZONE_COND_EMPTY;
831 reset->wp = reset->start;
833 } else if (ret != -ENOENT) {
835 * For READ, we want the previous one. Move write pointer to
836 * the end of a zone, if it is at the head of a zone.
838 u64 zone_end = 0;
840 if (wp == zones[0].start << SECTOR_SHIFT)
841 zone_end = zones[1].start + zones[1].capacity;
842 else if (wp == zones[1].start << SECTOR_SHIFT)
843 zone_end = zones[0].start + zones[0].capacity;
844 if (zone_end)
845 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
846 BTRFS_SUPER_INFO_SIZE);
848 wp -= BTRFS_SUPER_INFO_SIZE;
851 *bytenr_ret = wp;
852 return 0;
856 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
857 u64 *bytenr_ret)
859 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
860 sector_t zone_sectors;
861 u32 sb_zone;
862 int ret;
863 u8 zone_sectors_shift;
864 sector_t nr_sectors;
865 u32 nr_zones;
867 if (!bdev_is_zoned(bdev)) {
868 *bytenr_ret = btrfs_sb_offset(mirror);
869 return 0;
872 ASSERT(rw == READ || rw == WRITE);
874 zone_sectors = bdev_zone_sectors(bdev);
875 if (!is_power_of_2(zone_sectors))
876 return -EINVAL;
877 zone_sectors_shift = ilog2(zone_sectors);
878 nr_sectors = bdev_nr_sectors(bdev);
879 nr_zones = nr_sectors >> zone_sectors_shift;
881 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
882 if (sb_zone + 1 >= nr_zones)
883 return -ENOENT;
885 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
886 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
887 zones);
888 if (ret < 0)
889 return ret;
890 if (ret != BTRFS_NR_SB_LOG_ZONES)
891 return -EIO;
893 return sb_log_location(bdev, zones, rw, bytenr_ret);
896 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
897 u64 *bytenr_ret)
899 struct btrfs_zoned_device_info *zinfo = device->zone_info;
900 u32 zone_num;
903 * For a zoned filesystem on a non-zoned block device, use the same
904 * super block locations as regular filesystem. Doing so, the super
905 * block can always be retrieved and the zoned flag of the volume
906 * detected from the super block information.
908 if (!bdev_is_zoned(device->bdev)) {
909 *bytenr_ret = btrfs_sb_offset(mirror);
910 return 0;
913 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
914 if (zone_num + 1 >= zinfo->nr_zones)
915 return -ENOENT;
917 return sb_log_location(device->bdev,
918 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
919 rw, bytenr_ret);
922 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
923 int mirror)
925 u32 zone_num;
927 if (!zinfo)
928 return false;
930 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
931 if (zone_num + 1 >= zinfo->nr_zones)
932 return false;
934 if (!test_bit(zone_num, zinfo->seq_zones))
935 return false;
937 return true;
940 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
942 struct btrfs_zoned_device_info *zinfo = device->zone_info;
943 struct blk_zone *zone;
944 int i;
946 if (!is_sb_log_zone(zinfo, mirror))
947 return 0;
949 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
950 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
951 /* Advance the next zone */
952 if (zone->cond == BLK_ZONE_COND_FULL) {
953 zone++;
954 continue;
957 if (zone->cond == BLK_ZONE_COND_EMPTY)
958 zone->cond = BLK_ZONE_COND_IMP_OPEN;
960 zone->wp += SUPER_INFO_SECTORS;
962 if (sb_zone_is_full(zone)) {
964 * No room left to write new superblock. Since
965 * superblock is written with REQ_SYNC, it is safe to
966 * finish the zone now.
968 * If the write pointer is exactly at the capacity,
969 * explicit ZONE_FINISH is not necessary.
971 if (zone->wp != zone->start + zone->capacity) {
972 unsigned int nofs_flags;
973 int ret;
975 nofs_flags = memalloc_nofs_save();
976 ret = blkdev_zone_mgmt(device->bdev,
977 REQ_OP_ZONE_FINISH, zone->start,
978 zone->len);
979 memalloc_nofs_restore(nofs_flags);
980 if (ret)
981 return ret;
984 zone->wp = zone->start + zone->len;
985 zone->cond = BLK_ZONE_COND_FULL;
987 return 0;
990 /* All the zones are FULL. Should not reach here. */
991 ASSERT(0);
992 return -EIO;
995 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
997 unsigned int nofs_flags;
998 sector_t zone_sectors;
999 sector_t nr_sectors;
1000 u8 zone_sectors_shift;
1001 u32 sb_zone;
1002 u32 nr_zones;
1003 int ret;
1005 zone_sectors = bdev_zone_sectors(bdev);
1006 zone_sectors_shift = ilog2(zone_sectors);
1007 nr_sectors = bdev_nr_sectors(bdev);
1008 nr_zones = nr_sectors >> zone_sectors_shift;
1010 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1011 if (sb_zone + 1 >= nr_zones)
1012 return -ENOENT;
1014 nofs_flags = memalloc_nofs_save();
1015 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1016 zone_start_sector(sb_zone, bdev),
1017 zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1018 memalloc_nofs_restore(nofs_flags);
1019 return ret;
1023 * Find allocatable zones within a given region.
1025 * @device: the device to allocate a region on
1026 * @hole_start: the position of the hole to allocate the region
1027 * @num_bytes: size of wanted region
1028 * @hole_end: the end of the hole
1029 * @return: position of allocatable zones
1031 * Allocatable region should not contain any superblock locations.
1033 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1034 u64 hole_end, u64 num_bytes)
1036 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1037 const u8 shift = zinfo->zone_size_shift;
1038 u64 nzones = num_bytes >> shift;
1039 u64 pos = hole_start;
1040 u64 begin, end;
1041 bool have_sb;
1042 int i;
1044 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1045 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1047 while (pos < hole_end) {
1048 begin = pos >> shift;
1049 end = begin + nzones;
1051 if (end > zinfo->nr_zones)
1052 return hole_end;
1054 /* Check if zones in the region are all empty */
1055 if (btrfs_dev_is_sequential(device, pos) &&
1056 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1057 pos += zinfo->zone_size;
1058 continue;
1061 have_sb = false;
1062 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1063 u32 sb_zone;
1064 u64 sb_pos;
1066 sb_zone = sb_zone_number(shift, i);
1067 if (!(end <= sb_zone ||
1068 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1069 have_sb = true;
1070 pos = zone_start_physical(
1071 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1072 break;
1075 /* We also need to exclude regular superblock positions */
1076 sb_pos = btrfs_sb_offset(i);
1077 if (!(pos + num_bytes <= sb_pos ||
1078 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1079 have_sb = true;
1080 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1081 zinfo->zone_size);
1082 break;
1085 if (!have_sb)
1086 break;
1089 return pos;
1092 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1094 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1095 unsigned int zno = (pos >> zone_info->zone_size_shift);
1097 /* We can use any number of zones */
1098 if (zone_info->max_active_zones == 0)
1099 return true;
1101 if (!test_bit(zno, zone_info->active_zones)) {
1102 /* Active zone left? */
1103 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1104 return false;
1105 if (test_and_set_bit(zno, zone_info->active_zones)) {
1106 /* Someone already set the bit */
1107 atomic_inc(&zone_info->active_zones_left);
1111 return true;
1114 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1116 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1117 unsigned int zno = (pos >> zone_info->zone_size_shift);
1119 /* We can use any number of zones */
1120 if (zone_info->max_active_zones == 0)
1121 return;
1123 if (test_and_clear_bit(zno, zone_info->active_zones))
1124 atomic_inc(&zone_info->active_zones_left);
1127 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1128 u64 length, u64 *bytes)
1130 unsigned int nofs_flags;
1131 int ret;
1133 *bytes = 0;
1134 nofs_flags = memalloc_nofs_save();
1135 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1136 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1137 memalloc_nofs_restore(nofs_flags);
1138 if (ret)
1139 return ret;
1141 *bytes = length;
1142 while (length) {
1143 btrfs_dev_set_zone_empty(device, physical);
1144 btrfs_dev_clear_active_zone(device, physical);
1145 physical += device->zone_info->zone_size;
1146 length -= device->zone_info->zone_size;
1149 return 0;
1152 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1154 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1155 const u8 shift = zinfo->zone_size_shift;
1156 unsigned long begin = start >> shift;
1157 unsigned long nbits = size >> shift;
1158 u64 pos;
1159 int ret;
1161 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1162 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1164 if (begin + nbits > zinfo->nr_zones)
1165 return -ERANGE;
1167 /* All the zones are conventional */
1168 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1169 return 0;
1171 /* All the zones are sequential and empty */
1172 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1173 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1174 return 0;
1176 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1177 u64 reset_bytes;
1179 if (!btrfs_dev_is_sequential(device, pos) ||
1180 btrfs_dev_is_empty_zone(device, pos))
1181 continue;
1183 /* Free regions should be empty */
1184 btrfs_warn_in_rcu(
1185 device->fs_info,
1186 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1187 rcu_str_deref(device->name), device->devid, pos >> shift);
1188 WARN_ON_ONCE(1);
1190 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1191 &reset_bytes);
1192 if (ret)
1193 return ret;
1196 return 0;
1200 * Calculate an allocation pointer from the extent allocation information
1201 * for a block group consist of conventional zones. It is pointed to the
1202 * end of the highest addressed extent in the block group as an allocation
1203 * offset.
1205 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1206 u64 *offset_ret, bool new)
1208 struct btrfs_fs_info *fs_info = cache->fs_info;
1209 struct btrfs_root *root;
1210 BTRFS_PATH_AUTO_FREE(path);
1211 struct btrfs_key key;
1212 struct btrfs_key found_key;
1213 int ret;
1214 u64 length;
1217 * Avoid tree lookups for a new block group, there's no use for it.
1218 * It must always be 0.
1220 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1221 * For new a block group, this function is called from
1222 * btrfs_make_block_group() which is already taking the chunk mutex.
1223 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1224 * buffer locks to avoid deadlock.
1226 if (new) {
1227 *offset_ret = 0;
1228 return 0;
1231 path = btrfs_alloc_path();
1232 if (!path)
1233 return -ENOMEM;
1235 key.objectid = cache->start + cache->length;
1236 key.type = 0;
1237 key.offset = 0;
1239 root = btrfs_extent_root(fs_info, key.objectid);
1240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1241 /* We should not find the exact match */
1242 if (!ret)
1243 ret = -EUCLEAN;
1244 if (ret < 0)
1245 return ret;
1247 ret = btrfs_previous_extent_item(root, path, cache->start);
1248 if (ret) {
1249 if (ret == 1) {
1250 ret = 0;
1251 *offset_ret = 0;
1253 return ret;
1256 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1258 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1259 length = found_key.offset;
1260 else
1261 length = fs_info->nodesize;
1263 if (!(found_key.objectid >= cache->start &&
1264 found_key.objectid + length <= cache->start + cache->length)) {
1265 return -EUCLEAN;
1267 *offset_ret = found_key.objectid + length - cache->start;
1268 return 0;
1271 struct zone_info {
1272 u64 physical;
1273 u64 capacity;
1274 u64 alloc_offset;
1277 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1278 struct zone_info *info, unsigned long *active,
1279 struct btrfs_chunk_map *map)
1281 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1282 struct btrfs_device *device;
1283 int dev_replace_is_ongoing = 0;
1284 unsigned int nofs_flag;
1285 struct blk_zone zone;
1286 int ret;
1288 info->physical = map->stripes[zone_idx].physical;
1290 down_read(&dev_replace->rwsem);
1291 device = map->stripes[zone_idx].dev;
1293 if (!device->bdev) {
1294 up_read(&dev_replace->rwsem);
1295 info->alloc_offset = WP_MISSING_DEV;
1296 return 0;
1299 /* Consider a zone as active if we can allow any number of active zones. */
1300 if (!device->zone_info->max_active_zones)
1301 __set_bit(zone_idx, active);
1303 if (!btrfs_dev_is_sequential(device, info->physical)) {
1304 up_read(&dev_replace->rwsem);
1305 info->alloc_offset = WP_CONVENTIONAL;
1306 return 0;
1309 /* This zone will be used for allocation, so mark this zone non-empty. */
1310 btrfs_dev_clear_zone_empty(device, info->physical);
1312 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1313 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1314 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1317 * The group is mapped to a sequential zone. Get the zone write pointer
1318 * to determine the allocation offset within the zone.
1320 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1321 nofs_flag = memalloc_nofs_save();
1322 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1323 memalloc_nofs_restore(nofs_flag);
1324 if (ret) {
1325 up_read(&dev_replace->rwsem);
1326 if (ret != -EIO && ret != -EOPNOTSUPP)
1327 return ret;
1328 info->alloc_offset = WP_MISSING_DEV;
1329 return 0;
1332 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1333 btrfs_err_in_rcu(fs_info,
1334 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1335 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1336 device->devid);
1337 up_read(&dev_replace->rwsem);
1338 return -EIO;
1341 info->capacity = (zone.capacity << SECTOR_SHIFT);
1343 switch (zone.cond) {
1344 case BLK_ZONE_COND_OFFLINE:
1345 case BLK_ZONE_COND_READONLY:
1346 btrfs_err_in_rcu(fs_info,
1347 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1348 (info->physical >> device->zone_info->zone_size_shift),
1349 rcu_str_deref(device->name), device->devid);
1350 info->alloc_offset = WP_MISSING_DEV;
1351 break;
1352 case BLK_ZONE_COND_EMPTY:
1353 info->alloc_offset = 0;
1354 break;
1355 case BLK_ZONE_COND_FULL:
1356 info->alloc_offset = info->capacity;
1357 break;
1358 default:
1359 /* Partially used zone. */
1360 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1361 __set_bit(zone_idx, active);
1362 break;
1365 up_read(&dev_replace->rwsem);
1367 return 0;
1370 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1371 struct zone_info *info,
1372 unsigned long *active)
1374 if (info->alloc_offset == WP_MISSING_DEV) {
1375 btrfs_err(bg->fs_info,
1376 "zoned: cannot recover write pointer for zone %llu",
1377 info->physical);
1378 return -EIO;
1381 bg->alloc_offset = info->alloc_offset;
1382 bg->zone_capacity = info->capacity;
1383 if (test_bit(0, active))
1384 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1385 return 0;
1388 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1389 struct btrfs_chunk_map *map,
1390 struct zone_info *zone_info,
1391 unsigned long *active)
1393 struct btrfs_fs_info *fs_info = bg->fs_info;
1395 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1396 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1397 return -EINVAL;
1400 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1402 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1403 btrfs_err(bg->fs_info,
1404 "zoned: cannot recover write pointer for zone %llu",
1405 zone_info[0].physical);
1406 return -EIO;
1408 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1409 btrfs_err(bg->fs_info,
1410 "zoned: cannot recover write pointer for zone %llu",
1411 zone_info[1].physical);
1412 return -EIO;
1414 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1415 btrfs_err(bg->fs_info,
1416 "zoned: write pointer offset mismatch of zones in DUP profile");
1417 return -EIO;
1420 if (test_bit(0, active) != test_bit(1, active)) {
1421 if (!btrfs_zone_activate(bg))
1422 return -EIO;
1423 } else if (test_bit(0, active)) {
1424 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1427 bg->alloc_offset = zone_info[0].alloc_offset;
1428 return 0;
1431 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1432 struct btrfs_chunk_map *map,
1433 struct zone_info *zone_info,
1434 unsigned long *active)
1436 struct btrfs_fs_info *fs_info = bg->fs_info;
1437 int i;
1439 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1440 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1441 btrfs_bg_type_to_raid_name(map->type));
1442 return -EINVAL;
1445 /* In case a device is missing we have a cap of 0, so don't use it. */
1446 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1448 for (i = 0; i < map->num_stripes; i++) {
1449 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1450 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1451 continue;
1453 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1454 !btrfs_test_opt(fs_info, DEGRADED)) {
1455 btrfs_err(fs_info,
1456 "zoned: write pointer offset mismatch of zones in %s profile",
1457 btrfs_bg_type_to_raid_name(map->type));
1458 return -EIO;
1460 if (test_bit(0, active) != test_bit(i, active)) {
1461 if (!btrfs_test_opt(fs_info, DEGRADED) &&
1462 !btrfs_zone_activate(bg)) {
1463 return -EIO;
1465 } else {
1466 if (test_bit(0, active))
1467 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1471 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1472 bg->alloc_offset = zone_info[0].alloc_offset;
1473 else
1474 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1476 return 0;
1479 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1480 struct btrfs_chunk_map *map,
1481 struct zone_info *zone_info,
1482 unsigned long *active)
1484 struct btrfs_fs_info *fs_info = bg->fs_info;
1486 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1487 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1488 btrfs_bg_type_to_raid_name(map->type));
1489 return -EINVAL;
1492 for (int i = 0; i < map->num_stripes; i++) {
1493 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1494 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1495 continue;
1497 if (test_bit(0, active) != test_bit(i, active)) {
1498 if (!btrfs_zone_activate(bg))
1499 return -EIO;
1500 } else {
1501 if (test_bit(0, active))
1502 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1504 bg->zone_capacity += zone_info[i].capacity;
1505 bg->alloc_offset += zone_info[i].alloc_offset;
1508 return 0;
1511 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1512 struct btrfs_chunk_map *map,
1513 struct zone_info *zone_info,
1514 unsigned long *active)
1516 struct btrfs_fs_info *fs_info = bg->fs_info;
1518 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1519 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1520 btrfs_bg_type_to_raid_name(map->type));
1521 return -EINVAL;
1524 for (int i = 0; i < map->num_stripes; i++) {
1525 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1526 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1527 continue;
1529 if (test_bit(0, active) != test_bit(i, active)) {
1530 if (!btrfs_zone_activate(bg))
1531 return -EIO;
1532 } else {
1533 if (test_bit(0, active))
1534 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1537 if ((i % map->sub_stripes) == 0) {
1538 bg->zone_capacity += zone_info[i].capacity;
1539 bg->alloc_offset += zone_info[i].alloc_offset;
1543 return 0;
1546 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1548 struct btrfs_fs_info *fs_info = cache->fs_info;
1549 struct btrfs_chunk_map *map;
1550 u64 logical = cache->start;
1551 u64 length = cache->length;
1552 struct zone_info *zone_info = NULL;
1553 int ret;
1554 int i;
1555 unsigned long *active = NULL;
1556 u64 last_alloc = 0;
1557 u32 num_sequential = 0, num_conventional = 0;
1558 u64 profile;
1560 if (!btrfs_is_zoned(fs_info))
1561 return 0;
1563 /* Sanity check */
1564 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1565 btrfs_err(fs_info,
1566 "zoned: block group %llu len %llu unaligned to zone size %llu",
1567 logical, length, fs_info->zone_size);
1568 return -EIO;
1571 map = btrfs_find_chunk_map(fs_info, logical, length);
1572 if (!map)
1573 return -EINVAL;
1575 cache->physical_map = map;
1577 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1578 if (!zone_info) {
1579 ret = -ENOMEM;
1580 goto out;
1583 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1584 if (!active) {
1585 ret = -ENOMEM;
1586 goto out;
1589 for (i = 0; i < map->num_stripes; i++) {
1590 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1591 if (ret)
1592 goto out;
1594 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1595 num_conventional++;
1596 else
1597 num_sequential++;
1600 if (num_sequential > 0)
1601 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1603 if (num_conventional > 0) {
1604 /* Zone capacity is always zone size in emulation */
1605 cache->zone_capacity = cache->length;
1606 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1607 if (ret) {
1608 btrfs_err(fs_info,
1609 "zoned: failed to determine allocation offset of bg %llu",
1610 cache->start);
1611 goto out;
1612 } else if (map->num_stripes == num_conventional) {
1613 cache->alloc_offset = last_alloc;
1614 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1615 goto out;
1619 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1620 switch (profile) {
1621 case 0: /* single */
1622 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1623 break;
1624 case BTRFS_BLOCK_GROUP_DUP:
1625 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1626 break;
1627 case BTRFS_BLOCK_GROUP_RAID1:
1628 case BTRFS_BLOCK_GROUP_RAID1C3:
1629 case BTRFS_BLOCK_GROUP_RAID1C4:
1630 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1631 break;
1632 case BTRFS_BLOCK_GROUP_RAID0:
1633 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1634 break;
1635 case BTRFS_BLOCK_GROUP_RAID10:
1636 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1637 break;
1638 case BTRFS_BLOCK_GROUP_RAID5:
1639 case BTRFS_BLOCK_GROUP_RAID6:
1640 default:
1641 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1642 btrfs_bg_type_to_raid_name(map->type));
1643 ret = -EINVAL;
1644 goto out;
1647 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1648 profile != BTRFS_BLOCK_GROUP_RAID10) {
1650 * Detected broken write pointer. Make this block group
1651 * unallocatable by setting the allocation pointer at the end of
1652 * allocatable region. Relocating this block group will fix the
1653 * mismatch.
1655 * Currently, we cannot handle RAID0 or RAID10 case like this
1656 * because we don't have a proper zone_capacity value. But,
1657 * reading from this block group won't work anyway by a missing
1658 * stripe.
1660 cache->alloc_offset = cache->zone_capacity;
1661 ret = 0;
1664 out:
1665 /* Reject non SINGLE data profiles without RST */
1666 if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1667 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1668 !fs_info->stripe_root) {
1669 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1670 btrfs_bg_type_to_raid_name(map->type));
1671 return -EINVAL;
1674 if (cache->alloc_offset > cache->zone_capacity) {
1675 btrfs_err(fs_info,
1676 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1677 cache->alloc_offset, cache->zone_capacity,
1678 cache->start);
1679 ret = -EIO;
1682 /* An extent is allocated after the write pointer */
1683 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1684 btrfs_err(fs_info,
1685 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1686 logical, last_alloc, cache->alloc_offset);
1687 ret = -EIO;
1690 if (!ret) {
1691 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1692 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1693 btrfs_get_block_group(cache);
1694 spin_lock(&fs_info->zone_active_bgs_lock);
1695 list_add_tail(&cache->active_bg_list,
1696 &fs_info->zone_active_bgs);
1697 spin_unlock(&fs_info->zone_active_bgs_lock);
1699 } else {
1700 btrfs_free_chunk_map(cache->physical_map);
1701 cache->physical_map = NULL;
1703 bitmap_free(active);
1704 kfree(zone_info);
1706 return ret;
1709 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1711 u64 unusable, free;
1713 if (!btrfs_is_zoned(cache->fs_info))
1714 return;
1716 WARN_ON(cache->bytes_super != 0);
1717 unusable = (cache->alloc_offset - cache->used) +
1718 (cache->length - cache->zone_capacity);
1719 free = cache->zone_capacity - cache->alloc_offset;
1721 /* We only need ->free_space in ALLOC_SEQ block groups */
1722 cache->cached = BTRFS_CACHE_FINISHED;
1723 cache->free_space_ctl->free_space = free;
1724 cache->zone_unusable = unusable;
1727 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1729 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1730 struct btrfs_inode *inode = bbio->inode;
1731 struct btrfs_fs_info *fs_info = bbio->fs_info;
1732 struct btrfs_block_group *cache;
1733 bool ret = false;
1735 if (!btrfs_is_zoned(fs_info))
1736 return false;
1738 if (!inode || !is_data_inode(inode))
1739 return false;
1741 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1742 return false;
1745 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1746 * extent layout the relocation code has.
1747 * Furthermore we have set aside own block-group from which only the
1748 * relocation "process" can allocate and make sure only one process at a
1749 * time can add pages to an extent that gets relocated, so it's safe to
1750 * use regular REQ_OP_WRITE for this special case.
1752 if (btrfs_is_data_reloc_root(inode->root))
1753 return false;
1755 cache = btrfs_lookup_block_group(fs_info, start);
1756 ASSERT(cache);
1757 if (!cache)
1758 return false;
1760 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1761 btrfs_put_block_group(cache);
1763 return ret;
1766 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1768 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1769 struct btrfs_ordered_sum *sum = bbio->sums;
1771 if (physical < bbio->orig_physical)
1772 sum->logical -= bbio->orig_physical - physical;
1773 else
1774 sum->logical += physical - bbio->orig_physical;
1777 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1778 u64 logical)
1780 struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1781 struct extent_map *em;
1783 ordered->disk_bytenr = logical;
1785 write_lock(&em_tree->lock);
1786 em = search_extent_mapping(em_tree, ordered->file_offset,
1787 ordered->num_bytes);
1788 /* The em should be a new COW extent, thus it should not have an offset. */
1789 ASSERT(em->offset == 0);
1790 em->disk_bytenr = logical;
1791 free_extent_map(em);
1792 write_unlock(&em_tree->lock);
1795 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1796 u64 logical, u64 len)
1798 struct btrfs_ordered_extent *new;
1800 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1801 split_extent_map(ordered->inode, ordered->file_offset,
1802 ordered->num_bytes, len, logical))
1803 return false;
1805 new = btrfs_split_ordered_extent(ordered, len);
1806 if (IS_ERR(new))
1807 return false;
1808 new->disk_bytenr = logical;
1809 btrfs_finish_one_ordered(new);
1810 return true;
1813 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1815 struct btrfs_inode *inode = ordered->inode;
1816 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1817 struct btrfs_ordered_sum *sum;
1818 u64 logical, len;
1821 * Write to pre-allocated region is for the data relocation, and so
1822 * it should use WRITE operation. No split/rewrite are necessary.
1824 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1825 return;
1827 ASSERT(!list_empty(&ordered->list));
1828 /* The ordered->list can be empty in the above pre-alloc case. */
1829 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1830 logical = sum->logical;
1831 len = sum->len;
1833 while (len < ordered->disk_num_bytes) {
1834 sum = list_next_entry(sum, list);
1835 if (sum->logical == logical + len) {
1836 len += sum->len;
1837 continue;
1839 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1840 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1841 btrfs_err(fs_info, "failed to split ordered extent");
1842 goto out;
1844 logical = sum->logical;
1845 len = sum->len;
1848 if (ordered->disk_bytenr != logical)
1849 btrfs_rewrite_logical_zoned(ordered, logical);
1851 out:
1853 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1854 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1855 * addresses and don't contain actual checksums. We thus must free them
1856 * here so that we don't attempt to log the csums later.
1858 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1859 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1860 while ((sum = list_first_entry_or_null(&ordered->list,
1861 typeof(*sum), list))) {
1862 list_del(&sum->list);
1863 kfree(sum);
1868 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1869 struct btrfs_block_group **active_bg)
1871 const struct writeback_control *wbc = ctx->wbc;
1872 struct btrfs_block_group *block_group = ctx->zoned_bg;
1873 struct btrfs_fs_info *fs_info = block_group->fs_info;
1875 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1876 return true;
1878 if (fs_info->treelog_bg == block_group->start) {
1879 if (!btrfs_zone_activate(block_group)) {
1880 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1882 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1883 return false;
1885 } else if (*active_bg != block_group) {
1886 struct btrfs_block_group *tgt = *active_bg;
1888 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1889 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1891 if (tgt) {
1893 * If there is an unsent IO left in the allocated area,
1894 * we cannot wait for them as it may cause a deadlock.
1896 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1897 if (wbc->sync_mode == WB_SYNC_NONE ||
1898 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1899 return false;
1902 /* Pivot active metadata/system block group. */
1903 btrfs_zoned_meta_io_unlock(fs_info);
1904 wait_eb_writebacks(tgt);
1905 do_zone_finish(tgt, true);
1906 btrfs_zoned_meta_io_lock(fs_info);
1907 if (*active_bg == tgt) {
1908 btrfs_put_block_group(tgt);
1909 *active_bg = NULL;
1912 if (!btrfs_zone_activate(block_group))
1913 return false;
1914 if (*active_bg != block_group) {
1915 ASSERT(*active_bg == NULL);
1916 *active_bg = block_group;
1917 btrfs_get_block_group(block_group);
1921 return true;
1925 * Check if @ctx->eb is aligned to the write pointer.
1927 * Return:
1928 * 0: @ctx->eb is at the write pointer. You can write it.
1929 * -EAGAIN: There is a hole. The caller should handle the case.
1930 * -EBUSY: There is a hole, but the caller can just bail out.
1932 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1933 struct btrfs_eb_write_context *ctx)
1935 const struct writeback_control *wbc = ctx->wbc;
1936 const struct extent_buffer *eb = ctx->eb;
1937 struct btrfs_block_group *block_group = ctx->zoned_bg;
1939 if (!btrfs_is_zoned(fs_info))
1940 return 0;
1942 if (block_group) {
1943 if (block_group->start > eb->start ||
1944 block_group->start + block_group->length <= eb->start) {
1945 btrfs_put_block_group(block_group);
1946 block_group = NULL;
1947 ctx->zoned_bg = NULL;
1951 if (!block_group) {
1952 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1953 if (!block_group)
1954 return 0;
1955 ctx->zoned_bg = block_group;
1958 if (block_group->meta_write_pointer == eb->start) {
1959 struct btrfs_block_group **tgt;
1961 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1962 return 0;
1964 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1965 tgt = &fs_info->active_system_bg;
1966 else
1967 tgt = &fs_info->active_meta_bg;
1968 if (check_bg_is_active(ctx, tgt))
1969 return 0;
1973 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1974 * start writing this eb. In that case, we can just bail out.
1976 if (block_group->meta_write_pointer > eb->start)
1977 return -EBUSY;
1979 /* If for_sync, this hole will be filled with transaction commit. */
1980 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1981 return -EAGAIN;
1982 return -EBUSY;
1985 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1987 if (!btrfs_dev_is_sequential(device, physical))
1988 return -EOPNOTSUPP;
1990 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1991 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1994 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1995 struct blk_zone *zone)
1997 struct btrfs_io_context *bioc = NULL;
1998 u64 mapped_length = PAGE_SIZE;
1999 unsigned int nofs_flag;
2000 int nmirrors;
2001 int i, ret;
2003 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2004 &mapped_length, &bioc, NULL, NULL);
2005 if (ret || !bioc || mapped_length < PAGE_SIZE) {
2006 ret = -EIO;
2007 goto out_put_bioc;
2010 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2011 ret = -EINVAL;
2012 goto out_put_bioc;
2015 nofs_flag = memalloc_nofs_save();
2016 nmirrors = (int)bioc->num_stripes;
2017 for (i = 0; i < nmirrors; i++) {
2018 u64 physical = bioc->stripes[i].physical;
2019 struct btrfs_device *dev = bioc->stripes[i].dev;
2021 /* Missing device */
2022 if (!dev->bdev)
2023 continue;
2025 ret = btrfs_get_dev_zone(dev, physical, zone);
2026 /* Failing device */
2027 if (ret == -EIO || ret == -EOPNOTSUPP)
2028 continue;
2029 break;
2031 memalloc_nofs_restore(nofs_flag);
2032 out_put_bioc:
2033 btrfs_put_bioc(bioc);
2034 return ret;
2038 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2039 * filling zeros between @physical_pos to a write pointer of dev-replace
2040 * source device.
2042 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2043 u64 physical_start, u64 physical_pos)
2045 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2046 struct blk_zone zone;
2047 u64 length;
2048 u64 wp;
2049 int ret;
2051 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2052 return 0;
2054 ret = read_zone_info(fs_info, logical, &zone);
2055 if (ret)
2056 return ret;
2058 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2060 if (physical_pos == wp)
2061 return 0;
2063 if (physical_pos > wp)
2064 return -EUCLEAN;
2066 length = wp - physical_pos;
2067 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2071 * Activate block group and underlying device zones
2073 * @block_group: the block group to activate
2075 * Return: true on success, false otherwise
2077 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2079 struct btrfs_fs_info *fs_info = block_group->fs_info;
2080 struct btrfs_chunk_map *map;
2081 struct btrfs_device *device;
2082 u64 physical;
2083 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2084 bool ret;
2085 int i;
2087 if (!btrfs_is_zoned(block_group->fs_info))
2088 return true;
2090 map = block_group->physical_map;
2092 spin_lock(&fs_info->zone_active_bgs_lock);
2093 spin_lock(&block_group->lock);
2094 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2095 ret = true;
2096 goto out_unlock;
2099 /* No space left */
2100 if (btrfs_zoned_bg_is_full(block_group)) {
2101 ret = false;
2102 goto out_unlock;
2105 for (i = 0; i < map->num_stripes; i++) {
2106 struct btrfs_zoned_device_info *zinfo;
2107 int reserved = 0;
2109 device = map->stripes[i].dev;
2110 physical = map->stripes[i].physical;
2111 zinfo = device->zone_info;
2113 if (zinfo->max_active_zones == 0)
2114 continue;
2116 if (is_data)
2117 reserved = zinfo->reserved_active_zones;
2119 * For the data block group, leave active zones for one
2120 * metadata block group and one system block group.
2122 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2123 ret = false;
2124 goto out_unlock;
2127 if (!btrfs_dev_set_active_zone(device, physical)) {
2128 /* Cannot activate the zone */
2129 ret = false;
2130 goto out_unlock;
2132 if (!is_data)
2133 zinfo->reserved_active_zones--;
2136 /* Successfully activated all the zones */
2137 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2138 spin_unlock(&block_group->lock);
2140 /* For the active block group list */
2141 btrfs_get_block_group(block_group);
2142 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2143 spin_unlock(&fs_info->zone_active_bgs_lock);
2145 return true;
2147 out_unlock:
2148 spin_unlock(&block_group->lock);
2149 spin_unlock(&fs_info->zone_active_bgs_lock);
2150 return ret;
2153 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2155 struct btrfs_fs_info *fs_info = block_group->fs_info;
2156 const u64 end = block_group->start + block_group->length;
2157 struct radix_tree_iter iter;
2158 struct extent_buffer *eb;
2159 void __rcu **slot;
2161 rcu_read_lock();
2162 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2163 block_group->start >> fs_info->sectorsize_bits) {
2164 eb = radix_tree_deref_slot(slot);
2165 if (!eb)
2166 continue;
2167 if (radix_tree_deref_retry(eb)) {
2168 slot = radix_tree_iter_retry(&iter);
2169 continue;
2172 if (eb->start < block_group->start)
2173 continue;
2174 if (eb->start >= end)
2175 break;
2177 slot = radix_tree_iter_resume(slot, &iter);
2178 rcu_read_unlock();
2179 wait_on_extent_buffer_writeback(eb);
2180 rcu_read_lock();
2182 rcu_read_unlock();
2185 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2187 struct btrfs_fs_info *fs_info = block_group->fs_info;
2188 struct btrfs_chunk_map *map;
2189 const bool is_metadata = (block_group->flags &
2190 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2191 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2192 int ret = 0;
2193 int i;
2195 spin_lock(&block_group->lock);
2196 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2197 spin_unlock(&block_group->lock);
2198 return 0;
2201 /* Check if we have unwritten allocated space */
2202 if (is_metadata &&
2203 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2204 spin_unlock(&block_group->lock);
2205 return -EAGAIN;
2209 * If we are sure that the block group is full (= no more room left for
2210 * new allocation) and the IO for the last usable block is completed, we
2211 * don't need to wait for the other IOs. This holds because we ensure
2212 * the sequential IO submissions using the ZONE_APPEND command for data
2213 * and block_group->meta_write_pointer for metadata.
2215 if (!fully_written) {
2216 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2217 spin_unlock(&block_group->lock);
2218 return -EAGAIN;
2220 spin_unlock(&block_group->lock);
2222 ret = btrfs_inc_block_group_ro(block_group, false);
2223 if (ret)
2224 return ret;
2226 /* Ensure all writes in this block group finish */
2227 btrfs_wait_block_group_reservations(block_group);
2228 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2229 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2230 /* Wait for extent buffers to be written. */
2231 if (is_metadata)
2232 wait_eb_writebacks(block_group);
2234 spin_lock(&block_group->lock);
2237 * Bail out if someone already deactivated the block group, or
2238 * allocated space is left in the block group.
2240 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2241 &block_group->runtime_flags)) {
2242 spin_unlock(&block_group->lock);
2243 btrfs_dec_block_group_ro(block_group);
2244 return 0;
2247 if (block_group->reserved ||
2248 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2249 &block_group->runtime_flags)) {
2250 spin_unlock(&block_group->lock);
2251 btrfs_dec_block_group_ro(block_group);
2252 return -EAGAIN;
2256 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2257 block_group->alloc_offset = block_group->zone_capacity;
2258 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2259 block_group->meta_write_pointer = block_group->start +
2260 block_group->zone_capacity;
2261 block_group->free_space_ctl->free_space = 0;
2262 btrfs_clear_treelog_bg(block_group);
2263 btrfs_clear_data_reloc_bg(block_group);
2264 spin_unlock(&block_group->lock);
2266 down_read(&dev_replace->rwsem);
2267 map = block_group->physical_map;
2268 for (i = 0; i < map->num_stripes; i++) {
2269 struct btrfs_device *device = map->stripes[i].dev;
2270 const u64 physical = map->stripes[i].physical;
2271 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2272 unsigned int nofs_flags;
2274 if (zinfo->max_active_zones == 0)
2275 continue;
2277 nofs_flags = memalloc_nofs_save();
2278 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2279 physical >> SECTOR_SHIFT,
2280 zinfo->zone_size >> SECTOR_SHIFT);
2281 memalloc_nofs_restore(nofs_flags);
2283 if (ret) {
2284 up_read(&dev_replace->rwsem);
2285 return ret;
2288 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2289 zinfo->reserved_active_zones++;
2290 btrfs_dev_clear_active_zone(device, physical);
2292 up_read(&dev_replace->rwsem);
2294 if (!fully_written)
2295 btrfs_dec_block_group_ro(block_group);
2297 spin_lock(&fs_info->zone_active_bgs_lock);
2298 ASSERT(!list_empty(&block_group->active_bg_list));
2299 list_del_init(&block_group->active_bg_list);
2300 spin_unlock(&fs_info->zone_active_bgs_lock);
2302 /* For active_bg_list */
2303 btrfs_put_block_group(block_group);
2305 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2307 return 0;
2310 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2312 if (!btrfs_is_zoned(block_group->fs_info))
2313 return 0;
2315 return do_zone_finish(block_group, false);
2318 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2320 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2321 struct btrfs_device *device;
2322 bool ret = false;
2324 if (!btrfs_is_zoned(fs_info))
2325 return true;
2327 /* Check if there is a device with active zones left */
2328 mutex_lock(&fs_info->chunk_mutex);
2329 spin_lock(&fs_info->zone_active_bgs_lock);
2330 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2331 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2332 int reserved = 0;
2334 if (!device->bdev)
2335 continue;
2337 if (!zinfo->max_active_zones) {
2338 ret = true;
2339 break;
2342 if (flags & BTRFS_BLOCK_GROUP_DATA)
2343 reserved = zinfo->reserved_active_zones;
2345 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2346 case 0: /* single */
2347 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2348 break;
2349 case BTRFS_BLOCK_GROUP_DUP:
2350 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2351 break;
2353 if (ret)
2354 break;
2356 spin_unlock(&fs_info->zone_active_bgs_lock);
2357 mutex_unlock(&fs_info->chunk_mutex);
2359 if (!ret)
2360 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2362 return ret;
2365 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2367 struct btrfs_block_group *block_group;
2368 u64 min_alloc_bytes;
2370 if (!btrfs_is_zoned(fs_info))
2371 return;
2373 block_group = btrfs_lookup_block_group(fs_info, logical);
2374 ASSERT(block_group);
2376 /* No MIXED_BG on zoned btrfs. */
2377 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2378 min_alloc_bytes = fs_info->sectorsize;
2379 else
2380 min_alloc_bytes = fs_info->nodesize;
2382 /* Bail out if we can allocate more data from this block group. */
2383 if (logical + length + min_alloc_bytes <=
2384 block_group->start + block_group->zone_capacity)
2385 goto out;
2387 do_zone_finish(block_group, true);
2389 out:
2390 btrfs_put_block_group(block_group);
2393 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2395 struct btrfs_block_group *bg =
2396 container_of(work, struct btrfs_block_group, zone_finish_work);
2398 wait_on_extent_buffer_writeback(bg->last_eb);
2399 free_extent_buffer(bg->last_eb);
2400 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2401 btrfs_put_block_group(bg);
2404 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2405 struct extent_buffer *eb)
2407 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2408 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2409 return;
2411 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2412 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2413 bg->start);
2414 return;
2417 /* For the work */
2418 btrfs_get_block_group(bg);
2419 atomic_inc(&eb->refs);
2420 bg->last_eb = eb;
2421 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2422 queue_work(system_unbound_wq, &bg->zone_finish_work);
2425 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2427 struct btrfs_fs_info *fs_info = bg->fs_info;
2429 spin_lock(&fs_info->relocation_bg_lock);
2430 if (fs_info->data_reloc_bg == bg->start)
2431 fs_info->data_reloc_bg = 0;
2432 spin_unlock(&fs_info->relocation_bg_lock);
2435 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2437 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2438 struct btrfs_device *device;
2440 if (!btrfs_is_zoned(fs_info))
2441 return;
2443 mutex_lock(&fs_devices->device_list_mutex);
2444 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2445 if (device->zone_info) {
2446 vfree(device->zone_info->zone_cache);
2447 device->zone_info->zone_cache = NULL;
2450 mutex_unlock(&fs_devices->device_list_mutex);
2453 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2455 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2456 struct btrfs_device *device;
2457 u64 used = 0;
2458 u64 total = 0;
2459 u64 factor;
2461 ASSERT(btrfs_is_zoned(fs_info));
2463 if (fs_info->bg_reclaim_threshold == 0)
2464 return false;
2466 mutex_lock(&fs_devices->device_list_mutex);
2467 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2468 if (!device->bdev)
2469 continue;
2471 total += device->disk_total_bytes;
2472 used += device->bytes_used;
2474 mutex_unlock(&fs_devices->device_list_mutex);
2476 factor = div64_u64(used * 100, total);
2477 return factor >= fs_info->bg_reclaim_threshold;
2480 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2481 u64 length)
2483 struct btrfs_block_group *block_group;
2485 if (!btrfs_is_zoned(fs_info))
2486 return;
2488 block_group = btrfs_lookup_block_group(fs_info, logical);
2489 /* It should be called on a previous data relocation block group. */
2490 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2492 spin_lock(&block_group->lock);
2493 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2494 goto out;
2496 /* All relocation extents are written. */
2497 if (block_group->start + block_group->alloc_offset == logical + length) {
2499 * Now, release this block group for further allocations and
2500 * zone finish.
2502 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2503 &block_group->runtime_flags);
2506 out:
2507 spin_unlock(&block_group->lock);
2508 btrfs_put_block_group(block_group);
2511 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2513 struct btrfs_block_group *block_group;
2514 struct btrfs_block_group *min_bg = NULL;
2515 u64 min_avail = U64_MAX;
2516 int ret;
2518 spin_lock(&fs_info->zone_active_bgs_lock);
2519 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2520 active_bg_list) {
2521 u64 avail;
2523 spin_lock(&block_group->lock);
2524 if (block_group->reserved || block_group->alloc_offset == 0 ||
2525 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2526 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2527 spin_unlock(&block_group->lock);
2528 continue;
2531 avail = block_group->zone_capacity - block_group->alloc_offset;
2532 if (min_avail > avail) {
2533 if (min_bg)
2534 btrfs_put_block_group(min_bg);
2535 min_bg = block_group;
2536 min_avail = avail;
2537 btrfs_get_block_group(min_bg);
2539 spin_unlock(&block_group->lock);
2541 spin_unlock(&fs_info->zone_active_bgs_lock);
2543 if (!min_bg)
2544 return 0;
2546 ret = btrfs_zone_finish(min_bg);
2547 btrfs_put_block_group(min_bg);
2549 return ret < 0 ? ret : 1;
2552 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2553 struct btrfs_space_info *space_info,
2554 bool do_finish)
2556 struct btrfs_block_group *bg;
2557 int index;
2559 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2560 return 0;
2562 for (;;) {
2563 int ret;
2564 bool need_finish = false;
2566 down_read(&space_info->groups_sem);
2567 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2568 list_for_each_entry(bg, &space_info->block_groups[index],
2569 list) {
2570 if (!spin_trylock(&bg->lock))
2571 continue;
2572 if (btrfs_zoned_bg_is_full(bg) ||
2573 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2574 &bg->runtime_flags)) {
2575 spin_unlock(&bg->lock);
2576 continue;
2578 spin_unlock(&bg->lock);
2580 if (btrfs_zone_activate(bg)) {
2581 up_read(&space_info->groups_sem);
2582 return 1;
2585 need_finish = true;
2588 up_read(&space_info->groups_sem);
2590 if (!do_finish || !need_finish)
2591 break;
2593 ret = btrfs_zone_finish_one_bg(fs_info);
2594 if (ret == 0)
2595 break;
2596 if (ret < 0)
2597 return ret;
2600 return 0;
2604 * Reserve zones for one metadata block group, one tree-log block group, and one
2605 * system block group.
2607 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2610 struct btrfs_block_group *block_group;
2611 struct btrfs_device *device;
2612 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2613 unsigned int metadata_reserve = 2;
2614 /* Reserve a zone for SINGLE system block group. */
2615 unsigned int system_reserve = 1;
2617 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2618 return;
2621 * This function is called from the mount context. So, there is no
2622 * parallel process touching the bits. No need for read_seqretry().
2624 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2625 metadata_reserve = 4;
2626 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2627 system_reserve = 2;
2629 /* Apply the reservation on all the devices. */
2630 mutex_lock(&fs_devices->device_list_mutex);
2631 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2632 if (!device->bdev)
2633 continue;
2635 device->zone_info->reserved_active_zones =
2636 metadata_reserve + system_reserve;
2638 mutex_unlock(&fs_devices->device_list_mutex);
2640 /* Release reservation for currently active block groups. */
2641 spin_lock(&fs_info->zone_active_bgs_lock);
2642 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2643 struct btrfs_chunk_map *map = block_group->physical_map;
2645 if (!(block_group->flags &
2646 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2647 continue;
2649 for (int i = 0; i < map->num_stripes; i++)
2650 map->stripes[i].dev->zone_info->reserved_active_zones--;
2652 spin_unlock(&fs_info->zone_active_bgs_lock);