printf: Remove unused 'bprintf'
[drm/drm-misc.git] / fs / netfs / write_issue.c
blobbf6d507578e531ff8d4ff1c5a8ec2e6682edf964
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level (buffered) writeback.
4 * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 * To support network filesystems with local caching, we manage a situation
9 * that can be envisioned like the following:
11 * +---+---+-----+-----+---+----------+
12 * Folios: | | | | | | |
13 * +---+---+-----+-----+---+----------+
15 * +------+------+ +----+----+
16 * Upload: | | |.....| | |
17 * (Stream 0) +------+------+ +----+----+
19 * +------+------+------+------+------+
20 * Cache: | | | | | |
21 * (Stream 1) +------+------+------+------+------+
23 * Where we have a sequence of folios of varying sizes that we need to overlay
24 * with multiple parallel streams of I/O requests, where the I/O requests in a
25 * stream may also be of various sizes (in cifs, for example, the sizes are
26 * negotiated with the server; in something like ceph, they may represent the
27 * sizes of storage objects).
29 * The sequence in each stream may contain gaps and noncontiguous subrequests
30 * may be glued together into single vectored write RPCs.
33 #include <linux/export.h>
34 #include <linux/fs.h>
35 #include <linux/mm.h>
36 #include <linux/pagemap.h>
37 #include "internal.h"
40 * Kill all dirty folios in the event of an unrecoverable error, starting with
41 * a locked folio we've already obtained from writeback_iter().
43 static void netfs_kill_dirty_pages(struct address_space *mapping,
44 struct writeback_control *wbc,
45 struct folio *folio)
47 int error = 0;
49 do {
50 enum netfs_folio_trace why = netfs_folio_trace_kill;
51 struct netfs_group *group = NULL;
52 struct netfs_folio *finfo = NULL;
53 void *priv;
55 priv = folio_detach_private(folio);
56 if (priv) {
57 finfo = __netfs_folio_info(priv);
58 if (finfo) {
59 /* Kill folio from streaming write. */
60 group = finfo->netfs_group;
61 why = netfs_folio_trace_kill_s;
62 } else {
63 group = priv;
64 if (group == NETFS_FOLIO_COPY_TO_CACHE) {
65 /* Kill copy-to-cache folio */
66 why = netfs_folio_trace_kill_cc;
67 group = NULL;
68 } else {
69 /* Kill folio with group */
70 why = netfs_folio_trace_kill_g;
75 trace_netfs_folio(folio, why);
77 folio_start_writeback(folio);
78 folio_unlock(folio);
79 folio_end_writeback(folio);
81 netfs_put_group(group);
82 kfree(finfo);
84 } while ((folio = writeback_iter(mapping, wbc, folio, &error)));
88 * Create a write request and set it up appropriately for the origin type.
90 struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
91 struct file *file,
92 loff_t start,
93 enum netfs_io_origin origin)
95 struct netfs_io_request *wreq;
96 struct netfs_inode *ictx;
97 bool is_buffered = (origin == NETFS_WRITEBACK ||
98 origin == NETFS_WRITETHROUGH ||
99 origin == NETFS_PGPRIV2_COPY_TO_CACHE);
101 wreq = netfs_alloc_request(mapping, file, start, 0, origin);
102 if (IS_ERR(wreq))
103 return wreq;
105 _enter("R=%x", wreq->debug_id);
107 ictx = netfs_inode(wreq->inode);
108 if (is_buffered && netfs_is_cache_enabled(ictx))
109 fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
111 wreq->cleaned_to = wreq->start;
113 wreq->io_streams[0].stream_nr = 0;
114 wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER;
115 wreq->io_streams[0].prepare_write = ictx->ops->prepare_write;
116 wreq->io_streams[0].issue_write = ictx->ops->issue_write;
117 wreq->io_streams[0].collected_to = start;
118 wreq->io_streams[0].transferred = LONG_MAX;
120 wreq->io_streams[1].stream_nr = 1;
121 wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE;
122 wreq->io_streams[1].collected_to = start;
123 wreq->io_streams[1].transferred = LONG_MAX;
124 if (fscache_resources_valid(&wreq->cache_resources)) {
125 wreq->io_streams[1].avail = true;
126 wreq->io_streams[1].active = true;
127 wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
128 wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
131 return wreq;
135 * netfs_prepare_write_failed - Note write preparation failed
136 * @subreq: The subrequest to mark
138 * Mark a subrequest to note that preparation for write failed.
140 void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
142 __set_bit(NETFS_SREQ_FAILED, &subreq->flags);
143 trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
145 EXPORT_SYMBOL(netfs_prepare_write_failed);
148 * Prepare a write subrequest. We need to allocate a new subrequest
149 * if we don't have one.
151 static void netfs_prepare_write(struct netfs_io_request *wreq,
152 struct netfs_io_stream *stream,
153 loff_t start)
155 struct netfs_io_subrequest *subreq;
156 struct iov_iter *wreq_iter = &wreq->io_iter;
158 /* Make sure we don't point the iterator at a used-up folio_queue
159 * struct being used as a placeholder to prevent the queue from
160 * collapsing. In such a case, extend the queue.
162 if (iov_iter_is_folioq(wreq_iter) &&
163 wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) {
164 netfs_buffer_make_space(wreq);
167 subreq = netfs_alloc_subrequest(wreq);
168 subreq->source = stream->source;
169 subreq->start = start;
170 subreq->stream_nr = stream->stream_nr;
171 subreq->io_iter = *wreq_iter;
173 _enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
175 trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
177 stream->sreq_max_len = UINT_MAX;
178 stream->sreq_max_segs = INT_MAX;
179 switch (stream->source) {
180 case NETFS_UPLOAD_TO_SERVER:
181 netfs_stat(&netfs_n_wh_upload);
182 stream->sreq_max_len = wreq->wsize;
183 break;
184 case NETFS_WRITE_TO_CACHE:
185 netfs_stat(&netfs_n_wh_write);
186 break;
187 default:
188 WARN_ON_ONCE(1);
189 break;
192 if (stream->prepare_write)
193 stream->prepare_write(subreq);
195 __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
197 /* We add to the end of the list whilst the collector may be walking
198 * the list. The collector only goes nextwards and uses the lock to
199 * remove entries off of the front.
201 spin_lock_bh(&wreq->lock);
202 list_add_tail(&subreq->rreq_link, &stream->subrequests);
203 if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
204 stream->front = subreq;
205 if (!stream->active) {
206 stream->collected_to = stream->front->start;
207 /* Write list pointers before active flag */
208 smp_store_release(&stream->active, true);
212 spin_unlock_bh(&wreq->lock);
214 stream->construct = subreq;
218 * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
219 * operation. The operation may be asynchronous and should call
220 * netfs_write_subrequest_terminated() when complete.
222 static void netfs_do_issue_write(struct netfs_io_stream *stream,
223 struct netfs_io_subrequest *subreq)
225 struct netfs_io_request *wreq = subreq->rreq;
227 _enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
229 if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
230 return netfs_write_subrequest_terminated(subreq, subreq->error, false);
232 trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
233 stream->issue_write(subreq);
236 void netfs_reissue_write(struct netfs_io_stream *stream,
237 struct netfs_io_subrequest *subreq,
238 struct iov_iter *source)
240 size_t size = subreq->len - subreq->transferred;
242 // TODO: Use encrypted buffer
243 subreq->io_iter = *source;
244 iov_iter_advance(source, size);
245 iov_iter_truncate(&subreq->io_iter, size);
247 __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
248 netfs_do_issue_write(stream, subreq);
251 void netfs_issue_write(struct netfs_io_request *wreq,
252 struct netfs_io_stream *stream)
254 struct netfs_io_subrequest *subreq = stream->construct;
256 if (!subreq)
257 return;
258 stream->construct = NULL;
259 subreq->io_iter.count = subreq->len;
260 netfs_do_issue_write(stream, subreq);
264 * Add data to the write subrequest, dispatching each as we fill it up or if it
265 * is discontiguous with the previous. We only fill one part at a time so that
266 * we can avoid overrunning the credits obtained (cifs) and try to parallelise
267 * content-crypto preparation with network writes.
269 int netfs_advance_write(struct netfs_io_request *wreq,
270 struct netfs_io_stream *stream,
271 loff_t start, size_t len, bool to_eof)
273 struct netfs_io_subrequest *subreq = stream->construct;
274 size_t part;
276 if (!stream->avail) {
277 _leave("no write");
278 return len;
281 _enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
283 if (subreq && start != subreq->start + subreq->len) {
284 netfs_issue_write(wreq, stream);
285 subreq = NULL;
288 if (!stream->construct)
289 netfs_prepare_write(wreq, stream, start);
290 subreq = stream->construct;
292 part = umin(stream->sreq_max_len - subreq->len, len);
293 _debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len);
294 subreq->len += part;
295 subreq->nr_segs++;
296 stream->submit_extendable_to -= part;
298 if (subreq->len >= stream->sreq_max_len ||
299 subreq->nr_segs >= stream->sreq_max_segs ||
300 to_eof) {
301 netfs_issue_write(wreq, stream);
302 subreq = NULL;
305 return part;
309 * Write some of a pending folio data back to the server.
311 static int netfs_write_folio(struct netfs_io_request *wreq,
312 struct writeback_control *wbc,
313 struct folio *folio)
315 struct netfs_io_stream *upload = &wreq->io_streams[0];
316 struct netfs_io_stream *cache = &wreq->io_streams[1];
317 struct netfs_io_stream *stream;
318 struct netfs_group *fgroup; /* TODO: Use this with ceph */
319 struct netfs_folio *finfo;
320 size_t iter_off = 0;
321 size_t fsize = folio_size(folio), flen = fsize, foff = 0;
322 loff_t fpos = folio_pos(folio), i_size;
323 bool to_eof = false, streamw = false;
324 bool debug = false;
326 _enter("");
328 /* netfs_perform_write() may shift i_size around the page or from out
329 * of the page to beyond it, but cannot move i_size into or through the
330 * page since we have it locked.
332 i_size = i_size_read(wreq->inode);
334 if (fpos >= i_size) {
335 /* mmap beyond eof. */
336 _debug("beyond eof");
337 folio_start_writeback(folio);
338 folio_unlock(folio);
339 wreq->nr_group_rel += netfs_folio_written_back(folio);
340 netfs_put_group_many(wreq->group, wreq->nr_group_rel);
341 wreq->nr_group_rel = 0;
342 return 0;
345 if (fpos + fsize > wreq->i_size)
346 wreq->i_size = i_size;
348 fgroup = netfs_folio_group(folio);
349 finfo = netfs_folio_info(folio);
350 if (finfo) {
351 foff = finfo->dirty_offset;
352 flen = foff + finfo->dirty_len;
353 streamw = true;
356 if (wreq->origin == NETFS_WRITETHROUGH) {
357 to_eof = false;
358 if (flen > i_size - fpos)
359 flen = i_size - fpos;
360 } else if (flen > i_size - fpos) {
361 flen = i_size - fpos;
362 if (!streamw)
363 folio_zero_segment(folio, flen, fsize);
364 to_eof = true;
365 } else if (flen == i_size - fpos) {
366 to_eof = true;
368 flen -= foff;
370 _debug("folio %zx %zx %zx", foff, flen, fsize);
372 /* Deal with discontinuities in the stream of dirty pages. These can
373 * arise from a number of sources:
375 * (1) Intervening non-dirty pages from random-access writes, multiple
376 * flushers writing back different parts simultaneously and manual
377 * syncing.
379 * (2) Partially-written pages from write-streaming.
381 * (3) Pages that belong to a different write-back group (eg. Ceph
382 * snapshots).
384 * (4) Actually-clean pages that were marked for write to the cache
385 * when they were read. Note that these appear as a special
386 * write-back group.
388 if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
389 netfs_issue_write(wreq, upload);
390 } else if (fgroup != wreq->group) {
391 /* We can't write this page to the server yet. */
392 kdebug("wrong group");
393 folio_redirty_for_writepage(wbc, folio);
394 folio_unlock(folio);
395 netfs_issue_write(wreq, upload);
396 netfs_issue_write(wreq, cache);
397 return 0;
400 if (foff > 0)
401 netfs_issue_write(wreq, upload);
402 if (streamw)
403 netfs_issue_write(wreq, cache);
405 /* Flip the page to the writeback state and unlock. If we're called
406 * from write-through, then the page has already been put into the wb
407 * state.
409 if (wreq->origin == NETFS_WRITEBACK)
410 folio_start_writeback(folio);
411 folio_unlock(folio);
413 if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
414 if (!cache->avail) {
415 trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
416 netfs_issue_write(wreq, upload);
417 netfs_folio_written_back(folio);
418 return 0;
420 trace_netfs_folio(folio, netfs_folio_trace_store_copy);
421 } else if (!upload->avail && !cache->avail) {
422 trace_netfs_folio(folio, netfs_folio_trace_cancel_store);
423 netfs_folio_written_back(folio);
424 return 0;
425 } else if (!upload->construct) {
426 trace_netfs_folio(folio, netfs_folio_trace_store);
427 } else {
428 trace_netfs_folio(folio, netfs_folio_trace_store_plus);
431 /* Attach the folio to the rolling buffer. */
432 netfs_buffer_append_folio(wreq, folio, false);
434 /* Move the submission point forward to allow for write-streaming data
435 * not starting at the front of the page. We don't do write-streaming
436 * with the cache as the cache requires DIO alignment.
438 * Also skip uploading for data that's been read and just needs copying
439 * to the cache.
441 for (int s = 0; s < NR_IO_STREAMS; s++) {
442 stream = &wreq->io_streams[s];
443 stream->submit_off = foff;
444 stream->submit_len = flen;
445 if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
446 (stream->source == NETFS_UPLOAD_TO_SERVER &&
447 fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
448 stream->submit_off = UINT_MAX;
449 stream->submit_len = 0;
453 /* Attach the folio to one or more subrequests. For a big folio, we
454 * could end up with thousands of subrequests if the wsize is small -
455 * but we might need to wait during the creation of subrequests for
456 * network resources (eg. SMB credits).
458 for (;;) {
459 ssize_t part;
460 size_t lowest_off = ULONG_MAX;
461 int choose_s = -1;
463 /* Always add to the lowest-submitted stream first. */
464 for (int s = 0; s < NR_IO_STREAMS; s++) {
465 stream = &wreq->io_streams[s];
466 if (stream->submit_len > 0 &&
467 stream->submit_off < lowest_off) {
468 lowest_off = stream->submit_off;
469 choose_s = s;
473 if (choose_s < 0)
474 break;
475 stream = &wreq->io_streams[choose_s];
477 /* Advance the iterator(s). */
478 if (stream->submit_off > iter_off) {
479 iov_iter_advance(&wreq->io_iter, stream->submit_off - iter_off);
480 iter_off = stream->submit_off;
483 atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
484 stream->submit_extendable_to = fsize - stream->submit_off;
485 part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
486 stream->submit_len, to_eof);
487 stream->submit_off += part;
488 if (part > stream->submit_len)
489 stream->submit_len = 0;
490 else
491 stream->submit_len -= part;
492 if (part > 0)
493 debug = true;
496 if (fsize > iter_off)
497 iov_iter_advance(&wreq->io_iter, fsize - iter_off);
498 atomic64_set(&wreq->issued_to, fpos + fsize);
500 if (!debug)
501 kdebug("R=%x: No submit", wreq->debug_id);
503 if (foff + flen < fsize)
504 for (int s = 0; s < NR_IO_STREAMS; s++)
505 netfs_issue_write(wreq, &wreq->io_streams[s]);
507 _leave(" = 0");
508 return 0;
512 * End the issuing of writes, letting the collector know we're done.
514 static void netfs_end_issue_write(struct netfs_io_request *wreq)
516 bool needs_poke = true;
518 smp_wmb(); /* Write subreq lists before ALL_QUEUED. */
519 set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
521 for (int s = 0; s < NR_IO_STREAMS; s++) {
522 struct netfs_io_stream *stream = &wreq->io_streams[s];
524 if (!stream->active)
525 continue;
526 if (!list_empty(&stream->subrequests))
527 needs_poke = false;
528 netfs_issue_write(wreq, stream);
531 if (needs_poke)
532 netfs_wake_write_collector(wreq, false);
536 * Write some of the pending data back to the server
538 int netfs_writepages(struct address_space *mapping,
539 struct writeback_control *wbc)
541 struct netfs_inode *ictx = netfs_inode(mapping->host);
542 struct netfs_io_request *wreq = NULL;
543 struct folio *folio;
544 int error = 0;
546 if (!mutex_trylock(&ictx->wb_lock)) {
547 if (wbc->sync_mode == WB_SYNC_NONE) {
548 netfs_stat(&netfs_n_wb_lock_skip);
549 return 0;
551 netfs_stat(&netfs_n_wb_lock_wait);
552 mutex_lock(&ictx->wb_lock);
555 /* Need the first folio to be able to set up the op. */
556 folio = writeback_iter(mapping, wbc, NULL, &error);
557 if (!folio)
558 goto out;
560 wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
561 if (IS_ERR(wreq)) {
562 error = PTR_ERR(wreq);
563 goto couldnt_start;
566 trace_netfs_write(wreq, netfs_write_trace_writeback);
567 netfs_stat(&netfs_n_wh_writepages);
569 do {
570 _debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to));
572 /* It appears we don't have to handle cyclic writeback wrapping. */
573 WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to));
575 if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
576 unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
577 set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
578 wreq->netfs_ops->begin_writeback(wreq);
581 error = netfs_write_folio(wreq, wbc, folio);
582 if (error < 0)
583 break;
584 } while ((folio = writeback_iter(mapping, wbc, folio, &error)));
586 netfs_end_issue_write(wreq);
588 mutex_unlock(&ictx->wb_lock);
590 netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
591 _leave(" = %d", error);
592 return error;
594 couldnt_start:
595 netfs_kill_dirty_pages(mapping, wbc, folio);
596 out:
597 mutex_unlock(&ictx->wb_lock);
598 _leave(" = %d", error);
599 return error;
601 EXPORT_SYMBOL(netfs_writepages);
604 * Begin a write operation for writing through the pagecache.
606 struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
608 struct netfs_io_request *wreq = NULL;
609 struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
611 mutex_lock(&ictx->wb_lock);
613 wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
614 iocb->ki_pos, NETFS_WRITETHROUGH);
615 if (IS_ERR(wreq)) {
616 mutex_unlock(&ictx->wb_lock);
617 return wreq;
620 wreq->io_streams[0].avail = true;
621 trace_netfs_write(wreq, netfs_write_trace_writethrough);
622 return wreq;
626 * Advance the state of the write operation used when writing through the
627 * pagecache. Data has been copied into the pagecache that we need to append
628 * to the request. If we've added more than wsize then we need to create a new
629 * subrequest.
631 int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
632 struct folio *folio, size_t copied, bool to_page_end,
633 struct folio **writethrough_cache)
635 _enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
636 wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
638 if (!*writethrough_cache) {
639 if (folio_test_dirty(folio))
640 /* Sigh. mmap. */
641 folio_clear_dirty_for_io(folio);
643 /* We can make multiple writes to the folio... */
644 folio_start_writeback(folio);
645 if (wreq->len == 0)
646 trace_netfs_folio(folio, netfs_folio_trace_wthru);
647 else
648 trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
649 *writethrough_cache = folio;
652 wreq->len += copied;
653 if (!to_page_end)
654 return 0;
656 *writethrough_cache = NULL;
657 return netfs_write_folio(wreq, wbc, folio);
661 * End a write operation used when writing through the pagecache.
663 int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
664 struct folio *writethrough_cache)
666 struct netfs_inode *ictx = netfs_inode(wreq->inode);
667 int ret;
669 _enter("R=%x", wreq->debug_id);
671 if (writethrough_cache)
672 netfs_write_folio(wreq, wbc, writethrough_cache);
674 netfs_end_issue_write(wreq);
676 mutex_unlock(&ictx->wb_lock);
678 if (wreq->iocb) {
679 ret = -EIOCBQUEUED;
680 } else {
681 wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
682 ret = wreq->error;
684 netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
685 return ret;
689 * Write data to the server without going through the pagecache and without
690 * writing it to the local cache.
692 int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
694 struct netfs_io_stream *upload = &wreq->io_streams[0];
695 ssize_t part;
696 loff_t start = wreq->start;
697 int error = 0;
699 _enter("%zx", len);
701 if (wreq->origin == NETFS_DIO_WRITE)
702 inode_dio_begin(wreq->inode);
704 while (len) {
705 // TODO: Prepare content encryption
707 _debug("unbuffered %zx", len);
708 part = netfs_advance_write(wreq, upload, start, len, false);
709 start += part;
710 len -= part;
711 iov_iter_advance(&wreq->io_iter, part);
712 if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
713 trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
714 wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
716 if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
717 break;
720 netfs_end_issue_write(wreq);
721 _leave(" = %d", error);
722 return error;