1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
22 #include <trace/events/f2fs.h>
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*f2fs_inode_entry_slab
;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
,
32 f2fs_build_fault_attr(sbi
, 0, 0);
34 f2fs_flush_merged_writes(sbi
);
35 f2fs_handle_critical_error(sbi
, reason
);
39 * We guarantee no failure on the returned page.
41 struct page
*f2fs_grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
43 struct address_space
*mapping
= META_MAPPING(sbi
);
46 page
= f2fs_grab_cache_page(mapping
, index
, false);
51 f2fs_wait_on_page_writeback(page
, META
, true, true);
52 if (!PageUptodate(page
))
53 SetPageUptodate(page
);
57 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
60 struct address_space
*mapping
= META_MAPPING(sbi
);
62 struct f2fs_io_info fio
= {
66 .op_flags
= REQ_META
| REQ_PRIO
,
69 .encrypted_page
= NULL
,
70 .is_por
= !is_meta
? 1 : 0,
74 if (unlikely(!is_meta
))
75 fio
.op_flags
&= ~REQ_META
;
77 page
= f2fs_grab_cache_page(mapping
, index
, false);
82 if (PageUptodate(page
))
87 err
= f2fs_submit_page_bio(&fio
);
89 f2fs_put_page(page
, 1);
93 f2fs_update_iostat(sbi
, NULL
, FS_META_READ_IO
, F2FS_BLKSIZE
);
96 if (unlikely(page
->mapping
!= mapping
)) {
97 f2fs_put_page(page
, 1);
101 if (unlikely(!PageUptodate(page
))) {
102 f2fs_handle_page_eio(sbi
, page_folio(page
), META
);
103 f2fs_put_page(page
, 1);
104 return ERR_PTR(-EIO
);
110 struct page
*f2fs_get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
112 return __get_meta_page(sbi
, index
, true);
115 struct page
*f2fs_get_meta_page_retry(struct f2fs_sb_info
*sbi
, pgoff_t index
)
121 page
= __get_meta_page(sbi
, index
, true);
123 if (PTR_ERR(page
) == -EIO
&&
124 ++count
<= DEFAULT_RETRY_IO_COUNT
)
126 f2fs_stop_checkpoint(sbi
, false, STOP_CP_REASON_META_PAGE
);
132 struct page
*f2fs_get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
134 return __get_meta_page(sbi
, index
, false);
137 static bool __is_bitmap_valid(struct f2fs_sb_info
*sbi
, block_t blkaddr
,
140 struct seg_entry
*se
;
141 unsigned int segno
, offset
;
144 if (type
== DATA_GENERIC
)
147 segno
= GET_SEGNO(sbi
, blkaddr
);
148 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
149 se
= get_seg_entry(sbi
, segno
);
151 exist
= f2fs_test_bit(offset
, se
->cur_valid_map
);
153 /* skip data, if we already have an error in checkpoint. */
154 if (unlikely(f2fs_cp_error(sbi
)))
157 if ((exist
&& type
== DATA_GENERIC_ENHANCE_UPDATE
) ||
158 (!exist
&& type
== DATA_GENERIC_ENHANCE
))
160 if (!exist
&& type
!= DATA_GENERIC_ENHANCE_UPDATE
)
165 f2fs_err(sbi
, "Inconsistent error blkaddr:%u, sit bitmap:%d",
167 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
170 f2fs_handle_error(sbi
, ERROR_INVALID_BLKADDR
);
174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
175 block_t blkaddr
, int type
)
181 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
185 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
186 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
190 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
191 blkaddr
< __start_cp_addr(sbi
)))
195 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
196 blkaddr
< MAIN_BLKADDR(sbi
)))
200 case DATA_GENERIC_ENHANCE
:
201 case DATA_GENERIC_ENHANCE_READ
:
202 case DATA_GENERIC_ENHANCE_UPDATE
:
203 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
204 blkaddr
< MAIN_BLKADDR(sbi
))) {
206 /* Skip to emit an error message. */
207 if (unlikely(f2fs_cp_error(sbi
)))
210 f2fs_warn(sbi
, "access invalid blkaddr:%u",
212 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
216 return __is_bitmap_valid(sbi
, blkaddr
, type
);
220 if (unlikely(blkaddr
< SEG0_BLKADDR(sbi
) ||
221 blkaddr
>= MAIN_BLKADDR(sbi
)))
230 f2fs_handle_error(sbi
, ERROR_INVALID_BLKADDR
);
235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
236 block_t blkaddr
, int type
)
238 if (time_to_inject(sbi
, FAULT_BLKADDR_VALIDITY
))
240 return __f2fs_is_valid_blkaddr(sbi
, blkaddr
, type
);
243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info
*sbi
,
244 block_t blkaddr
, int type
)
246 return __f2fs_is_valid_blkaddr(sbi
, blkaddr
, type
);
250 * Readahead CP/NAT/SIT/SSA/POR pages
252 int f2fs_ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
256 block_t blkno
= start
;
257 struct f2fs_io_info fio
= {
261 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
262 .encrypted_page
= NULL
,
264 .is_por
= (type
== META_POR
) ? 1 : 0,
266 struct blk_plug plug
;
269 if (unlikely(type
== META_POR
))
270 fio
.op_flags
&= ~REQ_META
;
272 blk_start_plug(&plug
);
273 for (; nrpages
-- > 0; blkno
++) {
275 if (!f2fs_is_valid_blkaddr(sbi
, blkno
, type
))
280 if (unlikely(blkno
>=
281 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
283 /* get nat block addr */
284 fio
.new_blkaddr
= current_nat_addr(sbi
,
285 blkno
* NAT_ENTRY_PER_BLOCK
);
288 if (unlikely(blkno
>= TOTAL_SEGS(sbi
)))
290 /* get sit block addr */
291 fio
.new_blkaddr
= current_sit_addr(sbi
,
292 blkno
* SIT_ENTRY_PER_BLOCK
);
297 fio
.new_blkaddr
= blkno
;
303 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
304 fio
.new_blkaddr
, false);
307 if (PageUptodate(page
)) {
308 f2fs_put_page(page
, 1);
313 err
= f2fs_submit_page_bio(&fio
);
314 f2fs_put_page(page
, err
? 1 : 0);
317 f2fs_update_iostat(sbi
, NULL
, FS_META_READ_IO
,
321 blk_finish_plug(&plug
);
322 return blkno
- start
;
325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
,
326 unsigned int ra_blocks
)
329 bool readahead
= false;
331 if (ra_blocks
== RECOVERY_MIN_RA_BLOCKS
)
334 page
= find_get_page(META_MAPPING(sbi
), index
);
335 if (!page
|| !PageUptodate(page
))
337 f2fs_put_page(page
, 0);
340 f2fs_ra_meta_pages(sbi
, index
, ra_blocks
, META_POR
, true);
343 static int __f2fs_write_meta_page(struct page
*page
,
344 struct writeback_control
*wbc
,
345 enum iostat_type io_type
)
347 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
348 struct folio
*folio
= page_folio(page
);
350 trace_f2fs_writepage(folio
, META
);
352 if (unlikely(f2fs_cp_error(sbi
))) {
353 if (is_sbi_flag_set(sbi
, SBI_IS_CLOSE
)) {
354 folio_clear_uptodate(folio
);
355 dec_page_count(sbi
, F2FS_DIRTY_META
);
361 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
363 if (wbc
->for_reclaim
&& folio
->index
< GET_SUM_BLOCK(sbi
, 0))
366 f2fs_do_write_meta_page(sbi
, folio
, io_type
);
367 dec_page_count(sbi
, F2FS_DIRTY_META
);
369 if (wbc
->for_reclaim
)
370 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, META
);
374 if (unlikely(f2fs_cp_error(sbi
)))
375 f2fs_submit_merged_write(sbi
, META
);
380 redirty_page_for_writepage(wbc
, page
);
381 return AOP_WRITEPAGE_ACTIVATE
;
384 static int f2fs_write_meta_page(struct page
*page
,
385 struct writeback_control
*wbc
)
387 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
390 static int f2fs_write_meta_pages(struct address_space
*mapping
,
391 struct writeback_control
*wbc
)
393 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
396 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
399 /* collect a number of dirty meta pages and write together */
400 if (wbc
->sync_mode
!= WB_SYNC_ALL
&&
401 get_pages(sbi
, F2FS_DIRTY_META
) <
402 nr_pages_to_skip(sbi
, META
))
405 /* if locked failed, cp will flush dirty pages instead */
406 if (!f2fs_down_write_trylock(&sbi
->cp_global_sem
))
409 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
410 diff
= nr_pages_to_write(sbi
, META
, wbc
);
411 written
= f2fs_sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
412 f2fs_up_write(&sbi
->cp_global_sem
);
413 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
417 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
418 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
422 long f2fs_sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
423 long nr_to_write
, enum iostat_type io_type
)
425 struct address_space
*mapping
= META_MAPPING(sbi
);
426 pgoff_t index
= 0, prev
= ULONG_MAX
;
427 struct folio_batch fbatch
;
430 struct writeback_control wbc
= {
433 struct blk_plug plug
;
435 folio_batch_init(&fbatch
);
437 blk_start_plug(&plug
);
439 while ((nr_folios
= filemap_get_folios_tag(mapping
, &index
,
441 PAGECACHE_TAG_DIRTY
, &fbatch
))) {
444 for (i
= 0; i
< nr_folios
; i
++) {
445 struct folio
*folio
= fbatch
.folios
[i
];
447 if (nr_to_write
!= LONG_MAX
&& i
!= 0 &&
448 folio
->index
!= prev
+
449 folio_nr_pages(fbatch
.folios
[i
-1])) {
450 folio_batch_release(&fbatch
);
456 if (unlikely(folio
->mapping
!= mapping
)) {
461 if (!folio_test_dirty(folio
)) {
462 /* someone wrote it for us */
463 goto continue_unlock
;
466 f2fs_wait_on_page_writeback(&folio
->page
, META
,
469 if (!folio_clear_dirty_for_io(folio
))
470 goto continue_unlock
;
472 if (__f2fs_write_meta_page(&folio
->page
, &wbc
,
477 nwritten
+= folio_nr_pages(folio
);
479 if (unlikely(nwritten
>= nr_to_write
))
482 folio_batch_release(&fbatch
);
487 f2fs_submit_merged_write(sbi
, type
);
489 blk_finish_plug(&plug
);
494 static bool f2fs_dirty_meta_folio(struct address_space
*mapping
,
497 trace_f2fs_set_page_dirty(folio
, META
);
499 if (!folio_test_uptodate(folio
))
500 folio_mark_uptodate(folio
);
501 if (filemap_dirty_folio(mapping
, folio
)) {
502 inc_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_META
);
503 set_page_private_reference(&folio
->page
);
509 const struct address_space_operations f2fs_meta_aops
= {
510 .writepage
= f2fs_write_meta_page
,
511 .writepages
= f2fs_write_meta_pages
,
512 .dirty_folio
= f2fs_dirty_meta_folio
,
513 .invalidate_folio
= f2fs_invalidate_folio
,
514 .release_folio
= f2fs_release_folio
,
515 .migrate_folio
= filemap_migrate_folio
,
518 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
,
519 unsigned int devidx
, int type
)
521 struct inode_management
*im
= &sbi
->im
[type
];
522 struct ino_entry
*e
= NULL
, *new = NULL
;
524 if (type
== FLUSH_INO
) {
526 e
= radix_tree_lookup(&im
->ino_root
, ino
);
532 new = f2fs_kmem_cache_alloc(ino_entry_slab
,
533 GFP_NOFS
, true, NULL
);
535 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
537 spin_lock(&im
->ino_lock
);
538 e
= radix_tree_lookup(&im
->ino_root
, ino
);
541 spin_unlock(&im
->ino_lock
);
542 radix_tree_preload_end();
546 if (unlikely(radix_tree_insert(&im
->ino_root
, ino
, e
)))
549 memset(e
, 0, sizeof(struct ino_entry
));
552 list_add_tail(&e
->list
, &im
->ino_list
);
553 if (type
!= ORPHAN_INO
)
557 if (type
== FLUSH_INO
)
558 f2fs_set_bit(devidx
, (char *)&e
->dirty_device
);
560 spin_unlock(&im
->ino_lock
);
561 radix_tree_preload_end();
564 kmem_cache_free(ino_entry_slab
, new);
567 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
569 struct inode_management
*im
= &sbi
->im
[type
];
572 spin_lock(&im
->ino_lock
);
573 e
= radix_tree_lookup(&im
->ino_root
, ino
);
576 radix_tree_delete(&im
->ino_root
, ino
);
578 spin_unlock(&im
->ino_lock
);
579 kmem_cache_free(ino_entry_slab
, e
);
582 spin_unlock(&im
->ino_lock
);
585 void f2fs_add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
587 /* add new dirty ino entry into list */
588 __add_ino_entry(sbi
, ino
, 0, type
);
591 void f2fs_remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
593 /* remove dirty ino entry from list */
594 __remove_ino_entry(sbi
, ino
, type
);
597 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
598 bool f2fs_exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
600 struct inode_management
*im
= &sbi
->im
[mode
];
603 spin_lock(&im
->ino_lock
);
604 e
= radix_tree_lookup(&im
->ino_root
, ino
);
605 spin_unlock(&im
->ino_lock
);
606 return e
? true : false;
609 void f2fs_release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
611 struct ino_entry
*e
, *tmp
;
614 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
< MAX_INO_ENTRY
; i
++) {
615 struct inode_management
*im
= &sbi
->im
[i
];
617 spin_lock(&im
->ino_lock
);
618 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
620 radix_tree_delete(&im
->ino_root
, e
->ino
);
621 kmem_cache_free(ino_entry_slab
, e
);
624 spin_unlock(&im
->ino_lock
);
628 void f2fs_set_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
629 unsigned int devidx
, int type
)
631 __add_ino_entry(sbi
, ino
, devidx
, type
);
634 bool f2fs_is_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
635 unsigned int devidx
, int type
)
637 struct inode_management
*im
= &sbi
->im
[type
];
639 bool is_dirty
= false;
641 spin_lock(&im
->ino_lock
);
642 e
= radix_tree_lookup(&im
->ino_root
, ino
);
643 if (e
&& f2fs_test_bit(devidx
, (char *)&e
->dirty_device
))
645 spin_unlock(&im
->ino_lock
);
649 int f2fs_acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
651 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
654 spin_lock(&im
->ino_lock
);
656 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
657 spin_unlock(&im
->ino_lock
);
661 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
665 spin_unlock(&im
->ino_lock
);
670 void f2fs_release_orphan_inode(struct f2fs_sb_info
*sbi
)
672 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
674 spin_lock(&im
->ino_lock
);
675 f2fs_bug_on(sbi
, im
->ino_num
== 0);
677 spin_unlock(&im
->ino_lock
);
680 void f2fs_add_orphan_inode(struct inode
*inode
)
682 /* add new orphan ino entry into list */
683 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, 0, ORPHAN_INO
);
684 f2fs_update_inode_page(inode
);
687 void f2fs_remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
689 /* remove orphan entry from orphan list */
690 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
693 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
699 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
702 * there should be a bug that we can't find the entry
705 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
706 return PTR_ERR(inode
);
709 err
= f2fs_dquot_initialize(inode
);
717 /* truncate all the data during iput */
720 err
= f2fs_get_node_info(sbi
, ino
, &ni
, false);
724 /* ENOMEM was fully retried in f2fs_evict_inode. */
725 if (ni
.blk_addr
!= NULL_ADDR
) {
732 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
733 f2fs_warn(sbi
, "%s: orphan failed (ino=%x), run fsck to fix.",
738 int f2fs_recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
740 block_t start_blk
, orphan_blocks
, i
, j
;
743 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
746 if (f2fs_hw_is_readonly(sbi
)) {
747 f2fs_info(sbi
, "write access unavailable, skipping orphan cleanup");
751 if (is_sbi_flag_set(sbi
, SBI_IS_WRITABLE
))
752 f2fs_info(sbi
, "orphan cleanup on readonly fs");
754 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
755 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
757 f2fs_ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
759 for (i
= 0; i
< orphan_blocks
; i
++) {
761 struct f2fs_orphan_block
*orphan_blk
;
763 page
= f2fs_get_meta_page(sbi
, start_blk
+ i
);
769 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
770 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
771 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
773 err
= recover_orphan_inode(sbi
, ino
);
775 f2fs_put_page(page
, 1);
779 f2fs_put_page(page
, 1);
781 /* clear Orphan Flag */
782 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
784 set_sbi_flag(sbi
, SBI_IS_RECOVERED
);
789 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
791 struct list_head
*head
;
792 struct f2fs_orphan_block
*orphan_blk
= NULL
;
793 unsigned int nentries
= 0;
794 unsigned short index
= 1;
795 unsigned short orphan_blocks
;
796 struct page
*page
= NULL
;
797 struct ino_entry
*orphan
= NULL
;
798 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
800 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
803 * we don't need to do spin_lock(&im->ino_lock) here, since all the
804 * orphan inode operations are covered under f2fs_lock_op().
805 * And, spin_lock should be avoided due to page operations below.
807 head
= &im
->ino_list
;
809 /* loop for each orphan inode entry and write them in journal block */
810 list_for_each_entry(orphan
, head
, list
) {
812 page
= f2fs_grab_meta_page(sbi
, start_blk
++);
814 (struct f2fs_orphan_block
*)page_address(page
);
815 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
818 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
820 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
822 * an orphan block is full of 1020 entries,
823 * then we need to flush current orphan blocks
824 * and bring another one in memory
826 orphan_blk
->blk_addr
= cpu_to_le16(index
);
827 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
828 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
829 set_page_dirty(page
);
830 f2fs_put_page(page
, 1);
838 orphan_blk
->blk_addr
= cpu_to_le16(index
);
839 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
840 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
841 set_page_dirty(page
);
842 f2fs_put_page(page
, 1);
846 static __u32
f2fs_checkpoint_chksum(struct f2fs_sb_info
*sbi
,
847 struct f2fs_checkpoint
*ckpt
)
849 unsigned int chksum_ofs
= le32_to_cpu(ckpt
->checksum_offset
);
852 chksum
= f2fs_crc32(sbi
, ckpt
, chksum_ofs
);
853 if (chksum_ofs
< CP_CHKSUM_OFFSET
) {
854 chksum_ofs
+= sizeof(chksum
);
855 chksum
= f2fs_chksum(sbi
, chksum
, (__u8
*)ckpt
+ chksum_ofs
,
856 F2FS_BLKSIZE
- chksum_ofs
);
861 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
862 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
863 unsigned long long *version
)
865 size_t crc_offset
= 0;
868 *cp_page
= f2fs_get_meta_page(sbi
, cp_addr
);
869 if (IS_ERR(*cp_page
))
870 return PTR_ERR(*cp_page
);
872 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
874 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
875 if (crc_offset
< CP_MIN_CHKSUM_OFFSET
||
876 crc_offset
> CP_CHKSUM_OFFSET
) {
877 f2fs_put_page(*cp_page
, 1);
878 f2fs_warn(sbi
, "invalid crc_offset: %zu", crc_offset
);
882 crc
= f2fs_checkpoint_chksum(sbi
, *cp_block
);
883 if (crc
!= cur_cp_crc(*cp_block
)) {
884 f2fs_put_page(*cp_page
, 1);
885 f2fs_warn(sbi
, "invalid crc value");
889 *version
= cur_cp_version(*cp_block
);
893 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
894 block_t cp_addr
, unsigned long long *version
)
896 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
897 struct f2fs_checkpoint
*cp_block
= NULL
;
898 unsigned long long cur_version
= 0, pre_version
= 0;
899 unsigned int cp_blocks
;
902 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
903 &cp_page_1
, version
);
907 cp_blocks
= le32_to_cpu(cp_block
->cp_pack_total_block_count
);
909 if (cp_blocks
> BLKS_PER_SEG(sbi
) || cp_blocks
<= F2FS_CP_PACKS
) {
910 f2fs_warn(sbi
, "invalid cp_pack_total_block_count:%u",
911 le32_to_cpu(cp_block
->cp_pack_total_block_count
));
914 pre_version
= *version
;
916 cp_addr
+= cp_blocks
- 1;
917 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
918 &cp_page_2
, version
);
921 cur_version
= *version
;
923 if (cur_version
== pre_version
) {
924 *version
= cur_version
;
925 f2fs_put_page(cp_page_2
, 1);
928 f2fs_put_page(cp_page_2
, 1);
930 f2fs_put_page(cp_page_1
, 1);
934 int f2fs_get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
936 struct f2fs_checkpoint
*cp_block
;
937 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
938 struct page
*cp1
, *cp2
, *cur_page
;
939 unsigned long blk_size
= sbi
->blocksize
;
940 unsigned long long cp1_version
= 0, cp2_version
= 0;
941 unsigned long long cp_start_blk_no
;
942 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
947 sbi
->ckpt
= f2fs_kvzalloc(sbi
, array_size(blk_size
, cp_blks
),
952 * Finding out valid cp block involves read both
953 * sets( cp pack 1 and cp pack 2)
955 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
956 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
958 /* The second checkpoint pack should start at the next segment */
959 cp_start_blk_no
+= ((unsigned long long)1) <<
960 le32_to_cpu(fsb
->log_blocks_per_seg
);
961 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
964 if (ver_after(cp2_version
, cp1_version
))
977 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
978 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
981 sbi
->cur_cp_pack
= 1;
983 sbi
->cur_cp_pack
= 2;
985 /* Sanity checking of checkpoint */
986 if (f2fs_sanity_check_ckpt(sbi
)) {
988 goto free_fail_no_cp
;
994 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
996 cp_blk_no
+= BIT(le32_to_cpu(fsb
->log_blocks_per_seg
));
998 for (i
= 1; i
< cp_blks
; i
++) {
999 void *sit_bitmap_ptr
;
1000 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
1002 cur_page
= f2fs_get_meta_page(sbi
, cp_blk_no
+ i
);
1003 if (IS_ERR(cur_page
)) {
1004 err
= PTR_ERR(cur_page
);
1005 goto free_fail_no_cp
;
1007 sit_bitmap_ptr
= page_address(cur_page
);
1008 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
1009 f2fs_put_page(cur_page
, 1);
1012 f2fs_put_page(cp1
, 1);
1013 f2fs_put_page(cp2
, 1);
1017 f2fs_put_page(cp1
, 1);
1018 f2fs_put_page(cp2
, 1);
1024 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
1026 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1027 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
1029 if (is_inode_flag_set(inode
, flag
))
1032 set_inode_flag(inode
, flag
);
1033 list_add_tail(&F2FS_I(inode
)->dirty_list
, &sbi
->inode_list
[type
]);
1034 stat_inc_dirty_inode(sbi
, type
);
1037 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
1039 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
1041 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
1044 list_del_init(&F2FS_I(inode
)->dirty_list
);
1045 clear_inode_flag(inode
, flag
);
1046 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
1049 void f2fs_update_dirty_folio(struct inode
*inode
, struct folio
*folio
)
1051 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1052 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1054 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1055 !S_ISLNK(inode
->i_mode
))
1058 spin_lock(&sbi
->inode_lock
[type
]);
1059 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
1060 __add_dirty_inode(inode
, type
);
1061 inode_inc_dirty_pages(inode
);
1062 spin_unlock(&sbi
->inode_lock
[type
]);
1064 set_page_private_reference(&folio
->page
);
1067 void f2fs_remove_dirty_inode(struct inode
*inode
)
1069 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1070 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1072 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1073 !S_ISLNK(inode
->i_mode
))
1076 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
1079 spin_lock(&sbi
->inode_lock
[type
]);
1080 __remove_dirty_inode(inode
, type
);
1081 spin_unlock(&sbi
->inode_lock
[type
]);
1084 int f2fs_sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
,
1087 struct list_head
*head
;
1088 struct inode
*inode
;
1089 struct f2fs_inode_info
*fi
;
1090 bool is_dir
= (type
== DIR_INODE
);
1091 unsigned long ino
= 0;
1093 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
1094 get_pages(sbi
, is_dir
?
1095 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1097 if (unlikely(f2fs_cp_error(sbi
))) {
1098 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1099 get_pages(sbi
, is_dir
?
1100 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1104 spin_lock(&sbi
->inode_lock
[type
]);
1106 head
= &sbi
->inode_list
[type
];
1107 if (list_empty(head
)) {
1108 spin_unlock(&sbi
->inode_lock
[type
]);
1109 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1110 get_pages(sbi
, is_dir
?
1111 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1114 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
1115 inode
= igrab(&fi
->vfs_inode
);
1116 spin_unlock(&sbi
->inode_lock
[type
]);
1118 unsigned long cur_ino
= inode
->i_ino
;
1121 F2FS_I(inode
)->cp_task
= current
;
1122 F2FS_I(inode
)->wb_task
= current
;
1124 filemap_fdatawrite(inode
->i_mapping
);
1126 F2FS_I(inode
)->wb_task
= NULL
;
1128 F2FS_I(inode
)->cp_task
= NULL
;
1131 /* We need to give cpu to another writers. */
1138 * We should submit bio, since it exists several
1139 * writebacking dentry pages in the freeing inode.
1141 f2fs_submit_merged_write(sbi
, DATA
);
1147 static int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
1149 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
1150 struct inode
*inode
;
1151 struct f2fs_inode_info
*fi
;
1152 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
1155 if (unlikely(f2fs_cp_error(sbi
)))
1158 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1159 if (list_empty(head
)) {
1160 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1163 fi
= list_first_entry(head
, struct f2fs_inode_info
,
1165 inode
= igrab(&fi
->vfs_inode
);
1166 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1168 sync_inode_metadata(inode
, 0);
1170 /* it's on eviction */
1171 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1172 f2fs_update_inode_page(inode
);
1179 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
1181 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1182 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1183 nid_t last_nid
= nm_i
->next_scan_nid
;
1185 next_free_nid(sbi
, &last_nid
);
1186 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1187 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1188 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1189 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1191 /* update user_block_counts */
1192 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1193 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1194 percpu_counter_set(&sbi
->rf_node_block_count
, 0);
1197 static bool __need_flush_quota(struct f2fs_sb_info
*sbi
)
1201 if (!is_journalled_quota(sbi
))
1204 if (!f2fs_down_write_trylock(&sbi
->quota_sem
))
1206 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
)) {
1208 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
)) {
1210 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_FLUSH
)) {
1211 clear_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1213 } else if (get_pages(sbi
, F2FS_DIRTY_QDATA
)) {
1216 f2fs_up_write(&sbi
->quota_sem
);
1221 * Freeze all the FS-operations for checkpoint.
1223 static int block_operations(struct f2fs_sb_info
*sbi
)
1225 struct writeback_control wbc
= {
1226 .sync_mode
= WB_SYNC_ALL
,
1227 .nr_to_write
= LONG_MAX
,
1230 int err
= 0, cnt
= 0;
1233 * Let's flush inline_data in dirty node pages.
1235 f2fs_flush_inline_data(sbi
);
1239 if (__need_flush_quota(sbi
)) {
1242 if (++cnt
> DEFAULT_RETRY_QUOTA_FLUSH_COUNT
) {
1243 set_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1244 set_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1245 goto retry_flush_dents
;
1247 f2fs_unlock_all(sbi
);
1249 /* only failed during mount/umount/freeze/quotactl */
1250 locked
= down_read_trylock(&sbi
->sb
->s_umount
);
1251 f2fs_quota_sync(sbi
->sb
, -1);
1253 up_read(&sbi
->sb
->s_umount
);
1255 goto retry_flush_quotas
;
1259 /* write all the dirty dentry pages */
1260 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1261 f2fs_unlock_all(sbi
);
1262 err
= f2fs_sync_dirty_inodes(sbi
, DIR_INODE
, true);
1266 goto retry_flush_quotas
;
1270 * POR: we should ensure that there are no dirty node pages
1271 * until finishing nat/sit flush. inode->i_blocks can be updated.
1273 f2fs_down_write(&sbi
->node_change
);
1275 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1276 f2fs_up_write(&sbi
->node_change
);
1277 f2fs_unlock_all(sbi
);
1278 err
= f2fs_sync_inode_meta(sbi
);
1282 goto retry_flush_quotas
;
1286 f2fs_down_write(&sbi
->node_write
);
1288 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1289 f2fs_up_write(&sbi
->node_write
);
1290 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1291 err
= f2fs_sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1292 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1294 f2fs_up_write(&sbi
->node_change
);
1295 f2fs_unlock_all(sbi
);
1299 goto retry_flush_nodes
;
1303 * sbi->node_change is used only for AIO write_begin path which produces
1304 * dirty node blocks and some checkpoint values by block allocation.
1306 __prepare_cp_block(sbi
);
1307 f2fs_up_write(&sbi
->node_change
);
1311 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1313 f2fs_up_write(&sbi
->node_write
);
1314 f2fs_unlock_all(sbi
);
1317 void f2fs_wait_on_all_pages(struct f2fs_sb_info
*sbi
, int type
)
1322 if (!get_pages(sbi
, type
))
1325 if (unlikely(f2fs_cp_error(sbi
) &&
1326 !is_sbi_flag_set(sbi
, SBI_IS_CLOSE
)))
1329 if (type
== F2FS_DIRTY_META
)
1330 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
,
1332 else if (type
== F2FS_WB_CP_DATA
)
1333 f2fs_submit_merged_write(sbi
, DATA
);
1335 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1336 io_schedule_timeout(DEFAULT_IO_TIMEOUT
);
1338 finish_wait(&sbi
->cp_wait
, &wait
);
1341 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1343 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1344 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1345 unsigned long flags
;
1347 if (cpc
->reason
& CP_UMOUNT
) {
1348 if (le32_to_cpu(ckpt
->cp_pack_total_block_count
) +
1349 NM_I(sbi
)->nat_bits_blocks
> BLKS_PER_SEG(sbi
)) {
1350 clear_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
);
1351 f2fs_notice(sbi
, "Disable nat_bits due to no space");
1352 } else if (!is_set_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
) &&
1353 f2fs_nat_bitmap_enabled(sbi
)) {
1354 f2fs_enable_nat_bits(sbi
);
1355 set_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
);
1356 f2fs_notice(sbi
, "Rebuild and enable nat_bits");
1360 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1362 if (cpc
->reason
& CP_TRIMMED
)
1363 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1365 __clear_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1367 if (cpc
->reason
& CP_UMOUNT
)
1368 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1370 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1372 if (cpc
->reason
& CP_FASTBOOT
)
1373 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1375 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1378 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1380 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1382 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1383 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1385 if (is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
))
1386 __set_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1388 __clear_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1390 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))
1391 __set_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1393 __clear_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1395 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
))
1396 __set_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1398 __clear_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1400 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
))
1401 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1403 __clear_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1405 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
))
1406 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1408 /* set this flag to activate crc|cp_ver for recovery */
1409 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1410 __clear_ckpt_flags(ckpt
, CP_NOCRC_RECOVERY_FLAG
);
1412 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1415 static void commit_checkpoint(struct f2fs_sb_info
*sbi
,
1416 void *src
, block_t blk_addr
)
1418 struct writeback_control wbc
= {
1423 * filemap_get_folios_tag and lock_page again will take
1424 * some extra time. Therefore, f2fs_update_meta_pages and
1425 * f2fs_sync_meta_pages are combined in this function.
1427 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
1430 f2fs_wait_on_page_writeback(page
, META
, true, true);
1432 memcpy(page_address(page
), src
, PAGE_SIZE
);
1434 set_page_dirty(page
);
1435 if (unlikely(!clear_page_dirty_for_io(page
)))
1436 f2fs_bug_on(sbi
, 1);
1438 /* writeout cp pack 2 page */
1439 err
= __f2fs_write_meta_page(page
, &wbc
, FS_CP_META_IO
);
1440 if (unlikely(err
&& f2fs_cp_error(sbi
))) {
1441 f2fs_put_page(page
, 1);
1445 f2fs_bug_on(sbi
, err
);
1446 f2fs_put_page(page
, 0);
1448 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1449 f2fs_submit_merged_write(sbi
, META_FLUSH
);
1452 static inline u64
get_sectors_written(struct block_device
*bdev
)
1454 return (u64
)part_stat_read(bdev
, sectors
[STAT_WRITE
]);
1457 u64
f2fs_get_sectors_written(struct f2fs_sb_info
*sbi
)
1459 if (f2fs_is_multi_device(sbi
)) {
1463 for (i
= 0; i
< sbi
->s_ndevs
; i
++)
1464 sectors
+= get_sectors_written(FDEV(i
).bdev
);
1469 return get_sectors_written(sbi
->sb
->s_bdev
);
1472 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1474 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1475 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1476 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1478 unsigned int data_sum_blocks
, orphan_blocks
;
1481 int cp_payload_blks
= __cp_payload(sbi
);
1482 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1486 /* Flush all the NAT/SIT pages */
1487 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1489 /* start to update checkpoint, cp ver is already updated previously */
1490 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
, true));
1491 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1492 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1493 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
+ CURSEG_HOT_NODE
);
1495 ckpt
->cur_node_segno
[i
] = cpu_to_le32(curseg
->segno
);
1496 ckpt
->cur_node_blkoff
[i
] = cpu_to_le16(curseg
->next_blkoff
);
1497 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] = curseg
->alloc_type
;
1499 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1500 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
+ CURSEG_HOT_DATA
);
1502 ckpt
->cur_data_segno
[i
] = cpu_to_le32(curseg
->segno
);
1503 ckpt
->cur_data_blkoff
[i
] = cpu_to_le16(curseg
->next_blkoff
);
1504 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] = curseg
->alloc_type
;
1507 /* 2 cp + n data seg summary + orphan inode blocks */
1508 data_sum_blocks
= f2fs_npages_for_summary_flush(sbi
, false);
1509 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1510 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1511 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1513 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1514 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1516 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1517 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1520 if (__remain_node_summaries(cpc
->reason
))
1521 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1522 cp_payload_blks
+ data_sum_blocks
+
1523 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1525 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1526 cp_payload_blks
+ data_sum_blocks
+
1529 /* update ckpt flag for checkpoint */
1530 update_ckpt_flags(sbi
, cpc
);
1532 /* update SIT/NAT bitmap */
1533 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1534 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1536 crc32
= f2fs_checkpoint_chksum(sbi
, ckpt
);
1537 *((__le32
*)((unsigned char *)ckpt
+
1538 le32_to_cpu(ckpt
->checksum_offset
)))
1539 = cpu_to_le32(crc32
);
1541 start_blk
= __start_cp_next_addr(sbi
);
1543 /* write nat bits */
1544 if ((cpc
->reason
& CP_UMOUNT
) &&
1545 is_set_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
)) {
1546 __u64 cp_ver
= cur_cp_version(ckpt
);
1549 cp_ver
|= ((__u64
)crc32
<< 32);
1550 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1552 blk
= start_blk
+ BLKS_PER_SEG(sbi
) - nm_i
->nat_bits_blocks
;
1553 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1554 f2fs_update_meta_page(sbi
, nm_i
->nat_bits
+
1555 F2FS_BLK_TO_BYTES(i
), blk
+ i
);
1558 /* write out checkpoint buffer at block 0 */
1559 f2fs_update_meta_page(sbi
, ckpt
, start_blk
++);
1561 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1562 f2fs_update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1566 write_orphan_inodes(sbi
, start_blk
);
1567 start_blk
+= orphan_blocks
;
1570 f2fs_write_data_summaries(sbi
, start_blk
);
1571 start_blk
+= data_sum_blocks
;
1573 /* Record write statistics in the hot node summary */
1574 kbytes_written
= sbi
->kbytes_written
;
1575 kbytes_written
+= (f2fs_get_sectors_written(sbi
) -
1576 sbi
->sectors_written_start
) >> 1;
1577 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1579 if (__remain_node_summaries(cpc
->reason
)) {
1580 f2fs_write_node_summaries(sbi
, start_blk
);
1581 start_blk
+= NR_CURSEG_NODE_TYPE
;
1584 /* Here, we have one bio having CP pack except cp pack 2 page */
1585 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1586 /* Wait for all dirty meta pages to be submitted for IO */
1587 f2fs_wait_on_all_pages(sbi
, F2FS_DIRTY_META
);
1589 /* wait for previous submitted meta pages writeback */
1590 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1592 /* flush all device cache */
1593 err
= f2fs_flush_device_cache(sbi
);
1597 /* barrier and flush checkpoint cp pack 2 page if it can */
1598 commit_checkpoint(sbi
, ckpt
, start_blk
);
1599 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1602 * invalidate intermediate page cache borrowed from meta inode which are
1603 * used for migration of encrypted, verity or compressed inode's blocks.
1605 if (f2fs_sb_has_encrypt(sbi
) || f2fs_sb_has_verity(sbi
) ||
1606 f2fs_sb_has_compression(sbi
))
1608 invalidate_inode_pages2_range(META_MAPPING(sbi
),
1609 MAIN_BLKADDR(sbi
), MAX_BLKADDR(sbi
) - 1));
1611 f2fs_release_ino_entry(sbi
, false);
1613 f2fs_reset_fsync_node_info(sbi
);
1615 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1616 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1617 clear_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1619 spin_lock(&sbi
->stat_lock
);
1620 sbi
->unusable_block_count
= 0;
1621 spin_unlock(&sbi
->stat_lock
);
1623 __set_cp_next_pack(sbi
);
1626 * redirty superblock if metadata like node page or inode cache is
1627 * updated during writing checkpoint.
1629 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1630 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1631 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1633 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1635 return unlikely(f2fs_cp_error(sbi
)) ? -EIO
: 0;
1638 int f2fs_write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1640 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1641 unsigned long long ckpt_ver
;
1644 if (f2fs_readonly(sbi
->sb
) || f2fs_hw_is_readonly(sbi
))
1647 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
1648 if (cpc
->reason
!= CP_PAUSE
)
1650 f2fs_warn(sbi
, "Start checkpoint disabled!");
1652 if (cpc
->reason
!= CP_RESIZE
)
1653 f2fs_down_write(&sbi
->cp_global_sem
);
1655 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1656 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1657 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1659 if (unlikely(f2fs_cp_error(sbi
))) {
1664 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1666 err
= block_operations(sbi
);
1670 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1672 f2fs_flush_merged_writes(sbi
);
1674 /* this is the case of multiple fstrims without any changes */
1675 if (cpc
->reason
& CP_DISCARD
) {
1676 if (!f2fs_exist_trim_candidates(sbi
, cpc
)) {
1677 unblock_operations(sbi
);
1681 if (NM_I(sbi
)->nat_cnt
[DIRTY_NAT
] == 0 &&
1682 SIT_I(sbi
)->dirty_sentries
== 0 &&
1683 prefree_segments(sbi
) == 0) {
1684 f2fs_flush_sit_entries(sbi
, cpc
);
1685 f2fs_clear_prefree_segments(sbi
, cpc
);
1686 unblock_operations(sbi
);
1692 * update checkpoint pack index
1693 * Increase the version number so that
1694 * SIT entries and seg summaries are written at correct place
1696 ckpt_ver
= cur_cp_version(ckpt
);
1697 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1699 /* write cached NAT/SIT entries to NAT/SIT area */
1700 err
= f2fs_flush_nat_entries(sbi
, cpc
);
1702 f2fs_err(sbi
, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err
);
1703 f2fs_bug_on(sbi
, !f2fs_cp_error(sbi
));
1707 f2fs_flush_sit_entries(sbi
, cpc
);
1709 /* save inmem log status */
1710 f2fs_save_inmem_curseg(sbi
);
1712 err
= do_checkpoint(sbi
, cpc
);
1714 f2fs_err(sbi
, "do_checkpoint failed err:%d, stop checkpoint", err
);
1715 f2fs_bug_on(sbi
, !f2fs_cp_error(sbi
));
1716 f2fs_release_discard_addrs(sbi
);
1718 f2fs_clear_prefree_segments(sbi
, cpc
);
1721 f2fs_restore_inmem_curseg(sbi
);
1722 f2fs_reinit_atgc_curseg(sbi
);
1723 stat_inc_cp_count(sbi
);
1725 unblock_operations(sbi
);
1727 if (cpc
->reason
& CP_RECOVERY
)
1728 f2fs_notice(sbi
, "checkpoint: version = %llx", ckpt_ver
);
1730 /* update CP_TIME to trigger checkpoint periodically */
1731 f2fs_update_time(sbi
, CP_TIME
);
1732 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1734 if (cpc
->reason
!= CP_RESIZE
)
1735 f2fs_up_write(&sbi
->cp_global_sem
);
1739 void f2fs_init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1743 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1744 struct inode_management
*im
= &sbi
->im
[i
];
1746 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1747 spin_lock_init(&im
->ino_lock
);
1748 INIT_LIST_HEAD(&im
->ino_list
);
1752 sbi
->max_orphans
= (BLKS_PER_SEG(sbi
) - F2FS_CP_PACKS
-
1753 NR_CURSEG_PERSIST_TYPE
- __cp_payload(sbi
)) *
1754 F2FS_ORPHANS_PER_BLOCK
;
1757 int __init
f2fs_create_checkpoint_caches(void)
1759 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1760 sizeof(struct ino_entry
));
1761 if (!ino_entry_slab
)
1763 f2fs_inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1764 sizeof(struct inode_entry
));
1765 if (!f2fs_inode_entry_slab
) {
1766 kmem_cache_destroy(ino_entry_slab
);
1772 void f2fs_destroy_checkpoint_caches(void)
1774 kmem_cache_destroy(ino_entry_slab
);
1775 kmem_cache_destroy(f2fs_inode_entry_slab
);
1778 static int __write_checkpoint_sync(struct f2fs_sb_info
*sbi
)
1780 struct cp_control cpc
= { .reason
= CP_SYNC
, };
1783 f2fs_down_write(&sbi
->gc_lock
);
1784 err
= f2fs_write_checkpoint(sbi
, &cpc
);
1785 f2fs_up_write(&sbi
->gc_lock
);
1790 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info
*sbi
)
1792 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1793 struct ckpt_req
*req
, *next
;
1794 struct llist_node
*dispatch_list
;
1795 u64 sum_diff
= 0, diff
, count
= 0;
1798 dispatch_list
= llist_del_all(&cprc
->issue_list
);
1801 dispatch_list
= llist_reverse_order(dispatch_list
);
1803 ret
= __write_checkpoint_sync(sbi
);
1804 atomic_inc(&cprc
->issued_ckpt
);
1806 llist_for_each_entry_safe(req
, next
, dispatch_list
, llnode
) {
1807 diff
= (u64
)ktime_ms_delta(ktime_get(), req
->queue_time
);
1809 complete(&req
->wait
);
1814 atomic_sub(count
, &cprc
->queued_ckpt
);
1815 atomic_add(count
, &cprc
->total_ckpt
);
1817 spin_lock(&cprc
->stat_lock
);
1818 cprc
->cur_time
= (unsigned int)div64_u64(sum_diff
, count
);
1819 if (cprc
->peak_time
< cprc
->cur_time
)
1820 cprc
->peak_time
= cprc
->cur_time
;
1821 spin_unlock(&cprc
->stat_lock
);
1824 static int issue_checkpoint_thread(void *data
)
1826 struct f2fs_sb_info
*sbi
= data
;
1827 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1828 wait_queue_head_t
*q
= &cprc
->ckpt_wait_queue
;
1830 if (kthread_should_stop())
1833 if (!llist_empty(&cprc
->issue_list
))
1834 __checkpoint_and_complete_reqs(sbi
);
1836 wait_event_interruptible(*q
,
1837 kthread_should_stop() || !llist_empty(&cprc
->issue_list
));
1841 static void flush_remained_ckpt_reqs(struct f2fs_sb_info
*sbi
,
1842 struct ckpt_req
*wait_req
)
1844 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1846 if (!llist_empty(&cprc
->issue_list
)) {
1847 __checkpoint_and_complete_reqs(sbi
);
1849 /* already dispatched by issue_checkpoint_thread */
1851 wait_for_completion(&wait_req
->wait
);
1855 static void init_ckpt_req(struct ckpt_req
*req
)
1857 memset(req
, 0, sizeof(struct ckpt_req
));
1859 init_completion(&req
->wait
);
1860 req
->queue_time
= ktime_get();
1863 int f2fs_issue_checkpoint(struct f2fs_sb_info
*sbi
)
1865 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1866 struct ckpt_req req
;
1867 struct cp_control cpc
;
1869 cpc
.reason
= __get_cp_reason(sbi
);
1870 if (!test_opt(sbi
, MERGE_CHECKPOINT
) || cpc
.reason
!= CP_SYNC
) {
1873 f2fs_down_write(&sbi
->gc_lock
);
1874 ret
= f2fs_write_checkpoint(sbi
, &cpc
);
1875 f2fs_up_write(&sbi
->gc_lock
);
1880 if (!cprc
->f2fs_issue_ckpt
)
1881 return __write_checkpoint_sync(sbi
);
1883 init_ckpt_req(&req
);
1885 llist_add(&req
.llnode
, &cprc
->issue_list
);
1886 atomic_inc(&cprc
->queued_ckpt
);
1889 * update issue_list before we wake up issue_checkpoint thread,
1890 * this smp_mb() pairs with another barrier in ___wait_event(),
1891 * see more details in comments of waitqueue_active().
1895 if (waitqueue_active(&cprc
->ckpt_wait_queue
))
1896 wake_up(&cprc
->ckpt_wait_queue
);
1898 if (cprc
->f2fs_issue_ckpt
)
1899 wait_for_completion(&req
.wait
);
1901 flush_remained_ckpt_reqs(sbi
, &req
);
1906 int f2fs_start_ckpt_thread(struct f2fs_sb_info
*sbi
)
1908 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
1909 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1911 if (cprc
->f2fs_issue_ckpt
)
1914 cprc
->f2fs_issue_ckpt
= kthread_run(issue_checkpoint_thread
, sbi
,
1915 "f2fs_ckpt-%u:%u", MAJOR(dev
), MINOR(dev
));
1916 if (IS_ERR(cprc
->f2fs_issue_ckpt
)) {
1917 int err
= PTR_ERR(cprc
->f2fs_issue_ckpt
);
1919 cprc
->f2fs_issue_ckpt
= NULL
;
1923 set_task_ioprio(cprc
->f2fs_issue_ckpt
, cprc
->ckpt_thread_ioprio
);
1928 void f2fs_stop_ckpt_thread(struct f2fs_sb_info
*sbi
)
1930 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1931 struct task_struct
*ckpt_task
;
1933 if (!cprc
->f2fs_issue_ckpt
)
1936 ckpt_task
= cprc
->f2fs_issue_ckpt
;
1937 cprc
->f2fs_issue_ckpt
= NULL
;
1938 kthread_stop(ckpt_task
);
1940 f2fs_flush_ckpt_thread(sbi
);
1943 void f2fs_flush_ckpt_thread(struct f2fs_sb_info
*sbi
)
1945 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1947 flush_remained_ckpt_reqs(sbi
, NULL
);
1949 /* Let's wait for the previous dispatched checkpoint. */
1950 while (atomic_read(&cprc
->queued_ckpt
))
1951 io_schedule_timeout(DEFAULT_IO_TIMEOUT
);
1954 void f2fs_init_ckpt_req_control(struct f2fs_sb_info
*sbi
)
1956 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1958 atomic_set(&cprc
->issued_ckpt
, 0);
1959 atomic_set(&cprc
->total_ckpt
, 0);
1960 atomic_set(&cprc
->queued_ckpt
, 0);
1961 cprc
->ckpt_thread_ioprio
= DEFAULT_CHECKPOINT_IOPRIO
;
1962 init_waitqueue_head(&cprc
->ckpt_wait_queue
);
1963 init_llist_head(&cprc
->issue_list
);
1964 spin_lock_init(&cprc
->stat_lock
);