1 // SPDX-License-Identifier: GPL-2.0-only
5 * Written 1992,1993 by Werner Almesberger
6 * 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
7 * and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
11 #include <linux/iversion.h>
14 * fat_fs_error reports a file system problem that might indicate fa data
15 * corruption/inconsistency. Depending on 'errors' mount option the
16 * panic() is called, or error message is printed FAT and nothing is done,
17 * or filesystem is remounted read-only (default behavior).
18 * In case the file system is remounted read-only, it can be made writable
19 * again by remounting it.
21 void __fat_fs_error(struct super_block
*sb
, int report
, const char *fmt
, ...)
23 struct fat_mount_options
*opts
= &MSDOS_SB(sb
)->options
;
31 fat_msg(sb
, KERN_ERR
, "error, %pV", &vaf
);
35 if (opts
->errors
== FAT_ERRORS_PANIC
)
36 panic("FAT-fs (%s): fs panic from previous error\n", sb
->s_id
);
37 else if (opts
->errors
== FAT_ERRORS_RO
&& !sb_rdonly(sb
)) {
38 sb
->s_flags
|= SB_RDONLY
;
39 fat_msg(sb
, KERN_ERR
, "Filesystem has been set read-only");
42 EXPORT_SYMBOL_GPL(__fat_fs_error
);
45 * _fat_msg() - Print a preformatted FAT message based on a superblock.
46 * @sb: A pointer to a &struct super_block
47 * @level: A Kernel printk level constant
48 * @fmt: The printf-style format string to print.
50 * Everything that is not fat_fs_error() should be fat_msg().
52 * fat_msg() wraps _fat_msg() for printk indexing.
54 void _fat_msg(struct super_block
*sb
, const char *level
, const char *fmt
, ...)
62 _printk(FAT_PRINTK_PREFIX
"%pV\n", level
, sb
->s_id
, &vaf
);
66 /* Flushes the number of free clusters on FAT32 */
67 /* XXX: Need to write one per FSINFO block. Currently only writes 1 */
68 int fat_clusters_flush(struct super_block
*sb
)
70 struct msdos_sb_info
*sbi
= MSDOS_SB(sb
);
71 struct buffer_head
*bh
;
72 struct fat_boot_fsinfo
*fsinfo
;
77 bh
= sb_bread(sb
, sbi
->fsinfo_sector
);
79 fat_msg(sb
, KERN_ERR
, "bread failed in fat_clusters_flush");
83 fsinfo
= (struct fat_boot_fsinfo
*)bh
->b_data
;
85 if (!IS_FSINFO(fsinfo
)) {
86 fat_msg(sb
, KERN_ERR
, "Invalid FSINFO signature: "
87 "0x%08x, 0x%08x (sector = %lu)",
88 le32_to_cpu(fsinfo
->signature1
),
89 le32_to_cpu(fsinfo
->signature2
),
92 if (sbi
->free_clusters
!= -1)
93 fsinfo
->free_clusters
= cpu_to_le32(sbi
->free_clusters
);
94 if (sbi
->prev_free
!= -1)
95 fsinfo
->next_cluster
= cpu_to_le32(sbi
->prev_free
);
96 mark_buffer_dirty(bh
);
104 * fat_chain_add() adds a new cluster to the chain of clusters represented
107 int fat_chain_add(struct inode
*inode
, int new_dclus
, int nr_cluster
)
109 struct super_block
*sb
= inode
->i_sb
;
110 struct msdos_sb_info
*sbi
= MSDOS_SB(sb
);
111 int ret
, new_fclus
, last
;
114 * We must locate the last cluster of the file to add this new
115 * one (new_dclus) to the end of the link list (the FAT).
117 last
= new_fclus
= 0;
118 if (MSDOS_I(inode
)->i_start
) {
121 ret
= fat_get_cluster(inode
, FAT_ENT_EOF
, &fclus
, &dclus
);
124 new_fclus
= fclus
+ 1;
128 /* add new one to the last of the cluster chain */
130 struct fat_entry fatent
;
132 fatent_init(&fatent
);
133 ret
= fat_ent_read(inode
, &fatent
, last
);
135 int wait
= inode_needs_sync(inode
);
136 ret
= fat_ent_write(inode
, &fatent
, new_dclus
, wait
);
137 fatent_brelse(&fatent
);
142 * FIXME:Although we can add this cache, fat_cache_add() is
143 * assuming to be called after linear search with fat_cache_id.
145 // fat_cache_add(inode, new_fclus, new_dclus);
147 MSDOS_I(inode
)->i_start
= new_dclus
;
148 MSDOS_I(inode
)->i_logstart
= new_dclus
;
150 * Since generic_write_sync() synchronizes regular files later,
151 * we sync here only directories.
153 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
)) {
154 ret
= fat_sync_inode(inode
);
158 mark_inode_dirty(inode
);
160 if (new_fclus
!= (inode
->i_blocks
>> (sbi
->cluster_bits
- 9))) {
161 fat_fs_error(sb
, "clusters badly computed (%d != %llu)",
163 (llu
)(inode
->i_blocks
>> (sbi
->cluster_bits
- 9)));
164 fat_cache_inval_inode(inode
);
166 inode
->i_blocks
+= nr_cluster
<< (sbi
->cluster_bits
- 9);
172 * The epoch of FAT timestamp is 1980.
174 * date: 0 - 4: day (1 - 31)
175 * date: 5 - 8: month (1 - 12)
176 * date: 9 - 15: year (0 - 127) from 1980
177 * time: 0 - 4: sec (0 - 29) 2sec counts
178 * time: 5 - 10: min (0 - 59)
179 * time: 11 - 15: hour (0 - 23)
181 #define SECS_PER_MIN 60
182 #define SECS_PER_HOUR (60 * 60)
183 #define SECS_PER_DAY (SECS_PER_HOUR * 24)
184 /* days between 1.1.70 and 1.1.80 (2 leap days) */
185 #define DAYS_DELTA (365 * 10 + 2)
186 /* 120 (2100 - 1980) isn't leap year */
187 #define YEAR_2100 120
188 #define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100)
190 /* Linear day numbers of the respective 1sts in non-leap years. */
191 static long days_in_year
[] = {
192 /* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */
193 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
196 static inline int fat_tz_offset(const struct msdos_sb_info
*sbi
)
198 return (sbi
->options
.tz_set
?
199 -sbi
->options
.time_offset
:
200 sys_tz
.tz_minuteswest
) * SECS_PER_MIN
;
203 /* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
204 void fat_time_fat2unix(struct msdos_sb_info
*sbi
, struct timespec64
*ts
,
205 __le16 __time
, __le16 __date
, u8 time_cs
)
207 u16 time
= le16_to_cpu(__time
), date
= le16_to_cpu(__date
);
209 long day
, leap_day
, month
, year
;
212 month
= max(1, (date
>> 5) & 0xf);
213 day
= max(1, date
& 0x1f) - 1;
215 leap_day
= (year
+ 3) / 4;
216 if (year
> YEAR_2100
) /* 2100 isn't leap year */
218 if (IS_LEAP_YEAR(year
) && month
> 2)
221 second
= (time
& 0x1f) << 1;
222 second
+= ((time
>> 5) & 0x3f) * SECS_PER_MIN
;
223 second
+= (time
>> 11) * SECS_PER_HOUR
;
224 second
+= (time64_t
)(year
* 365 + leap_day
225 + days_in_year
[month
] + day
226 + DAYS_DELTA
) * SECS_PER_DAY
;
228 second
+= fat_tz_offset(sbi
);
231 ts
->tv_sec
= second
+ (time_cs
/ 100);
232 ts
->tv_nsec
= (time_cs
% 100) * 10000000;
239 /* Export fat_time_fat2unix() for the fat_test KUnit tests. */
240 EXPORT_SYMBOL_GPL(fat_time_fat2unix
);
242 /* Convert linear UNIX date to a FAT time/date pair. */
243 void fat_time_unix2fat(struct msdos_sb_info
*sbi
, struct timespec64
*ts
,
244 __le16
*time
, __le16
*date
, u8
*time_cs
)
247 time64_to_tm(ts
->tv_sec
, -fat_tz_offset(sbi
), &tm
);
249 /* FAT can only support year between 1980 to 2107 */
250 if (tm
.tm_year
< 1980 - 1900) {
252 *date
= cpu_to_le16((0 << 9) | (1 << 5) | 1);
257 if (tm
.tm_year
> 2107 - 1900) {
258 *time
= cpu_to_le16((23 << 11) | (59 << 5) | 29);
259 *date
= cpu_to_le16((127 << 9) | (12 << 5) | 31);
265 /* from 1900 -> from 1980 */
269 /* 0~59 -> 0~29(2sec counts) */
272 *time
= cpu_to_le16(tm
.tm_hour
<< 11 | tm
.tm_min
<< 5 | tm
.tm_sec
);
273 *date
= cpu_to_le16(tm
.tm_year
<< 9 | tm
.tm_mon
<< 5 | tm
.tm_mday
);
275 *time_cs
= (ts
->tv_sec
& 1) * 100 + ts
->tv_nsec
/ 10000000;
277 EXPORT_SYMBOL_GPL(fat_time_unix2fat
);
279 static inline struct timespec64
fat_timespec64_trunc_2secs(struct timespec64 ts
)
281 return (struct timespec64
){ ts
.tv_sec
& ~1ULL, 0 };
285 * truncate atime to 24 hour granularity (00:00:00 in local timezone)
287 struct timespec64
fat_truncate_atime(const struct msdos_sb_info
*sbi
,
288 const struct timespec64
*ts
)
291 time64_t seconds
= ts
->tv_sec
- fat_tz_offset(sbi
);
294 div_s64_rem(seconds
, SECS_PER_DAY
, &remainder
);
295 /* to day boundary, and back to unix time */
296 seconds
= seconds
+ fat_tz_offset(sbi
) - remainder
;
298 return (struct timespec64
){ seconds
, 0 };
302 * truncate mtime to 2 second granularity
304 struct timespec64
fat_truncate_mtime(const struct msdos_sb_info
*sbi
,
305 const struct timespec64
*ts
)
307 return fat_timespec64_trunc_2secs(*ts
);
311 * truncate the various times with appropriate granularity:
312 * all times in root node are always 0
314 int fat_truncate_time(struct inode
*inode
, struct timespec64
*now
, int flags
)
316 struct msdos_sb_info
*sbi
= MSDOS_SB(inode
->i_sb
);
317 struct timespec64 ts
;
319 if (inode
->i_ino
== MSDOS_ROOT_INO
)
324 ts
= current_time(inode
);
328 inode_set_atime_to_ts(inode
, fat_truncate_atime(sbi
, now
));
330 * ctime and mtime share the same on-disk field, and should be
331 * identical in memory. all mtime updates will be applied to ctime,
332 * but ctime updates are ignored.
335 inode_set_mtime_to_ts(inode
,
336 inode_set_ctime_to_ts(inode
, fat_truncate_mtime(sbi
, now
)));
340 EXPORT_SYMBOL_GPL(fat_truncate_time
);
342 int fat_update_time(struct inode
*inode
, int flags
)
346 if (inode
->i_ino
== MSDOS_ROOT_INO
)
349 if (flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) {
350 fat_truncate_time(inode
, NULL
, flags
);
351 if (inode
->i_sb
->s_flags
& SB_LAZYTIME
)
352 dirty_flags
|= I_DIRTY_TIME
;
354 dirty_flags
|= I_DIRTY_SYNC
;
357 __mark_inode_dirty(inode
, dirty_flags
);
360 EXPORT_SYMBOL_GPL(fat_update_time
);
362 int fat_sync_bhs(struct buffer_head
**bhs
, int nr_bhs
)
366 for (i
= 0; i
< nr_bhs
; i
++)
367 write_dirty_buffer(bhs
[i
], 0);
369 for (i
= 0; i
< nr_bhs
; i
++) {
370 wait_on_buffer(bhs
[i
]);
371 if (!err
&& !buffer_uptodate(bhs
[i
]))