1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
9 * 04Jul2002 Andrew Morton
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
44 * How many user pages to map in one call to iov_iter_extract_pages(). This
45 * determines the size of a structure in the slab cache
50 * Flags for dio_complete()
52 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
53 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
56 * This code generally works in units of "dio_blocks". A dio_block is
57 * somewhere between the hard sector size and the filesystem block size. it
58 * is determined on a per-invocation basis. When talking to the filesystem
59 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
60 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
61 * to bio_block quantities by shifting left by blkfactor.
63 * If blkfactor is zero then the user's request was aligned to the filesystem's
67 /* dio_state only used in the submission path */
70 struct bio
*bio
; /* bio under assembly */
71 unsigned blkbits
; /* doesn't change */
72 unsigned blkfactor
; /* When we're using an alignment which
73 is finer than the filesystem's soft
74 blocksize, this specifies how much
75 finer. blkfactor=2 means 1/4-block
76 alignment. Does not change */
77 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
78 been performed at the start of a
80 int pages_in_io
; /* approximate total IO pages */
81 sector_t block_in_file
; /* Current offset into the underlying
82 file in dio_block units. */
83 unsigned blocks_available
; /* At block_in_file. changes */
84 int reap_counter
; /* rate limit reaping */
85 sector_t final_block_in_request
;/* doesn't change */
86 int boundary
; /* prev block is at a boundary */
87 get_block_t
*get_block
; /* block mapping function */
89 loff_t logical_offset_in_bio
; /* current first logical block in bio */
90 sector_t final_block_in_bio
; /* current final block in bio + 1 */
91 sector_t next_block_for_io
; /* next block to be put under IO,
92 in dio_blocks units */
95 * Deferred addition of a page to the dio. These variables are
96 * private to dio_send_cur_page(), submit_page_section() and
99 struct page
*cur_page
; /* The page */
100 unsigned cur_page_offset
; /* Offset into it, in bytes */
101 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
102 sector_t cur_page_block
; /* Where it starts */
103 loff_t cur_page_fs_offset
; /* Offset in file */
105 struct iov_iter
*iter
;
107 * Page queue. These variables belong to dio_refill_pages() and
110 unsigned head
; /* next page to process */
111 unsigned tail
; /* last valid page + 1 */
115 /* dio_state communicated between submission path and end_io */
117 int flags
; /* doesn't change */
118 blk_opf_t opf
; /* request operation type and flags */
119 struct gendisk
*bio_disk
;
121 loff_t i_size
; /* i_size when submitted */
122 dio_iodone_t
*end_io
; /* IO completion function */
123 bool is_pinned
; /* T if we have pins on the pages */
125 void *private; /* copy from map_bh.b_private */
127 /* BIO completion state */
128 spinlock_t bio_lock
; /* protects BIO fields below */
129 int page_errors
; /* err from iov_iter_extract_pages() */
130 int is_async
; /* is IO async ? */
131 bool defer_completion
; /* defer AIO completion to workqueue? */
132 bool should_dirty
; /* if pages should be dirtied */
133 int io_error
; /* IO error in completion path */
134 unsigned long refcount
; /* direct_io_worker() and bios */
135 struct bio
*bio_list
; /* singly linked via bi_private */
136 struct task_struct
*waiter
; /* waiting task (NULL if none) */
138 /* AIO related stuff */
139 struct kiocb
*iocb
; /* kiocb */
140 ssize_t result
; /* IO result */
143 * pages[] (and any fields placed after it) are not zeroed out at
144 * allocation time. Don't add new fields after pages[] unless you
145 * wish that they not be zeroed.
148 struct page
*pages
[DIO_PAGES
]; /* page buffer */
149 struct work_struct complete_work
;/* deferred AIO completion */
151 } ____cacheline_aligned_in_smp
;
153 static struct kmem_cache
*dio_cache __ro_after_init
;
156 * How many pages are in the queue?
158 static inline unsigned dio_pages_present(struct dio_submit
*sdio
)
160 return sdio
->tail
- sdio
->head
;
164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 static inline int dio_refill_pages(struct dio
*dio
, struct dio_submit
*sdio
)
168 struct page
**pages
= dio
->pages
;
169 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
172 ret
= iov_iter_extract_pages(sdio
->iter
, &pages
, LONG_MAX
,
173 DIO_PAGES
, 0, &sdio
->from
);
175 if (ret
< 0 && sdio
->blocks_available
&& dio_op
== REQ_OP_WRITE
) {
177 * A memory fault, but the filesystem has some outstanding
178 * mapped blocks. We need to use those blocks up to avoid
179 * leaking stale data in the file.
181 if (dio
->page_errors
== 0)
182 dio
->page_errors
= ret
;
183 dio
->pages
[0] = ZERO_PAGE(0);
187 sdio
->to
= PAGE_SIZE
;
194 sdio
->tail
= (ret
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
195 sdio
->to
= ((ret
- 1) & (PAGE_SIZE
- 1)) + 1;
202 * Get another userspace page. Returns an ERR_PTR on error. Pages are
203 * buffered inside the dio so that we can call iov_iter_extract_pages()
204 * against a decent number of pages, less frequently. To provide nicer use of
207 static inline struct page
*dio_get_page(struct dio
*dio
,
208 struct dio_submit
*sdio
)
210 if (dio_pages_present(sdio
) == 0) {
213 ret
= dio_refill_pages(dio
, sdio
);
216 BUG_ON(dio_pages_present(sdio
) == 0);
218 return dio
->pages
[sdio
->head
];
221 static void dio_pin_page(struct dio
*dio
, struct page
*page
)
224 folio_add_pin(page_folio(page
));
227 static void dio_unpin_page(struct dio
*dio
, struct page
*page
)
230 unpin_user_page(page
);
234 * dio_complete() - called when all DIO BIO I/O has been completed
236 * This drops i_dio_count, lets interested parties know that a DIO operation
237 * has completed, and calculates the resulting return code for the operation.
239 * It lets the filesystem know if it registered an interest earlier via
240 * get_block. Pass the private field of the map buffer_head so that
241 * filesystems can use it to hold additional state between get_block calls and
244 static ssize_t
dio_complete(struct dio
*dio
, ssize_t ret
, unsigned int flags
)
246 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
247 loff_t offset
= dio
->iocb
->ki_pos
;
248 ssize_t transferred
= 0;
252 * AIO submission can race with bio completion to get here while
253 * expecting to have the last io completed by bio completion.
254 * In that case -EIOCBQUEUED is in fact not an error we want
255 * to preserve through this call.
257 if (ret
== -EIOCBQUEUED
)
261 transferred
= dio
->result
;
263 /* Check for short read case */
264 if (dio_op
== REQ_OP_READ
&&
265 ((offset
+ transferred
) > dio
->i_size
))
266 transferred
= dio
->i_size
- offset
;
267 /* ignore EFAULT if some IO has been done */
268 if (unlikely(ret
== -EFAULT
) && transferred
)
273 ret
= dio
->page_errors
;
281 err
= dio
->end_io(dio
->iocb
, offset
, ret
, dio
->private);
287 * Try again to invalidate clean pages which might have been cached by
288 * non-direct readahead, or faulted in by get_user_pages() if the source
289 * of the write was an mmap'ed region of the file we're writing. Either
290 * one is a pretty crazy thing to do, so we don't support it 100%. If
291 * this invalidation fails, tough, the write still worked...
293 * And this page cache invalidation has to be after dio->end_io(), as
294 * some filesystems convert unwritten extents to real allocations in
295 * end_io() when necessary, otherwise a racing buffer read would cache
296 * zeros from unwritten extents.
298 if (flags
& DIO_COMPLETE_INVALIDATE
&&
299 ret
> 0 && dio_op
== REQ_OP_WRITE
)
300 kiocb_invalidate_post_direct_write(dio
->iocb
, ret
);
302 inode_dio_end(dio
->inode
);
304 if (flags
& DIO_COMPLETE_ASYNC
) {
306 * generic_write_sync expects ki_pos to have been updated
307 * already, but the submission path only does this for
310 dio
->iocb
->ki_pos
+= transferred
;
312 if (ret
> 0 && dio_op
== REQ_OP_WRITE
)
313 ret
= generic_write_sync(dio
->iocb
, ret
);
314 dio
->iocb
->ki_complete(dio
->iocb
, ret
);
317 kmem_cache_free(dio_cache
, dio
);
321 static void dio_aio_complete_work(struct work_struct
*work
)
323 struct dio
*dio
= container_of(work
, struct dio
, complete_work
);
325 dio_complete(dio
, 0, DIO_COMPLETE_ASYNC
| DIO_COMPLETE_INVALIDATE
);
328 static blk_status_t
dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
331 * Asynchronous IO callback.
333 static void dio_bio_end_aio(struct bio
*bio
)
335 struct dio
*dio
= bio
->bi_private
;
336 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
337 unsigned long remaining
;
339 bool defer_completion
= false;
341 /* cleanup the bio */
342 dio_bio_complete(dio
, bio
);
344 spin_lock_irqsave(&dio
->bio_lock
, flags
);
345 remaining
= --dio
->refcount
;
346 if (remaining
== 1 && dio
->waiter
)
347 wake_up_process(dio
->waiter
);
348 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
350 if (remaining
== 0) {
352 * Defer completion when defer_completion is set or
353 * when the inode has pages mapped and this is AIO write.
354 * We need to invalidate those pages because there is a
355 * chance they contain stale data in the case buffered IO
356 * went in between AIO submission and completion into the
360 defer_completion
= dio
->defer_completion
||
361 (dio_op
== REQ_OP_WRITE
&&
362 dio
->inode
->i_mapping
->nrpages
);
363 if (defer_completion
) {
364 INIT_WORK(&dio
->complete_work
, dio_aio_complete_work
);
365 queue_work(dio
->inode
->i_sb
->s_dio_done_wq
,
366 &dio
->complete_work
);
368 dio_complete(dio
, 0, DIO_COMPLETE_ASYNC
);
374 * The BIO completion handler simply queues the BIO up for the process-context
377 * During I/O bi_private points at the dio. After I/O, bi_private is used to
378 * implement a singly-linked list of completed BIOs, at dio->bio_list.
380 static void dio_bio_end_io(struct bio
*bio
)
382 struct dio
*dio
= bio
->bi_private
;
385 spin_lock_irqsave(&dio
->bio_lock
, flags
);
386 bio
->bi_private
= dio
->bio_list
;
388 if (--dio
->refcount
== 1 && dio
->waiter
)
389 wake_up_process(dio
->waiter
);
390 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
394 dio_bio_alloc(struct dio
*dio
, struct dio_submit
*sdio
,
395 struct block_device
*bdev
,
396 sector_t first_sector
, int nr_vecs
)
401 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
402 * we request a valid number of vectors.
404 bio
= bio_alloc(bdev
, nr_vecs
, dio
->opf
, GFP_KERNEL
);
405 bio
->bi_iter
.bi_sector
= first_sector
;
407 bio
->bi_end_io
= dio_bio_end_aio
;
409 bio
->bi_end_io
= dio_bio_end_io
;
411 bio_set_flag(bio
, BIO_PAGE_PINNED
);
412 bio
->bi_write_hint
= file_inode(dio
->iocb
->ki_filp
)->i_write_hint
;
415 sdio
->logical_offset_in_bio
= sdio
->cur_page_fs_offset
;
419 * In the AIO read case we speculatively dirty the pages before starting IO.
420 * During IO completion, any of these pages which happen to have been written
421 * back will be redirtied by bio_check_pages_dirty().
423 * bios hold a dio reference between submit_bio and ->end_io.
425 static inline void dio_bio_submit(struct dio
*dio
, struct dio_submit
*sdio
)
427 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
428 struct bio
*bio
= sdio
->bio
;
431 bio
->bi_private
= dio
;
433 spin_lock_irqsave(&dio
->bio_lock
, flags
);
435 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
437 if (dio
->is_async
&& dio_op
== REQ_OP_READ
&& dio
->should_dirty
)
438 bio_set_pages_dirty(bio
);
440 dio
->bio_disk
= bio
->bi_bdev
->bd_disk
;
446 sdio
->logical_offset_in_bio
= 0;
450 * Release any resources in case of a failure
452 static inline void dio_cleanup(struct dio
*dio
, struct dio_submit
*sdio
)
455 unpin_user_pages(dio
->pages
+ sdio
->head
,
456 sdio
->tail
- sdio
->head
);
457 sdio
->head
= sdio
->tail
;
461 * Wait for the next BIO to complete. Remove it and return it. NULL is
462 * returned once all BIOs have been completed. This must only be called once
463 * all bios have been issued so that dio->refcount can only decrease. This
464 * requires that the caller hold a reference on the dio.
466 static struct bio
*dio_await_one(struct dio
*dio
)
469 struct bio
*bio
= NULL
;
471 spin_lock_irqsave(&dio
->bio_lock
, flags
);
474 * Wait as long as the list is empty and there are bios in flight. bio
475 * completion drops the count, maybe adds to the list, and wakes while
476 * holding the bio_lock so we don't need set_current_state()'s barrier
477 * and can call it after testing our condition.
479 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
480 __set_current_state(TASK_UNINTERRUPTIBLE
);
481 dio
->waiter
= current
;
482 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
484 /* wake up sets us TASK_RUNNING */
485 spin_lock_irqsave(&dio
->bio_lock
, flags
);
490 dio
->bio_list
= bio
->bi_private
;
492 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
497 * Process one completed BIO. No locks are held.
499 static blk_status_t
dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
501 blk_status_t err
= bio
->bi_status
;
502 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
503 bool should_dirty
= dio_op
== REQ_OP_READ
&& dio
->should_dirty
;
506 if (err
== BLK_STS_AGAIN
&& (bio
->bi_opf
& REQ_NOWAIT
))
507 dio
->io_error
= -EAGAIN
;
509 dio
->io_error
= -EIO
;
512 if (dio
->is_async
&& should_dirty
) {
513 bio_check_pages_dirty(bio
); /* transfers ownership */
515 bio_release_pages(bio
, should_dirty
);
522 * Wait on and process all in-flight BIOs. This must only be called once
523 * all bios have been issued so that the refcount can only decrease.
524 * This just waits for all bios to make it through dio_bio_complete. IO
525 * errors are propagated through dio->io_error and should be propagated via
528 static void dio_await_completion(struct dio
*dio
)
532 bio
= dio_await_one(dio
);
534 dio_bio_complete(dio
, bio
);
539 * A really large O_DIRECT read or write can generate a lot of BIOs. So
540 * to keep the memory consumption sane we periodically reap any completed BIOs
541 * during the BIO generation phase.
543 * This also helps to limit the peak amount of pinned userspace memory.
545 static inline int dio_bio_reap(struct dio
*dio
, struct dio_submit
*sdio
)
549 if (sdio
->reap_counter
++ >= 64) {
550 while (dio
->bio_list
) {
555 spin_lock_irqsave(&dio
->bio_lock
, flags
);
557 dio
->bio_list
= bio
->bi_private
;
558 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
559 ret2
= blk_status_to_errno(dio_bio_complete(dio
, bio
));
563 sdio
->reap_counter
= 0;
568 static int dio_set_defer_completion(struct dio
*dio
)
570 struct super_block
*sb
= dio
->inode
->i_sb
;
572 if (dio
->defer_completion
)
574 dio
->defer_completion
= true;
575 if (!sb
->s_dio_done_wq
)
576 return sb_init_dio_done_wq(sb
);
581 * Call into the fs to map some more disk blocks. We record the current number
582 * of available blocks at sdio->blocks_available. These are in units of the
583 * fs blocksize, i_blocksize(inode).
585 * The fs is allowed to map lots of blocks at once. If it wants to do that,
586 * it uses the passed inode-relative block number as the file offset, as usual.
588 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
589 * has remaining to do. The fs should not map more than this number of blocks.
591 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
592 * indicate how much contiguous disk space has been made available at
595 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
596 * This isn't very efficient...
598 * In the case of filesystem holes: the fs may return an arbitrarily-large
599 * hole by returning an appropriate value in b_size and by clearing
600 * buffer_mapped(). However the direct-io code will only process holes one
601 * block at a time - it will repeatedly call get_block() as it walks the hole.
603 static int get_more_blocks(struct dio
*dio
, struct dio_submit
*sdio
,
604 struct buffer_head
*map_bh
)
606 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
608 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
609 sector_t fs_endblk
; /* Into file, in filesystem-sized blocks */
610 unsigned long fs_count
; /* Number of filesystem-sized blocks */
612 unsigned int i_blkbits
= sdio
->blkbits
+ sdio
->blkfactor
;
616 * If there was a memory error and we've overwritten all the
617 * mapped blocks then we can now return that memory error
619 ret
= dio
->page_errors
;
621 BUG_ON(sdio
->block_in_file
>= sdio
->final_block_in_request
);
622 fs_startblk
= sdio
->block_in_file
>> sdio
->blkfactor
;
623 fs_endblk
= (sdio
->final_block_in_request
- 1) >>
625 fs_count
= fs_endblk
- fs_startblk
+ 1;
628 map_bh
->b_size
= fs_count
<< i_blkbits
;
631 * For writes that could fill holes inside i_size on a
632 * DIO_SKIP_HOLES filesystem we forbid block creations: only
633 * overwrites are permitted. We will return early to the caller
634 * once we see an unmapped buffer head returned, and the caller
635 * will fall back to buffered I/O.
637 * Otherwise the decision is left to the get_blocks method,
638 * which may decide to handle it or also return an unmapped
641 create
= dio_op
== REQ_OP_WRITE
;
642 if (dio
->flags
& DIO_SKIP_HOLES
) {
643 i_size
= i_size_read(dio
->inode
);
644 if (i_size
&& fs_startblk
<= (i_size
- 1) >> i_blkbits
)
648 ret
= (*sdio
->get_block
)(dio
->inode
, fs_startblk
,
651 /* Store for completion */
652 dio
->private = map_bh
->b_private
;
654 if (ret
== 0 && buffer_defer_completion(map_bh
))
655 ret
= dio_set_defer_completion(dio
);
661 * There is no bio. Make one now.
663 static inline int dio_new_bio(struct dio
*dio
, struct dio_submit
*sdio
,
664 sector_t start_sector
, struct buffer_head
*map_bh
)
669 ret
= dio_bio_reap(dio
, sdio
);
672 sector
= start_sector
<< (sdio
->blkbits
- 9);
673 nr_pages
= bio_max_segs(sdio
->pages_in_io
);
674 BUG_ON(nr_pages
<= 0);
675 dio_bio_alloc(dio
, sdio
, map_bh
->b_bdev
, sector
, nr_pages
);
682 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
683 * that was successful then update final_block_in_bio and take a ref against
684 * the just-added page.
686 * Return zero on success. Non-zero means the caller needs to start a new BIO.
688 static inline int dio_bio_add_page(struct dio
*dio
, struct dio_submit
*sdio
)
692 ret
= bio_add_page(sdio
->bio
, sdio
->cur_page
,
693 sdio
->cur_page_len
, sdio
->cur_page_offset
);
694 if (ret
== sdio
->cur_page_len
) {
696 * Decrement count only, if we are done with this page
698 if ((sdio
->cur_page_len
+ sdio
->cur_page_offset
) == PAGE_SIZE
)
700 dio_pin_page(dio
, sdio
->cur_page
);
701 sdio
->final_block_in_bio
= sdio
->cur_page_block
+
702 (sdio
->cur_page_len
>> sdio
->blkbits
);
711 * Put cur_page under IO. The section of cur_page which is described by
712 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
713 * starts on-disk at cur_page_block.
715 * We take a ref against the page here (on behalf of its presence in the bio).
717 * The caller of this function is responsible for removing cur_page from the
718 * dio, and for dropping the refcount which came from that presence.
720 static inline int dio_send_cur_page(struct dio
*dio
, struct dio_submit
*sdio
,
721 struct buffer_head
*map_bh
)
726 loff_t cur_offset
= sdio
->cur_page_fs_offset
;
727 loff_t bio_next_offset
= sdio
->logical_offset_in_bio
+
728 sdio
->bio
->bi_iter
.bi_size
;
731 * See whether this new request is contiguous with the old.
733 * Btrfs cannot handle having logically non-contiguous requests
734 * submitted. For example if you have
736 * Logical: [0-4095][HOLE][8192-12287]
737 * Physical: [0-4095] [4096-8191]
739 * We cannot submit those pages together as one BIO. So if our
740 * current logical offset in the file does not equal what would
741 * be the next logical offset in the bio, submit the bio we
744 if (sdio
->final_block_in_bio
!= sdio
->cur_page_block
||
745 cur_offset
!= bio_next_offset
)
746 dio_bio_submit(dio
, sdio
);
749 if (sdio
->bio
== NULL
) {
750 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
755 if (dio_bio_add_page(dio
, sdio
) != 0) {
756 dio_bio_submit(dio
, sdio
);
757 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
759 ret
= dio_bio_add_page(dio
, sdio
);
768 * An autonomous function to put a chunk of a page under deferred IO.
770 * The caller doesn't actually know (or care) whether this piece of page is in
771 * a BIO, or is under IO or whatever. We just take care of all possible
772 * situations here. The separation between the logic of do_direct_IO() and
773 * that of submit_page_section() is important for clarity. Please don't break.
775 * The chunk of page starts on-disk at blocknr.
777 * We perform deferred IO, by recording the last-submitted page inside our
778 * private part of the dio structure. If possible, we just expand the IO
779 * across that page here.
781 * If that doesn't work out then we put the old page into the bio and add this
782 * page to the dio instead.
785 submit_page_section(struct dio
*dio
, struct dio_submit
*sdio
, struct page
*page
,
786 unsigned offset
, unsigned len
, sector_t blocknr
,
787 struct buffer_head
*map_bh
)
789 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
791 int boundary
= sdio
->boundary
; /* dio_send_cur_page may clear it */
793 if (dio_op
== REQ_OP_WRITE
) {
795 * Read accounting is performed in submit_bio()
797 task_io_account_write(len
);
801 * Can we just grow the current page's presence in the dio?
803 if (sdio
->cur_page
== page
&&
804 sdio
->cur_page_offset
+ sdio
->cur_page_len
== offset
&&
805 sdio
->cur_page_block
+
806 (sdio
->cur_page_len
>> sdio
->blkbits
) == blocknr
) {
807 sdio
->cur_page_len
+= len
;
812 * If there's a deferred page already there then send it.
814 if (sdio
->cur_page
) {
815 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
816 dio_unpin_page(dio
, sdio
->cur_page
);
817 sdio
->cur_page
= NULL
;
822 dio_pin_page(dio
, page
); /* It is in dio */
823 sdio
->cur_page
= page
;
824 sdio
->cur_page_offset
= offset
;
825 sdio
->cur_page_len
= len
;
826 sdio
->cur_page_block
= blocknr
;
827 sdio
->cur_page_fs_offset
= sdio
->block_in_file
<< sdio
->blkbits
;
830 * If boundary then we want to schedule the IO now to
831 * avoid metadata seeks.
834 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
836 dio_bio_submit(dio
, sdio
);
837 dio_unpin_page(dio
, sdio
->cur_page
);
838 sdio
->cur_page
= NULL
;
844 * If we are not writing the entire block and get_block() allocated
845 * the block for us, we need to fill-in the unused portion of the
846 * block with zeros. This happens only if user-buffer, fileoffset or
847 * io length is not filesystem block-size multiple.
849 * `end' is zero if we're doing the start of the IO, 1 at the end of the
852 static inline void dio_zero_block(struct dio
*dio
, struct dio_submit
*sdio
,
853 int end
, struct buffer_head
*map_bh
)
855 unsigned dio_blocks_per_fs_block
;
856 unsigned this_chunk_blocks
; /* In dio_blocks */
857 unsigned this_chunk_bytes
;
860 sdio
->start_zero_done
= 1;
861 if (!sdio
->blkfactor
|| !buffer_new(map_bh
))
864 dio_blocks_per_fs_block
= 1 << sdio
->blkfactor
;
865 this_chunk_blocks
= sdio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
867 if (!this_chunk_blocks
)
871 * We need to zero out part of an fs block. It is either at the
872 * beginning or the end of the fs block.
875 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
877 this_chunk_bytes
= this_chunk_blocks
<< sdio
->blkbits
;
880 if (submit_page_section(dio
, sdio
, page
, 0, this_chunk_bytes
,
881 sdio
->next_block_for_io
, map_bh
))
884 sdio
->next_block_for_io
+= this_chunk_blocks
;
888 * Walk the user pages, and the file, mapping blocks to disk and generating
889 * a sequence of (page,offset,len,block) mappings. These mappings are injected
890 * into submit_page_section(), which takes care of the next stage of submission
892 * Direct IO against a blockdev is different from a file. Because we can
893 * happily perform page-sized but 512-byte aligned IOs. It is important that
894 * blockdev IO be able to have fine alignment and large sizes.
896 * So what we do is to permit the ->get_block function to populate bh.b_size
897 * with the size of IO which is permitted at this offset and this i_blkbits.
899 * For best results, the blockdev should be set up with 512-byte i_blkbits and
900 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
901 * fine alignment but still allows this function to work in PAGE_SIZE units.
903 static int do_direct_IO(struct dio
*dio
, struct dio_submit
*sdio
,
904 struct buffer_head
*map_bh
)
906 const enum req_op dio_op
= dio
->opf
& REQ_OP_MASK
;
907 const unsigned blkbits
= sdio
->blkbits
;
908 const unsigned i_blkbits
= blkbits
+ sdio
->blkfactor
;
911 while (sdio
->block_in_file
< sdio
->final_block_in_request
) {
915 page
= dio_get_page(dio
, sdio
);
920 from
= sdio
->head
? 0 : sdio
->from
;
921 to
= (sdio
->head
== sdio
->tail
- 1) ? sdio
->to
: PAGE_SIZE
;
925 unsigned this_chunk_bytes
; /* # of bytes mapped */
926 unsigned this_chunk_blocks
; /* # of blocks */
929 if (sdio
->blocks_available
== 0) {
931 * Need to go and map some more disk
933 unsigned long blkmask
;
934 unsigned long dio_remainder
;
936 ret
= get_more_blocks(dio
, sdio
, map_bh
);
938 dio_unpin_page(dio
, page
);
941 if (!buffer_mapped(map_bh
))
944 sdio
->blocks_available
=
945 map_bh
->b_size
>> blkbits
;
946 sdio
->next_block_for_io
=
947 map_bh
->b_blocknr
<< sdio
->blkfactor
;
948 if (buffer_new(map_bh
)) {
952 map_bh
->b_size
>> i_blkbits
);
955 if (!sdio
->blkfactor
)
958 blkmask
= (1 << sdio
->blkfactor
) - 1;
959 dio_remainder
= (sdio
->block_in_file
& blkmask
);
962 * If we are at the start of IO and that IO
963 * starts partway into a fs-block,
964 * dio_remainder will be non-zero. If the IO
965 * is a read then we can simply advance the IO
966 * cursor to the first block which is to be
967 * read. But if the IO is a write and the
968 * block was newly allocated we cannot do that;
969 * the start of the fs block must be zeroed out
972 if (!buffer_new(map_bh
))
973 sdio
->next_block_for_io
+= dio_remainder
;
974 sdio
->blocks_available
-= dio_remainder
;
978 if (!buffer_mapped(map_bh
)) {
979 loff_t i_size_aligned
;
981 /* AKPM: eargh, -ENOTBLK is a hack */
982 if (dio_op
== REQ_OP_WRITE
) {
983 dio_unpin_page(dio
, page
);
988 * Be sure to account for a partial block as the
989 * last block in the file
991 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
993 if (sdio
->block_in_file
>=
994 i_size_aligned
>> blkbits
) {
996 dio_unpin_page(dio
, page
);
999 zero_user(page
, from
, 1 << blkbits
);
1000 sdio
->block_in_file
++;
1001 from
+= 1 << blkbits
;
1002 dio
->result
+= 1 << blkbits
;
1007 * If we're performing IO which has an alignment which
1008 * is finer than the underlying fs, go check to see if
1009 * we must zero out the start of this block.
1011 if (unlikely(sdio
->blkfactor
&& !sdio
->start_zero_done
))
1012 dio_zero_block(dio
, sdio
, 0, map_bh
);
1015 * Work out, in this_chunk_blocks, how much disk we
1016 * can add to this page
1018 this_chunk_blocks
= sdio
->blocks_available
;
1019 u
= (to
- from
) >> blkbits
;
1020 if (this_chunk_blocks
> u
)
1021 this_chunk_blocks
= u
;
1022 u
= sdio
->final_block_in_request
- sdio
->block_in_file
;
1023 if (this_chunk_blocks
> u
)
1024 this_chunk_blocks
= u
;
1025 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
1026 BUG_ON(this_chunk_bytes
== 0);
1028 if (this_chunk_blocks
== sdio
->blocks_available
)
1029 sdio
->boundary
= buffer_boundary(map_bh
);
1030 ret
= submit_page_section(dio
, sdio
, page
,
1033 sdio
->next_block_for_io
,
1036 dio_unpin_page(dio
, page
);
1039 sdio
->next_block_for_io
+= this_chunk_blocks
;
1041 sdio
->block_in_file
+= this_chunk_blocks
;
1042 from
+= this_chunk_bytes
;
1043 dio
->result
+= this_chunk_bytes
;
1044 sdio
->blocks_available
-= this_chunk_blocks
;
1046 BUG_ON(sdio
->block_in_file
> sdio
->final_block_in_request
);
1047 if (sdio
->block_in_file
== sdio
->final_block_in_request
)
1051 /* Drop the pin which was taken in get_user_pages() */
1052 dio_unpin_page(dio
, page
);
1058 static inline int drop_refcount(struct dio
*dio
)
1061 unsigned long flags
;
1064 * Sync will always be dropping the final ref and completing the
1065 * operation. AIO can if it was a broken operation described above or
1066 * in fact if all the bios race to complete before we get here. In
1067 * that case dio_complete() translates the EIOCBQUEUED into the proper
1068 * return code that the caller will hand to ->complete().
1070 * This is managed by the bio_lock instead of being an atomic_t so that
1071 * completion paths can drop their ref and use the remaining count to
1072 * decide to wake the submission path atomically.
1074 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1075 ret2
= --dio
->refcount
;
1076 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1081 * This is a library function for use by filesystem drivers.
1083 * The locking rules are governed by the flags parameter:
1084 * - if the flags value contains DIO_LOCKING we use a fancy locking
1085 * scheme for dumb filesystems.
1086 * For writes this function is called under i_mutex and returns with
1087 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1088 * taken and dropped again before returning.
1089 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1090 * internal locking but rather rely on the filesystem to synchronize
1091 * direct I/O reads/writes versus each other and truncate.
1093 * To help with locking against truncate we incremented the i_dio_count
1094 * counter before starting direct I/O, and decrement it once we are done.
1095 * Truncate can wait for it to reach zero to provide exclusion. It is
1096 * expected that filesystem provide exclusion between new direct I/O
1097 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1098 * but other filesystems need to take care of this on their own.
1100 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1101 * is always inlined. Otherwise gcc is unable to split the structure into
1102 * individual fields and will generate much worse code. This is important
1103 * for the whole file.
1105 ssize_t
__blockdev_direct_IO(struct kiocb
*iocb
, struct inode
*inode
,
1106 struct block_device
*bdev
, struct iov_iter
*iter
,
1107 get_block_t get_block
, dio_iodone_t end_io
,
1110 unsigned i_blkbits
= READ_ONCE(inode
->i_blkbits
);
1111 unsigned blkbits
= i_blkbits
;
1112 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1113 ssize_t retval
= -EINVAL
;
1114 const size_t count
= iov_iter_count(iter
);
1115 loff_t offset
= iocb
->ki_pos
;
1116 const loff_t end
= offset
+ count
;
1118 struct dio_submit sdio
= { NULL
, };
1119 struct buffer_head map_bh
= { 0, };
1120 struct blk_plug plug
;
1121 unsigned long align
= offset
| iov_iter_alignment(iter
);
1123 /* watch out for a 0 len io from a tricksy fs */
1124 if (iov_iter_rw(iter
) == READ
&& !count
)
1127 dio
= kmem_cache_alloc(dio_cache
, GFP_KERNEL
);
1131 * Believe it or not, zeroing out the page array caused a .5%
1132 * performance regression in a database benchmark. So, we take
1133 * care to only zero out what's needed.
1135 memset(dio
, 0, offsetof(struct dio
, pages
));
1138 if (dio
->flags
& DIO_LOCKING
&& iov_iter_rw(iter
) == READ
) {
1139 /* will be released by direct_io_worker */
1142 dio
->is_pinned
= iov_iter_extract_will_pin(iter
);
1144 /* Once we sampled i_size check for reads beyond EOF */
1145 dio
->i_size
= i_size_read(inode
);
1146 if (iov_iter_rw(iter
) == READ
&& offset
>= dio
->i_size
) {
1151 if (align
& blocksize_mask
) {
1153 blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1154 blocksize_mask
= (1 << blkbits
) - 1;
1155 if (align
& blocksize_mask
)
1159 if (dio
->flags
& DIO_LOCKING
&& iov_iter_rw(iter
) == READ
) {
1160 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1162 retval
= filemap_write_and_wait_range(mapping
, offset
, end
- 1);
1168 * For file extending writes updating i_size before data writeouts
1169 * complete can expose uninitialized blocks in dumb filesystems.
1170 * In that case we need to wait for I/O completion even if asked
1171 * for an asynchronous write.
1173 if (is_sync_kiocb(iocb
))
1174 dio
->is_async
= false;
1175 else if (iov_iter_rw(iter
) == WRITE
&& end
> i_size_read(inode
))
1176 dio
->is_async
= false;
1178 dio
->is_async
= true;
1181 if (iov_iter_rw(iter
) == WRITE
) {
1182 dio
->opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_IDLE
;
1183 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1184 dio
->opf
|= REQ_NOWAIT
;
1186 dio
->opf
= REQ_OP_READ
;
1190 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1191 * so that we can call ->fsync.
1193 if (dio
->is_async
&& iov_iter_rw(iter
) == WRITE
) {
1195 if (iocb_is_dsync(iocb
))
1196 retval
= dio_set_defer_completion(dio
);
1197 else if (!dio
->inode
->i_sb
->s_dio_done_wq
) {
1199 * In case of AIO write racing with buffered read we
1200 * need to defer completion. We can't decide this now,
1201 * however the workqueue needs to be initialized here.
1203 retval
= sb_init_dio_done_wq(dio
->inode
->i_sb
);
1210 * Will be decremented at I/O completion time.
1212 inode_dio_begin(inode
);
1214 sdio
.blkbits
= blkbits
;
1215 sdio
.blkfactor
= i_blkbits
- blkbits
;
1216 sdio
.block_in_file
= offset
>> blkbits
;
1218 sdio
.get_block
= get_block
;
1219 dio
->end_io
= end_io
;
1220 sdio
.final_block_in_bio
= -1;
1221 sdio
.next_block_for_io
= -1;
1225 spin_lock_init(&dio
->bio_lock
);
1228 dio
->should_dirty
= user_backed_iter(iter
) && iov_iter_rw(iter
) == READ
;
1230 sdio
.final_block_in_request
= end
>> blkbits
;
1233 * In case of non-aligned buffers, we may need 2 more
1234 * pages since we need to zero out first and last block.
1236 if (unlikely(sdio
.blkfactor
))
1237 sdio
.pages_in_io
= 2;
1239 sdio
.pages_in_io
+= iov_iter_npages(iter
, INT_MAX
);
1241 blk_start_plug(&plug
);
1243 retval
= do_direct_IO(dio
, &sdio
, &map_bh
);
1245 dio_cleanup(dio
, &sdio
);
1247 if (retval
== -ENOTBLK
) {
1249 * The remaining part of the request will be
1250 * handled by buffered I/O when we return
1255 * There may be some unwritten disk at the end of a part-written
1256 * fs-block-sized block. Go zero that now.
1258 dio_zero_block(dio
, &sdio
, 1, &map_bh
);
1260 if (sdio
.cur_page
) {
1263 ret2
= dio_send_cur_page(dio
, &sdio
, &map_bh
);
1266 dio_unpin_page(dio
, sdio
.cur_page
);
1267 sdio
.cur_page
= NULL
;
1270 dio_bio_submit(dio
, &sdio
);
1272 blk_finish_plug(&plug
);
1275 * It is possible that, we return short IO due to end of file.
1276 * In that case, we need to release all the pages we got hold on.
1278 dio_cleanup(dio
, &sdio
);
1281 * All block lookups have been performed. For READ requests
1282 * we can let i_mutex go now that its achieved its purpose
1283 * of protecting us from looking up uninitialized blocks.
1285 if (iov_iter_rw(iter
) == READ
&& (dio
->flags
& DIO_LOCKING
))
1286 inode_unlock(dio
->inode
);
1289 * The only time we want to leave bios in flight is when a successful
1290 * partial aio read or full aio write have been setup. In that case
1291 * bio completion will call aio_complete. The only time it's safe to
1292 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1293 * This had *better* be the only place that raises -EIOCBQUEUED.
1295 BUG_ON(retval
== -EIOCBQUEUED
);
1296 if (dio
->is_async
&& retval
== 0 && dio
->result
&&
1297 (iov_iter_rw(iter
) == READ
|| dio
->result
== count
))
1298 retval
= -EIOCBQUEUED
;
1300 dio_await_completion(dio
);
1302 if (drop_refcount(dio
) == 0) {
1303 retval
= dio_complete(dio
, retval
, DIO_COMPLETE_INVALIDATE
);
1305 BUG_ON(retval
!= -EIOCBQUEUED
);
1310 if (dio
->flags
& DIO_LOCKING
&& iov_iter_rw(iter
) == READ
)
1311 inode_unlock(inode
);
1313 kmem_cache_free(dio_cache
, dio
);
1316 EXPORT_SYMBOL(__blockdev_direct_IO
);
1318 static __init
int dio_init(void)
1320 dio_cache
= KMEM_CACHE(dio
, SLAB_PANIC
);
1323 module_init(dio_init
)