1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/dir.c - kernfs directory implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
10 #include <linux/sched.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
18 #include "kernfs-internal.h"
20 static DEFINE_RWLOCK(kernfs_rename_lock
); /* kn->parent and ->name */
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock
);
29 static char kernfs_pr_cont_buf
[PATH_MAX
]; /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock
); /* root->ino_idr */
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34 static bool __kernfs_active(struct kernfs_node
*kn
)
36 return atomic_read(&kn
->active
) >= 0;
39 static bool kernfs_active(struct kernfs_node
*kn
)
41 lockdep_assert_held(&kernfs_root(kn
)->kernfs_rwsem
);
42 return __kernfs_active(kn
);
45 static bool kernfs_lockdep(struct kernfs_node
*kn
)
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 return kn
->flags
& KERNFS_LOCKDEP
;
54 static int kernfs_name_locked(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
57 return strscpy(buf
, "(null)", buflen
);
59 return strscpy(buf
, kn
->parent
? kn
->name
: "/", buflen
);
62 /* kernfs_node_depth - compute depth from @from to @to */
63 static size_t kernfs_depth(struct kernfs_node
*from
, struct kernfs_node
*to
)
67 while (to
->parent
&& to
!= from
) {
74 static struct kernfs_node
*kernfs_common_ancestor(struct kernfs_node
*a
,
75 struct kernfs_node
*b
)
78 struct kernfs_root
*ra
= kernfs_root(a
), *rb
= kernfs_root(b
);
83 da
= kernfs_depth(ra
->kn
, a
);
84 db
= kernfs_depth(rb
->kn
, b
);
95 /* worst case b and a will be the same at root */
105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106 * where kn_from is treated as root of the path.
107 * @kn_from: kernfs node which should be treated as root for the path
108 * @kn_to: kernfs node to which path is needed
109 * @buf: buffer to copy the path into
110 * @buflen: size of @buf
112 * We need to handle couple of scenarios here:
113 * [1] when @kn_from is an ancestor of @kn_to at some level
115 * kn_to: /n1/n2/n3/n4/n5
118 * [2] when @kn_from is on a different hierarchy and we need to find common
119 * ancestor between @kn_from and @kn_to.
120 * kn_from: /n1/n2/n3/n4
124 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
125 * kn_to: /n1/n2/n3 [depth=3]
128 * [3] when @kn_to is %NULL result will be "(null)"
130 * Return: the length of the constructed path. If the path would have been
131 * greater than @buflen, @buf contains the truncated path with the trailing
132 * '\0'. On error, -errno is returned.
134 static int kernfs_path_from_node_locked(struct kernfs_node
*kn_to
,
135 struct kernfs_node
*kn_from
,
136 char *buf
, size_t buflen
)
138 struct kernfs_node
*kn
, *common
;
139 const char parent_str
[] = "/..";
140 size_t depth_from
, depth_to
, len
= 0;
145 return strscpy(buf
, "(null)", buflen
);
148 kn_from
= kernfs_root(kn_to
)->kn
;
150 if (kn_from
== kn_to
)
151 return strscpy(buf
, "/", buflen
);
153 common
= kernfs_common_ancestor(kn_from
, kn_to
);
154 if (WARN_ON(!common
))
157 depth_to
= kernfs_depth(common
, kn_to
);
158 depth_from
= kernfs_depth(common
, kn_from
);
162 for (i
= 0; i
< depth_from
; i
++) {
163 copied
= strscpy(buf
+ len
, parent_str
, buflen
- len
);
169 /* Calculate how many bytes we need for the rest */
170 for (i
= depth_to
- 1; i
>= 0; i
--) {
171 for (kn
= kn_to
, j
= 0; j
< i
; j
++)
174 len
+= scnprintf(buf
+ len
, buflen
- len
, "/%s", kn
->name
);
181 * kernfs_name - obtain the name of a given node
182 * @kn: kernfs_node of interest
183 * @buf: buffer to copy @kn's name into
184 * @buflen: size of @buf
186 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
187 * similar to strscpy().
189 * Fills buffer with "(null)" if @kn is %NULL.
191 * Return: the resulting length of @buf. If @buf isn't long enough,
192 * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG.
194 * This function can be called from any context.
196 int kernfs_name(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
201 read_lock_irqsave(&kernfs_rename_lock
, flags
);
202 ret
= kernfs_name_locked(kn
, buf
, buflen
);
203 read_unlock_irqrestore(&kernfs_rename_lock
, flags
);
208 * kernfs_path_from_node - build path of node @to relative to @from.
209 * @from: parent kernfs_node relative to which we need to build the path
210 * @to: kernfs_node of interest
211 * @buf: buffer to copy @to's path into
212 * @buflen: size of @buf
214 * Builds @to's path relative to @from in @buf. @from and @to must
215 * be on the same kernfs-root. If @from is not parent of @to, then a relative
216 * path (which includes '..'s) as needed to reach from @from to @to is
219 * Return: the length of the constructed path. If the path would have been
220 * greater than @buflen, @buf contains the truncated path with the trailing
221 * '\0'. On error, -errno is returned.
223 int kernfs_path_from_node(struct kernfs_node
*to
, struct kernfs_node
*from
,
224 char *buf
, size_t buflen
)
229 read_lock_irqsave(&kernfs_rename_lock
, flags
);
230 ret
= kernfs_path_from_node_locked(to
, from
, buf
, buflen
);
231 read_unlock_irqrestore(&kernfs_rename_lock
, flags
);
234 EXPORT_SYMBOL_GPL(kernfs_path_from_node
);
237 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
238 * @kn: kernfs_node of interest
240 * This function can be called from any context.
242 void pr_cont_kernfs_name(struct kernfs_node
*kn
)
246 spin_lock_irqsave(&kernfs_pr_cont_lock
, flags
);
248 kernfs_name(kn
, kernfs_pr_cont_buf
, sizeof(kernfs_pr_cont_buf
));
249 pr_cont("%s", kernfs_pr_cont_buf
);
251 spin_unlock_irqrestore(&kernfs_pr_cont_lock
, flags
);
255 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
256 * @kn: kernfs_node of interest
258 * This function can be called from any context.
260 void pr_cont_kernfs_path(struct kernfs_node
*kn
)
265 spin_lock_irqsave(&kernfs_pr_cont_lock
, flags
);
267 sz
= kernfs_path_from_node(kn
, NULL
, kernfs_pr_cont_buf
,
268 sizeof(kernfs_pr_cont_buf
));
271 pr_cont("(name too long)");
277 pr_cont("%s", kernfs_pr_cont_buf
);
280 spin_unlock_irqrestore(&kernfs_pr_cont_lock
, flags
);
284 * kernfs_get_parent - determine the parent node and pin it
285 * @kn: kernfs_node of interest
287 * Determines @kn's parent, pins and returns it. This function can be
288 * called from any context.
290 * Return: parent node of @kn
292 struct kernfs_node
*kernfs_get_parent(struct kernfs_node
*kn
)
294 struct kernfs_node
*parent
;
297 read_lock_irqsave(&kernfs_rename_lock
, flags
);
300 read_unlock_irqrestore(&kernfs_rename_lock
, flags
);
306 * kernfs_name_hash - calculate hash of @ns + @name
307 * @name: Null terminated string to hash
308 * @ns: Namespace tag to hash
310 * Return: 31-bit hash of ns + name (so it fits in an off_t)
312 static unsigned int kernfs_name_hash(const char *name
, const void *ns
)
314 unsigned long hash
= init_name_hash(ns
);
315 unsigned int len
= strlen(name
);
317 hash
= partial_name_hash(*name
++, hash
);
318 hash
= end_name_hash(hash
);
320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
328 static int kernfs_name_compare(unsigned int hash
, const char *name
,
329 const void *ns
, const struct kernfs_node
*kn
)
339 return strcmp(name
, kn
->name
);
342 static int kernfs_sd_compare(const struct kernfs_node
*left
,
343 const struct kernfs_node
*right
)
345 return kernfs_name_compare(left
->hash
, left
->name
, left
->ns
, right
);
349 * kernfs_link_sibling - link kernfs_node into sibling rbtree
350 * @kn: kernfs_node of interest
352 * Link @kn into its sibling rbtree which starts from
353 * @kn->parent->dir.children.
356 * kernfs_rwsem held exclusive
359 * %0 on success, -EEXIST on failure.
361 static int kernfs_link_sibling(struct kernfs_node
*kn
)
363 struct rb_node
**node
= &kn
->parent
->dir
.children
.rb_node
;
364 struct rb_node
*parent
= NULL
;
367 struct kernfs_node
*pos
;
370 pos
= rb_to_kn(*node
);
372 result
= kernfs_sd_compare(kn
, pos
);
374 node
= &pos
->rb
.rb_left
;
376 node
= &pos
->rb
.rb_right
;
381 /* add new node and rebalance the tree */
382 rb_link_node(&kn
->rb
, parent
, node
);
383 rb_insert_color(&kn
->rb
, &kn
->parent
->dir
.children
);
385 /* successfully added, account subdir number */
386 down_write(&kernfs_root(kn
)->kernfs_iattr_rwsem
);
387 if (kernfs_type(kn
) == KERNFS_DIR
)
388 kn
->parent
->dir
.subdirs
++;
389 kernfs_inc_rev(kn
->parent
);
390 up_write(&kernfs_root(kn
)->kernfs_iattr_rwsem
);
396 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
397 * @kn: kernfs_node of interest
399 * Try to unlink @kn from its sibling rbtree which starts from
400 * kn->parent->dir.children.
402 * Return: %true if @kn was actually removed,
403 * %false if @kn wasn't on the rbtree.
406 * kernfs_rwsem held exclusive
408 static bool kernfs_unlink_sibling(struct kernfs_node
*kn
)
410 if (RB_EMPTY_NODE(&kn
->rb
))
413 down_write(&kernfs_root(kn
)->kernfs_iattr_rwsem
);
414 if (kernfs_type(kn
) == KERNFS_DIR
)
415 kn
->parent
->dir
.subdirs
--;
416 kernfs_inc_rev(kn
->parent
);
417 up_write(&kernfs_root(kn
)->kernfs_iattr_rwsem
);
419 rb_erase(&kn
->rb
, &kn
->parent
->dir
.children
);
420 RB_CLEAR_NODE(&kn
->rb
);
425 * kernfs_get_active - get an active reference to kernfs_node
426 * @kn: kernfs_node to get an active reference to
428 * Get an active reference of @kn. This function is noop if @kn
432 * Pointer to @kn on success, %NULL on failure.
434 struct kernfs_node
*kernfs_get_active(struct kernfs_node
*kn
)
439 if (!atomic_inc_unless_negative(&kn
->active
))
442 if (kernfs_lockdep(kn
))
443 rwsem_acquire_read(&kn
->dep_map
, 0, 1, _RET_IP_
);
448 * kernfs_put_active - put an active reference to kernfs_node
449 * @kn: kernfs_node to put an active reference to
451 * Put an active reference to @kn. This function is noop if @kn
454 void kernfs_put_active(struct kernfs_node
*kn
)
461 if (kernfs_lockdep(kn
))
462 rwsem_release(&kn
->dep_map
, _RET_IP_
);
463 v
= atomic_dec_return(&kn
->active
);
464 if (likely(v
!= KN_DEACTIVATED_BIAS
))
467 wake_up_all(&kernfs_root(kn
)->deactivate_waitq
);
471 * kernfs_drain - drain kernfs_node
472 * @kn: kernfs_node to drain
474 * Drain existing usages and nuke all existing mmaps of @kn. Multiple
475 * removers may invoke this function concurrently on @kn and all will
476 * return after draining is complete.
478 static void kernfs_drain(struct kernfs_node
*kn
)
479 __releases(&kernfs_root(kn
)->kernfs_rwsem
)
480 __acquires(&kernfs_root(kn
)->kernfs_rwsem
)
482 struct kernfs_root
*root
= kernfs_root(kn
);
484 lockdep_assert_held_write(&root
->kernfs_rwsem
);
485 WARN_ON_ONCE(kernfs_active(kn
));
488 * Skip draining if already fully drained. This avoids draining and its
489 * lockdep annotations for nodes which have never been activated
490 * allowing embedding kernfs_remove() in create error paths without
491 * worrying about draining.
493 if (atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
&&
494 !kernfs_should_drain_open_files(kn
))
497 up_write(&root
->kernfs_rwsem
);
499 if (kernfs_lockdep(kn
)) {
500 rwsem_acquire(&kn
->dep_map
, 0, 0, _RET_IP_
);
501 if (atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
)
502 lock_contended(&kn
->dep_map
, _RET_IP_
);
505 wait_event(root
->deactivate_waitq
,
506 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
);
508 if (kernfs_lockdep(kn
)) {
509 lock_acquired(&kn
->dep_map
, _RET_IP_
);
510 rwsem_release(&kn
->dep_map
, _RET_IP_
);
513 if (kernfs_should_drain_open_files(kn
))
514 kernfs_drain_open_files(kn
);
516 down_write(&root
->kernfs_rwsem
);
520 * kernfs_get - get a reference count on a kernfs_node
521 * @kn: the target kernfs_node
523 void kernfs_get(struct kernfs_node
*kn
)
526 WARN_ON(!atomic_read(&kn
->count
));
527 atomic_inc(&kn
->count
);
530 EXPORT_SYMBOL_GPL(kernfs_get
);
532 static void kernfs_free_rcu(struct rcu_head
*rcu
)
534 struct kernfs_node
*kn
= container_of(rcu
, struct kernfs_node
, rcu
);
536 kfree_const(kn
->name
);
539 simple_xattrs_free(&kn
->iattr
->xattrs
, NULL
);
540 kmem_cache_free(kernfs_iattrs_cache
, kn
->iattr
);
543 kmem_cache_free(kernfs_node_cache
, kn
);
547 * kernfs_put - put a reference count on a kernfs_node
548 * @kn: the target kernfs_node
550 * Put a reference count of @kn and destroy it if it reached zero.
552 void kernfs_put(struct kernfs_node
*kn
)
554 struct kernfs_node
*parent
;
555 struct kernfs_root
*root
;
557 if (!kn
|| !atomic_dec_and_test(&kn
->count
))
559 root
= kernfs_root(kn
);
562 * Moving/renaming is always done while holding reference.
563 * kn->parent won't change beneath us.
567 WARN_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
,
568 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
569 parent
? parent
->name
: "", kn
->name
, atomic_read(&kn
->active
));
571 if (kernfs_type(kn
) == KERNFS_LINK
)
572 kernfs_put(kn
->symlink
.target_kn
);
574 spin_lock(&kernfs_idr_lock
);
575 idr_remove(&root
->ino_idr
, (u32
)kernfs_ino(kn
));
576 spin_unlock(&kernfs_idr_lock
);
578 call_rcu(&kn
->rcu
, kernfs_free_rcu
);
582 if (atomic_dec_and_test(&kn
->count
))
585 /* just released the root kn, free @root too */
586 idr_destroy(&root
->ino_idr
);
587 kfree_rcu(root
, rcu
);
590 EXPORT_SYMBOL_GPL(kernfs_put
);
593 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
594 * @dentry: the dentry in question
596 * Return: the kernfs_node associated with @dentry. If @dentry is not a
597 * kernfs one, %NULL is returned.
599 * While the returned kernfs_node will stay accessible as long as @dentry
600 * is accessible, the returned node can be in any state and the caller is
601 * fully responsible for determining what's accessible.
603 struct kernfs_node
*kernfs_node_from_dentry(struct dentry
*dentry
)
605 if (dentry
->d_sb
->s_op
== &kernfs_sops
)
606 return kernfs_dentry_node(dentry
);
610 static struct kernfs_node
*__kernfs_new_node(struct kernfs_root
*root
,
611 struct kernfs_node
*parent
,
612 const char *name
, umode_t mode
,
613 kuid_t uid
, kgid_t gid
,
616 struct kernfs_node
*kn
;
620 name
= kstrdup_const(name
, GFP_KERNEL
);
624 kn
= kmem_cache_zalloc(kernfs_node_cache
, GFP_KERNEL
);
628 idr_preload(GFP_KERNEL
);
629 spin_lock(&kernfs_idr_lock
);
630 ret
= idr_alloc_cyclic(&root
->ino_idr
, kn
, 1, 0, GFP_ATOMIC
);
631 if (ret
>= 0 && ret
< root
->last_id_lowbits
)
633 id_highbits
= root
->id_highbits
;
634 root
->last_id_lowbits
= ret
;
635 spin_unlock(&kernfs_idr_lock
);
640 kn
->id
= (u64
)id_highbits
<< 32 | ret
;
642 atomic_set(&kn
->count
, 1);
643 atomic_set(&kn
->active
, KN_DEACTIVATED_BIAS
);
644 RB_CLEAR_NODE(&kn
->rb
);
650 if (!uid_eq(uid
, GLOBAL_ROOT_UID
) || !gid_eq(gid
, GLOBAL_ROOT_GID
)) {
651 struct iattr iattr
= {
652 .ia_valid
= ATTR_UID
| ATTR_GID
,
657 ret
= __kernfs_setattr(kn
, &iattr
);
663 ret
= security_kernfs_init_security(parent
, kn
);
671 spin_lock(&kernfs_idr_lock
);
672 idr_remove(&root
->ino_idr
, (u32
)kernfs_ino(kn
));
673 spin_unlock(&kernfs_idr_lock
);
675 kmem_cache_free(kernfs_node_cache
, kn
);
681 struct kernfs_node
*kernfs_new_node(struct kernfs_node
*parent
,
682 const char *name
, umode_t mode
,
683 kuid_t uid
, kgid_t gid
,
686 struct kernfs_node
*kn
;
688 if (parent
->mode
& S_ISGID
) {
689 /* this code block imitates inode_init_owner() for
694 gid
= parent
->iattr
->ia_gid
;
696 if (flags
& KERNFS_DIR
)
700 kn
= __kernfs_new_node(kernfs_root(parent
), parent
,
701 name
, mode
, uid
, gid
, flags
);
710 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
711 * @root: the kernfs root
712 * @id: the target node id
714 * @id's lower 32bits encode ino and upper gen. If the gen portion is
715 * zero, all generations are matched.
717 * Return: %NULL on failure,
718 * otherwise a kernfs node with reference counter incremented.
720 struct kernfs_node
*kernfs_find_and_get_node_by_id(struct kernfs_root
*root
,
723 struct kernfs_node
*kn
;
724 ino_t ino
= kernfs_id_ino(id
);
725 u32 gen
= kernfs_id_gen(id
);
729 kn
= idr_find(&root
->ino_idr
, (u32
)ino
);
733 if (sizeof(ino_t
) >= sizeof(u64
)) {
734 /* we looked up with the low 32bits, compare the whole */
735 if (kernfs_ino(kn
) != ino
)
738 /* 0 matches all generations */
739 if (unlikely(gen
&& kernfs_gen(kn
) != gen
))
744 * We should fail if @kn has never been activated and guarantee success
745 * if the caller knows that @kn is active. Both can be achieved by
746 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
748 if (unlikely(!__kernfs_active(kn
) || !atomic_inc_not_zero(&kn
->count
)))
759 * kernfs_add_one - add kernfs_node to parent without warning
760 * @kn: kernfs_node to be added
762 * The caller must already have initialized @kn->parent. This
763 * function increments nlink of the parent's inode if @kn is a
764 * directory and link into the children list of the parent.
767 * %0 on success, -EEXIST if entry with the given name already
770 int kernfs_add_one(struct kernfs_node
*kn
)
772 struct kernfs_node
*parent
= kn
->parent
;
773 struct kernfs_root
*root
= kernfs_root(parent
);
774 struct kernfs_iattrs
*ps_iattr
;
778 down_write(&root
->kernfs_rwsem
);
781 has_ns
= kernfs_ns_enabled(parent
);
782 if (WARN(has_ns
!= (bool)kn
->ns
, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
783 has_ns
? "required" : "invalid", parent
->name
, kn
->name
))
786 if (kernfs_type(parent
) != KERNFS_DIR
)
790 if (parent
->flags
& (KERNFS_REMOVING
| KERNFS_EMPTY_DIR
))
793 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
795 ret
= kernfs_link_sibling(kn
);
799 /* Update timestamps on the parent */
800 down_write(&root
->kernfs_iattr_rwsem
);
802 ps_iattr
= parent
->iattr
;
804 ktime_get_real_ts64(&ps_iattr
->ia_ctime
);
805 ps_iattr
->ia_mtime
= ps_iattr
->ia_ctime
;
808 up_write(&root
->kernfs_iattr_rwsem
);
809 up_write(&root
->kernfs_rwsem
);
812 * Activate the new node unless CREATE_DEACTIVATED is requested.
813 * If not activated here, the kernfs user is responsible for
814 * activating the node with kernfs_activate(). A node which hasn't
815 * been activated is not visible to userland and its removal won't
816 * trigger deactivation.
818 if (!(kernfs_root(kn
)->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
823 up_write(&root
->kernfs_rwsem
);
828 * kernfs_find_ns - find kernfs_node with the given name
829 * @parent: kernfs_node to search under
830 * @name: name to look for
831 * @ns: the namespace tag to use
833 * Look for kernfs_node with name @name under @parent.
835 * Return: pointer to the found kernfs_node on success, %NULL on failure.
837 static struct kernfs_node
*kernfs_find_ns(struct kernfs_node
*parent
,
838 const unsigned char *name
,
841 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
842 bool has_ns
= kernfs_ns_enabled(parent
);
845 lockdep_assert_held(&kernfs_root(parent
)->kernfs_rwsem
);
847 if (has_ns
!= (bool)ns
) {
848 WARN(1, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
849 has_ns
? "required" : "invalid", parent
->name
, name
);
853 hash
= kernfs_name_hash(name
, ns
);
855 struct kernfs_node
*kn
;
859 result
= kernfs_name_compare(hash
, name
, ns
, kn
);
861 node
= node
->rb_left
;
863 node
= node
->rb_right
;
870 static struct kernfs_node
*kernfs_walk_ns(struct kernfs_node
*parent
,
871 const unsigned char *path
,
877 lockdep_assert_held_read(&kernfs_root(parent
)->kernfs_rwsem
);
879 spin_lock_irq(&kernfs_pr_cont_lock
);
881 len
= strscpy(kernfs_pr_cont_buf
, path
, sizeof(kernfs_pr_cont_buf
));
884 spin_unlock_irq(&kernfs_pr_cont_lock
);
888 p
= kernfs_pr_cont_buf
;
890 while ((name
= strsep(&p
, "/")) && parent
) {
893 parent
= kernfs_find_ns(parent
, name
, ns
);
896 spin_unlock_irq(&kernfs_pr_cont_lock
);
902 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
903 * @parent: kernfs_node to search under
904 * @name: name to look for
905 * @ns: the namespace tag to use
907 * Look for kernfs_node with name @name under @parent and get a reference
908 * if found. This function may sleep.
910 * Return: pointer to the found kernfs_node on success, %NULL on failure.
912 struct kernfs_node
*kernfs_find_and_get_ns(struct kernfs_node
*parent
,
913 const char *name
, const void *ns
)
915 struct kernfs_node
*kn
;
916 struct kernfs_root
*root
= kernfs_root(parent
);
918 down_read(&root
->kernfs_rwsem
);
919 kn
= kernfs_find_ns(parent
, name
, ns
);
921 up_read(&root
->kernfs_rwsem
);
925 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns
);
928 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
929 * @parent: kernfs_node to search under
930 * @path: path to look for
931 * @ns: the namespace tag to use
933 * Look for kernfs_node with path @path under @parent and get a reference
934 * if found. This function may sleep.
936 * Return: pointer to the found kernfs_node on success, %NULL on failure.
938 struct kernfs_node
*kernfs_walk_and_get_ns(struct kernfs_node
*parent
,
939 const char *path
, const void *ns
)
941 struct kernfs_node
*kn
;
942 struct kernfs_root
*root
= kernfs_root(parent
);
944 down_read(&root
->kernfs_rwsem
);
945 kn
= kernfs_walk_ns(parent
, path
, ns
);
947 up_read(&root
->kernfs_rwsem
);
953 * kernfs_create_root - create a new kernfs hierarchy
954 * @scops: optional syscall operations for the hierarchy
955 * @flags: KERNFS_ROOT_* flags
956 * @priv: opaque data associated with the new directory
958 * Return: the root of the new hierarchy on success, ERR_PTR() value on
961 struct kernfs_root
*kernfs_create_root(struct kernfs_syscall_ops
*scops
,
962 unsigned int flags
, void *priv
)
964 struct kernfs_root
*root
;
965 struct kernfs_node
*kn
;
967 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
969 return ERR_PTR(-ENOMEM
);
971 idr_init(&root
->ino_idr
);
972 init_rwsem(&root
->kernfs_rwsem
);
973 init_rwsem(&root
->kernfs_iattr_rwsem
);
974 init_rwsem(&root
->kernfs_supers_rwsem
);
975 INIT_LIST_HEAD(&root
->supers
);
978 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
979 * High bits generation. The starting value for both ino and
980 * genenration is 1. Initialize upper 32bit allocation
983 if (sizeof(ino_t
) >= sizeof(u64
))
984 root
->id_highbits
= 0;
986 root
->id_highbits
= 1;
988 kn
= __kernfs_new_node(root
, NULL
, "", S_IFDIR
| S_IRUGO
| S_IXUGO
,
989 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
992 idr_destroy(&root
->ino_idr
);
994 return ERR_PTR(-ENOMEM
);
1000 root
->syscall_ops
= scops
;
1001 root
->flags
= flags
;
1003 init_waitqueue_head(&root
->deactivate_waitq
);
1005 if (!(root
->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
1006 kernfs_activate(kn
);
1012 * kernfs_destroy_root - destroy a kernfs hierarchy
1013 * @root: root of the hierarchy to destroy
1015 * Destroy the hierarchy anchored at @root by removing all existing
1016 * directories and destroying @root.
1018 void kernfs_destroy_root(struct kernfs_root
*root
)
1021 * kernfs_remove holds kernfs_rwsem from the root so the root
1022 * shouldn't be freed during the operation.
1024 kernfs_get(root
->kn
);
1025 kernfs_remove(root
->kn
);
1026 kernfs_put(root
->kn
); /* will also free @root */
1030 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1031 * @root: root to use to lookup
1033 * Return: @root's kernfs_node
1035 struct kernfs_node
*kernfs_root_to_node(struct kernfs_root
*root
)
1041 * kernfs_create_dir_ns - create a directory
1042 * @parent: parent in which to create a new directory
1043 * @name: name of the new directory
1044 * @mode: mode of the new directory
1045 * @uid: uid of the new directory
1046 * @gid: gid of the new directory
1047 * @priv: opaque data associated with the new directory
1048 * @ns: optional namespace tag of the directory
1050 * Return: the created node on success, ERR_PTR() value on failure.
1052 struct kernfs_node
*kernfs_create_dir_ns(struct kernfs_node
*parent
,
1053 const char *name
, umode_t mode
,
1054 kuid_t uid
, kgid_t gid
,
1055 void *priv
, const void *ns
)
1057 struct kernfs_node
*kn
;
1061 kn
= kernfs_new_node(parent
, name
, mode
| S_IFDIR
,
1062 uid
, gid
, KERNFS_DIR
);
1064 return ERR_PTR(-ENOMEM
);
1066 kn
->dir
.root
= parent
->dir
.root
;
1071 rc
= kernfs_add_one(kn
);
1080 * kernfs_create_empty_dir - create an always empty directory
1081 * @parent: parent in which to create a new directory
1082 * @name: name of the new directory
1084 * Return: the created node on success, ERR_PTR() value on failure.
1086 struct kernfs_node
*kernfs_create_empty_dir(struct kernfs_node
*parent
,
1089 struct kernfs_node
*kn
;
1093 kn
= kernfs_new_node(parent
, name
, S_IRUGO
|S_IXUGO
|S_IFDIR
,
1094 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
, KERNFS_DIR
);
1096 return ERR_PTR(-ENOMEM
);
1098 kn
->flags
|= KERNFS_EMPTY_DIR
;
1099 kn
->dir
.root
= parent
->dir
.root
;
1104 rc
= kernfs_add_one(kn
);
1112 static int kernfs_dop_revalidate(struct dentry
*dentry
, unsigned int flags
)
1114 struct kernfs_node
*kn
;
1115 struct kernfs_root
*root
;
1117 if (flags
& LOOKUP_RCU
)
1120 /* Negative hashed dentry? */
1121 if (d_really_is_negative(dentry
)) {
1122 struct kernfs_node
*parent
;
1124 /* If the kernfs parent node has changed discard and
1125 * proceed to ->lookup.
1127 * There's nothing special needed here when getting the
1128 * dentry parent, even if a concurrent rename is in
1129 * progress. That's because the dentry is negative so
1130 * it can only be the target of the rename and it will
1131 * be doing a d_move() not a replace. Consequently the
1132 * dentry d_parent won't change over the d_move().
1134 * Also kernfs negative dentries transitioning from
1135 * negative to positive during revalidate won't happen
1136 * because they are invalidated on containing directory
1137 * changes and the lookup re-done so that a new positive
1138 * dentry can be properly created.
1140 root
= kernfs_root_from_sb(dentry
->d_sb
);
1141 down_read(&root
->kernfs_rwsem
);
1142 parent
= kernfs_dentry_node(dentry
->d_parent
);
1144 if (kernfs_dir_changed(parent
, dentry
)) {
1145 up_read(&root
->kernfs_rwsem
);
1149 up_read(&root
->kernfs_rwsem
);
1151 /* The kernfs parent node hasn't changed, leave the
1152 * dentry negative and return success.
1157 kn
= kernfs_dentry_node(dentry
);
1158 root
= kernfs_root(kn
);
1159 down_read(&root
->kernfs_rwsem
);
1161 /* The kernfs node has been deactivated */
1162 if (!kernfs_active(kn
))
1165 /* The kernfs node has been moved? */
1166 if (kernfs_dentry_node(dentry
->d_parent
) != kn
->parent
)
1169 /* The kernfs node has been renamed */
1170 if (strcmp(dentry
->d_name
.name
, kn
->name
) != 0)
1173 /* The kernfs node has been moved to a different namespace */
1174 if (kn
->parent
&& kernfs_ns_enabled(kn
->parent
) &&
1175 kernfs_info(dentry
->d_sb
)->ns
!= kn
->ns
)
1178 up_read(&root
->kernfs_rwsem
);
1181 up_read(&root
->kernfs_rwsem
);
1185 const struct dentry_operations kernfs_dops
= {
1186 .d_revalidate
= kernfs_dop_revalidate
,
1189 static struct dentry
*kernfs_iop_lookup(struct inode
*dir
,
1190 struct dentry
*dentry
,
1193 struct kernfs_node
*parent
= dir
->i_private
;
1194 struct kernfs_node
*kn
;
1195 struct kernfs_root
*root
;
1196 struct inode
*inode
= NULL
;
1197 const void *ns
= NULL
;
1199 root
= kernfs_root(parent
);
1200 down_read(&root
->kernfs_rwsem
);
1201 if (kernfs_ns_enabled(parent
))
1202 ns
= kernfs_info(dir
->i_sb
)->ns
;
1204 kn
= kernfs_find_ns(parent
, dentry
->d_name
.name
, ns
);
1205 /* attach dentry and inode */
1207 /* Inactive nodes are invisible to the VFS so don't
1208 * create a negative.
1210 if (!kernfs_active(kn
)) {
1211 up_read(&root
->kernfs_rwsem
);
1214 inode
= kernfs_get_inode(dir
->i_sb
, kn
);
1216 inode
= ERR_PTR(-ENOMEM
);
1219 * Needed for negative dentry validation.
1220 * The negative dentry can be created in kernfs_iop_lookup()
1221 * or transforms from positive dentry in dentry_unlink_inode()
1222 * called from vfs_rmdir().
1225 kernfs_set_rev(parent
, dentry
);
1226 up_read(&root
->kernfs_rwsem
);
1228 /* instantiate and hash (possibly negative) dentry */
1229 return d_splice_alias(inode
, dentry
);
1232 static int kernfs_iop_mkdir(struct mnt_idmap
*idmap
,
1233 struct inode
*dir
, struct dentry
*dentry
,
1236 struct kernfs_node
*parent
= dir
->i_private
;
1237 struct kernfs_syscall_ops
*scops
= kernfs_root(parent
)->syscall_ops
;
1240 if (!scops
|| !scops
->mkdir
)
1243 if (!kernfs_get_active(parent
))
1246 ret
= scops
->mkdir(parent
, dentry
->d_name
.name
, mode
);
1248 kernfs_put_active(parent
);
1252 static int kernfs_iop_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1254 struct kernfs_node
*kn
= kernfs_dentry_node(dentry
);
1255 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1258 if (!scops
|| !scops
->rmdir
)
1261 if (!kernfs_get_active(kn
))
1264 ret
= scops
->rmdir(kn
);
1266 kernfs_put_active(kn
);
1270 static int kernfs_iop_rename(struct mnt_idmap
*idmap
,
1271 struct inode
*old_dir
, struct dentry
*old_dentry
,
1272 struct inode
*new_dir
, struct dentry
*new_dentry
,
1275 struct kernfs_node
*kn
= kernfs_dentry_node(old_dentry
);
1276 struct kernfs_node
*new_parent
= new_dir
->i_private
;
1277 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1283 if (!scops
|| !scops
->rename
)
1286 if (!kernfs_get_active(kn
))
1289 if (!kernfs_get_active(new_parent
)) {
1290 kernfs_put_active(kn
);
1294 ret
= scops
->rename(kn
, new_parent
, new_dentry
->d_name
.name
);
1296 kernfs_put_active(new_parent
);
1297 kernfs_put_active(kn
);
1301 const struct inode_operations kernfs_dir_iops
= {
1302 .lookup
= kernfs_iop_lookup
,
1303 .permission
= kernfs_iop_permission
,
1304 .setattr
= kernfs_iop_setattr
,
1305 .getattr
= kernfs_iop_getattr
,
1306 .listxattr
= kernfs_iop_listxattr
,
1308 .mkdir
= kernfs_iop_mkdir
,
1309 .rmdir
= kernfs_iop_rmdir
,
1310 .rename
= kernfs_iop_rename
,
1313 static struct kernfs_node
*kernfs_leftmost_descendant(struct kernfs_node
*pos
)
1315 struct kernfs_node
*last
;
1318 struct rb_node
*rbn
;
1322 if (kernfs_type(pos
) != KERNFS_DIR
)
1325 rbn
= rb_first(&pos
->dir
.children
);
1329 pos
= rb_to_kn(rbn
);
1336 * kernfs_next_descendant_post - find the next descendant for post-order walk
1337 * @pos: the current position (%NULL to initiate traversal)
1338 * @root: kernfs_node whose descendants to walk
1340 * Find the next descendant to visit for post-order traversal of @root's
1341 * descendants. @root is included in the iteration and the last node to be
1344 * Return: the next descendant to visit or %NULL when done.
1346 static struct kernfs_node
*kernfs_next_descendant_post(struct kernfs_node
*pos
,
1347 struct kernfs_node
*root
)
1349 struct rb_node
*rbn
;
1351 lockdep_assert_held_write(&kernfs_root(root
)->kernfs_rwsem
);
1353 /* if first iteration, visit leftmost descendant which may be root */
1355 return kernfs_leftmost_descendant(root
);
1357 /* if we visited @root, we're done */
1361 /* if there's an unvisited sibling, visit its leftmost descendant */
1362 rbn
= rb_next(&pos
->rb
);
1364 return kernfs_leftmost_descendant(rb_to_kn(rbn
));
1366 /* no sibling left, visit parent */
1370 static void kernfs_activate_one(struct kernfs_node
*kn
)
1372 lockdep_assert_held_write(&kernfs_root(kn
)->kernfs_rwsem
);
1374 kn
->flags
|= KERNFS_ACTIVATED
;
1376 if (kernfs_active(kn
) || (kn
->flags
& (KERNFS_HIDDEN
| KERNFS_REMOVING
)))
1379 WARN_ON_ONCE(kn
->parent
&& RB_EMPTY_NODE(&kn
->rb
));
1380 WARN_ON_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
);
1382 atomic_sub(KN_DEACTIVATED_BIAS
, &kn
->active
);
1386 * kernfs_activate - activate a node which started deactivated
1387 * @kn: kernfs_node whose subtree is to be activated
1389 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1390 * needs to be explicitly activated. A node which hasn't been activated
1391 * isn't visible to userland and deactivation is skipped during its
1392 * removal. This is useful to construct atomic init sequences where
1393 * creation of multiple nodes should either succeed or fail atomically.
1395 * The caller is responsible for ensuring that this function is not called
1396 * after kernfs_remove*() is invoked on @kn.
1398 void kernfs_activate(struct kernfs_node
*kn
)
1400 struct kernfs_node
*pos
;
1401 struct kernfs_root
*root
= kernfs_root(kn
);
1403 down_write(&root
->kernfs_rwsem
);
1406 while ((pos
= kernfs_next_descendant_post(pos
, kn
)))
1407 kernfs_activate_one(pos
);
1409 up_write(&root
->kernfs_rwsem
);
1413 * kernfs_show - show or hide a node
1414 * @kn: kernfs_node to show or hide
1415 * @show: whether to show or hide
1417 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1418 * ignored in future activaitons. If %true, the mark is removed and activation
1419 * state is restored. This function won't implicitly activate a new node in a
1420 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1422 * To avoid recursion complexities, directories aren't supported for now.
1424 void kernfs_show(struct kernfs_node
*kn
, bool show
)
1426 struct kernfs_root
*root
= kernfs_root(kn
);
1428 if (WARN_ON_ONCE(kernfs_type(kn
) == KERNFS_DIR
))
1431 down_write(&root
->kernfs_rwsem
);
1434 kn
->flags
&= ~KERNFS_HIDDEN
;
1435 if (kn
->flags
& KERNFS_ACTIVATED
)
1436 kernfs_activate_one(kn
);
1438 kn
->flags
|= KERNFS_HIDDEN
;
1439 if (kernfs_active(kn
))
1440 atomic_add(KN_DEACTIVATED_BIAS
, &kn
->active
);
1444 up_write(&root
->kernfs_rwsem
);
1447 static void __kernfs_remove(struct kernfs_node
*kn
)
1449 struct kernfs_node
*pos
;
1451 /* Short-circuit if non-root @kn has already finished removal. */
1455 lockdep_assert_held_write(&kernfs_root(kn
)->kernfs_rwsem
);
1458 * This is for kernfs_remove_self() which plays with active ref
1461 if (kn
->parent
&& RB_EMPTY_NODE(&kn
->rb
))
1464 pr_debug("kernfs %s: removing\n", kn
->name
);
1466 /* prevent new usage by marking all nodes removing and deactivating */
1468 while ((pos
= kernfs_next_descendant_post(pos
, kn
))) {
1469 pos
->flags
|= KERNFS_REMOVING
;
1470 if (kernfs_active(pos
))
1471 atomic_add(KN_DEACTIVATED_BIAS
, &pos
->active
);
1474 /* deactivate and unlink the subtree node-by-node */
1476 pos
= kernfs_leftmost_descendant(kn
);
1479 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1480 * base ref could have been put by someone else by the time
1481 * the function returns. Make sure it doesn't go away
1489 * kernfs_unlink_sibling() succeeds once per node. Use it
1490 * to decide who's responsible for cleanups.
1492 if (!pos
->parent
|| kernfs_unlink_sibling(pos
)) {
1493 struct kernfs_iattrs
*ps_iattr
=
1494 pos
->parent
? pos
->parent
->iattr
: NULL
;
1496 /* update timestamps on the parent */
1497 down_write(&kernfs_root(kn
)->kernfs_iattr_rwsem
);
1500 ktime_get_real_ts64(&ps_iattr
->ia_ctime
);
1501 ps_iattr
->ia_mtime
= ps_iattr
->ia_ctime
;
1504 up_write(&kernfs_root(kn
)->kernfs_iattr_rwsem
);
1509 } while (pos
!= kn
);
1513 * kernfs_remove - remove a kernfs_node recursively
1514 * @kn: the kernfs_node to remove
1516 * Remove @kn along with all its subdirectories and files.
1518 void kernfs_remove(struct kernfs_node
*kn
)
1520 struct kernfs_root
*root
;
1525 root
= kernfs_root(kn
);
1527 down_write(&root
->kernfs_rwsem
);
1528 __kernfs_remove(kn
);
1529 up_write(&root
->kernfs_rwsem
);
1533 * kernfs_break_active_protection - break out of active protection
1534 * @kn: the self kernfs_node
1536 * The caller must be running off of a kernfs operation which is invoked
1537 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1538 * this function must also be matched with an invocation of
1539 * kernfs_unbreak_active_protection().
1541 * This function releases the active reference of @kn the caller is
1542 * holding. Once this function is called, @kn may be removed at any point
1543 * and the caller is solely responsible for ensuring that the objects it
1544 * dereferences are accessible.
1546 void kernfs_break_active_protection(struct kernfs_node
*kn
)
1549 * Take out ourself out of the active ref dependency chain. If
1550 * we're called without an active ref, lockdep will complain.
1552 kernfs_put_active(kn
);
1556 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1557 * @kn: the self kernfs_node
1559 * If kernfs_break_active_protection() was called, this function must be
1560 * invoked before finishing the kernfs operation. Note that while this
1561 * function restores the active reference, it doesn't and can't actually
1562 * restore the active protection - @kn may already or be in the process of
1563 * being removed. Once kernfs_break_active_protection() is invoked, that
1564 * protection is irreversibly gone for the kernfs operation instance.
1566 * While this function may be called at any point after
1567 * kernfs_break_active_protection() is invoked, its most useful location
1568 * would be right before the enclosing kernfs operation returns.
1570 void kernfs_unbreak_active_protection(struct kernfs_node
*kn
)
1573 * @kn->active could be in any state; however, the increment we do
1574 * here will be undone as soon as the enclosing kernfs operation
1575 * finishes and this temporary bump can't break anything. If @kn
1576 * is alive, nothing changes. If @kn is being deactivated, the
1577 * soon-to-follow put will either finish deactivation or restore
1578 * deactivated state. If @kn is already removed, the temporary
1579 * bump is guaranteed to be gone before @kn is released.
1581 atomic_inc(&kn
->active
);
1582 if (kernfs_lockdep(kn
))
1583 rwsem_acquire(&kn
->dep_map
, 0, 1, _RET_IP_
);
1587 * kernfs_remove_self - remove a kernfs_node from its own method
1588 * @kn: the self kernfs_node to remove
1590 * The caller must be running off of a kernfs operation which is invoked
1591 * with an active reference - e.g. one of kernfs_ops. This can be used to
1592 * implement a file operation which deletes itself.
1594 * For example, the "delete" file for a sysfs device directory can be
1595 * implemented by invoking kernfs_remove_self() on the "delete" file
1596 * itself. This function breaks the circular dependency of trying to
1597 * deactivate self while holding an active ref itself. It isn't necessary
1598 * to modify the usual removal path to use kernfs_remove_self(). The
1599 * "delete" implementation can simply invoke kernfs_remove_self() on self
1600 * before proceeding with the usual removal path. kernfs will ignore later
1601 * kernfs_remove() on self.
1603 * kernfs_remove_self() can be called multiple times concurrently on the
1604 * same kernfs_node. Only the first one actually performs removal and
1605 * returns %true. All others will wait until the kernfs operation which
1606 * won self-removal finishes and return %false. Note that the losers wait
1607 * for the completion of not only the winning kernfs_remove_self() but also
1608 * the whole kernfs_ops which won the arbitration. This can be used to
1609 * guarantee, for example, all concurrent writes to a "delete" file to
1610 * finish only after the whole operation is complete.
1612 * Return: %true if @kn is removed by this call, otherwise %false.
1614 bool kernfs_remove_self(struct kernfs_node
*kn
)
1617 struct kernfs_root
*root
= kernfs_root(kn
);
1619 down_write(&root
->kernfs_rwsem
);
1620 kernfs_break_active_protection(kn
);
1623 * SUICIDAL is used to arbitrate among competing invocations. Only
1624 * the first one will actually perform removal. When the removal
1625 * is complete, SUICIDED is set and the active ref is restored
1626 * while kernfs_rwsem for held exclusive. The ones which lost
1627 * arbitration waits for SUICIDED && drained which can happen only
1628 * after the enclosing kernfs operation which executed the winning
1629 * instance of kernfs_remove_self() finished.
1631 if (!(kn
->flags
& KERNFS_SUICIDAL
)) {
1632 kn
->flags
|= KERNFS_SUICIDAL
;
1633 __kernfs_remove(kn
);
1634 kn
->flags
|= KERNFS_SUICIDED
;
1637 wait_queue_head_t
*waitq
= &kernfs_root(kn
)->deactivate_waitq
;
1641 prepare_to_wait(waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
1643 if ((kn
->flags
& KERNFS_SUICIDED
) &&
1644 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
)
1647 up_write(&root
->kernfs_rwsem
);
1649 down_write(&root
->kernfs_rwsem
);
1651 finish_wait(waitq
, &wait
);
1652 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn
->rb
));
1657 * This must be done while kernfs_rwsem held exclusive; otherwise,
1658 * waiting for SUICIDED && deactivated could finish prematurely.
1660 kernfs_unbreak_active_protection(kn
);
1662 up_write(&root
->kernfs_rwsem
);
1667 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1668 * @parent: parent of the target
1669 * @name: name of the kernfs_node to remove
1670 * @ns: namespace tag of the kernfs_node to remove
1672 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1674 * Return: %0 on success, -ENOENT if such entry doesn't exist.
1676 int kernfs_remove_by_name_ns(struct kernfs_node
*parent
, const char *name
,
1679 struct kernfs_node
*kn
;
1680 struct kernfs_root
*root
;
1683 WARN(1, KERN_WARNING
"kernfs: can not remove '%s', no directory\n",
1688 root
= kernfs_root(parent
);
1689 down_write(&root
->kernfs_rwsem
);
1691 kn
= kernfs_find_ns(parent
, name
, ns
);
1694 __kernfs_remove(kn
);
1698 up_write(&root
->kernfs_rwsem
);
1707 * kernfs_rename_ns - move and rename a kernfs_node
1709 * @new_parent: new parent to put @sd under
1710 * @new_name: new name
1711 * @new_ns: new namespace tag
1713 * Return: %0 on success, -errno on failure.
1715 int kernfs_rename_ns(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
1716 const char *new_name
, const void *new_ns
)
1718 struct kernfs_node
*old_parent
;
1719 struct kernfs_root
*root
;
1720 const char *old_name
= NULL
;
1723 /* can't move or rename root */
1727 root
= kernfs_root(kn
);
1728 down_write(&root
->kernfs_rwsem
);
1731 if (!kernfs_active(kn
) || !kernfs_active(new_parent
) ||
1732 (new_parent
->flags
& KERNFS_EMPTY_DIR
))
1736 if ((kn
->parent
== new_parent
) && (kn
->ns
== new_ns
) &&
1737 (strcmp(kn
->name
, new_name
) == 0))
1738 goto out
; /* nothing to rename */
1741 if (kernfs_find_ns(new_parent
, new_name
, new_ns
))
1744 /* rename kernfs_node */
1745 if (strcmp(kn
->name
, new_name
) != 0) {
1747 new_name
= kstrdup_const(new_name
, GFP_KERNEL
);
1755 * Move to the appropriate place in the appropriate directories rbtree.
1757 kernfs_unlink_sibling(kn
);
1758 kernfs_get(new_parent
);
1760 /* rename_lock protects ->parent and ->name accessors */
1761 write_lock_irq(&kernfs_rename_lock
);
1763 old_parent
= kn
->parent
;
1764 kn
->parent
= new_parent
;
1768 old_name
= kn
->name
;
1769 kn
->name
= new_name
;
1772 write_unlock_irq(&kernfs_rename_lock
);
1774 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
1775 kernfs_link_sibling(kn
);
1777 kernfs_put(old_parent
);
1778 kfree_const(old_name
);
1782 up_write(&root
->kernfs_rwsem
);
1786 static int kernfs_dir_fop_release(struct inode
*inode
, struct file
*filp
)
1788 kernfs_put(filp
->private_data
);
1792 static struct kernfs_node
*kernfs_dir_pos(const void *ns
,
1793 struct kernfs_node
*parent
, loff_t hash
, struct kernfs_node
*pos
)
1796 int valid
= kernfs_active(pos
) &&
1797 pos
->parent
== parent
&& hash
== pos
->hash
;
1802 if (!pos
&& (hash
> 1) && (hash
< INT_MAX
)) {
1803 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
1805 pos
= rb_to_kn(node
);
1807 if (hash
< pos
->hash
)
1808 node
= node
->rb_left
;
1809 else if (hash
> pos
->hash
)
1810 node
= node
->rb_right
;
1815 /* Skip over entries which are dying/dead or in the wrong namespace */
1816 while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
)) {
1817 struct rb_node
*node
= rb_next(&pos
->rb
);
1821 pos
= rb_to_kn(node
);
1826 static struct kernfs_node
*kernfs_dir_next_pos(const void *ns
,
1827 struct kernfs_node
*parent
, ino_t ino
, struct kernfs_node
*pos
)
1829 pos
= kernfs_dir_pos(ns
, parent
, ino
, pos
);
1832 struct rb_node
*node
= rb_next(&pos
->rb
);
1836 pos
= rb_to_kn(node
);
1837 } while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
));
1842 static int kernfs_fop_readdir(struct file
*file
, struct dir_context
*ctx
)
1844 struct dentry
*dentry
= file
->f_path
.dentry
;
1845 struct kernfs_node
*parent
= kernfs_dentry_node(dentry
);
1846 struct kernfs_node
*pos
= file
->private_data
;
1847 struct kernfs_root
*root
;
1848 const void *ns
= NULL
;
1850 if (!dir_emit_dots(file
, ctx
))
1853 root
= kernfs_root(parent
);
1854 down_read(&root
->kernfs_rwsem
);
1856 if (kernfs_ns_enabled(parent
))
1857 ns
= kernfs_info(dentry
->d_sb
)->ns
;
1859 for (pos
= kernfs_dir_pos(ns
, parent
, ctx
->pos
, pos
);
1861 pos
= kernfs_dir_next_pos(ns
, parent
, ctx
->pos
, pos
)) {
1862 const char *name
= pos
->name
;
1863 unsigned int type
= fs_umode_to_dtype(pos
->mode
);
1864 int len
= strlen(name
);
1865 ino_t ino
= kernfs_ino(pos
);
1867 ctx
->pos
= pos
->hash
;
1868 file
->private_data
= pos
;
1871 up_read(&root
->kernfs_rwsem
);
1872 if (!dir_emit(ctx
, name
, len
, ino
, type
))
1874 down_read(&root
->kernfs_rwsem
);
1876 up_read(&root
->kernfs_rwsem
);
1877 file
->private_data
= NULL
;
1882 const struct file_operations kernfs_dir_fops
= {
1883 .read
= generic_read_dir
,
1884 .iterate_shared
= kernfs_fop_readdir
,
1885 .release
= kernfs_dir_fop_release
,
1886 .llseek
= generic_file_llseek
,