1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
76 #include <trace/events/task.h>
79 #include <trace/events/sched.h>
81 static int bprm_creds_from_file(struct linux_binprm
*bprm
);
83 int suid_dumpable
= 0;
85 static LIST_HEAD(formats
);
86 static DEFINE_RWLOCK(binfmt_lock
);
88 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
90 write_lock(&binfmt_lock
);
91 insert
? list_add(&fmt
->lh
, &formats
) :
92 list_add_tail(&fmt
->lh
, &formats
);
93 write_unlock(&binfmt_lock
);
96 EXPORT_SYMBOL(__register_binfmt
);
98 void unregister_binfmt(struct linux_binfmt
* fmt
)
100 write_lock(&binfmt_lock
);
102 write_unlock(&binfmt_lock
);
105 EXPORT_SYMBOL(unregister_binfmt
);
107 static inline void put_binfmt(struct linux_binfmt
* fmt
)
109 module_put(fmt
->module
);
112 bool path_noexec(const struct path
*path
)
114 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
115 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from the file itself.
125 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
127 struct linux_binfmt
*fmt
;
129 struct filename
*tmp
= getname(library
);
130 int error
= PTR_ERR(tmp
);
131 static const struct open_flags uselib_flags
= {
132 .open_flag
= O_LARGEFILE
| O_RDONLY
,
133 .acc_mode
= MAY_READ
| MAY_EXEC
,
134 .intent
= LOOKUP_OPEN
,
135 .lookup_flags
= LOOKUP_FOLLOW
,
141 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
143 error
= PTR_ERR(file
);
148 * Check do_open_execat() for an explanation.
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
)) ||
152 path_noexec(&file
->f_path
))
157 read_lock(&binfmt_lock
);
158 list_for_each_entry(fmt
, &formats
, lh
) {
159 if (!fmt
->load_shlib
)
161 if (!try_module_get(fmt
->module
))
163 read_unlock(&binfmt_lock
);
164 error
= fmt
->load_shlib(file
);
165 read_lock(&binfmt_lock
);
167 if (error
!= -ENOEXEC
)
170 read_unlock(&binfmt_lock
);
176 #endif /* #ifdef CONFIG_USELIB */
180 * The nascent bprm->mm is not visible until exec_mmap() but it can
181 * use a lot of memory, account these pages in current->mm temporary
182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183 * change the counter back via acct_arg_size(0).
185 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
187 struct mm_struct
*mm
= current
->mm
;
188 long diff
= (long)(pages
- bprm
->vma_pages
);
193 bprm
->vma_pages
= pages
;
194 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
197 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
201 struct vm_area_struct
*vma
= bprm
->vma
;
202 struct mm_struct
*mm
= bprm
->mm
;
206 * Avoid relying on expanding the stack down in GUP (which
207 * does not work for STACK_GROWSUP anyway), and just do it
208 * by hand ahead of time.
210 if (write
&& pos
< vma
->vm_start
) {
212 ret
= expand_downwards(vma
, pos
);
213 if (unlikely(ret
< 0)) {
214 mmap_write_unlock(mm
);
217 mmap_write_downgrade(mm
);
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and 'mm' is the new process's mm.
225 ret
= get_user_pages_remote(mm
, pos
, 1,
226 write
? FOLL_WRITE
: 0,
228 mmap_read_unlock(mm
);
233 acct_arg_size(bprm
, vma_pages(vma
));
238 static void put_arg_page(struct page
*page
)
243 static void free_arg_pages(struct linux_binprm
*bprm
)
247 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
250 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
253 static int __bprm_mm_init(struct linux_binprm
*bprm
)
256 struct vm_area_struct
*vma
= NULL
;
257 struct mm_struct
*mm
= bprm
->mm
;
259 bprm
->vma
= vma
= vm_area_alloc(mm
);
262 vma_set_anonymous(vma
);
264 if (mmap_write_lock_killable(mm
)) {
270 * Need to be called with mmap write lock
271 * held, to avoid race with ksmd.
273 err
= ksm_execve(mm
);
278 * Place the stack at the largest stack address the architecture
279 * supports. Later, we'll move this to an appropriate place. We don't
280 * use STACK_TOP because that can depend on attributes which aren't
283 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
284 vma
->vm_end
= STACK_TOP_MAX
;
285 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
286 vm_flags_init(vma
, VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
);
287 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
289 err
= insert_vm_struct(mm
, vma
);
293 mm
->stack_vm
= mm
->total_vm
= 1;
294 mmap_write_unlock(mm
);
295 bprm
->p
= vma
->vm_end
- sizeof(void *);
300 mmap_write_unlock(mm
);
307 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
309 return len
<= MAX_ARG_STRLEN
;
314 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
318 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
323 page
= bprm
->page
[pos
/ PAGE_SIZE
];
324 if (!page
&& write
) {
325 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
328 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
334 static void put_arg_page(struct page
*page
)
338 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
341 __free_page(bprm
->page
[i
]);
342 bprm
->page
[i
] = NULL
;
346 static void free_arg_pages(struct linux_binprm
*bprm
)
350 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
351 free_arg_page(bprm
, i
);
354 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
359 static int __bprm_mm_init(struct linux_binprm
*bprm
)
361 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
365 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
367 return len
<= bprm
->p
;
370 #endif /* CONFIG_MMU */
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
378 static int bprm_mm_init(struct linux_binprm
*bprm
)
381 struct mm_struct
*mm
= NULL
;
383 bprm
->mm
= mm
= mm_alloc();
388 /* Save current stack limit for all calculations made during exec. */
389 task_lock(current
->group_leader
);
390 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
391 task_unlock(current
->group_leader
);
393 err
= __bprm_mm_init(bprm
);
408 struct user_arg_ptr
{
413 const char __user
*const __user
*native
;
415 const compat_uptr_t __user
*compat
;
420 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
422 const char __user
*native
;
425 if (unlikely(argv
.is_compat
)) {
426 compat_uptr_t compat
;
428 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
429 return ERR_PTR(-EFAULT
);
431 return compat_ptr(compat
);
435 if (get_user(native
, argv
.ptr
.native
+ nr
))
436 return ERR_PTR(-EFAULT
);
442 * count() counts the number of strings in array ARGV.
444 static int count(struct user_arg_ptr argv
, int max
)
448 if (argv
.ptr
.native
!= NULL
) {
450 const char __user
*p
= get_user_arg_ptr(argv
, i
);
462 if (fatal_signal_pending(current
))
463 return -ERESTARTNOHAND
;
470 static int count_strings_kernel(const char *const *argv
)
477 for (i
= 0; argv
[i
]; ++i
) {
478 if (i
>= MAX_ARG_STRINGS
)
480 if (fatal_signal_pending(current
))
481 return -ERESTARTNOHAND
;
487 static inline int bprm_set_stack_limit(struct linux_binprm
*bprm
,
491 /* Avoid a pathological bprm->p. */
494 bprm
->argmin
= bprm
->p
- limit
;
498 static inline bool bprm_hit_stack_limit(struct linux_binprm
*bprm
)
501 return bprm
->p
< bprm
->argmin
;
508 * Calculate bprm->argmin from:
511 * - bprm->rlim_stack.rlim_cur
516 static int bprm_stack_limits(struct linux_binprm
*bprm
)
518 unsigned long limit
, ptr_size
;
521 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
522 * (whichever is smaller) for the argv+env strings.
524 * - the remaining binfmt code will not run out of stack space,
525 * - the program will have a reasonable amount of stack left
528 limit
= _STK_LIM
/ 4 * 3;
529 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
531 * We've historically supported up to 32 pages (ARG_MAX)
532 * of argument strings even with small stacks
534 limit
= max_t(unsigned long, limit
, ARG_MAX
);
535 /* Reject totally pathological counts. */
536 if (bprm
->argc
< 0 || bprm
->envc
< 0)
539 * We must account for the size of all the argv and envp pointers to
540 * the argv and envp strings, since they will also take up space in
541 * the stack. They aren't stored until much later when we can't
542 * signal to the parent that the child has run out of stack space.
543 * Instead, calculate it here so it's possible to fail gracefully.
545 * In the case of argc = 0, make sure there is space for adding a
546 * empty string (which will bump argc to 1), to ensure confused
547 * userspace programs don't start processing from argv[1], thinking
548 * argc can never be 0, to keep them from walking envp by accident.
549 * See do_execveat_common().
551 if (check_add_overflow(max(bprm
->argc
, 1), bprm
->envc
, &ptr_size
) ||
552 check_mul_overflow(ptr_size
, sizeof(void *), &ptr_size
))
554 if (limit
<= ptr_size
)
558 return bprm_set_stack_limit(bprm
, limit
);
562 * 'copy_strings()' copies argument/environment strings from the old
563 * processes's memory to the new process's stack. The call to get_user_pages()
564 * ensures the destination page is created and not swapped out.
566 static int copy_strings(int argc
, struct user_arg_ptr argv
,
567 struct linux_binprm
*bprm
)
569 struct page
*kmapped_page
= NULL
;
571 unsigned long kpos
= 0;
575 const char __user
*str
;
580 str
= get_user_arg_ptr(argv
, argc
);
584 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
589 if (!valid_arg_len(bprm
, len
))
592 /* We're going to work our way backwards. */
596 if (bprm_hit_stack_limit(bprm
))
600 int offset
, bytes_to_copy
;
602 if (fatal_signal_pending(current
)) {
603 ret
= -ERESTARTNOHAND
;
608 offset
= pos
% PAGE_SIZE
;
612 bytes_to_copy
= offset
;
613 if (bytes_to_copy
> len
)
616 offset
-= bytes_to_copy
;
617 pos
-= bytes_to_copy
;
618 str
-= bytes_to_copy
;
619 len
-= bytes_to_copy
;
621 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
624 page
= get_arg_page(bprm
, pos
, 1);
631 flush_dcache_page(kmapped_page
);
633 put_arg_page(kmapped_page
);
636 kaddr
= kmap_local_page(kmapped_page
);
637 kpos
= pos
& PAGE_MASK
;
638 flush_arg_page(bprm
, kpos
, kmapped_page
);
640 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
649 flush_dcache_page(kmapped_page
);
651 put_arg_page(kmapped_page
);
657 * Copy and argument/environment string from the kernel to the processes stack.
659 int copy_string_kernel(const char *arg
, struct linux_binprm
*bprm
)
661 int len
= strnlen(arg
, MAX_ARG_STRLEN
) + 1 /* terminating NUL */;
662 unsigned long pos
= bprm
->p
;
666 if (!valid_arg_len(bprm
, len
))
669 /* We're going to work our way backwards. */
672 if (bprm_hit_stack_limit(bprm
))
676 unsigned int bytes_to_copy
= min_t(unsigned int, len
,
677 min_not_zero(offset_in_page(pos
), PAGE_SIZE
));
680 pos
-= bytes_to_copy
;
681 arg
-= bytes_to_copy
;
682 len
-= bytes_to_copy
;
684 page
= get_arg_page(bprm
, pos
, 1);
687 flush_arg_page(bprm
, pos
& PAGE_MASK
, page
);
688 memcpy_to_page(page
, offset_in_page(pos
), arg
, bytes_to_copy
);
694 EXPORT_SYMBOL(copy_string_kernel
);
696 static int copy_strings_kernel(int argc
, const char *const *argv
,
697 struct linux_binprm
*bprm
)
700 int ret
= copy_string_kernel(argv
[argc
], bprm
);
703 if (fatal_signal_pending(current
))
704 return -ERESTARTNOHAND
;
713 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
714 * the stack is optionally relocated, and some extra space is added.
716 int setup_arg_pages(struct linux_binprm
*bprm
,
717 unsigned long stack_top
,
718 int executable_stack
)
721 unsigned long stack_shift
;
722 struct mm_struct
*mm
= current
->mm
;
723 struct vm_area_struct
*vma
= bprm
->vma
;
724 struct vm_area_struct
*prev
= NULL
;
725 unsigned long vm_flags
;
726 unsigned long stack_base
;
727 unsigned long stack_size
;
728 unsigned long stack_expand
;
729 unsigned long rlim_stack
;
730 struct mmu_gather tlb
;
731 struct vma_iterator vmi
;
733 #ifdef CONFIG_STACK_GROWSUP
734 /* Limit stack size */
735 stack_base
= bprm
->rlim_stack
.rlim_max
;
737 stack_base
= calc_max_stack_size(stack_base
);
739 /* Add space for stack randomization. */
740 if (current
->flags
& PF_RANDOMIZE
)
741 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
743 /* Make sure we didn't let the argument array grow too large. */
744 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
747 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
749 stack_shift
= vma
->vm_start
- stack_base
;
750 mm
->arg_start
= bprm
->p
- stack_shift
;
751 bprm
->p
= vma
->vm_end
- stack_shift
;
753 stack_top
= arch_align_stack(stack_top
);
754 stack_top
= PAGE_ALIGN(stack_top
);
756 if (unlikely(stack_top
< mmap_min_addr
) ||
757 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
760 stack_shift
= vma
->vm_end
- stack_top
;
762 bprm
->p
-= stack_shift
;
763 mm
->arg_start
= bprm
->p
;
767 bprm
->loader
-= stack_shift
;
768 bprm
->exec
-= stack_shift
;
770 if (mmap_write_lock_killable(mm
))
773 vm_flags
= VM_STACK_FLAGS
;
776 * Adjust stack execute permissions; explicitly enable for
777 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
778 * (arch default) otherwise.
780 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
782 else if (executable_stack
== EXSTACK_DISABLE_X
)
783 vm_flags
&= ~VM_EXEC
;
784 vm_flags
|= mm
->def_flags
;
785 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
787 vma_iter_init(&vmi
, mm
, vma
->vm_start
);
789 tlb_gather_mmu(&tlb
, mm
);
790 ret
= mprotect_fixup(&vmi
, &tlb
, vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
792 tlb_finish_mmu(&tlb
);
798 if (unlikely(vm_flags
& VM_EXEC
)) {
799 pr_warn_once("process '%pD4' started with executable stack\n",
803 /* Move stack pages down in memory. */
806 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
807 * the binfmt code determines where the new stack should reside, we shift it to
808 * its final location.
810 ret
= relocate_vma_down(vma
, stack_shift
);
815 /* mprotect_fixup is overkill to remove the temporary stack flags */
816 vm_flags_clear(vma
, VM_STACK_INCOMPLETE_SETUP
);
818 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
819 stack_size
= vma
->vm_end
- vma
->vm_start
;
821 * Align this down to a page boundary as expand_stack
824 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
826 stack_expand
= min(rlim_stack
, stack_size
+ stack_expand
);
828 #ifdef CONFIG_STACK_GROWSUP
829 stack_base
= vma
->vm_start
+ stack_expand
;
831 stack_base
= vma
->vm_end
- stack_expand
;
833 current
->mm
->start_stack
= bprm
->p
;
834 ret
= expand_stack_locked(vma
, stack_base
);
839 mmap_write_unlock(mm
);
842 EXPORT_SYMBOL(setup_arg_pages
);
847 * Transfer the program arguments and environment from the holding pages
848 * onto the stack. The provided stack pointer is adjusted accordingly.
850 int transfer_args_to_stack(struct linux_binprm
*bprm
,
851 unsigned long *sp_location
)
853 unsigned long index
, stop
, sp
;
856 stop
= bprm
->p
>> PAGE_SHIFT
;
859 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
860 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
861 char *src
= kmap_local_page(bprm
->page
[index
]) + offset
;
862 sp
-= PAGE_SIZE
- offset
;
863 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
870 bprm
->exec
+= *sp_location
- MAX_ARG_PAGES
* PAGE_SIZE
;
876 EXPORT_SYMBOL(transfer_args_to_stack
);
878 #endif /* CONFIG_MMU */
881 * On success, caller must call do_close_execat() on the returned
882 * struct file to close it.
884 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
887 struct file
*file
__free(fput
) = NULL
;
888 struct open_flags open_exec_flags
= {
889 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
890 .acc_mode
= MAY_EXEC
,
891 .intent
= LOOKUP_OPEN
,
892 .lookup_flags
= LOOKUP_FOLLOW
,
895 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
896 return ERR_PTR(-EINVAL
);
897 if (flags
& AT_SYMLINK_NOFOLLOW
)
898 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
899 if (flags
& AT_EMPTY_PATH
)
900 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
902 file
= do_filp_open(fd
, name
, &open_exec_flags
);
907 * In the past the regular type check was here. It moved to may_open() in
908 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
909 * an invariant that all non-regular files error out before we get here.
911 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
)) ||
912 path_noexec(&file
->f_path
))
913 return ERR_PTR(-EACCES
);
915 err
= deny_write_access(file
);
919 return no_free_ptr(file
);
923 * open_exec - Open a path name for execution
925 * @name: path name to open with the intent of executing it.
927 * Returns ERR_PTR on failure or allocated struct file on success.
929 * As this is a wrapper for the internal do_open_execat(), callers
930 * must call allow_write_access() before fput() on release. Also see
933 struct file
*open_exec(const char *name
)
935 struct filename
*filename
= getname_kernel(name
);
936 struct file
*f
= ERR_CAST(filename
);
938 if (!IS_ERR(filename
)) {
939 f
= do_open_execat(AT_FDCWD
, filename
, 0);
944 EXPORT_SYMBOL(open_exec
);
946 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
947 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
949 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
951 flush_icache_user_range(addr
, addr
+ len
);
954 EXPORT_SYMBOL(read_code
);
958 * Maps the mm_struct mm into the current task struct.
959 * On success, this function returns with exec_update_lock
962 static int exec_mmap(struct mm_struct
*mm
)
964 struct task_struct
*tsk
;
965 struct mm_struct
*old_mm
, *active_mm
;
968 /* Notify parent that we're no longer interested in the old VM */
970 old_mm
= current
->mm
;
971 exec_mm_release(tsk
, old_mm
);
973 ret
= down_write_killable(&tsk
->signal
->exec_update_lock
);
979 * If there is a pending fatal signal perhaps a signal
980 * whose default action is to create a coredump get
981 * out and die instead of going through with the exec.
983 ret
= mmap_read_lock_killable(old_mm
);
985 up_write(&tsk
->signal
->exec_update_lock
);
991 membarrier_exec_mmap(mm
);
994 active_mm
= tsk
->active_mm
;
997 mm_init_cid(mm
, tsk
);
999 * This prevents preemption while active_mm is being loaded and
1000 * it and mm are being updated, which could cause problems for
1001 * lazy tlb mm refcounting when these are updated by context
1002 * switches. Not all architectures can handle irqs off over
1005 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1007 activate_mm(active_mm
, mm
);
1008 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1014 mmap_read_unlock(old_mm
);
1015 BUG_ON(active_mm
!= old_mm
);
1016 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1017 mm_update_next_owner(old_mm
);
1021 mmdrop_lazy_tlb(active_mm
);
1025 static int de_thread(struct task_struct
*tsk
)
1027 struct signal_struct
*sig
= tsk
->signal
;
1028 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1029 spinlock_t
*lock
= &oldsighand
->siglock
;
1031 if (thread_group_empty(tsk
))
1032 goto no_thread_group
;
1035 * Kill all other threads in the thread group.
1037 spin_lock_irq(lock
);
1038 if ((sig
->flags
& SIGNAL_GROUP_EXIT
) || sig
->group_exec_task
) {
1040 * Another group action in progress, just
1041 * return so that the signal is processed.
1043 spin_unlock_irq(lock
);
1047 sig
->group_exec_task
= tsk
;
1048 sig
->notify_count
= zap_other_threads(tsk
);
1049 if (!thread_group_leader(tsk
))
1050 sig
->notify_count
--;
1052 while (sig
->notify_count
) {
1053 __set_current_state(TASK_KILLABLE
);
1054 spin_unlock_irq(lock
);
1056 if (__fatal_signal_pending(tsk
))
1058 spin_lock_irq(lock
);
1060 spin_unlock_irq(lock
);
1063 * At this point all other threads have exited, all we have to
1064 * do is to wait for the thread group leader to become inactive,
1065 * and to assume its PID:
1067 if (!thread_group_leader(tsk
)) {
1068 struct task_struct
*leader
= tsk
->group_leader
;
1071 cgroup_threadgroup_change_begin(tsk
);
1072 write_lock_irq(&tasklist_lock
);
1074 * Do this under tasklist_lock to ensure that
1075 * exit_notify() can't miss ->group_exec_task
1077 sig
->notify_count
= -1;
1078 if (likely(leader
->exit_state
))
1080 __set_current_state(TASK_KILLABLE
);
1081 write_unlock_irq(&tasklist_lock
);
1082 cgroup_threadgroup_change_end(tsk
);
1084 if (__fatal_signal_pending(tsk
))
1089 * The only record we have of the real-time age of a
1090 * process, regardless of execs it's done, is start_time.
1091 * All the past CPU time is accumulated in signal_struct
1092 * from sister threads now dead. But in this non-leader
1093 * exec, nothing survives from the original leader thread,
1094 * whose birth marks the true age of this process now.
1095 * When we take on its identity by switching to its PID, we
1096 * also take its birthdate (always earlier than our own).
1098 tsk
->start_time
= leader
->start_time
;
1099 tsk
->start_boottime
= leader
->start_boottime
;
1101 BUG_ON(!same_thread_group(leader
, tsk
));
1103 * An exec() starts a new thread group with the
1104 * TGID of the previous thread group. Rehash the
1105 * two threads with a switched PID, and release
1106 * the former thread group leader:
1109 /* Become a process group leader with the old leader's pid.
1110 * The old leader becomes a thread of the this thread group.
1112 exchange_tids(tsk
, leader
);
1113 transfer_pid(leader
, tsk
, PIDTYPE_TGID
);
1114 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1115 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1117 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1118 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1120 tsk
->group_leader
= tsk
;
1121 leader
->group_leader
= tsk
;
1123 tsk
->exit_signal
= SIGCHLD
;
1124 leader
->exit_signal
= -1;
1126 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1127 leader
->exit_state
= EXIT_DEAD
;
1129 * We are going to release_task()->ptrace_unlink() silently,
1130 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1131 * the tracer won't block again waiting for this thread.
1133 if (unlikely(leader
->ptrace
))
1134 __wake_up_parent(leader
, leader
->parent
);
1135 write_unlock_irq(&tasklist_lock
);
1136 cgroup_threadgroup_change_end(tsk
);
1138 release_task(leader
);
1141 sig
->group_exec_task
= NULL
;
1142 sig
->notify_count
= 0;
1145 /* we have changed execution domain */
1146 tsk
->exit_signal
= SIGCHLD
;
1148 BUG_ON(!thread_group_leader(tsk
));
1152 /* protects against exit_notify() and __exit_signal() */
1153 read_lock(&tasklist_lock
);
1154 sig
->group_exec_task
= NULL
;
1155 sig
->notify_count
= 0;
1156 read_unlock(&tasklist_lock
);
1162 * This function makes sure the current process has its own signal table,
1163 * so that flush_signal_handlers can later reset the handlers without
1164 * disturbing other processes. (Other processes might share the signal
1165 * table via the CLONE_SIGHAND option to clone().)
1167 static int unshare_sighand(struct task_struct
*me
)
1169 struct sighand_struct
*oldsighand
= me
->sighand
;
1171 if (refcount_read(&oldsighand
->count
) != 1) {
1172 struct sighand_struct
*newsighand
;
1174 * This ->sighand is shared with the CLONE_SIGHAND
1175 * but not CLONE_THREAD task, switch to the new one.
1177 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1181 refcount_set(&newsighand
->count
, 1);
1183 write_lock_irq(&tasklist_lock
);
1184 spin_lock(&oldsighand
->siglock
);
1185 memcpy(newsighand
->action
, oldsighand
->action
,
1186 sizeof(newsighand
->action
));
1187 rcu_assign_pointer(me
->sighand
, newsighand
);
1188 spin_unlock(&oldsighand
->siglock
);
1189 write_unlock_irq(&tasklist_lock
);
1191 __cleanup_sighand(oldsighand
);
1197 * These functions flushes out all traces of the currently running executable
1198 * so that a new one can be started
1201 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1204 trace_task_rename(tsk
, buf
);
1205 strscpy_pad(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1207 perf_event_comm(tsk
, exec
);
1211 * Calling this is the point of no return. None of the failures will be
1212 * seen by userspace since either the process is already taking a fatal
1213 * signal (via de_thread() or coredump), or will have SEGV raised
1214 * (after exec_mmap()) by search_binary_handler (see below).
1216 int begin_new_exec(struct linux_binprm
* bprm
)
1218 struct task_struct
*me
= current
;
1221 /* Once we are committed compute the creds */
1222 retval
= bprm_creds_from_file(bprm
);
1227 * This tracepoint marks the point before flushing the old exec where
1228 * the current task is still unchanged, but errors are fatal (point of
1229 * no return). The later "sched_process_exec" tracepoint is called after
1230 * the current task has successfully switched to the new exec.
1232 trace_sched_prepare_exec(current
, bprm
);
1235 * Ensure all future errors are fatal.
1237 bprm
->point_of_no_return
= true;
1240 * Make this the only thread in the thread group.
1242 retval
= de_thread(me
);
1247 * Cancel any io_uring activity across execve
1249 io_uring_task_cancel();
1251 /* Ensure the files table is not shared. */
1252 retval
= unshare_files();
1257 * Must be called _before_ exec_mmap() as bprm->mm is
1258 * not visible until then. Doing it here also ensures
1259 * we don't race against replace_mm_exe_file().
1261 retval
= set_mm_exe_file(bprm
->mm
, bprm
->file
);
1265 /* If the binary is not readable then enforce mm->dumpable=0 */
1266 would_dump(bprm
, bprm
->file
);
1267 if (bprm
->have_execfd
)
1268 would_dump(bprm
, bprm
->executable
);
1271 * Release all of the old mmap stuff
1273 acct_arg_size(bprm
, 0);
1274 retval
= exec_mmap(bprm
->mm
);
1280 retval
= exec_task_namespaces();
1284 #ifdef CONFIG_POSIX_TIMERS
1285 spin_lock_irq(&me
->sighand
->siglock
);
1286 posix_cpu_timers_exit(me
);
1287 spin_unlock_irq(&me
->sighand
->siglock
);
1289 flush_itimer_signals();
1293 * Make the signal table private.
1295 retval
= unshare_sighand(me
);
1299 me
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
|
1300 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1302 me
->personality
&= ~bprm
->per_clear
;
1304 clear_syscall_work_syscall_user_dispatch(me
);
1307 * We have to apply CLOEXEC before we change whether the process is
1308 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1309 * trying to access the should-be-closed file descriptors of a process
1310 * undergoing exec(2).
1312 do_close_on_exec(me
->files
);
1314 if (bprm
->secureexec
) {
1315 /* Make sure parent cannot signal privileged process. */
1316 me
->pdeath_signal
= 0;
1319 * For secureexec, reset the stack limit to sane default to
1320 * avoid bad behavior from the prior rlimits. This has to
1321 * happen before arch_pick_mmap_layout(), which examines
1322 * RLIMIT_STACK, but after the point of no return to avoid
1323 * needing to clean up the change on failure.
1325 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1326 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1329 me
->sas_ss_sp
= me
->sas_ss_size
= 0;
1332 * Figure out dumpability. Note that this checking only of current
1333 * is wrong, but userspace depends on it. This should be testing
1334 * bprm->secureexec instead.
1336 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1337 !(uid_eq(current_euid(), current_uid()) &&
1338 gid_eq(current_egid(), current_gid())))
1339 set_dumpable(current
->mm
, suid_dumpable
);
1341 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1344 __set_task_comm(me
, kbasename(bprm
->filename
), true);
1346 /* An exec changes our domain. We are no longer part of the thread
1348 WRITE_ONCE(me
->self_exec_id
, me
->self_exec_id
+ 1);
1349 flush_signal_handlers(me
, 0);
1351 retval
= set_cred_ucounts(bprm
->cred
);
1356 * install the new credentials for this executable
1358 security_bprm_committing_creds(bprm
);
1360 commit_creds(bprm
->cred
);
1364 * Disable monitoring for regular users
1365 * when executing setuid binaries. Must
1366 * wait until new credentials are committed
1367 * by commit_creds() above
1369 if (get_dumpable(me
->mm
) != SUID_DUMP_USER
)
1370 perf_event_exit_task(me
);
1372 * cred_guard_mutex must be held at least to this point to prevent
1373 * ptrace_attach() from altering our determination of the task's
1374 * credentials; any time after this it may be unlocked.
1376 security_bprm_committed_creds(bprm
);
1378 /* Pass the opened binary to the interpreter. */
1379 if (bprm
->have_execfd
) {
1380 retval
= get_unused_fd_flags(0);
1383 fd_install(retval
, bprm
->executable
);
1384 bprm
->executable
= NULL
;
1385 bprm
->execfd
= retval
;
1390 up_write(&me
->signal
->exec_update_lock
);
1392 mutex_unlock(&me
->signal
->cred_guard_mutex
);
1397 EXPORT_SYMBOL(begin_new_exec
);
1399 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1401 struct inode
*inode
= file_inode(file
);
1402 struct mnt_idmap
*idmap
= file_mnt_idmap(file
);
1403 if (inode_permission(idmap
, inode
, MAY_READ
) < 0) {
1404 struct user_namespace
*old
, *user_ns
;
1405 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1407 /* Ensure mm->user_ns contains the executable */
1408 user_ns
= old
= bprm
->mm
->user_ns
;
1409 while ((user_ns
!= &init_user_ns
) &&
1410 !privileged_wrt_inode_uidgid(user_ns
, idmap
, inode
))
1411 user_ns
= user_ns
->parent
;
1413 if (old
!= user_ns
) {
1414 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1419 EXPORT_SYMBOL(would_dump
);
1421 void setup_new_exec(struct linux_binprm
* bprm
)
1423 /* Setup things that can depend upon the personality */
1424 struct task_struct
*me
= current
;
1426 arch_pick_mmap_layout(me
->mm
, &bprm
->rlim_stack
);
1428 arch_setup_new_exec();
1430 /* Set the new mm task size. We have to do that late because it may
1431 * depend on TIF_32BIT which is only updated in flush_thread() on
1432 * some architectures like powerpc
1434 me
->mm
->task_size
= TASK_SIZE
;
1435 up_write(&me
->signal
->exec_update_lock
);
1436 mutex_unlock(&me
->signal
->cred_guard_mutex
);
1438 EXPORT_SYMBOL(setup_new_exec
);
1440 /* Runs immediately before start_thread() takes over. */
1441 void finalize_exec(struct linux_binprm
*bprm
)
1443 /* Store any stack rlimit changes before starting thread. */
1444 task_lock(current
->group_leader
);
1445 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1446 task_unlock(current
->group_leader
);
1448 EXPORT_SYMBOL(finalize_exec
);
1451 * Prepare credentials and lock ->cred_guard_mutex.
1452 * setup_new_exec() commits the new creds and drops the lock.
1453 * Or, if exec fails before, free_bprm() should release ->cred
1456 static int prepare_bprm_creds(struct linux_binprm
*bprm
)
1458 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1459 return -ERESTARTNOINTR
;
1461 bprm
->cred
= prepare_exec_creds();
1462 if (likely(bprm
->cred
))
1465 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1469 /* Matches do_open_execat() */
1470 static void do_close_execat(struct file
*file
)
1474 allow_write_access(file
);
1478 static void free_bprm(struct linux_binprm
*bprm
)
1481 acct_arg_size(bprm
, 0);
1484 free_arg_pages(bprm
);
1486 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1487 abort_creds(bprm
->cred
);
1489 do_close_execat(bprm
->file
);
1490 if (bprm
->executable
)
1491 fput(bprm
->executable
);
1492 /* If a binfmt changed the interp, free it. */
1493 if (bprm
->interp
!= bprm
->filename
)
1494 kfree(bprm
->interp
);
1495 kfree(bprm
->fdpath
);
1499 static struct linux_binprm
*alloc_bprm(int fd
, struct filename
*filename
, int flags
)
1501 struct linux_binprm
*bprm
;
1503 int retval
= -ENOMEM
;
1505 file
= do_open_execat(fd
, filename
, flags
);
1507 return ERR_CAST(file
);
1509 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1511 do_close_execat(file
);
1512 return ERR_PTR(-ENOMEM
);
1517 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1518 bprm
->filename
= filename
->name
;
1520 if (filename
->name
[0] == '\0')
1521 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1523 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1524 fd
, filename
->name
);
1529 * Record that a name derived from an O_CLOEXEC fd will be
1530 * inaccessible after exec. This allows the code in exec to
1531 * choose to fail when the executable is not mmaped into the
1532 * interpreter and an open file descriptor is not passed to
1533 * the interpreter. This makes for a better user experience
1534 * than having the interpreter start and then immediately fail
1535 * when it finds the executable is inaccessible.
1537 if (get_close_on_exec(fd
))
1538 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1540 bprm
->filename
= bprm
->fdpath
;
1542 bprm
->interp
= bprm
->filename
;
1544 retval
= bprm_mm_init(bprm
);
1550 return ERR_PTR(retval
);
1553 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1555 /* If a binfmt changed the interp, free it first. */
1556 if (bprm
->interp
!= bprm
->filename
)
1557 kfree(bprm
->interp
);
1558 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1563 EXPORT_SYMBOL(bprm_change_interp
);
1566 * determine how safe it is to execute the proposed program
1567 * - the caller must hold ->cred_guard_mutex to protect against
1568 * PTRACE_ATTACH or seccomp thread-sync
1570 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1572 struct task_struct
*p
= current
, *t
;
1576 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1579 * This isn't strictly necessary, but it makes it harder for LSMs to
1582 if (task_no_new_privs(current
))
1583 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1586 * If another task is sharing our fs, we cannot safely
1587 * suid exec because the differently privileged task
1588 * will be able to manipulate the current directory, etc.
1589 * It would be nice to force an unshare instead...
1592 spin_lock(&p
->fs
->lock
);
1594 for_other_threads(p
, t
) {
1600 /* "users" and "in_exec" locked for copy_fs() */
1601 if (p
->fs
->users
> n_fs
)
1602 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1605 spin_unlock(&p
->fs
->lock
);
1608 static void bprm_fill_uid(struct linux_binprm
*bprm
, struct file
*file
)
1610 /* Handle suid and sgid on files */
1611 struct mnt_idmap
*idmap
;
1612 struct inode
*inode
= file_inode(file
);
1618 if (!mnt_may_suid(file
->f_path
.mnt
))
1621 if (task_no_new_privs(current
))
1624 mode
= READ_ONCE(inode
->i_mode
);
1625 if (!(mode
& (S_ISUID
|S_ISGID
)))
1628 idmap
= file_mnt_idmap(file
);
1630 /* Be careful if suid/sgid is set */
1633 /* Atomically reload and check mode/uid/gid now that lock held. */
1634 mode
= inode
->i_mode
;
1635 vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
1636 vfsgid
= i_gid_into_vfsgid(idmap
, inode
);
1637 err
= inode_permission(idmap
, inode
, MAY_EXEC
);
1638 inode_unlock(inode
);
1640 /* Did the exec bit vanish out from under us? Give up. */
1644 /* We ignore suid/sgid if there are no mappings for them in the ns */
1645 if (!vfsuid_has_mapping(bprm
->cred
->user_ns
, vfsuid
) ||
1646 !vfsgid_has_mapping(bprm
->cred
->user_ns
, vfsgid
))
1649 if (mode
& S_ISUID
) {
1650 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1651 bprm
->cred
->euid
= vfsuid_into_kuid(vfsuid
);
1654 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1655 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1656 bprm
->cred
->egid
= vfsgid_into_kgid(vfsgid
);
1661 * Compute brpm->cred based upon the final binary.
1663 static int bprm_creds_from_file(struct linux_binprm
*bprm
)
1665 /* Compute creds based on which file? */
1666 struct file
*file
= bprm
->execfd_creds
? bprm
->executable
: bprm
->file
;
1668 bprm_fill_uid(bprm
, file
);
1669 return security_bprm_creds_from_file(bprm
, file
);
1673 * Fill the binprm structure from the inode.
1674 * Read the first BINPRM_BUF_SIZE bytes
1676 * This may be called multiple times for binary chains (scripts for example).
1678 static int prepare_binprm(struct linux_binprm
*bprm
)
1682 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1683 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1687 * Arguments are '\0' separated strings found at the location bprm->p
1688 * points to; chop off the first by relocating brpm->p to right after
1689 * the first '\0' encountered.
1691 int remove_arg_zero(struct linux_binprm
*bprm
)
1693 unsigned long offset
;
1701 offset
= bprm
->p
& ~PAGE_MASK
;
1702 page
= get_arg_page(bprm
, bprm
->p
, 0);
1705 kaddr
= kmap_local_page(page
);
1707 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1708 offset
++, bprm
->p
++)
1711 kunmap_local(kaddr
);
1713 } while (offset
== PAGE_SIZE
);
1720 EXPORT_SYMBOL(remove_arg_zero
);
1722 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1724 * cycle the list of binary formats handler, until one recognizes the image
1726 static int search_binary_handler(struct linux_binprm
*bprm
)
1728 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1729 struct linux_binfmt
*fmt
;
1732 retval
= prepare_binprm(bprm
);
1736 retval
= security_bprm_check(bprm
);
1742 read_lock(&binfmt_lock
);
1743 list_for_each_entry(fmt
, &formats
, lh
) {
1744 if (!try_module_get(fmt
->module
))
1746 read_unlock(&binfmt_lock
);
1748 retval
= fmt
->load_binary(bprm
);
1750 read_lock(&binfmt_lock
);
1752 if (bprm
->point_of_no_return
|| (retval
!= -ENOEXEC
)) {
1753 read_unlock(&binfmt_lock
);
1757 read_unlock(&binfmt_lock
);
1760 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1761 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1763 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1772 /* binfmt handlers will call back into begin_new_exec() on success. */
1773 static int exec_binprm(struct linux_binprm
*bprm
)
1775 pid_t old_pid
, old_vpid
;
1778 /* Need to fetch pid before load_binary changes it */
1779 old_pid
= current
->pid
;
1781 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1784 /* This allows 4 levels of binfmt rewrites before failing hard. */
1785 for (depth
= 0;; depth
++) {
1790 ret
= search_binary_handler(bprm
);
1793 if (!bprm
->interpreter
)
1797 bprm
->file
= bprm
->interpreter
;
1798 bprm
->interpreter
= NULL
;
1800 allow_write_access(exec
);
1801 if (unlikely(bprm
->have_execfd
)) {
1802 if (bprm
->executable
) {
1806 bprm
->executable
= exec
;
1812 trace_sched_process_exec(current
, old_pid
, bprm
);
1813 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1814 proc_exec_connector(current
);
1818 static int bprm_execve(struct linux_binprm
*bprm
)
1822 retval
= prepare_bprm_creds(bprm
);
1827 * Check for unsafe execution states before exec_binprm(), which
1828 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1829 * where setuid-ness is evaluated.
1831 check_unsafe_exec(bprm
);
1832 current
->in_execve
= 1;
1833 sched_mm_cid_before_execve(current
);
1837 /* Set the unchanging part of bprm->cred */
1838 retval
= security_bprm_creds_for_exec(bprm
);
1842 retval
= exec_binprm(bprm
);
1846 sched_mm_cid_after_execve(current
);
1847 /* execve succeeded */
1848 current
->fs
->in_exec
= 0;
1849 current
->in_execve
= 0;
1850 rseq_execve(current
);
1851 user_events_execve(current
);
1852 acct_update_integrals(current
);
1853 task_numa_free(current
, false);
1858 * If past the point of no return ensure the code never
1859 * returns to the userspace process. Use an existing fatal
1860 * signal if present otherwise terminate the process with
1863 if (bprm
->point_of_no_return
&& !fatal_signal_pending(current
))
1864 force_fatal_sig(SIGSEGV
);
1866 sched_mm_cid_after_execve(current
);
1867 current
->fs
->in_exec
= 0;
1868 current
->in_execve
= 0;
1873 static int do_execveat_common(int fd
, struct filename
*filename
,
1874 struct user_arg_ptr argv
,
1875 struct user_arg_ptr envp
,
1878 struct linux_binprm
*bprm
;
1881 if (IS_ERR(filename
))
1882 return PTR_ERR(filename
);
1885 * We move the actual failure in case of RLIMIT_NPROC excess from
1886 * set*uid() to execve() because too many poorly written programs
1887 * don't check setuid() return code. Here we additionally recheck
1888 * whether NPROC limit is still exceeded.
1890 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1891 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC
, rlimit(RLIMIT_NPROC
))) {
1896 /* We're below the limit (still or again), so we don't want to make
1897 * further execve() calls fail. */
1898 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1900 bprm
= alloc_bprm(fd
, filename
, flags
);
1902 retval
= PTR_ERR(bprm
);
1906 retval
= count(argv
, MAX_ARG_STRINGS
);
1908 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1909 current
->comm
, bprm
->filename
);
1912 bprm
->argc
= retval
;
1914 retval
= count(envp
, MAX_ARG_STRINGS
);
1917 bprm
->envc
= retval
;
1919 retval
= bprm_stack_limits(bprm
);
1923 retval
= copy_string_kernel(bprm
->filename
, bprm
);
1926 bprm
->exec
= bprm
->p
;
1928 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1932 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1937 * When argv is empty, add an empty string ("") as argv[0] to
1938 * ensure confused userspace programs that start processing
1939 * from argv[1] won't end up walking envp. See also
1940 * bprm_stack_limits().
1942 if (bprm
->argc
== 0) {
1943 retval
= copy_string_kernel("", bprm
);
1949 retval
= bprm_execve(bprm
);
1958 int kernel_execve(const char *kernel_filename
,
1959 const char *const *argv
, const char *const *envp
)
1961 struct filename
*filename
;
1962 struct linux_binprm
*bprm
;
1966 /* It is non-sense for kernel threads to call execve */
1967 if (WARN_ON_ONCE(current
->flags
& PF_KTHREAD
))
1970 filename
= getname_kernel(kernel_filename
);
1971 if (IS_ERR(filename
))
1972 return PTR_ERR(filename
);
1974 bprm
= alloc_bprm(fd
, filename
, 0);
1976 retval
= PTR_ERR(bprm
);
1980 retval
= count_strings_kernel(argv
);
1981 if (WARN_ON_ONCE(retval
== 0))
1985 bprm
->argc
= retval
;
1987 retval
= count_strings_kernel(envp
);
1990 bprm
->envc
= retval
;
1992 retval
= bprm_stack_limits(bprm
);
1996 retval
= copy_string_kernel(bprm
->filename
, bprm
);
1999 bprm
->exec
= bprm
->p
;
2001 retval
= copy_strings_kernel(bprm
->envc
, envp
, bprm
);
2005 retval
= copy_strings_kernel(bprm
->argc
, argv
, bprm
);
2009 retval
= bprm_execve(bprm
);
2017 static int do_execve(struct filename
*filename
,
2018 const char __user
*const __user
*__argv
,
2019 const char __user
*const __user
*__envp
)
2021 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
2022 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
2023 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2026 static int do_execveat(int fd
, struct filename
*filename
,
2027 const char __user
*const __user
*__argv
,
2028 const char __user
*const __user
*__envp
,
2031 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
2032 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
2034 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2037 #ifdef CONFIG_COMPAT
2038 static int compat_do_execve(struct filename
*filename
,
2039 const compat_uptr_t __user
*__argv
,
2040 const compat_uptr_t __user
*__envp
)
2042 struct user_arg_ptr argv
= {
2044 .ptr
.compat
= __argv
,
2046 struct user_arg_ptr envp
= {
2048 .ptr
.compat
= __envp
,
2050 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2053 static int compat_do_execveat(int fd
, struct filename
*filename
,
2054 const compat_uptr_t __user
*__argv
,
2055 const compat_uptr_t __user
*__envp
,
2058 struct user_arg_ptr argv
= {
2060 .ptr
.compat
= __argv
,
2062 struct user_arg_ptr envp
= {
2064 .ptr
.compat
= __envp
,
2066 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2070 void set_binfmt(struct linux_binfmt
*new)
2072 struct mm_struct
*mm
= current
->mm
;
2075 module_put(mm
->binfmt
->module
);
2079 __module_get(new->module
);
2081 EXPORT_SYMBOL(set_binfmt
);
2084 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2086 void set_dumpable(struct mm_struct
*mm
, int value
)
2088 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
2091 set_mask_bits(&mm
->flags
, MMF_DUMPABLE_MASK
, value
);
2094 SYSCALL_DEFINE3(execve
,
2095 const char __user
*, filename
,
2096 const char __user
*const __user
*, argv
,
2097 const char __user
*const __user
*, envp
)
2099 return do_execve(getname(filename
), argv
, envp
);
2102 SYSCALL_DEFINE5(execveat
,
2103 int, fd
, const char __user
*, filename
,
2104 const char __user
*const __user
*, argv
,
2105 const char __user
*const __user
*, envp
,
2108 return do_execveat(fd
,
2109 getname_uflags(filename
, flags
),
2113 #ifdef CONFIG_COMPAT
2114 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
2115 const compat_uptr_t __user
*, argv
,
2116 const compat_uptr_t __user
*, envp
)
2118 return compat_do_execve(getname(filename
), argv
, envp
);
2121 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
2122 const char __user
*, filename
,
2123 const compat_uptr_t __user
*, argv
,
2124 const compat_uptr_t __user
*, envp
,
2127 return compat_do_execveat(fd
,
2128 getname_uflags(filename
, flags
),
2133 #ifdef CONFIG_SYSCTL
2135 static int proc_dointvec_minmax_coredump(const struct ctl_table
*table
, int write
,
2136 void *buffer
, size_t *lenp
, loff_t
*ppos
)
2138 int error
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
2141 validate_coredump_safety();
2145 static struct ctl_table fs_exec_sysctls
[] = {
2147 .procname
= "suid_dumpable",
2148 .data
= &suid_dumpable
,
2149 .maxlen
= sizeof(int),
2151 .proc_handler
= proc_dointvec_minmax_coredump
,
2152 .extra1
= SYSCTL_ZERO
,
2153 .extra2
= SYSCTL_TWO
,
2157 static int __init
init_fs_exec_sysctls(void)
2159 register_sysctl_init("fs", fs_exec_sysctls
);
2163 fs_initcall(init_fs_exec_sysctls
);
2164 #endif /* CONFIG_SYSCTL */
2166 #ifdef CONFIG_EXEC_KUNIT_TEST
2167 #include "tests/exec_kunit.c"