1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
6 #include <linux/export.h>
8 #include <linux/filelock.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
33 * Inode locking rules:
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37 * Inode LRU list locks protect:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode->i_sb->s_inode_list_lock protects:
40 * inode->i_sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
48 * inode->i_sb->s_inode_list_lock
50 * Inode LRU list locks
56 * inode->i_sb->s_inode_list_lock
63 static unsigned int i_hash_mask __ro_after_init
;
64 static unsigned int i_hash_shift __ro_after_init
;
65 static struct hlist_head
*inode_hashtable __ro_after_init
;
66 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
69 * Empty aops. Can be used for the cases where the user does not
70 * define any of the address_space operations.
72 const struct address_space_operations empty_aops
= {
74 EXPORT_SYMBOL(empty_aops
);
76 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
77 static DEFINE_PER_CPU(unsigned long, nr_unused
);
79 static struct kmem_cache
*inode_cachep __ro_after_init
;
81 static long get_nr_inodes(void)
85 for_each_possible_cpu(i
)
86 sum
+= per_cpu(nr_inodes
, i
);
87 return sum
< 0 ? 0 : sum
;
90 static inline long get_nr_inodes_unused(void)
94 for_each_possible_cpu(i
)
95 sum
+= per_cpu(nr_unused
, i
);
96 return sum
< 0 ? 0 : sum
;
99 long get_nr_dirty_inodes(void)
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty
> 0 ? nr_dirty
: 0;
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates
);
108 static DEFINE_PER_CPU(long, mg_fine_stamps
);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps
);
111 static unsigned long get_mg_ctime_updates(void)
113 unsigned long sum
= 0;
116 for_each_possible_cpu(i
)
117 sum
+= data_race(per_cpu(mg_ctime_updates
, i
));
121 static unsigned long get_mg_fine_stamps(void)
123 unsigned long sum
= 0;
126 for_each_possible_cpu(i
)
127 sum
+= data_race(per_cpu(mg_fine_stamps
, i
));
131 static unsigned long get_mg_ctime_swaps(void)
133 unsigned long sum
= 0;
136 for_each_possible_cpu(i
)
137 sum
+= data_race(per_cpu(mg_ctime_swaps
, i
));
141 #define mgtime_counter_inc(__var) this_cpu_inc(__var)
143 static int mgts_show(struct seq_file
*s
, void *p
)
145 unsigned long ctime_updates
= get_mg_ctime_updates();
146 unsigned long ctime_swaps
= get_mg_ctime_swaps();
147 unsigned long fine_stamps
= get_mg_fine_stamps();
148 unsigned long floor_swaps
= timekeeping_get_mg_floor_swaps();
150 seq_printf(s
, "%lu %lu %lu %lu\n",
151 ctime_updates
, ctime_swaps
, fine_stamps
, floor_swaps
);
155 DEFINE_SHOW_ATTRIBUTE(mgts
);
157 static int __init
mg_debugfs_init(void)
159 debugfs_create_file("multigrain_timestamps", S_IFREG
| S_IRUGO
, NULL
, NULL
, &mgts_fops
);
162 late_initcall(mg_debugfs_init
);
164 #else /* ! CONFIG_DEBUG_FS */
166 #define mgtime_counter_inc(__var) do { } while (0)
168 #endif /* CONFIG_DEBUG_FS */
171 * Handle nr_inode sysctl
175 * Statistics gathering..
177 static struct inodes_stat_t inodes_stat
;
179 static int proc_nr_inodes(const struct ctl_table
*table
, int write
, void *buffer
,
180 size_t *lenp
, loff_t
*ppos
)
182 inodes_stat
.nr_inodes
= get_nr_inodes();
183 inodes_stat
.nr_unused
= get_nr_inodes_unused();
184 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
187 static struct ctl_table inodes_sysctls
[] = {
189 .procname
= "inode-nr",
190 .data
= &inodes_stat
,
191 .maxlen
= 2*sizeof(long),
193 .proc_handler
= proc_nr_inodes
,
196 .procname
= "inode-state",
197 .data
= &inodes_stat
,
198 .maxlen
= 7*sizeof(long),
200 .proc_handler
= proc_nr_inodes
,
204 static int __init
init_fs_inode_sysctls(void)
206 register_sysctl_init("fs", inodes_sysctls
);
209 early_initcall(init_fs_inode_sysctls
);
212 static int no_open(struct inode
*inode
, struct file
*file
)
218 * inode_init_always_gfp - perform inode structure initialisation
219 * @sb: superblock inode belongs to
220 * @inode: inode to initialise
221 * @gfp: allocation flags
223 * These are initializations that need to be done on every inode
224 * allocation as the fields are not initialised by slab allocation.
225 * If there are additional allocations required @gfp is used.
227 int inode_init_always_gfp(struct super_block
*sb
, struct inode
*inode
, gfp_t gfp
)
229 static const struct inode_operations empty_iops
;
230 static const struct file_operations no_open_fops
= {.open
= no_open
};
231 struct address_space
*const mapping
= &inode
->i_data
;
234 inode
->i_blkbits
= sb
->s_blocksize_bits
;
237 atomic64_set(&inode
->i_sequence
, 0);
238 atomic_set(&inode
->i_count
, 1);
239 inode
->i_op
= &empty_iops
;
240 inode
->i_fop
= &no_open_fops
;
242 inode
->__i_nlink
= 1;
243 inode
->i_opflags
= 0;
245 inode
->i_opflags
|= IOP_XATTR
;
246 if (sb
->s_type
->fs_flags
& FS_MGTIME
)
247 inode
->i_opflags
|= IOP_MGTIME
;
248 i_uid_write(inode
, 0);
249 i_gid_write(inode
, 0);
250 atomic_set(&inode
->i_writecount
, 0);
252 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
255 inode
->i_generation
= 0;
256 inode
->i_pipe
= NULL
;
257 inode
->i_cdev
= NULL
;
258 inode
->i_link
= NULL
;
259 inode
->i_dir_seq
= 0;
261 inode
->dirtied_when
= 0;
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 inode
->i_wb_frn_winner
= 0;
265 inode
->i_wb_frn_avg_time
= 0;
266 inode
->i_wb_frn_history
= 0;
269 spin_lock_init(&inode
->i_lock
);
270 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
272 init_rwsem(&inode
->i_rwsem
);
273 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
275 atomic_set(&inode
->i_dio_count
, 0);
277 mapping
->a_ops
= &empty_aops
;
278 mapping
->host
= inode
;
281 atomic_set(&mapping
->i_mmap_writable
, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 atomic_set(&mapping
->nr_thps
, 0);
285 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
286 mapping
->i_private_data
= NULL
;
287 mapping
->writeback_index
= 0;
288 init_rwsem(&mapping
->invalidate_lock
);
289 lockdep_set_class_and_name(&mapping
->invalidate_lock
,
290 &sb
->s_type
->invalidate_lock_key
,
291 "mapping.invalidate_lock");
292 if (sb
->s_iflags
& SB_I_STABLE_WRITES
)
293 mapping_set_stable_writes(mapping
);
294 inode
->i_private
= NULL
;
295 inode
->i_mapping
= mapping
;
296 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
301 #ifdef CONFIG_FSNOTIFY
302 inode
->i_fsnotify_mask
= 0;
304 inode
->i_flctx
= NULL
;
306 if (unlikely(security_inode_alloc(inode
, gfp
)))
309 this_cpu_inc(nr_inodes
);
313 EXPORT_SYMBOL(inode_init_always_gfp
);
315 void free_inode_nonrcu(struct inode
*inode
)
317 kmem_cache_free(inode_cachep
, inode
);
319 EXPORT_SYMBOL(free_inode_nonrcu
);
321 static void i_callback(struct rcu_head
*head
)
323 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
324 if (inode
->free_inode
)
325 inode
->free_inode(inode
);
327 free_inode_nonrcu(inode
);
330 static struct inode
*alloc_inode(struct super_block
*sb
)
332 const struct super_operations
*ops
= sb
->s_op
;
335 if (ops
->alloc_inode
)
336 inode
= ops
->alloc_inode(sb
);
338 inode
= alloc_inode_sb(sb
, inode_cachep
, GFP_KERNEL
);
343 if (unlikely(inode_init_always(sb
, inode
))) {
344 if (ops
->destroy_inode
) {
345 ops
->destroy_inode(inode
);
346 if (!ops
->free_inode
)
349 inode
->free_inode
= ops
->free_inode
;
350 i_callback(&inode
->i_rcu
);
357 void __destroy_inode(struct inode
*inode
)
359 BUG_ON(inode_has_buffers(inode
));
360 inode_detach_wb(inode
);
361 security_inode_free(inode
);
362 fsnotify_inode_delete(inode
);
363 locks_free_lock_context(inode
);
364 if (!inode
->i_nlink
) {
365 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
366 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
369 #ifdef CONFIG_FS_POSIX_ACL
370 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
371 posix_acl_release(inode
->i_acl
);
372 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
373 posix_acl_release(inode
->i_default_acl
);
375 this_cpu_dec(nr_inodes
);
377 EXPORT_SYMBOL(__destroy_inode
);
379 static void destroy_inode(struct inode
*inode
)
381 const struct super_operations
*ops
= inode
->i_sb
->s_op
;
383 BUG_ON(!list_empty(&inode
->i_lru
));
384 __destroy_inode(inode
);
385 if (ops
->destroy_inode
) {
386 ops
->destroy_inode(inode
);
387 if (!ops
->free_inode
)
390 inode
->free_inode
= ops
->free_inode
;
391 call_rcu(&inode
->i_rcu
, i_callback
);
395 * drop_nlink - directly drop an inode's link count
398 * This is a low-level filesystem helper to replace any
399 * direct filesystem manipulation of i_nlink. In cases
400 * where we are attempting to track writes to the
401 * filesystem, a decrement to zero means an imminent
402 * write when the file is truncated and actually unlinked
405 void drop_nlink(struct inode
*inode
)
407 WARN_ON(inode
->i_nlink
== 0);
410 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
412 EXPORT_SYMBOL(drop_nlink
);
415 * clear_nlink - directly zero an inode's link count
418 * This is a low-level filesystem helper to replace any
419 * direct filesystem manipulation of i_nlink. See
420 * drop_nlink() for why we care about i_nlink hitting zero.
422 void clear_nlink(struct inode
*inode
)
424 if (inode
->i_nlink
) {
425 inode
->__i_nlink
= 0;
426 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
429 EXPORT_SYMBOL(clear_nlink
);
432 * set_nlink - directly set an inode's link count
434 * @nlink: new nlink (should be non-zero)
436 * This is a low-level filesystem helper to replace any
437 * direct filesystem manipulation of i_nlink.
439 void set_nlink(struct inode
*inode
, unsigned int nlink
)
444 /* Yes, some filesystems do change nlink from zero to one */
445 if (inode
->i_nlink
== 0)
446 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
448 inode
->__i_nlink
= nlink
;
451 EXPORT_SYMBOL(set_nlink
);
454 * inc_nlink - directly increment an inode's link count
457 * This is a low-level filesystem helper to replace any
458 * direct filesystem manipulation of i_nlink. Currently,
459 * it is only here for parity with dec_nlink().
461 void inc_nlink(struct inode
*inode
)
463 if (unlikely(inode
->i_nlink
== 0)) {
464 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
465 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
470 EXPORT_SYMBOL(inc_nlink
);
472 static void __address_space_init_once(struct address_space
*mapping
)
474 xa_init_flags(&mapping
->i_pages
, XA_FLAGS_LOCK_IRQ
| XA_FLAGS_ACCOUNT
);
475 init_rwsem(&mapping
->i_mmap_rwsem
);
476 INIT_LIST_HEAD(&mapping
->i_private_list
);
477 spin_lock_init(&mapping
->i_private_lock
);
478 mapping
->i_mmap
= RB_ROOT_CACHED
;
481 void address_space_init_once(struct address_space
*mapping
)
483 memset(mapping
, 0, sizeof(*mapping
));
484 __address_space_init_once(mapping
);
486 EXPORT_SYMBOL(address_space_init_once
);
489 * These are initializations that only need to be done
490 * once, because the fields are idempotent across use
491 * of the inode, so let the slab aware of that.
493 void inode_init_once(struct inode
*inode
)
495 memset(inode
, 0, sizeof(*inode
));
496 INIT_HLIST_NODE(&inode
->i_hash
);
497 INIT_LIST_HEAD(&inode
->i_devices
);
498 INIT_LIST_HEAD(&inode
->i_io_list
);
499 INIT_LIST_HEAD(&inode
->i_wb_list
);
500 INIT_LIST_HEAD(&inode
->i_lru
);
501 INIT_LIST_HEAD(&inode
->i_sb_list
);
502 __address_space_init_once(&inode
->i_data
);
503 i_size_ordered_init(inode
);
505 EXPORT_SYMBOL(inode_init_once
);
507 static void init_once(void *foo
)
509 struct inode
*inode
= (struct inode
*) foo
;
511 inode_init_once(inode
);
515 * get additional reference to inode; caller must already hold one.
517 void ihold(struct inode
*inode
)
519 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
521 EXPORT_SYMBOL(ihold
);
523 static void __inode_add_lru(struct inode
*inode
, bool rotate
)
525 if (inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
| I_FREEING
| I_WILL_FREE
))
527 if (atomic_read(&inode
->i_count
))
529 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
531 if (!mapping_shrinkable(&inode
->i_data
))
534 if (list_lru_add_obj(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
535 this_cpu_inc(nr_unused
);
537 inode
->i_state
|= I_REFERENCED
;
540 struct wait_queue_head
*inode_bit_waitqueue(struct wait_bit_queue_entry
*wqe
,
541 struct inode
*inode
, u32 bit
)
545 bit_address
= inode_state_wait_address(inode
, bit
);
546 init_wait_var_entry(wqe
, bit_address
, 0);
547 return __var_waitqueue(bit_address
);
549 EXPORT_SYMBOL(inode_bit_waitqueue
);
552 * Add inode to LRU if needed (inode is unused and clean).
554 * Needs inode->i_lock held.
556 void inode_add_lru(struct inode
*inode
)
558 __inode_add_lru(inode
, false);
561 static void inode_lru_list_del(struct inode
*inode
)
563 if (list_lru_del_obj(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
564 this_cpu_dec(nr_unused
);
567 static void inode_pin_lru_isolating(struct inode
*inode
)
569 lockdep_assert_held(&inode
->i_lock
);
570 WARN_ON(inode
->i_state
& (I_LRU_ISOLATING
| I_FREEING
| I_WILL_FREE
));
571 inode
->i_state
|= I_LRU_ISOLATING
;
574 static void inode_unpin_lru_isolating(struct inode
*inode
)
576 spin_lock(&inode
->i_lock
);
577 WARN_ON(!(inode
->i_state
& I_LRU_ISOLATING
));
578 inode
->i_state
&= ~I_LRU_ISOLATING
;
579 /* Called with inode->i_lock which ensures memory ordering. */
580 inode_wake_up_bit(inode
, __I_LRU_ISOLATING
);
581 spin_unlock(&inode
->i_lock
);
584 static void inode_wait_for_lru_isolating(struct inode
*inode
)
586 struct wait_bit_queue_entry wqe
;
587 struct wait_queue_head
*wq_head
;
589 lockdep_assert_held(&inode
->i_lock
);
590 if (!(inode
->i_state
& I_LRU_ISOLATING
))
593 wq_head
= inode_bit_waitqueue(&wqe
, inode
, __I_LRU_ISOLATING
);
595 prepare_to_wait_event(wq_head
, &wqe
.wq_entry
, TASK_UNINTERRUPTIBLE
);
597 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
600 if (!(inode
->i_state
& I_LRU_ISOLATING
))
602 spin_unlock(&inode
->i_lock
);
604 spin_lock(&inode
->i_lock
);
606 finish_wait(wq_head
, &wqe
.wq_entry
);
607 WARN_ON(inode
->i_state
& I_LRU_ISOLATING
);
611 * inode_sb_list_add - add inode to the superblock list of inodes
612 * @inode: inode to add
614 void inode_sb_list_add(struct inode
*inode
)
616 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
617 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
618 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
620 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
622 static inline void inode_sb_list_del(struct inode
*inode
)
624 if (!list_empty(&inode
->i_sb_list
)) {
625 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
626 list_del_init(&inode
->i_sb_list
);
627 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
631 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
635 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
637 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
638 return tmp
& i_hash_mask
;
642 * __insert_inode_hash - hash an inode
643 * @inode: unhashed inode
644 * @hashval: unsigned long value used to locate this object in the
647 * Add an inode to the inode hash for this superblock.
649 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
651 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
653 spin_lock(&inode_hash_lock
);
654 spin_lock(&inode
->i_lock
);
655 hlist_add_head_rcu(&inode
->i_hash
, b
);
656 spin_unlock(&inode
->i_lock
);
657 spin_unlock(&inode_hash_lock
);
659 EXPORT_SYMBOL(__insert_inode_hash
);
662 * __remove_inode_hash - remove an inode from the hash
663 * @inode: inode to unhash
665 * Remove an inode from the superblock.
667 void __remove_inode_hash(struct inode
*inode
)
669 spin_lock(&inode_hash_lock
);
670 spin_lock(&inode
->i_lock
);
671 hlist_del_init_rcu(&inode
->i_hash
);
672 spin_unlock(&inode
->i_lock
);
673 spin_unlock(&inode_hash_lock
);
675 EXPORT_SYMBOL(__remove_inode_hash
);
677 void dump_mapping(const struct address_space
*mapping
)
680 const struct address_space_operations
*a_ops
;
681 struct hlist_node
*dentry_first
;
682 struct dentry
*dentry_ptr
;
683 struct dentry dentry
;
688 * If mapping is an invalid pointer, we don't want to crash
689 * accessing it, so probe everything depending on it carefully.
691 if (get_kernel_nofault(host
, &mapping
->host
) ||
692 get_kernel_nofault(a_ops
, &mapping
->a_ops
)) {
693 pr_warn("invalid mapping:%px\n", mapping
);
698 pr_warn("aops:%ps\n", a_ops
);
702 if (get_kernel_nofault(dentry_first
, &host
->i_dentry
.first
) ||
703 get_kernel_nofault(ino
, &host
->i_ino
)) {
704 pr_warn("aops:%ps invalid inode:%px\n", a_ops
, host
);
709 pr_warn("aops:%ps ino:%lx\n", a_ops
, ino
);
713 dentry_ptr
= container_of(dentry_first
, struct dentry
, d_u
.d_alias
);
714 if (get_kernel_nofault(dentry
, dentry_ptr
) ||
715 !dentry
.d_parent
|| !dentry
.d_name
.name
) {
716 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
717 a_ops
, ino
, dentry_ptr
);
721 if (strncpy_from_kernel_nofault(fname
, dentry
.d_name
.name
, 63) < 0)
722 strscpy(fname
, "<invalid>");
724 * Even if strncpy_from_kernel_nofault() succeeded,
725 * the fname could be unreliable
727 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
731 void clear_inode(struct inode
*inode
)
734 * We have to cycle the i_pages lock here because reclaim can be in the
735 * process of removing the last page (in __filemap_remove_folio())
736 * and we must not free the mapping under it.
738 xa_lock_irq(&inode
->i_data
.i_pages
);
739 BUG_ON(inode
->i_data
.nrpages
);
741 * Almost always, mapping_empty(&inode->i_data) here; but there are
742 * two known and long-standing ways in which nodes may get left behind
743 * (when deep radix-tree node allocation failed partway; or when THP
744 * collapse_file() failed). Until those two known cases are cleaned up,
745 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
746 * nor even WARN_ON(!mapping_empty).
748 xa_unlock_irq(&inode
->i_data
.i_pages
);
749 BUG_ON(!list_empty(&inode
->i_data
.i_private_list
));
750 BUG_ON(!(inode
->i_state
& I_FREEING
));
751 BUG_ON(inode
->i_state
& I_CLEAR
);
752 BUG_ON(!list_empty(&inode
->i_wb_list
));
753 /* don't need i_lock here, no concurrent mods to i_state */
754 inode
->i_state
= I_FREEING
| I_CLEAR
;
756 EXPORT_SYMBOL(clear_inode
);
759 * Free the inode passed in, removing it from the lists it is still connected
760 * to. We remove any pages still attached to the inode and wait for any IO that
761 * is still in progress before finally destroying the inode.
763 * An inode must already be marked I_FREEING so that we avoid the inode being
764 * moved back onto lists if we race with other code that manipulates the lists
765 * (e.g. writeback_single_inode). The caller is responsible for setting this.
767 * An inode must already be removed from the LRU list before being evicted from
768 * the cache. This should occur atomically with setting the I_FREEING state
769 * flag, so no inodes here should ever be on the LRU when being evicted.
771 static void evict(struct inode
*inode
)
773 const struct super_operations
*op
= inode
->i_sb
->s_op
;
775 BUG_ON(!(inode
->i_state
& I_FREEING
));
776 BUG_ON(!list_empty(&inode
->i_lru
));
778 if (!list_empty(&inode
->i_io_list
))
779 inode_io_list_del(inode
);
781 inode_sb_list_del(inode
);
783 spin_lock(&inode
->i_lock
);
784 inode_wait_for_lru_isolating(inode
);
787 * Wait for flusher thread to be done with the inode so that filesystem
788 * does not start destroying it while writeback is still running. Since
789 * the inode has I_FREEING set, flusher thread won't start new work on
790 * the inode. We just have to wait for running writeback to finish.
792 inode_wait_for_writeback(inode
);
793 spin_unlock(&inode
->i_lock
);
795 if (op
->evict_inode
) {
796 op
->evict_inode(inode
);
798 truncate_inode_pages_final(&inode
->i_data
);
801 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
804 remove_inode_hash(inode
);
807 * Wake up waiters in __wait_on_freeing_inode().
809 * Lockless hash lookup may end up finding the inode before we removed
810 * it above, but only lock it *after* we are done with the wakeup below.
811 * In this case the potential waiter cannot safely block.
813 * The inode being unhashed after the call to remove_inode_hash() is
814 * used as an indicator whether blocking on it is safe.
816 spin_lock(&inode
->i_lock
);
818 * Pairs with the barrier in prepare_to_wait_event() to make sure
819 * ___wait_var_event() either sees the bit cleared or
820 * waitqueue_active() check in wake_up_var() sees the waiter.
822 smp_mb__after_spinlock();
823 inode_wake_up_bit(inode
, __I_NEW
);
824 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
825 spin_unlock(&inode
->i_lock
);
827 destroy_inode(inode
);
831 * dispose_list - dispose of the contents of a local list
832 * @head: the head of the list to free
834 * Dispose-list gets a local list with local inodes in it, so it doesn't
835 * need to worry about list corruption and SMP locks.
837 static void dispose_list(struct list_head
*head
)
839 while (!list_empty(head
)) {
842 inode
= list_first_entry(head
, struct inode
, i_lru
);
843 list_del_init(&inode
->i_lru
);
851 * evict_inodes - evict all evictable inodes for a superblock
852 * @sb: superblock to operate on
854 * Make sure that no inodes with zero refcount are retained. This is
855 * called by superblock shutdown after having SB_ACTIVE flag removed,
856 * so any inode reaching zero refcount during or after that call will
857 * be immediately evicted.
859 void evict_inodes(struct super_block
*sb
)
861 struct inode
*inode
, *next
;
865 spin_lock(&sb
->s_inode_list_lock
);
866 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
867 if (atomic_read(&inode
->i_count
))
870 spin_lock(&inode
->i_lock
);
871 if (atomic_read(&inode
->i_count
)) {
872 spin_unlock(&inode
->i_lock
);
875 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
876 spin_unlock(&inode
->i_lock
);
880 inode
->i_state
|= I_FREEING
;
881 inode_lru_list_del(inode
);
882 spin_unlock(&inode
->i_lock
);
883 list_add(&inode
->i_lru
, &dispose
);
886 * We can have a ton of inodes to evict at unmount time given
887 * enough memory, check to see if we need to go to sleep for a
888 * bit so we don't livelock.
890 if (need_resched()) {
891 spin_unlock(&sb
->s_inode_list_lock
);
893 dispose_list(&dispose
);
897 spin_unlock(&sb
->s_inode_list_lock
);
899 dispose_list(&dispose
);
901 EXPORT_SYMBOL_GPL(evict_inodes
);
904 * invalidate_inodes - attempt to free all inodes on a superblock
905 * @sb: superblock to operate on
907 * Attempts to free all inodes (including dirty inodes) for a given superblock.
909 void invalidate_inodes(struct super_block
*sb
)
911 struct inode
*inode
, *next
;
915 spin_lock(&sb
->s_inode_list_lock
);
916 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
917 spin_lock(&inode
->i_lock
);
918 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
919 spin_unlock(&inode
->i_lock
);
922 if (atomic_read(&inode
->i_count
)) {
923 spin_unlock(&inode
->i_lock
);
927 inode
->i_state
|= I_FREEING
;
928 inode_lru_list_del(inode
);
929 spin_unlock(&inode
->i_lock
);
930 list_add(&inode
->i_lru
, &dispose
);
931 if (need_resched()) {
932 spin_unlock(&sb
->s_inode_list_lock
);
934 dispose_list(&dispose
);
938 spin_unlock(&sb
->s_inode_list_lock
);
940 dispose_list(&dispose
);
944 * Isolate the inode from the LRU in preparation for freeing it.
946 * If the inode has the I_REFERENCED flag set, then it means that it has been
947 * used recently - the flag is set in iput_final(). When we encounter such an
948 * inode, clear the flag and move it to the back of the LRU so it gets another
949 * pass through the LRU before it gets reclaimed. This is necessary because of
950 * the fact we are doing lazy LRU updates to minimise lock contention so the
951 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
952 * with this flag set because they are the inodes that are out of order.
954 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
955 struct list_lru_one
*lru
, void *arg
)
957 struct list_head
*freeable
= arg
;
958 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
961 * We are inverting the lru lock/inode->i_lock here, so use a
962 * trylock. If we fail to get the lock, just skip it.
964 if (!spin_trylock(&inode
->i_lock
))
968 * Inodes can get referenced, redirtied, or repopulated while
969 * they're already on the LRU, and this can make them
970 * unreclaimable for a while. Remove them lazily here; iput,
971 * sync, or the last page cache deletion will requeue them.
973 if (atomic_read(&inode
->i_count
) ||
974 (inode
->i_state
& ~I_REFERENCED
) ||
975 !mapping_shrinkable(&inode
->i_data
)) {
976 list_lru_isolate(lru
, &inode
->i_lru
);
977 spin_unlock(&inode
->i_lock
);
978 this_cpu_dec(nr_unused
);
982 /* Recently referenced inodes get one more pass */
983 if (inode
->i_state
& I_REFERENCED
) {
984 inode
->i_state
&= ~I_REFERENCED
;
985 spin_unlock(&inode
->i_lock
);
990 * On highmem systems, mapping_shrinkable() permits dropping
991 * page cache in order to free up struct inodes: lowmem might
992 * be under pressure before the cache inside the highmem zone.
994 if (inode_has_buffers(inode
) || !mapping_empty(&inode
->i_data
)) {
995 inode_pin_lru_isolating(inode
);
996 spin_unlock(&inode
->i_lock
);
997 spin_unlock(&lru
->lock
);
998 if (remove_inode_buffers(inode
)) {
1000 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
1001 if (current_is_kswapd())
1002 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
1004 __count_vm_events(PGINODESTEAL
, reap
);
1005 mm_account_reclaimed_pages(reap
);
1007 inode_unpin_lru_isolating(inode
);
1011 WARN_ON(inode
->i_state
& I_NEW
);
1012 inode
->i_state
|= I_FREEING
;
1013 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
1014 spin_unlock(&inode
->i_lock
);
1016 this_cpu_dec(nr_unused
);
1021 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
1022 * This is called from the superblock shrinker function with a number of inodes
1023 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
1024 * then are freed outside inode_lock by dispose_list().
1026 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1028 LIST_HEAD(freeable
);
1031 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
1032 inode_lru_isolate
, &freeable
);
1033 dispose_list(&freeable
);
1037 static void __wait_on_freeing_inode(struct inode
*inode
, bool is_inode_hash_locked
);
1039 * Called with the inode lock held.
1041 static struct inode
*find_inode(struct super_block
*sb
,
1042 struct hlist_head
*head
,
1043 int (*test
)(struct inode
*, void *),
1044 void *data
, bool is_inode_hash_locked
)
1046 struct inode
*inode
= NULL
;
1048 if (is_inode_hash_locked
)
1049 lockdep_assert_held(&inode_hash_lock
);
1051 lockdep_assert_not_held(&inode_hash_lock
);
1055 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1056 if (inode
->i_sb
!= sb
)
1058 if (!test(inode
, data
))
1060 spin_lock(&inode
->i_lock
);
1061 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1062 __wait_on_freeing_inode(inode
, is_inode_hash_locked
);
1065 if (unlikely(inode
->i_state
& I_CREATING
)) {
1066 spin_unlock(&inode
->i_lock
);
1068 return ERR_PTR(-ESTALE
);
1071 spin_unlock(&inode
->i_lock
);
1080 * find_inode_fast is the fast path version of find_inode, see the comment at
1081 * iget_locked for details.
1083 static struct inode
*find_inode_fast(struct super_block
*sb
,
1084 struct hlist_head
*head
, unsigned long ino
,
1085 bool is_inode_hash_locked
)
1087 struct inode
*inode
= NULL
;
1089 if (is_inode_hash_locked
)
1090 lockdep_assert_held(&inode_hash_lock
);
1092 lockdep_assert_not_held(&inode_hash_lock
);
1096 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1097 if (inode
->i_ino
!= ino
)
1099 if (inode
->i_sb
!= sb
)
1101 spin_lock(&inode
->i_lock
);
1102 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1103 __wait_on_freeing_inode(inode
, is_inode_hash_locked
);
1106 if (unlikely(inode
->i_state
& I_CREATING
)) {
1107 spin_unlock(&inode
->i_lock
);
1109 return ERR_PTR(-ESTALE
);
1112 spin_unlock(&inode
->i_lock
);
1121 * Each cpu owns a range of LAST_INO_BATCH numbers.
1122 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1123 * to renew the exhausted range.
1125 * This does not significantly increase overflow rate because every CPU can
1126 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1127 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1128 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1129 * overflow rate by 2x, which does not seem too significant.
1131 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1132 * error if st_ino won't fit in target struct field. Use 32bit counter
1133 * here to attempt to avoid that.
1135 #define LAST_INO_BATCH 1024
1136 static DEFINE_PER_CPU(unsigned int, last_ino
);
1138 unsigned int get_next_ino(void)
1140 unsigned int *p
= &get_cpu_var(last_ino
);
1141 unsigned int res
= *p
;
1144 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
1145 static atomic_t shared_last_ino
;
1146 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
1148 res
= next
- LAST_INO_BATCH
;
1153 /* get_next_ino should not provide a 0 inode number */
1157 put_cpu_var(last_ino
);
1160 EXPORT_SYMBOL(get_next_ino
);
1163 * new_inode_pseudo - obtain an inode
1166 * Allocates a new inode for given superblock.
1167 * Inode wont be chained in superblock s_inodes list
1169 * - fs can't be unmount
1170 * - quotas, fsnotify, writeback can't work
1172 struct inode
*new_inode_pseudo(struct super_block
*sb
)
1174 return alloc_inode(sb
);
1178 * new_inode - obtain an inode
1181 * Allocates a new inode for given superblock. The default gfp_mask
1182 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1183 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1184 * for the page cache are not reclaimable or migratable,
1185 * mapping_set_gfp_mask() must be called with suitable flags on the
1186 * newly created inode's mapping
1189 struct inode
*new_inode(struct super_block
*sb
)
1191 struct inode
*inode
;
1193 inode
= new_inode_pseudo(sb
);
1195 inode_sb_list_add(inode
);
1198 EXPORT_SYMBOL(new_inode
);
1200 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1201 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
1203 if (S_ISDIR(inode
->i_mode
)) {
1204 struct file_system_type
*type
= inode
->i_sb
->s_type
;
1206 /* Set new key only if filesystem hasn't already changed it */
1207 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
1209 * ensure nobody is actually holding i_mutex
1211 // mutex_destroy(&inode->i_mutex);
1212 init_rwsem(&inode
->i_rwsem
);
1213 lockdep_set_class(&inode
->i_rwsem
,
1214 &type
->i_mutex_dir_key
);
1218 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
1222 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1223 * @inode: new inode to unlock
1225 * Called when the inode is fully initialised to clear the new state of the
1226 * inode and wake up anyone waiting for the inode to finish initialisation.
1228 void unlock_new_inode(struct inode
*inode
)
1230 lockdep_annotate_inode_mutex_key(inode
);
1231 spin_lock(&inode
->i_lock
);
1232 WARN_ON(!(inode
->i_state
& I_NEW
));
1233 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
1235 * Pairs with the barrier in prepare_to_wait_event() to make sure
1236 * ___wait_var_event() either sees the bit cleared or
1237 * waitqueue_active() check in wake_up_var() sees the waiter.
1240 inode_wake_up_bit(inode
, __I_NEW
);
1241 spin_unlock(&inode
->i_lock
);
1243 EXPORT_SYMBOL(unlock_new_inode
);
1245 void discard_new_inode(struct inode
*inode
)
1247 lockdep_annotate_inode_mutex_key(inode
);
1248 spin_lock(&inode
->i_lock
);
1249 WARN_ON(!(inode
->i_state
& I_NEW
));
1250 inode
->i_state
&= ~I_NEW
;
1252 * Pairs with the barrier in prepare_to_wait_event() to make sure
1253 * ___wait_var_event() either sees the bit cleared or
1254 * waitqueue_active() check in wake_up_var() sees the waiter.
1257 inode_wake_up_bit(inode
, __I_NEW
);
1258 spin_unlock(&inode
->i_lock
);
1261 EXPORT_SYMBOL(discard_new_inode
);
1264 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1266 * Lock any non-NULL argument. Passed objects must not be directories.
1267 * Zero, one or two objects may be locked by this function.
1269 * @inode1: first inode to lock
1270 * @inode2: second inode to lock
1272 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1275 WARN_ON_ONCE(S_ISDIR(inode1
->i_mode
));
1277 WARN_ON_ONCE(S_ISDIR(inode2
->i_mode
));
1278 if (inode1
> inode2
)
1279 swap(inode1
, inode2
);
1282 if (inode2
&& inode2
!= inode1
)
1283 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
1285 EXPORT_SYMBOL(lock_two_nondirectories
);
1288 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1289 * @inode1: first inode to unlock
1290 * @inode2: second inode to unlock
1292 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1295 WARN_ON_ONCE(S_ISDIR(inode1
->i_mode
));
1296 inode_unlock(inode1
);
1298 if (inode2
&& inode2
!= inode1
) {
1299 WARN_ON_ONCE(S_ISDIR(inode2
->i_mode
));
1300 inode_unlock(inode2
);
1303 EXPORT_SYMBOL(unlock_two_nondirectories
);
1306 * inode_insert5 - obtain an inode from a mounted file system
1307 * @inode: pre-allocated inode to use for insert to cache
1308 * @hashval: hash value (usually inode number) to get
1309 * @test: callback used for comparisons between inodes
1310 * @set: callback used to initialize a new struct inode
1311 * @data: opaque data pointer to pass to @test and @set
1313 * Search for the inode specified by @hashval and @data in the inode cache,
1314 * and if present return it with an increased reference count. This is a
1315 * variant of iget5_locked() that doesn't allocate an inode.
1317 * If the inode is not present in the cache, insert the pre-allocated inode and
1318 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1319 * to fill it in before unlocking it via unlock_new_inode().
1321 * Note that both @test and @set are called with the inode_hash_lock held, so
1324 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1325 int (*test
)(struct inode
*, void *),
1326 int (*set
)(struct inode
*, void *), void *data
)
1328 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1332 spin_lock(&inode_hash_lock
);
1333 old
= find_inode(inode
->i_sb
, head
, test
, data
, true);
1334 if (unlikely(old
)) {
1336 * Uhhuh, somebody else created the same inode under us.
1337 * Use the old inode instead of the preallocated one.
1339 spin_unlock(&inode_hash_lock
);
1343 if (unlikely(inode_unhashed(old
))) {
1350 if (set
&& unlikely(set(inode
, data
))) {
1356 * Return the locked inode with I_NEW set, the
1357 * caller is responsible for filling in the contents
1359 spin_lock(&inode
->i_lock
);
1360 inode
->i_state
|= I_NEW
;
1361 hlist_add_head_rcu(&inode
->i_hash
, head
);
1362 spin_unlock(&inode
->i_lock
);
1365 * Add inode to the sb list if it's not already. It has I_NEW at this
1366 * point, so it should be safe to test i_sb_list locklessly.
1368 if (list_empty(&inode
->i_sb_list
))
1369 inode_sb_list_add(inode
);
1371 spin_unlock(&inode_hash_lock
);
1375 EXPORT_SYMBOL(inode_insert5
);
1378 * iget5_locked - obtain an inode from a mounted file system
1379 * @sb: super block of file system
1380 * @hashval: hash value (usually inode number) to get
1381 * @test: callback used for comparisons between inodes
1382 * @set: callback used to initialize a new struct inode
1383 * @data: opaque data pointer to pass to @test and @set
1385 * Search for the inode specified by @hashval and @data in the inode cache,
1386 * and if present return it with an increased reference count. This is a
1387 * generalized version of iget_locked() for file systems where the inode
1388 * number is not sufficient for unique identification of an inode.
1390 * If the inode is not present in the cache, allocate and insert a new inode
1391 * and return it locked, hashed, and with the I_NEW flag set. The file system
1392 * gets to fill it in before unlocking it via unlock_new_inode().
1394 * Note that both @test and @set are called with the inode_hash_lock held, so
1397 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1398 int (*test
)(struct inode
*, void *),
1399 int (*set
)(struct inode
*, void *), void *data
)
1401 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1404 struct inode
*new = alloc_inode(sb
);
1407 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1408 if (unlikely(inode
!= new))
1414 EXPORT_SYMBOL(iget5_locked
);
1417 * iget5_locked_rcu - obtain an inode from a mounted file system
1418 * @sb: super block of file system
1419 * @hashval: hash value (usually inode number) to get
1420 * @test: callback used for comparisons between inodes
1421 * @set: callback used to initialize a new struct inode
1422 * @data: opaque data pointer to pass to @test and @set
1424 * This is equivalent to iget5_locked, except the @test callback must
1425 * tolerate the inode not being stable, including being mid-teardown.
1427 struct inode
*iget5_locked_rcu(struct super_block
*sb
, unsigned long hashval
,
1428 int (*test
)(struct inode
*, void *),
1429 int (*set
)(struct inode
*, void *), void *data
)
1431 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1432 struct inode
*inode
, *new;
1435 inode
= find_inode(sb
, head
, test
, data
, false);
1439 wait_on_inode(inode
);
1440 if (unlikely(inode_unhashed(inode
))) {
1447 new = alloc_inode(sb
);
1449 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1450 if (unlikely(inode
!= new))
1455 EXPORT_SYMBOL_GPL(iget5_locked_rcu
);
1458 * iget_locked - obtain an inode from a mounted file system
1459 * @sb: super block of file system
1460 * @ino: inode number to get
1462 * Search for the inode specified by @ino in the inode cache and if present
1463 * return it with an increased reference count. This is for file systems
1464 * where the inode number is sufficient for unique identification of an inode.
1466 * If the inode is not in cache, allocate a new inode and return it locked,
1467 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1468 * before unlocking it via unlock_new_inode().
1470 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1472 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1473 struct inode
*inode
;
1475 inode
= find_inode_fast(sb
, head
, ino
, false);
1479 wait_on_inode(inode
);
1480 if (unlikely(inode_unhashed(inode
))) {
1487 inode
= alloc_inode(sb
);
1491 spin_lock(&inode_hash_lock
);
1492 /* We released the lock, so.. */
1493 old
= find_inode_fast(sb
, head
, ino
, true);
1496 spin_lock(&inode
->i_lock
);
1497 inode
->i_state
= I_NEW
;
1498 hlist_add_head_rcu(&inode
->i_hash
, head
);
1499 spin_unlock(&inode
->i_lock
);
1500 inode_sb_list_add(inode
);
1501 spin_unlock(&inode_hash_lock
);
1503 /* Return the locked inode with I_NEW set, the
1504 * caller is responsible for filling in the contents
1510 * Uhhuh, somebody else created the same inode under
1511 * us. Use the old inode instead of the one we just
1514 spin_unlock(&inode_hash_lock
);
1515 destroy_inode(inode
);
1519 wait_on_inode(inode
);
1520 if (unlikely(inode_unhashed(inode
))) {
1527 EXPORT_SYMBOL(iget_locked
);
1530 * search the inode cache for a matching inode number.
1531 * If we find one, then the inode number we are trying to
1532 * allocate is not unique and so we should not use it.
1534 * Returns 1 if the inode number is unique, 0 if it is not.
1536 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1538 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1539 struct inode
*inode
;
1541 hlist_for_each_entry_rcu(inode
, b
, i_hash
) {
1542 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
)
1549 * iunique - get a unique inode number
1551 * @max_reserved: highest reserved inode number
1553 * Obtain an inode number that is unique on the system for a given
1554 * superblock. This is used by file systems that have no natural
1555 * permanent inode numbering system. An inode number is returned that
1556 * is higher than the reserved limit but unique.
1559 * With a large number of inodes live on the file system this function
1560 * currently becomes quite slow.
1562 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1565 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1566 * error if st_ino won't fit in target struct field. Use 32bit counter
1567 * here to attempt to avoid that.
1569 static DEFINE_SPINLOCK(iunique_lock
);
1570 static unsigned int counter
;
1574 spin_lock(&iunique_lock
);
1576 if (counter
<= max_reserved
)
1577 counter
= max_reserved
+ 1;
1579 } while (!test_inode_iunique(sb
, res
));
1580 spin_unlock(&iunique_lock
);
1585 EXPORT_SYMBOL(iunique
);
1587 struct inode
*igrab(struct inode
*inode
)
1589 spin_lock(&inode
->i_lock
);
1590 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1592 spin_unlock(&inode
->i_lock
);
1594 spin_unlock(&inode
->i_lock
);
1596 * Handle the case where s_op->clear_inode is not been
1597 * called yet, and somebody is calling igrab
1598 * while the inode is getting freed.
1604 EXPORT_SYMBOL(igrab
);
1607 * ilookup5_nowait - search for an inode in the inode cache
1608 * @sb: super block of file system to search
1609 * @hashval: hash value (usually inode number) to search for
1610 * @test: callback used for comparisons between inodes
1611 * @data: opaque data pointer to pass to @test
1613 * Search for the inode specified by @hashval and @data in the inode cache.
1614 * If the inode is in the cache, the inode is returned with an incremented
1617 * Note: I_NEW is not waited upon so you have to be very careful what you do
1618 * with the returned inode. You probably should be using ilookup5() instead.
1620 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1622 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1623 int (*test
)(struct inode
*, void *), void *data
)
1625 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1626 struct inode
*inode
;
1628 spin_lock(&inode_hash_lock
);
1629 inode
= find_inode(sb
, head
, test
, data
, true);
1630 spin_unlock(&inode_hash_lock
);
1632 return IS_ERR(inode
) ? NULL
: inode
;
1634 EXPORT_SYMBOL(ilookup5_nowait
);
1637 * ilookup5 - search for an inode in the inode cache
1638 * @sb: super block of file system to search
1639 * @hashval: hash value (usually inode number) to search for
1640 * @test: callback used for comparisons between inodes
1641 * @data: opaque data pointer to pass to @test
1643 * Search for the inode specified by @hashval and @data in the inode cache,
1644 * and if the inode is in the cache, return the inode with an incremented
1645 * reference count. Waits on I_NEW before returning the inode.
1646 * returned with an incremented reference count.
1648 * This is a generalized version of ilookup() for file systems where the
1649 * inode number is not sufficient for unique identification of an inode.
1651 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1653 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1654 int (*test
)(struct inode
*, void *), void *data
)
1656 struct inode
*inode
;
1658 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1660 wait_on_inode(inode
);
1661 if (unlikely(inode_unhashed(inode
))) {
1668 EXPORT_SYMBOL(ilookup5
);
1671 * ilookup - search for an inode in the inode cache
1672 * @sb: super block of file system to search
1673 * @ino: inode number to search for
1675 * Search for the inode @ino in the inode cache, and if the inode is in the
1676 * cache, the inode is returned with an incremented reference count.
1678 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1680 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1681 struct inode
*inode
;
1683 inode
= find_inode_fast(sb
, head
, ino
, false);
1688 wait_on_inode(inode
);
1689 if (unlikely(inode_unhashed(inode
))) {
1696 EXPORT_SYMBOL(ilookup
);
1699 * find_inode_nowait - find an inode in the inode cache
1700 * @sb: super block of file system to search
1701 * @hashval: hash value (usually inode number) to search for
1702 * @match: callback used for comparisons between inodes
1703 * @data: opaque data pointer to pass to @match
1705 * Search for the inode specified by @hashval and @data in the inode
1706 * cache, where the helper function @match will return 0 if the inode
1707 * does not match, 1 if the inode does match, and -1 if the search
1708 * should be stopped. The @match function must be responsible for
1709 * taking the i_lock spin_lock and checking i_state for an inode being
1710 * freed or being initialized, and incrementing the reference count
1711 * before returning 1. It also must not sleep, since it is called with
1712 * the inode_hash_lock spinlock held.
1714 * This is a even more generalized version of ilookup5() when the
1715 * function must never block --- find_inode() can block in
1716 * __wait_on_freeing_inode() --- or when the caller can not increment
1717 * the reference count because the resulting iput() might cause an
1718 * inode eviction. The tradeoff is that the @match funtion must be
1719 * very carefully implemented.
1721 struct inode
*find_inode_nowait(struct super_block
*sb
,
1722 unsigned long hashval
,
1723 int (*match
)(struct inode
*, unsigned long,
1727 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1728 struct inode
*inode
, *ret_inode
= NULL
;
1731 spin_lock(&inode_hash_lock
);
1732 hlist_for_each_entry(inode
, head
, i_hash
) {
1733 if (inode
->i_sb
!= sb
)
1735 mval
= match(inode
, hashval
, data
);
1743 spin_unlock(&inode_hash_lock
);
1746 EXPORT_SYMBOL(find_inode_nowait
);
1749 * find_inode_rcu - find an inode in the inode cache
1750 * @sb: Super block of file system to search
1751 * @hashval: Key to hash
1752 * @test: Function to test match on an inode
1753 * @data: Data for test function
1755 * Search for the inode specified by @hashval and @data in the inode cache,
1756 * where the helper function @test will return 0 if the inode does not match
1757 * and 1 if it does. The @test function must be responsible for taking the
1758 * i_lock spin_lock and checking i_state for an inode being freed or being
1761 * If successful, this will return the inode for which the @test function
1762 * returned 1 and NULL otherwise.
1764 * The @test function is not permitted to take a ref on any inode presented.
1765 * It is also not permitted to sleep.
1767 * The caller must hold the RCU read lock.
1769 struct inode
*find_inode_rcu(struct super_block
*sb
, unsigned long hashval
,
1770 int (*test
)(struct inode
*, void *), void *data
)
1772 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1773 struct inode
*inode
;
1775 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1776 "suspicious find_inode_rcu() usage");
1778 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1779 if (inode
->i_sb
== sb
&&
1780 !(READ_ONCE(inode
->i_state
) & (I_FREEING
| I_WILL_FREE
)) &&
1786 EXPORT_SYMBOL(find_inode_rcu
);
1789 * find_inode_by_ino_rcu - Find an inode in the inode cache
1790 * @sb: Super block of file system to search
1791 * @ino: The inode number to match
1793 * Search for the inode specified by @hashval and @data in the inode cache,
1794 * where the helper function @test will return 0 if the inode does not match
1795 * and 1 if it does. The @test function must be responsible for taking the
1796 * i_lock spin_lock and checking i_state for an inode being freed or being
1799 * If successful, this will return the inode for which the @test function
1800 * returned 1 and NULL otherwise.
1802 * The @test function is not permitted to take a ref on any inode presented.
1803 * It is also not permitted to sleep.
1805 * The caller must hold the RCU read lock.
1807 struct inode
*find_inode_by_ino_rcu(struct super_block
*sb
,
1810 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1811 struct inode
*inode
;
1813 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1814 "suspicious find_inode_by_ino_rcu() usage");
1816 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1817 if (inode
->i_ino
== ino
&&
1818 inode
->i_sb
== sb
&&
1819 !(READ_ONCE(inode
->i_state
) & (I_FREEING
| I_WILL_FREE
)))
1824 EXPORT_SYMBOL(find_inode_by_ino_rcu
);
1826 int insert_inode_locked(struct inode
*inode
)
1828 struct super_block
*sb
= inode
->i_sb
;
1829 ino_t ino
= inode
->i_ino
;
1830 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1833 struct inode
*old
= NULL
;
1834 spin_lock(&inode_hash_lock
);
1835 hlist_for_each_entry(old
, head
, i_hash
) {
1836 if (old
->i_ino
!= ino
)
1838 if (old
->i_sb
!= sb
)
1840 spin_lock(&old
->i_lock
);
1841 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1842 spin_unlock(&old
->i_lock
);
1848 spin_lock(&inode
->i_lock
);
1849 inode
->i_state
|= I_NEW
| I_CREATING
;
1850 hlist_add_head_rcu(&inode
->i_hash
, head
);
1851 spin_unlock(&inode
->i_lock
);
1852 spin_unlock(&inode_hash_lock
);
1855 if (unlikely(old
->i_state
& I_CREATING
)) {
1856 spin_unlock(&old
->i_lock
);
1857 spin_unlock(&inode_hash_lock
);
1861 spin_unlock(&old
->i_lock
);
1862 spin_unlock(&inode_hash_lock
);
1864 if (unlikely(!inode_unhashed(old
))) {
1871 EXPORT_SYMBOL(insert_inode_locked
);
1873 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1874 int (*test
)(struct inode
*, void *), void *data
)
1878 inode
->i_state
|= I_CREATING
;
1879 old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1887 EXPORT_SYMBOL(insert_inode_locked4
);
1890 int generic_delete_inode(struct inode
*inode
)
1894 EXPORT_SYMBOL(generic_delete_inode
);
1897 * Called when we're dropping the last reference
1900 * Call the FS "drop_inode()" function, defaulting to
1901 * the legacy UNIX filesystem behaviour. If it tells
1902 * us to evict inode, do so. Otherwise, retain inode
1903 * in cache if fs is alive, sync and evict if fs is
1906 static void iput_final(struct inode
*inode
)
1908 struct super_block
*sb
= inode
->i_sb
;
1909 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1910 unsigned long state
;
1913 WARN_ON(inode
->i_state
& I_NEW
);
1916 drop
= op
->drop_inode(inode
);
1918 drop
= generic_drop_inode(inode
);
1921 !(inode
->i_state
& I_DONTCACHE
) &&
1922 (sb
->s_flags
& SB_ACTIVE
)) {
1923 __inode_add_lru(inode
, true);
1924 spin_unlock(&inode
->i_lock
);
1928 state
= inode
->i_state
;
1930 WRITE_ONCE(inode
->i_state
, state
| I_WILL_FREE
);
1931 spin_unlock(&inode
->i_lock
);
1933 write_inode_now(inode
, 1);
1935 spin_lock(&inode
->i_lock
);
1936 state
= inode
->i_state
;
1937 WARN_ON(state
& I_NEW
);
1938 state
&= ~I_WILL_FREE
;
1941 WRITE_ONCE(inode
->i_state
, state
| I_FREEING
);
1942 if (!list_empty(&inode
->i_lru
))
1943 inode_lru_list_del(inode
);
1944 spin_unlock(&inode
->i_lock
);
1950 * iput - put an inode
1951 * @inode: inode to put
1953 * Puts an inode, dropping its usage count. If the inode use count hits
1954 * zero, the inode is then freed and may also be destroyed.
1956 * Consequently, iput() can sleep.
1958 void iput(struct inode
*inode
)
1962 BUG_ON(inode
->i_state
& I_CLEAR
);
1964 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1965 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1966 atomic_inc(&inode
->i_count
);
1967 spin_unlock(&inode
->i_lock
);
1968 trace_writeback_lazytime_iput(inode
);
1969 mark_inode_dirty_sync(inode
);
1975 EXPORT_SYMBOL(iput
);
1979 * bmap - find a block number in a file
1980 * @inode: inode owning the block number being requested
1981 * @block: pointer containing the block to find
1983 * Replaces the value in ``*block`` with the block number on the device holding
1984 * corresponding to the requested block number in the file.
1985 * That is, asked for block 4 of inode 1 the function will replace the
1986 * 4 in ``*block``, with disk block relative to the disk start that holds that
1987 * block of the file.
1989 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1990 * hole, returns 0 and ``*block`` is also set to 0.
1992 int bmap(struct inode
*inode
, sector_t
*block
)
1994 if (!inode
->i_mapping
->a_ops
->bmap
)
1997 *block
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, *block
);
2000 EXPORT_SYMBOL(bmap
);
2004 * With relative atime, only update atime if the previous atime is
2005 * earlier than or equal to either the ctime or mtime,
2006 * or if at least a day has passed since the last atime update.
2008 static bool relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
2009 struct timespec64 now
)
2011 struct timespec64 atime
, mtime
, ctime
;
2013 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
2016 * Is mtime younger than or equal to atime? If yes, update atime:
2018 atime
= inode_get_atime(inode
);
2019 mtime
= inode_get_mtime(inode
);
2020 if (timespec64_compare(&mtime
, &atime
) >= 0)
2023 * Is ctime younger than or equal to atime? If yes, update atime:
2025 ctime
= inode_get_ctime(inode
);
2026 if (timespec64_compare(&ctime
, &atime
) >= 0)
2030 * Is the previous atime value older than a day? If yes,
2033 if ((long)(now
.tv_sec
- atime
.tv_sec
) >= 24*60*60)
2036 * Good, we can skip the atime update:
2042 * inode_update_timestamps - update the timestamps on the inode
2043 * @inode: inode to be updated
2044 * @flags: S_* flags that needed to be updated
2046 * The update_time function is called when an inode's timestamps need to be
2047 * updated for a read or write operation. This function handles updating the
2048 * actual timestamps. It's up to the caller to ensure that the inode is marked
2049 * dirty appropriately.
2051 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2052 * attempt to update all three of them. S_ATIME updates can be handled
2053 * independently of the rest.
2055 * Returns a set of S_* flags indicating which values changed.
2057 int inode_update_timestamps(struct inode
*inode
, int flags
)
2060 struct timespec64 now
;
2062 if (flags
& (S_MTIME
|S_CTIME
|S_VERSION
)) {
2063 struct timespec64 ctime
= inode_get_ctime(inode
);
2064 struct timespec64 mtime
= inode_get_mtime(inode
);
2066 now
= inode_set_ctime_current(inode
);
2067 if (!timespec64_equal(&now
, &ctime
))
2069 if (!timespec64_equal(&now
, &mtime
)) {
2070 inode_set_mtime_to_ts(inode
, now
);
2073 if (IS_I_VERSION(inode
) && inode_maybe_inc_iversion(inode
, updated
))
2074 updated
|= S_VERSION
;
2076 now
= current_time(inode
);
2079 if (flags
& S_ATIME
) {
2080 struct timespec64 atime
= inode_get_atime(inode
);
2082 if (!timespec64_equal(&now
, &atime
)) {
2083 inode_set_atime_to_ts(inode
, now
);
2089 EXPORT_SYMBOL(inode_update_timestamps
);
2092 * generic_update_time - update the timestamps on the inode
2093 * @inode: inode to be updated
2094 * @flags: S_* flags that needed to be updated
2096 * The update_time function is called when an inode's timestamps need to be
2097 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2098 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2099 * updates can be handled done independently of the rest.
2101 * Returns a S_* mask indicating which fields were updated.
2103 int generic_update_time(struct inode
*inode
, int flags
)
2105 int updated
= inode_update_timestamps(inode
, flags
);
2106 int dirty_flags
= 0;
2108 if (updated
& (S_ATIME
|S_MTIME
|S_CTIME
))
2109 dirty_flags
= inode
->i_sb
->s_flags
& SB_LAZYTIME
? I_DIRTY_TIME
: I_DIRTY_SYNC
;
2110 if (updated
& S_VERSION
)
2111 dirty_flags
|= I_DIRTY_SYNC
;
2112 __mark_inode_dirty(inode
, dirty_flags
);
2115 EXPORT_SYMBOL(generic_update_time
);
2118 * This does the actual work of updating an inodes time or version. Must have
2119 * had called mnt_want_write() before calling this.
2121 int inode_update_time(struct inode
*inode
, int flags
)
2123 if (inode
->i_op
->update_time
)
2124 return inode
->i_op
->update_time(inode
, flags
);
2125 generic_update_time(inode
, flags
);
2128 EXPORT_SYMBOL(inode_update_time
);
2131 * atime_needs_update - update the access time
2132 * @path: the &struct path to update
2133 * @inode: inode to update
2135 * Update the accessed time on an inode and mark it for writeback.
2136 * This function automatically handles read only file systems and media,
2137 * as well as the "noatime" flag and inode specific "noatime" markers.
2139 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
2141 struct vfsmount
*mnt
= path
->mnt
;
2142 struct timespec64 now
, atime
;
2144 if (inode
->i_flags
& S_NOATIME
)
2147 /* Atime updates will likely cause i_uid and i_gid to be written
2148 * back improprely if their true value is unknown to the vfs.
2150 if (HAS_UNMAPPED_ID(mnt_idmap(mnt
), inode
))
2153 if (IS_NOATIME(inode
))
2155 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
2158 if (mnt
->mnt_flags
& MNT_NOATIME
)
2160 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
2163 now
= current_time(inode
);
2165 if (!relatime_need_update(mnt
, inode
, now
))
2168 atime
= inode_get_atime(inode
);
2169 if (timespec64_equal(&atime
, &now
))
2175 void touch_atime(const struct path
*path
)
2177 struct vfsmount
*mnt
= path
->mnt
;
2178 struct inode
*inode
= d_inode(path
->dentry
);
2180 if (!atime_needs_update(path
, inode
))
2183 if (!sb_start_write_trylock(inode
->i_sb
))
2186 if (mnt_get_write_access(mnt
) != 0)
2189 * File systems can error out when updating inodes if they need to
2190 * allocate new space to modify an inode (such is the case for
2191 * Btrfs), but since we touch atime while walking down the path we
2192 * really don't care if we failed to update the atime of the file,
2193 * so just ignore the return value.
2194 * We may also fail on filesystems that have the ability to make parts
2195 * of the fs read only, e.g. subvolumes in Btrfs.
2197 inode_update_time(inode
, S_ATIME
);
2198 mnt_put_write_access(mnt
);
2200 sb_end_write(inode
->i_sb
);
2202 EXPORT_SYMBOL(touch_atime
);
2205 * Return mask of changes for notify_change() that need to be done as a
2206 * response to write or truncate. Return 0 if nothing has to be changed.
2207 * Negative value on error (change should be denied).
2209 int dentry_needs_remove_privs(struct mnt_idmap
*idmap
,
2210 struct dentry
*dentry
)
2212 struct inode
*inode
= d_inode(dentry
);
2216 if (IS_NOSEC(inode
))
2219 mask
= setattr_should_drop_suidgid(idmap
, inode
);
2220 ret
= security_inode_need_killpriv(dentry
);
2224 mask
|= ATTR_KILL_PRIV
;
2228 static int __remove_privs(struct mnt_idmap
*idmap
,
2229 struct dentry
*dentry
, int kill
)
2231 struct iattr newattrs
;
2233 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
2235 * Note we call this on write, so notify_change will not
2236 * encounter any conflicting delegations:
2238 return notify_change(idmap
, dentry
, &newattrs
, NULL
);
2241 int file_remove_privs_flags(struct file
*file
, unsigned int flags
)
2243 struct dentry
*dentry
= file_dentry(file
);
2244 struct inode
*inode
= file_inode(file
);
2248 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
2251 kill
= dentry_needs_remove_privs(file_mnt_idmap(file
), dentry
);
2256 if (flags
& IOCB_NOWAIT
)
2259 error
= __remove_privs(file_mnt_idmap(file
), dentry
, kill
);
2263 inode_has_no_xattr(inode
);
2266 EXPORT_SYMBOL_GPL(file_remove_privs_flags
);
2269 * file_remove_privs - remove special file privileges (suid, capabilities)
2270 * @file: file to remove privileges from
2272 * When file is modified by a write or truncation ensure that special
2273 * file privileges are removed.
2275 * Return: 0 on success, negative errno on failure.
2277 int file_remove_privs(struct file
*file
)
2279 return file_remove_privs_flags(file
, 0);
2281 EXPORT_SYMBOL(file_remove_privs
);
2284 * current_time - Return FS time (possibly fine-grained)
2287 * Return the current time truncated to the time granularity supported by
2288 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2289 * as having been QUERIED, get a fine-grained timestamp, but don't update
2292 * For a multigrain inode, this is effectively an estimate of the timestamp
2293 * that a file would receive. An actual update must go through
2294 * inode_set_ctime_current().
2296 struct timespec64
current_time(struct inode
*inode
)
2298 struct timespec64 now
;
2301 ktime_get_coarse_real_ts64_mg(&now
);
2303 if (!is_mgtime(inode
))
2306 /* If nothing has queried it, then coarse time is fine */
2307 cns
= smp_load_acquire(&inode
->i_ctime_nsec
);
2308 if (cns
& I_CTIME_QUERIED
) {
2310 * If there is no apparent change, then get a fine-grained
2313 if (now
.tv_nsec
== (cns
& ~I_CTIME_QUERIED
))
2314 ktime_get_real_ts64(&now
);
2317 return timestamp_truncate(now
, inode
);
2319 EXPORT_SYMBOL(current_time
);
2321 static int inode_needs_update_time(struct inode
*inode
)
2323 struct timespec64 now
, ts
;
2326 /* First try to exhaust all avenues to not sync */
2327 if (IS_NOCMTIME(inode
))
2330 now
= current_time(inode
);
2332 ts
= inode_get_mtime(inode
);
2333 if (!timespec64_equal(&ts
, &now
))
2336 ts
= inode_get_ctime(inode
);
2337 if (!timespec64_equal(&ts
, &now
))
2340 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
2341 sync_it
|= S_VERSION
;
2346 static int __file_update_time(struct file
*file
, int sync_mode
)
2349 struct inode
*inode
= file_inode(file
);
2351 /* try to update time settings */
2352 if (!mnt_get_write_access_file(file
)) {
2353 ret
= inode_update_time(inode
, sync_mode
);
2354 mnt_put_write_access_file(file
);
2361 * file_update_time - update mtime and ctime time
2362 * @file: file accessed
2364 * Update the mtime and ctime members of an inode and mark the inode for
2365 * writeback. Note that this function is meant exclusively for usage in
2366 * the file write path of filesystems, and filesystems may choose to
2367 * explicitly ignore updates via this function with the _NOCMTIME inode
2368 * flag, e.g. for network filesystem where these imestamps are handled
2369 * by the server. This can return an error for file systems who need to
2370 * allocate space in order to update an inode.
2372 * Return: 0 on success, negative errno on failure.
2374 int file_update_time(struct file
*file
)
2377 struct inode
*inode
= file_inode(file
);
2379 ret
= inode_needs_update_time(inode
);
2383 return __file_update_time(file
, ret
);
2385 EXPORT_SYMBOL(file_update_time
);
2388 * file_modified_flags - handle mandated vfs changes when modifying a file
2389 * @file: file that was modified
2390 * @flags: kiocb flags
2392 * When file has been modified ensure that special
2393 * file privileges are removed and time settings are updated.
2395 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2396 * time settings will not be updated. It will return -EAGAIN.
2398 * Context: Caller must hold the file's inode lock.
2400 * Return: 0 on success, negative errno on failure.
2402 static int file_modified_flags(struct file
*file
, int flags
)
2405 struct inode
*inode
= file_inode(file
);
2408 * Clear the security bits if the process is not being run by root.
2409 * This keeps people from modifying setuid and setgid binaries.
2411 ret
= file_remove_privs_flags(file
, flags
);
2415 if (unlikely(file
->f_mode
& FMODE_NOCMTIME
))
2418 ret
= inode_needs_update_time(inode
);
2421 if (flags
& IOCB_NOWAIT
)
2424 return __file_update_time(file
, ret
);
2428 * file_modified - handle mandated vfs changes when modifying a file
2429 * @file: file that was modified
2431 * When file has been modified ensure that special
2432 * file privileges are removed and time settings are updated.
2434 * Context: Caller must hold the file's inode lock.
2436 * Return: 0 on success, negative errno on failure.
2438 int file_modified(struct file
*file
)
2440 return file_modified_flags(file
, 0);
2442 EXPORT_SYMBOL(file_modified
);
2445 * kiocb_modified - handle mandated vfs changes when modifying a file
2446 * @iocb: iocb that was modified
2448 * When file has been modified ensure that special
2449 * file privileges are removed and time settings are updated.
2451 * Context: Caller must hold the file's inode lock.
2453 * Return: 0 on success, negative errno on failure.
2455 int kiocb_modified(struct kiocb
*iocb
)
2457 return file_modified_flags(iocb
->ki_filp
, iocb
->ki_flags
);
2459 EXPORT_SYMBOL_GPL(kiocb_modified
);
2461 int inode_needs_sync(struct inode
*inode
)
2465 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
2469 EXPORT_SYMBOL(inode_needs_sync
);
2472 * If we try to find an inode in the inode hash while it is being
2473 * deleted, we have to wait until the filesystem completes its
2474 * deletion before reporting that it isn't found. This function waits
2475 * until the deletion _might_ have completed. Callers are responsible
2476 * to recheck inode state.
2478 * It doesn't matter if I_NEW is not set initially, a call to
2479 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2482 static void __wait_on_freeing_inode(struct inode
*inode
, bool is_inode_hash_locked
)
2484 struct wait_bit_queue_entry wqe
;
2485 struct wait_queue_head
*wq_head
;
2488 * Handle racing against evict(), see that routine for more details.
2490 if (unlikely(inode_unhashed(inode
))) {
2491 WARN_ON(is_inode_hash_locked
);
2492 spin_unlock(&inode
->i_lock
);
2496 wq_head
= inode_bit_waitqueue(&wqe
, inode
, __I_NEW
);
2497 prepare_to_wait_event(wq_head
, &wqe
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2498 spin_unlock(&inode
->i_lock
);
2500 if (is_inode_hash_locked
)
2501 spin_unlock(&inode_hash_lock
);
2503 finish_wait(wq_head
, &wqe
.wq_entry
);
2504 if (is_inode_hash_locked
)
2505 spin_lock(&inode_hash_lock
);
2509 static __initdata
unsigned long ihash_entries
;
2510 static int __init
set_ihash_entries(char *str
)
2514 ihash_entries
= simple_strtoul(str
, &str
, 0);
2517 __setup("ihash_entries=", set_ihash_entries
);
2520 * Initialize the waitqueues and inode hash table.
2522 void __init
inode_init_early(void)
2524 /* If hashes are distributed across NUMA nodes, defer
2525 * hash allocation until vmalloc space is available.
2531 alloc_large_system_hash("Inode-cache",
2532 sizeof(struct hlist_head
),
2535 HASH_EARLY
| HASH_ZERO
,
2542 void __init
inode_init(void)
2544 /* inode slab cache */
2545 inode_cachep
= kmem_cache_create("inode_cache",
2546 sizeof(struct inode
),
2548 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
2552 /* Hash may have been set up in inode_init_early */
2557 alloc_large_system_hash("Inode-cache",
2558 sizeof(struct hlist_head
),
2568 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
2570 inode
->i_mode
= mode
;
2571 if (S_ISCHR(mode
)) {
2572 inode
->i_fop
= &def_chr_fops
;
2573 inode
->i_rdev
= rdev
;
2574 } else if (S_ISBLK(mode
)) {
2575 if (IS_ENABLED(CONFIG_BLOCK
))
2576 inode
->i_fop
= &def_blk_fops
;
2577 inode
->i_rdev
= rdev
;
2578 } else if (S_ISFIFO(mode
))
2579 inode
->i_fop
= &pipefifo_fops
;
2580 else if (S_ISSOCK(mode
))
2581 ; /* leave it no_open_fops */
2583 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
2584 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
2587 EXPORT_SYMBOL(init_special_inode
);
2590 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2591 * @idmap: idmap of the mount the inode was created from
2593 * @dir: Directory inode
2594 * @mode: mode of the new inode
2596 * If the inode has been created through an idmapped mount the idmap of
2597 * the vfsmount must be passed through @idmap. This function will then take
2598 * care to map the inode according to @idmap before checking permissions
2599 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2600 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2602 void inode_init_owner(struct mnt_idmap
*idmap
, struct inode
*inode
,
2603 const struct inode
*dir
, umode_t mode
)
2605 inode_fsuid_set(inode
, idmap
);
2606 if (dir
&& dir
->i_mode
& S_ISGID
) {
2607 inode
->i_gid
= dir
->i_gid
;
2609 /* Directories are special, and always inherit S_ISGID */
2613 inode_fsgid_set(inode
, idmap
);
2614 inode
->i_mode
= mode
;
2616 EXPORT_SYMBOL(inode_init_owner
);
2619 * inode_owner_or_capable - check current task permissions to inode
2620 * @idmap: idmap of the mount the inode was found from
2621 * @inode: inode being checked
2623 * Return true if current either has CAP_FOWNER in a namespace with the
2624 * inode owner uid mapped, or owns the file.
2626 * If the inode has been found through an idmapped mount the idmap of
2627 * the vfsmount must be passed through @idmap. This function will then take
2628 * care to map the inode according to @idmap before checking permissions.
2629 * On non-idmapped mounts or if permission checking is to be performed on the
2630 * raw inode simply pass @nop_mnt_idmap.
2632 bool inode_owner_or_capable(struct mnt_idmap
*idmap
,
2633 const struct inode
*inode
)
2636 struct user_namespace
*ns
;
2638 vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
2639 if (vfsuid_eq_kuid(vfsuid
, current_fsuid()))
2642 ns
= current_user_ns();
2643 if (vfsuid_has_mapping(ns
, vfsuid
) && ns_capable(ns
, CAP_FOWNER
))
2647 EXPORT_SYMBOL(inode_owner_or_capable
);
2650 * Direct i/o helper functions
2652 bool inode_dio_finished(const struct inode
*inode
)
2654 return atomic_read(&inode
->i_dio_count
) == 0;
2656 EXPORT_SYMBOL(inode_dio_finished
);
2659 * inode_dio_wait - wait for outstanding DIO requests to finish
2660 * @inode: inode to wait for
2662 * Waits for all pending direct I/O requests to finish so that we can
2663 * proceed with a truncate or equivalent operation.
2665 * Must be called under a lock that serializes taking new references
2666 * to i_dio_count, usually by inode->i_mutex.
2668 void inode_dio_wait(struct inode
*inode
)
2670 wait_var_event(&inode
->i_dio_count
, inode_dio_finished(inode
));
2672 EXPORT_SYMBOL(inode_dio_wait
);
2674 void inode_dio_wait_interruptible(struct inode
*inode
)
2676 wait_var_event_interruptible(&inode
->i_dio_count
,
2677 inode_dio_finished(inode
));
2679 EXPORT_SYMBOL(inode_dio_wait_interruptible
);
2682 * inode_set_flags - atomically set some inode flags
2684 * Note: the caller should be holding i_mutex, or else be sure that
2685 * they have exclusive access to the inode structure (i.e., while the
2686 * inode is being instantiated). The reason for the cmpxchg() loop
2687 * --- which wouldn't be necessary if all code paths which modify
2688 * i_flags actually followed this rule, is that there is at least one
2689 * code path which doesn't today so we use cmpxchg() out of an abundance
2692 * In the long run, i_mutex is overkill, and we should probably look
2693 * at using the i_lock spinlock to protect i_flags, and then make sure
2694 * it is so documented in include/linux/fs.h and that all code follows
2695 * the locking convention!!
2697 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2700 WARN_ON_ONCE(flags
& ~mask
);
2701 set_mask_bits(&inode
->i_flags
, mask
, flags
);
2703 EXPORT_SYMBOL(inode_set_flags
);
2705 void inode_nohighmem(struct inode
*inode
)
2707 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2709 EXPORT_SYMBOL(inode_nohighmem
);
2711 struct timespec64
inode_set_ctime_to_ts(struct inode
*inode
, struct timespec64 ts
)
2713 trace_inode_set_ctime_to_ts(inode
, &ts
);
2714 set_normalized_timespec64(&ts
, ts
.tv_sec
, ts
.tv_nsec
);
2715 inode
->i_ctime_sec
= ts
.tv_sec
;
2716 inode
->i_ctime_nsec
= ts
.tv_nsec
;
2719 EXPORT_SYMBOL(inode_set_ctime_to_ts
);
2722 * timestamp_truncate - Truncate timespec to a granularity
2724 * @inode: inode being updated
2726 * Truncate a timespec to the granularity supported by the fs
2727 * containing the inode. Always rounds down. gran must
2728 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2730 struct timespec64
timestamp_truncate(struct timespec64 t
, struct inode
*inode
)
2732 struct super_block
*sb
= inode
->i_sb
;
2733 unsigned int gran
= sb
->s_time_gran
;
2735 t
.tv_sec
= clamp(t
.tv_sec
, sb
->s_time_min
, sb
->s_time_max
);
2736 if (unlikely(t
.tv_sec
== sb
->s_time_max
|| t
.tv_sec
== sb
->s_time_min
))
2739 /* Avoid division in the common cases 1 ns and 1 s. */
2742 else if (gran
== NSEC_PER_SEC
)
2744 else if (gran
> 1 && gran
< NSEC_PER_SEC
)
2745 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2747 WARN(1, "invalid file time granularity: %u", gran
);
2750 EXPORT_SYMBOL(timestamp_truncate
);
2753 * inode_set_ctime_current - set the ctime to current_time
2756 * Set the inode's ctime to the current value for the inode. Returns the
2757 * current value that was assigned. If this is not a multigrain inode, then we
2758 * set it to the later of the coarse time and floor value.
2760 * If it is multigrain, then we first see if the coarse-grained timestamp is
2761 * distinct from what is already there. If so, then use that. Otherwise, get a
2762 * fine-grained timestamp.
2764 * After that, try to swap the new value into i_ctime_nsec. Accept the
2765 * resulting ctime, regardless of the outcome of the swap. If it has
2766 * already been replaced, then that timestamp is later than the earlier
2767 * unacceptable one, and is thus acceptable.
2769 struct timespec64
inode_set_ctime_current(struct inode
*inode
)
2771 struct timespec64 now
;
2774 ktime_get_coarse_real_ts64_mg(&now
);
2775 now
= timestamp_truncate(now
, inode
);
2777 /* Just return that if this is not a multigrain fs */
2778 if (!is_mgtime(inode
)) {
2779 inode_set_ctime_to_ts(inode
, now
);
2784 * A fine-grained time is only needed if someone has queried
2785 * for timestamps, and the current coarse grained time isn't
2786 * later than what's already there.
2788 cns
= smp_load_acquire(&inode
->i_ctime_nsec
);
2789 if (cns
& I_CTIME_QUERIED
) {
2790 struct timespec64 ctime
= { .tv_sec
= inode
->i_ctime_sec
,
2791 .tv_nsec
= cns
& ~I_CTIME_QUERIED
};
2793 if (timespec64_compare(&now
, &ctime
) <= 0) {
2794 ktime_get_real_ts64_mg(&now
);
2795 now
= timestamp_truncate(now
, inode
);
2796 mgtime_counter_inc(mg_fine_stamps
);
2799 mgtime_counter_inc(mg_ctime_updates
);
2801 /* No need to cmpxchg if it's exactly the same */
2802 if (cns
== now
.tv_nsec
&& inode
->i_ctime_sec
== now
.tv_sec
) {
2803 trace_ctime_xchg_skip(inode
, &now
);
2808 /* Try to swap the nsec value into place. */
2809 if (try_cmpxchg(&inode
->i_ctime_nsec
, &cur
, now
.tv_nsec
)) {
2810 /* If swap occurred, then we're (mostly) done */
2811 inode
->i_ctime_sec
= now
.tv_sec
;
2812 trace_ctime_ns_xchg(inode
, cns
, now
.tv_nsec
, cur
);
2813 mgtime_counter_inc(mg_ctime_swaps
);
2816 * Was the change due to someone marking the old ctime QUERIED?
2817 * If so then retry the swap. This can only happen once since
2818 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2821 if (!(cns
& I_CTIME_QUERIED
) && (cns
| I_CTIME_QUERIED
) == cur
) {
2825 /* Otherwise, keep the existing ctime */
2826 now
.tv_sec
= inode
->i_ctime_sec
;
2827 now
.tv_nsec
= cur
& ~I_CTIME_QUERIED
;
2832 EXPORT_SYMBOL(inode_set_ctime_current
);
2835 * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2836 * @inode: inode to update
2837 * @update: timespec64 to set the ctime
2839 * Attempt to atomically update the ctime on behalf of a delegation holder.
2841 * The nfs server can call back the holder of a delegation to get updated
2842 * inode attributes, including the mtime. When updating the mtime, update
2843 * the ctime to a value at least equal to that.
2845 * This can race with concurrent updates to the inode, in which
2846 * case the update is skipped.
2848 * Note that this works even when multigrain timestamps are not enabled,
2849 * so it is used in either case.
2851 struct timespec64
inode_set_ctime_deleg(struct inode
*inode
, struct timespec64 update
)
2853 struct timespec64 now
, cur_ts
;
2856 /* pairs with try_cmpxchg below */
2857 cur
= smp_load_acquire(&inode
->i_ctime_nsec
);
2858 cur_ts
.tv_nsec
= cur
& ~I_CTIME_QUERIED
;
2859 cur_ts
.tv_sec
= inode
->i_ctime_sec
;
2861 /* If the update is older than the existing value, skip it. */
2862 if (timespec64_compare(&update
, &cur_ts
) <= 0)
2865 ktime_get_coarse_real_ts64_mg(&now
);
2867 /* Clamp the update to "now" if it's in the future */
2868 if (timespec64_compare(&update
, &now
) > 0)
2871 update
= timestamp_truncate(update
, inode
);
2873 /* No need to update if the values are already the same */
2874 if (timespec64_equal(&update
, &cur_ts
))
2878 * Try to swap the nsec value into place. If it fails, that means
2879 * it raced with an update due to a write or similar activity. That
2880 * stamp takes precedence, so just skip the update.
2884 if (try_cmpxchg(&inode
->i_ctime_nsec
, &cur
, update
.tv_nsec
)) {
2885 inode
->i_ctime_sec
= update
.tv_sec
;
2886 mgtime_counter_inc(mg_ctime_swaps
);
2891 * Was the change due to another task marking the old ctime QUERIED?
2893 * If so, then retry the swap. This can only happen once since
2894 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2897 if (!(old
& I_CTIME_QUERIED
) && (cur
== (old
| I_CTIME_QUERIED
)))
2900 /* Otherwise, it was a new timestamp. */
2901 cur_ts
.tv_sec
= inode
->i_ctime_sec
;
2902 cur_ts
.tv_nsec
= cur
& ~I_CTIME_QUERIED
;
2905 EXPORT_SYMBOL(inode_set_ctime_deleg
);
2908 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2909 * @idmap: idmap of the mount @inode was found from
2910 * @inode: inode to check
2911 * @vfsgid: the new/current vfsgid of @inode
2913 * Check whether @vfsgid is in the caller's group list or if the caller is
2914 * privileged with CAP_FSETID over @inode. This can be used to determine
2915 * whether the setgid bit can be kept or must be dropped.
2917 * Return: true if the caller is sufficiently privileged, false if not.
2919 bool in_group_or_capable(struct mnt_idmap
*idmap
,
2920 const struct inode
*inode
, vfsgid_t vfsgid
)
2922 if (vfsgid_in_group_p(vfsgid
))
2924 if (capable_wrt_inode_uidgid(idmap
, inode
, CAP_FSETID
))
2928 EXPORT_SYMBOL(in_group_or_capable
);
2931 * mode_strip_sgid - handle the sgid bit for non-directories
2932 * @idmap: idmap of the mount the inode was created from
2933 * @dir: parent directory inode
2934 * @mode: mode of the file to be created in @dir
2936 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2937 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2938 * either in the group of the parent directory or they have CAP_FSETID
2939 * in their user namespace and are privileged over the parent directory.
2940 * In all other cases, strip the S_ISGID bit from @mode.
2942 * Return: the new mode to use for the file
2944 umode_t
mode_strip_sgid(struct mnt_idmap
*idmap
,
2945 const struct inode
*dir
, umode_t mode
)
2947 if ((mode
& (S_ISGID
| S_IXGRP
)) != (S_ISGID
| S_IXGRP
))
2949 if (S_ISDIR(mode
) || !dir
|| !(dir
->i_mode
& S_ISGID
))
2951 if (in_group_or_capable(idmap
, dir
, i_gid_into_vfsgid(idmap
, dir
)))
2953 return mode
& ~S_ISGID
;
2955 EXPORT_SYMBOL(mode_strip_sgid
);