1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
18 #include <cluster/masklog.h>
25 #include "extent_map.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
35 #include "buffer_head_io.h"
40 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
41 struct buffer_head
*bh_result
, int create
)
45 struct ocfs2_dinode
*fe
= NULL
;
46 struct buffer_head
*bh
= NULL
;
47 struct buffer_head
*buffer_cache_bh
= NULL
;
48 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
53 (unsigned long long)iblock
, bh_result
, create
);
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
57 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
58 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock
);
63 status
= ocfs2_read_inode_block(inode
, &bh
);
68 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
70 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
71 le32_to_cpu(fe
->i_clusters
))) {
73 mlog(ML_ERROR
, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock
);
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
81 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
83 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
84 if (!buffer_cache_bh
) {
86 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh
)
95 && ocfs2_inode_is_new(inode
)) {
96 kaddr
= kmap_atomic(bh_result
->b_page
);
98 mlog(ML_ERROR
, "couldn't kmap!\n");
101 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
102 buffer_cache_bh
->b_data
,
104 kunmap_atomic(kaddr
);
105 set_buffer_uptodate(bh_result
);
107 brelse(buffer_cache_bh
);
110 map_bh(bh_result
, inode
->i_sb
,
111 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
121 static int ocfs2_lock_get_block(struct inode
*inode
, sector_t iblock
,
122 struct buffer_head
*bh_result
, int create
)
125 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
127 down_read(&oi
->ip_alloc_sem
);
128 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
129 up_read(&oi
->ip_alloc_sem
);
134 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
135 struct buffer_head
*bh_result
, int create
)
138 unsigned int ext_flags
;
139 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
140 u64 p_blkno
, count
, past_eof
;
141 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
144 (unsigned long long)iblock
, bh_result
, create
);
146 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
147 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
148 inode
, inode
->i_ino
);
150 if (S_ISLNK(inode
->i_mode
)) {
151 /* this always does I/O for some reason. */
152 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
156 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
159 mlog(ML_ERROR
, "get_blocks() failed, inode: 0x%p, "
160 "block: %llu\n", inode
, (unsigned long long)iblock
);
164 if (max_blocks
< count
)
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows __block_write_begin() to zero.
173 * If we see this on a sparse file system, then a truncate has
174 * raced us and removed the cluster. In this case, we clear
175 * the buffers dirty and uptodate bits and let the buffer code
176 * ignore it as a hole.
178 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
179 clear_buffer_dirty(bh_result
);
180 clear_buffer_uptodate(bh_result
);
184 /* Treat the unwritten extent as a hole for zeroing purposes. */
185 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
186 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
188 bh_result
->b_size
= count
<< inode
->i_blkbits
;
190 if (!ocfs2_sparse_alloc(osb
)) {
194 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195 (unsigned long long)iblock
,
196 (unsigned long long)p_blkno
,
197 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
198 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
204 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
206 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
207 (unsigned long long)past_eof
);
208 if (create
&& (iblock
>= past_eof
))
209 set_buffer_new(bh_result
);
218 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
219 struct buffer_head
*di_bh
)
223 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
225 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
226 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
227 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
231 size
= i_size_read(inode
);
233 if (size
> PAGE_SIZE
||
234 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
235 ocfs2_error(inode
->i_sb
,
236 "Inode %llu has with inline data has bad size: %Lu\n",
237 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
238 (unsigned long long)size
);
242 kaddr
= kmap_atomic(page
);
244 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
245 /* Clear the remaining part of the page */
246 memset(kaddr
+ size
, 0, PAGE_SIZE
- size
);
247 flush_dcache_page(page
);
248 kunmap_atomic(kaddr
);
250 SetPageUptodate(page
);
255 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
258 struct buffer_head
*di_bh
= NULL
;
260 BUG_ON(!PageLocked(page
));
261 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
263 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
269 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
277 static int ocfs2_read_folio(struct file
*file
, struct folio
*folio
)
279 struct inode
*inode
= folio
->mapping
->host
;
280 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
281 loff_t start
= folio_pos(folio
);
284 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
, folio
->index
);
286 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, &folio
->page
);
288 if (ret
== AOP_TRUNCATED_PAGE
)
294 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
296 * Unlock the folio and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
299 ret
= AOP_TRUNCATED_PAGE
;
302 down_read(&oi
->ip_alloc_sem
);
303 up_read(&oi
->ip_alloc_sem
);
304 goto out_inode_unlock
;
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_folio->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 * and notice that the folio they just read isn't needed.
315 * XXX sys_readahead() seems to get that wrong?
317 if (start
>= i_size_read(inode
)) {
318 folio_zero_segment(folio
, 0, folio_size(folio
));
319 folio_mark_uptodate(folio
);
324 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
325 ret
= ocfs2_readpage_inline(inode
, &folio
->page
);
327 ret
= block_read_full_folio(folio
, ocfs2_get_block
);
331 up_read(&oi
->ip_alloc_sem
);
333 ocfs2_inode_unlock(inode
, 0);
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
349 static void ocfs2_readahead(struct readahead_control
*rac
)
352 struct inode
*inode
= rac
->mapping
->host
;
353 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
356 * Use the nonblocking flag for the dlm code to avoid page
357 * lock inversion, but don't bother with retrying.
359 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
363 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0)
367 * Don't bother with inline-data. There isn't anything
368 * to read-ahead in that case anyway...
370 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
374 * Check whether a remote node truncated this file - we just
375 * drop out in that case as it's not worth handling here.
377 if (readahead_pos(rac
) >= i_size_read(inode
))
380 mpage_readahead(rac
, ocfs2_get_block
);
383 up_read(&oi
->ip_alloc_sem
);
385 ocfs2_inode_unlock(inode
, 0);
388 /* Note: Because we don't support holes, our allocation has
389 * already happened (allocation writes zeros to the file data)
390 * so we don't have to worry about ordered writes in
393 * ->writepages is called during the process of invalidating the page cache
394 * during blocked lock processing. It can't block on any cluster locks
395 * to during block mapping. It's relying on the fact that the block
396 * mapping can't have disappeared under the dirty pages that it is
397 * being asked to write back.
399 static int ocfs2_writepages(struct address_space
*mapping
,
400 struct writeback_control
*wbc
)
402 return mpage_writepages(mapping
, wbc
, ocfs2_get_block
);
405 /* Taken from ext3. We don't necessarily need the full blown
406 * functionality yet, but IMHO it's better to cut and paste the whole
407 * thing so we can avoid introducing our own bugs (and easily pick up
408 * their fixes when they happen) --Mark */
409 int walk_page_buffers( handle_t
*handle
,
410 struct buffer_head
*head
,
414 int (*fn
)( handle_t
*handle
,
415 struct buffer_head
*bh
))
417 struct buffer_head
*bh
;
418 unsigned block_start
, block_end
;
419 unsigned blocksize
= head
->b_size
;
421 struct buffer_head
*next
;
423 for ( bh
= head
, block_start
= 0;
424 ret
== 0 && (bh
!= head
|| !block_start
);
425 block_start
= block_end
, bh
= next
)
427 next
= bh
->b_this_page
;
428 block_end
= block_start
+ blocksize
;
429 if (block_end
<= from
|| block_start
>= to
) {
430 if (partial
&& !buffer_uptodate(bh
))
434 err
= (*fn
)(handle
, bh
);
441 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
446 struct inode
*inode
= mapping
->host
;
448 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
449 (unsigned long long)block
);
452 * The swap code (ab-)uses ->bmap to get a block mapping and then
453 * bypasseѕ the file system for actual I/O. We really can't allow
454 * that on refcounted inodes, so we have to skip out here. And yes,
455 * 0 is the magic code for a bmap error..
457 if (ocfs2_is_refcount_inode(inode
))
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
463 if (!INODE_JOURNAL(inode
)) {
464 err
= ocfs2_inode_lock(inode
, NULL
, 0);
470 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
473 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
474 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
477 if (!INODE_JOURNAL(inode
)) {
478 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
479 ocfs2_inode_unlock(inode
, 0);
483 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block
);
490 status
= err
? 0 : p_blkno
;
495 static bool ocfs2_release_folio(struct folio
*folio
, gfp_t wait
)
497 if (!folio_buffers(folio
))
499 return try_to_free_buffers(folio
);
502 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
507 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
509 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
512 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
514 cluster_start
= cpos
% cpp
;
515 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
517 cluster_end
= cluster_start
+ osb
->s_clustersize
;
520 BUG_ON(cluster_start
> PAGE_SIZE
);
521 BUG_ON(cluster_end
> PAGE_SIZE
);
524 *start
= cluster_start
;
530 * 'from' and 'to' are the region in the page to avoid zeroing.
532 * If pagesize > clustersize, this function will avoid zeroing outside
533 * of the cluster boundary.
535 * from == to == 0 is code for "zero the entire cluster region"
537 static void ocfs2_clear_page_regions(struct page
*page
,
538 struct ocfs2_super
*osb
, u32 cpos
,
539 unsigned from
, unsigned to
)
542 unsigned int cluster_start
, cluster_end
;
544 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
546 kaddr
= kmap_atomic(page
);
549 if (from
> cluster_start
)
550 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
551 if (to
< cluster_end
)
552 memset(kaddr
+ to
, 0, cluster_end
- to
);
554 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
557 kunmap_atomic(kaddr
);
561 * Nonsparse file systems fully allocate before we get to the write
562 * code. This prevents ocfs2_write() from tagging the write as an
563 * allocating one, which means ocfs2_map_page_blocks() might try to
564 * read-in the blocks at the tail of our file. Avoid reading them by
565 * testing i_size against each block offset.
567 static int ocfs2_should_read_blk(struct inode
*inode
, struct folio
*folio
,
568 unsigned int block_start
)
570 u64 offset
= folio_pos(folio
) + block_start
;
572 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
575 if (i_size_read(inode
) > offset
)
582 * Some of this taken from __block_write_begin(). We already have our
583 * mapping by now though, and the entire write will be allocating or
584 * it won't, so not much need to use BH_New.
586 * This will also skip zeroing, which is handled externally.
588 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
589 struct inode
*inode
, unsigned int from
,
590 unsigned int to
, int new)
592 struct folio
*folio
= page_folio(page
);
594 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
595 unsigned int block_end
, block_start
;
596 unsigned int bsize
= i_blocksize(inode
);
598 head
= folio_buffers(folio
);
600 head
= create_empty_buffers(folio
, bsize
, 0);
602 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
603 bh
= bh
->b_this_page
, block_start
+= bsize
) {
604 block_end
= block_start
+ bsize
;
606 clear_buffer_new(bh
);
609 * Ignore blocks outside of our i/o range -
610 * they may belong to unallocated clusters.
612 if (block_start
>= to
|| block_end
<= from
) {
613 if (folio_test_uptodate(folio
))
614 set_buffer_uptodate(bh
);
619 * For an allocating write with cluster size >= page
620 * size, we always write the entire page.
625 if (!buffer_mapped(bh
)) {
626 map_bh(bh
, inode
->i_sb
, *p_blkno
);
627 clean_bdev_bh_alias(bh
);
630 if (folio_test_uptodate(folio
)) {
631 set_buffer_uptodate(bh
);
632 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
634 ocfs2_should_read_blk(inode
, folio
, block_start
) &&
635 (block_start
< from
|| block_end
> to
)) {
636 bh_read_nowait(bh
, 0);
640 *p_blkno
= *p_blkno
+ 1;
644 * If we issued read requests - let them complete.
646 while(wait_bh
> wait
) {
647 wait_on_buffer(*--wait_bh
);
648 if (!buffer_uptodate(*wait_bh
))
652 if (ret
== 0 || !new)
656 * If we get -EIO above, zero out any newly allocated blocks
657 * to avoid exposing stale data.
662 block_end
= block_start
+ bsize
;
663 if (block_end
<= from
)
665 if (block_start
>= to
)
668 folio_zero_range(folio
, block_start
, bh
->b_size
);
669 set_buffer_uptodate(bh
);
670 mark_buffer_dirty(bh
);
673 block_start
= block_end
;
674 bh
= bh
->b_this_page
;
675 } while (bh
!= head
);
680 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
681 #define OCFS2_MAX_CTXT_PAGES 1
683 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
686 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
688 struct ocfs2_unwritten_extent
{
689 struct list_head ue_node
;
690 struct list_head ue_ip_node
;
696 * Describe the state of a single cluster to be written to.
698 struct ocfs2_write_cluster_desc
{
702 * Give this a unique field because c_phys eventually gets
706 unsigned c_clear_unwritten
;
707 unsigned c_needs_zero
;
710 struct ocfs2_write_ctxt
{
711 /* Logical cluster position / len of write */
715 /* First cluster allocated in a nonsparse extend */
716 u32 w_first_new_cpos
;
718 /* Type of caller. Must be one of buffer, mmap, direct. */
719 ocfs2_write_type_t w_type
;
721 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
724 * This is true if page_size > cluster_size.
726 * It triggers a set of special cases during write which might
727 * have to deal with allocating writes to partial pages.
729 unsigned int w_large_pages
;
732 * Pages involved in this write.
734 * w_target_page is the page being written to by the user.
736 * w_pages is an array of pages which always contains
737 * w_target_page, and in the case of an allocating write with
738 * page_size < cluster size, it will contain zero'd and mapped
739 * pages adjacent to w_target_page which need to be written
740 * out in so that future reads from that region will get
743 unsigned int w_num_pages
;
744 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
745 struct page
*w_target_page
;
748 * w_target_locked is used for page_mkwrite path indicating no unlocking
749 * against w_target_page in ocfs2_write_end_nolock.
751 unsigned int w_target_locked
:1;
754 * ocfs2_write_end() uses this to know what the real range to
755 * write in the target should be.
757 unsigned int w_target_from
;
758 unsigned int w_target_to
;
761 * We could use journal_current_handle() but this is cleaner,
766 struct buffer_head
*w_di_bh
;
768 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
770 struct list_head w_unwritten_list
;
771 unsigned int w_unwritten_count
;
774 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
778 for(i
= 0; i
< num_pages
; i
++) {
780 unlock_page(pages
[i
]);
781 mark_page_accessed(pages
[i
]);
787 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt
*wc
)
792 * w_target_locked is only set to true in the page_mkwrite() case.
793 * The intent is to allow us to lock the target page from write_begin()
794 * to write_end(). The caller must hold a ref on w_target_page.
796 if (wc
->w_target_locked
) {
797 BUG_ON(!wc
->w_target_page
);
798 for (i
= 0; i
< wc
->w_num_pages
; i
++) {
799 if (wc
->w_target_page
== wc
->w_pages
[i
]) {
800 wc
->w_pages
[i
] = NULL
;
804 mark_page_accessed(wc
->w_target_page
);
805 put_page(wc
->w_target_page
);
807 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
810 static void ocfs2_free_unwritten_list(struct inode
*inode
,
811 struct list_head
*head
)
813 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
814 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
816 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
817 list_del(&ue
->ue_node
);
818 spin_lock(&oi
->ip_lock
);
819 list_del(&ue
->ue_ip_node
);
820 spin_unlock(&oi
->ip_lock
);
825 static void ocfs2_free_write_ctxt(struct inode
*inode
,
826 struct ocfs2_write_ctxt
*wc
)
828 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
829 ocfs2_unlock_pages(wc
);
834 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
835 struct ocfs2_super
*osb
, loff_t pos
,
836 unsigned len
, ocfs2_write_type_t type
,
837 struct buffer_head
*di_bh
)
840 struct ocfs2_write_ctxt
*wc
;
842 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
846 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
847 wc
->w_first_new_cpos
= UINT_MAX
;
848 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
849 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
854 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
855 wc
->w_large_pages
= 1;
857 wc
->w_large_pages
= 0;
859 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
860 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
868 * If a page has any new buffers, zero them out here, and mark them uptodate
869 * and dirty so they'll be written out (in order to prevent uninitialised
870 * block data from leaking). And clear the new bit.
872 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
874 unsigned int block_start
, block_end
;
875 struct buffer_head
*head
, *bh
;
877 BUG_ON(!PageLocked(page
));
878 if (!page_has_buffers(page
))
881 bh
= head
= page_buffers(page
);
884 block_end
= block_start
+ bh
->b_size
;
886 if (buffer_new(bh
)) {
887 if (block_end
> from
&& block_start
< to
) {
888 if (!PageUptodate(page
)) {
891 start
= max(from
, block_start
);
892 end
= min(to
, block_end
);
894 zero_user_segment(page
, start
, end
);
895 set_buffer_uptodate(bh
);
898 clear_buffer_new(bh
);
899 mark_buffer_dirty(bh
);
903 block_start
= block_end
;
904 bh
= bh
->b_this_page
;
905 } while (bh
!= head
);
909 * Only called when we have a failure during allocating write to write
910 * zero's to the newly allocated region.
912 static void ocfs2_write_failure(struct inode
*inode
,
913 struct ocfs2_write_ctxt
*wc
,
914 loff_t user_pos
, unsigned user_len
)
917 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
918 to
= user_pos
+ user_len
;
919 struct page
*tmppage
;
921 if (wc
->w_target_page
)
922 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
924 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
925 tmppage
= wc
->w_pages
[i
];
927 if (tmppage
&& page_has_buffers(tmppage
)) {
928 if (ocfs2_should_order_data(inode
))
929 ocfs2_jbd2_inode_add_write(wc
->w_handle
, inode
,
932 block_commit_write(tmppage
, from
, to
);
937 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
938 struct ocfs2_write_ctxt
*wc
,
939 struct page
*page
, u32 cpos
,
940 loff_t user_pos
, unsigned user_len
,
944 unsigned int map_from
= 0, map_to
= 0;
945 unsigned int cluster_start
, cluster_end
;
946 unsigned int user_data_from
= 0, user_data_to
= 0;
948 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
949 &cluster_start
, &cluster_end
);
951 /* treat the write as new if the a hole/lseek spanned across
954 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
955 (page_offset(page
) <= user_pos
));
957 if (page
== wc
->w_target_page
) {
958 map_from
= user_pos
& (PAGE_SIZE
- 1);
959 map_to
= map_from
+ user_len
;
962 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
963 cluster_start
, cluster_end
,
966 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
967 map_from
, map_to
, new);
973 user_data_from
= map_from
;
974 user_data_to
= map_to
;
976 map_from
= cluster_start
;
977 map_to
= cluster_end
;
981 * If we haven't allocated the new page yet, we
982 * shouldn't be writing it out without copying user
983 * data. This is likely a math error from the caller.
987 map_from
= cluster_start
;
988 map_to
= cluster_end
;
990 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
991 cluster_start
, cluster_end
, new);
999 * Parts of newly allocated pages need to be zero'd.
1001 * Above, we have also rewritten 'to' and 'from' - as far as
1002 * the rest of the function is concerned, the entire cluster
1003 * range inside of a page needs to be written.
1005 * We can skip this if the page is up to date - it's already
1006 * been zero'd from being read in as a hole.
1008 if (new && !PageUptodate(page
))
1009 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1010 cpos
, user_data_from
, user_data_to
);
1012 flush_dcache_page(page
);
1019 * This function will only grab one clusters worth of pages.
1021 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1022 struct ocfs2_write_ctxt
*wc
,
1023 u32 cpos
, loff_t user_pos
,
1024 unsigned user_len
, int new,
1025 struct page
*mmap_page
)
1028 unsigned long start
, target_index
, end_index
, index
;
1029 struct inode
*inode
= mapping
->host
;
1032 target_index
= user_pos
>> PAGE_SHIFT
;
1035 * Figure out how many pages we'll be manipulating here. For
1036 * non allocating write, we just change the one
1037 * page. Otherwise, we'll need a whole clusters worth. If we're
1038 * writing past i_size, we only need enough pages to cover the
1039 * last page of the write.
1042 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1043 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1045 * We need the index *past* the last page we could possibly
1046 * touch. This is the page past the end of the write or
1047 * i_size, whichever is greater.
1049 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1050 BUG_ON(last_byte
< 1);
1051 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1052 if ((start
+ wc
->w_num_pages
) > end_index
)
1053 wc
->w_num_pages
= end_index
- start
;
1055 wc
->w_num_pages
= 1;
1056 start
= target_index
;
1058 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1060 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1063 if (index
>= target_index
&& index
<= end_index
&&
1064 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1066 * ocfs2_pagemkwrite() is a little different
1067 * and wants us to directly use the page
1070 lock_page(mmap_page
);
1072 /* Exit and let the caller retry */
1073 if (mmap_page
->mapping
!= mapping
) {
1074 WARN_ON(mmap_page
->mapping
);
1075 unlock_page(mmap_page
);
1080 get_page(mmap_page
);
1081 wc
->w_pages
[i
] = mmap_page
;
1082 wc
->w_target_locked
= true;
1083 } else if (index
>= target_index
&& index
<= end_index
&&
1084 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1085 /* Direct write has no mapping page. */
1086 wc
->w_pages
[i
] = NULL
;
1089 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1091 if (!wc
->w_pages
[i
]) {
1097 wait_for_stable_page(wc
->w_pages
[i
]);
1099 if (index
== target_index
)
1100 wc
->w_target_page
= wc
->w_pages
[i
];
1104 wc
->w_target_locked
= false;
1109 * Prepare a single cluster for write one cluster into the file.
1111 static int ocfs2_write_cluster(struct address_space
*mapping
,
1112 u32
*phys
, unsigned int new,
1113 unsigned int clear_unwritten
,
1114 unsigned int should_zero
,
1115 struct ocfs2_alloc_context
*data_ac
,
1116 struct ocfs2_alloc_context
*meta_ac
,
1117 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1118 loff_t user_pos
, unsigned user_len
)
1122 struct inode
*inode
= mapping
->host
;
1123 struct ocfs2_extent_tree et
;
1124 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1130 * This is safe to call with the page locks - it won't take
1131 * any additional semaphores or cluster locks.
1134 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1135 &tmp_pos
, 1, !clear_unwritten
,
1136 wc
->w_di_bh
, wc
->w_handle
,
1137 data_ac
, meta_ac
, NULL
);
1139 * This shouldn't happen because we must have already
1140 * calculated the correct meta data allocation required. The
1141 * internal tree allocation code should know how to increase
1142 * transaction credits itself.
1144 * If need be, we could handle -EAGAIN for a
1145 * RESTART_TRANS here.
1147 mlog_bug_on_msg(ret
== -EAGAIN
,
1148 "Inode %llu: EAGAIN return during allocation.\n",
1149 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1154 } else if (clear_unwritten
) {
1155 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1157 ret
= ocfs2_mark_extent_written(inode
, &et
,
1158 wc
->w_handle
, cpos
, 1, *phys
,
1159 meta_ac
, &wc
->w_dealloc
);
1167 * The only reason this should fail is due to an inability to
1168 * find the extent added.
1170 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1172 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1173 "at logical cluster %u",
1174 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1180 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1182 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1184 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1187 /* This is the direct io target page. */
1188 if (wc
->w_pages
[i
] == NULL
) {
1189 p_blkno
+= (1 << (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
));
1193 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1194 wc
->w_pages
[i
], cpos
,
1205 * We only have cleanup to do in case of allocating write.
1208 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1215 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1216 struct ocfs2_alloc_context
*data_ac
,
1217 struct ocfs2_alloc_context
*meta_ac
,
1218 struct ocfs2_write_ctxt
*wc
,
1219 loff_t pos
, unsigned len
)
1223 unsigned int local_len
= len
;
1224 struct ocfs2_write_cluster_desc
*desc
;
1225 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1227 for (i
= 0; i
< wc
->w_clen
; i
++) {
1228 desc
= &wc
->w_desc
[i
];
1231 * We have to make sure that the total write passed in
1232 * doesn't extend past a single cluster.
1235 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1236 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1237 local_len
= osb
->s_clustersize
- cluster_off
;
1239 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1241 desc
->c_clear_unwritten
,
1244 wc
, desc
->c_cpos
, pos
, local_len
);
1260 * ocfs2_write_end() wants to know which parts of the target page it
1261 * should complete the write on. It's easiest to compute them ahead of
1262 * time when a more complete view of the write is available.
1264 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1265 struct ocfs2_write_ctxt
*wc
,
1266 loff_t pos
, unsigned len
, int alloc
)
1268 struct ocfs2_write_cluster_desc
*desc
;
1270 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1271 wc
->w_target_to
= wc
->w_target_from
+ len
;
1277 * Allocating write - we may have different boundaries based
1278 * on page size and cluster size.
1280 * NOTE: We can no longer compute one value from the other as
1281 * the actual write length and user provided length may be
1285 if (wc
->w_large_pages
) {
1287 * We only care about the 1st and last cluster within
1288 * our range and whether they should be zero'd or not. Either
1289 * value may be extended out to the start/end of a
1290 * newly allocated cluster.
1292 desc
= &wc
->w_desc
[0];
1293 if (desc
->c_needs_zero
)
1294 ocfs2_figure_cluster_boundaries(osb
,
1299 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1300 if (desc
->c_needs_zero
)
1301 ocfs2_figure_cluster_boundaries(osb
,
1306 wc
->w_target_from
= 0;
1307 wc
->w_target_to
= PAGE_SIZE
;
1312 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1313 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1314 * by the direct io procedure.
1315 * If this is a new extent that allocated by direct io, we should mark it in
1316 * the ip_unwritten_list.
1318 static int ocfs2_unwritten_check(struct inode
*inode
,
1319 struct ocfs2_write_ctxt
*wc
,
1320 struct ocfs2_write_cluster_desc
*desc
)
1322 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1323 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1326 if (!desc
->c_needs_zero
)
1330 spin_lock(&oi
->ip_lock
);
1331 /* Needs not to zero no metter buffer or direct. The one who is zero
1332 * the cluster is doing zero. And he will clear unwritten after all
1333 * cluster io finished. */
1334 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1335 if (desc
->c_cpos
== ue
->ue_cpos
) {
1336 BUG_ON(desc
->c_new
);
1337 desc
->c_needs_zero
= 0;
1338 desc
->c_clear_unwritten
= 0;
1343 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1347 spin_unlock(&oi
->ip_lock
);
1348 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1356 /* This direct write will doing zero. */
1357 new->ue_cpos
= desc
->c_cpos
;
1358 new->ue_phys
= desc
->c_phys
;
1359 desc
->c_clear_unwritten
= 0;
1360 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1361 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1362 wc
->w_unwritten_count
++;
1365 spin_unlock(&oi
->ip_lock
);
1372 * Populate each single-cluster write descriptor in the write context
1373 * with information about the i/o to be done.
1375 * Returns the number of clusters that will have to be allocated, as
1376 * well as a worst case estimate of the number of extent records that
1377 * would have to be created during a write to an unwritten region.
1379 static int ocfs2_populate_write_desc(struct inode
*inode
,
1380 struct ocfs2_write_ctxt
*wc
,
1381 unsigned int *clusters_to_alloc
,
1382 unsigned int *extents_to_split
)
1385 struct ocfs2_write_cluster_desc
*desc
;
1386 unsigned int num_clusters
= 0;
1387 unsigned int ext_flags
= 0;
1391 *clusters_to_alloc
= 0;
1392 *extents_to_split
= 0;
1394 for (i
= 0; i
< wc
->w_clen
; i
++) {
1395 desc
= &wc
->w_desc
[i
];
1396 desc
->c_cpos
= wc
->w_cpos
+ i
;
1398 if (num_clusters
== 0) {
1400 * Need to look up the next extent record.
1402 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1403 &num_clusters
, &ext_flags
);
1409 /* We should already CoW the refcountd extent. */
1410 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1413 * Assume worst case - that we're writing in
1414 * the middle of the extent.
1416 * We can assume that the write proceeds from
1417 * left to right, in which case the extent
1418 * insert code is smart enough to coalesce the
1419 * next splits into the previous records created.
1421 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1422 *extents_to_split
= *extents_to_split
+ 2;
1425 * Only increment phys if it doesn't describe
1432 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433 * file that got extended. w_first_new_cpos tells us
1434 * where the newly allocated clusters are so we can
1437 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1439 desc
->c_needs_zero
= 1;
1442 desc
->c_phys
= phys
;
1445 desc
->c_needs_zero
= 1;
1446 desc
->c_clear_unwritten
= 1;
1447 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1450 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1451 desc
->c_clear_unwritten
= 1;
1452 desc
->c_needs_zero
= 1;
1455 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1469 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1470 struct inode
*inode
,
1471 struct ocfs2_write_ctxt
*wc
)
1474 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1477 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1479 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1480 if (IS_ERR(handle
)) {
1481 ret
= PTR_ERR(handle
);
1486 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1488 ocfs2_commit_trans(osb
, handle
);
1494 * If we don't set w_num_pages then this page won't get unlocked
1495 * and freed on cleanup of the write context.
1497 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1498 wc
->w_num_pages
= 1;
1500 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1501 OCFS2_JOURNAL_ACCESS_WRITE
);
1503 ocfs2_commit_trans(osb
, handle
);
1509 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1510 ocfs2_set_inode_data_inline(inode
, di
);
1512 if (!PageUptodate(page
)) {
1513 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1515 ocfs2_commit_trans(osb
, handle
);
1521 wc
->w_handle
= handle
;
1526 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1528 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1530 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1535 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1536 struct inode
*inode
, loff_t pos
,
1537 unsigned len
, struct page
*mmap_page
,
1538 struct ocfs2_write_ctxt
*wc
)
1540 int ret
, written
= 0;
1541 loff_t end
= pos
+ len
;
1542 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1543 struct ocfs2_dinode
*di
= NULL
;
1545 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1546 len
, (unsigned long long)pos
,
1547 oi
->ip_dyn_features
);
1550 * Handle inodes which already have inline data 1st.
1552 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1553 if (mmap_page
== NULL
&&
1554 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1555 goto do_inline_write
;
1558 * The write won't fit - we have to give this inode an
1559 * inline extent list now.
1561 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1568 * Check whether the inode can accept inline data.
1570 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1574 * Check whether the write can fit.
1576 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1578 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1582 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1589 * This signals to the caller that the data can be written
1594 return written
? written
: ret
;
1598 * This function only does anything for file systems which can't
1599 * handle sparse files.
1601 * What we want to do here is fill in any hole between the current end
1602 * of allocation and the end of our write. That way the rest of the
1603 * write path can treat it as an non-allocating write, which has no
1604 * special case code for sparse/nonsparse files.
1606 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1607 struct buffer_head
*di_bh
,
1608 loff_t pos
, unsigned len
,
1609 struct ocfs2_write_ctxt
*wc
)
1612 loff_t newsize
= pos
+ len
;
1614 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1616 if (newsize
<= i_size_read(inode
))
1619 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1623 /* There is no wc if this is call from direct. */
1625 wc
->w_first_new_cpos
=
1626 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1631 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1636 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1637 if (pos
> i_size_read(inode
))
1638 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1643 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1644 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1645 struct folio
**foliop
, void **fsdata
,
1646 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1648 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1649 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1650 struct ocfs2_write_ctxt
*wc
;
1651 struct inode
*inode
= mapping
->host
;
1652 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1653 struct ocfs2_dinode
*di
;
1654 struct ocfs2_alloc_context
*data_ac
= NULL
;
1655 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1657 struct ocfs2_extent_tree et
;
1658 int try_free
= 1, ret1
;
1661 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1667 if (ocfs2_supports_inline_data(osb
)) {
1668 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1680 /* Direct io change i_size late, should not zero tail here. */
1681 if (type
!= OCFS2_WRITE_DIRECT
) {
1682 if (ocfs2_sparse_alloc(osb
))
1683 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1685 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1693 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1697 } else if (ret
== 1) {
1698 clusters_need
= wc
->w_clen
;
1699 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1700 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1707 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1713 clusters_need
+= clusters_to_alloc
;
1715 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1717 trace_ocfs2_write_begin_nolock(
1718 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1719 (long long)i_size_read(inode
),
1720 le32_to_cpu(di
->i_clusters
),
1721 pos
, len
, type
, mmap_page
,
1722 clusters_to_alloc
, extents_to_split
);
1725 * We set w_target_from, w_target_to here so that
1726 * ocfs2_write_end() knows which range in the target page to
1727 * write out. An allocation requires that we write the entire
1730 if (clusters_to_alloc
|| extents_to_split
) {
1732 * XXX: We are stretching the limits of
1733 * ocfs2_lock_allocators(). It greatly over-estimates
1734 * the work to be done.
1736 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1738 ret
= ocfs2_lock_allocators(inode
, &et
,
1739 clusters_to_alloc
, extents_to_split
,
1740 &data_ac
, &meta_ac
);
1747 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1749 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1751 } else if (type
== OCFS2_WRITE_DIRECT
)
1752 /* direct write needs not to start trans if no extents alloc. */
1756 * We have to zero sparse allocated clusters, unwritten extent clusters,
1757 * and non-sparse clusters we just extended. For non-sparse writes,
1758 * we know zeros will only be needed in the first and/or last cluster.
1760 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1761 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1762 cluster_of_pages
= 1;
1764 cluster_of_pages
= 0;
1766 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1768 handle
= ocfs2_start_trans(osb
, credits
);
1769 if (IS_ERR(handle
)) {
1770 ret
= PTR_ERR(handle
);
1775 wc
->w_handle
= handle
;
1777 if (clusters_to_alloc
) {
1778 ret
= dquot_alloc_space_nodirty(inode
,
1779 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1784 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1785 OCFS2_JOURNAL_ACCESS_WRITE
);
1792 * Fill our page array first. That way we've grabbed enough so
1793 * that we can zero and flush if we error after adding the
1796 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1797 cluster_of_pages
, mmap_page
);
1800 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1801 * the target page. In this case, we exit with no error and no target
1802 * page. This will trigger the caller, page_mkwrite(), to re-try
1805 if (type
== OCFS2_WRITE_MMAP
&& ret
== -EAGAIN
) {
1806 BUG_ON(wc
->w_target_page
);
1815 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1823 ocfs2_free_alloc_context(data_ac
);
1825 ocfs2_free_alloc_context(meta_ac
);
1829 *foliop
= page_folio(wc
->w_target_page
);
1833 if (clusters_to_alloc
)
1834 dquot_free_space(inode
,
1835 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1837 ocfs2_commit_trans(osb
, handle
);
1841 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1842 * even in case of error here like ENOSPC and ENOMEM. So, we need
1843 * to unlock the target page manually to prevent deadlocks when
1844 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1847 if (wc
->w_target_locked
)
1848 unlock_page(mmap_page
);
1850 ocfs2_free_write_ctxt(inode
, wc
);
1853 ocfs2_free_alloc_context(data_ac
);
1857 ocfs2_free_alloc_context(meta_ac
);
1861 if (ret
== -ENOSPC
&& try_free
) {
1863 * Try to free some truncate log so that we can have enough
1864 * clusters to allocate.
1868 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1879 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1880 loff_t pos
, unsigned len
,
1881 struct folio
**foliop
, void **fsdata
)
1884 struct buffer_head
*di_bh
= NULL
;
1885 struct inode
*inode
= mapping
->host
;
1887 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1894 * Take alloc sem here to prevent concurrent lookups. That way
1895 * the mapping, zeroing and tree manipulation within
1896 * ocfs2_write() will be safe against ->read_folio(). This
1897 * should also serve to lock out allocation from a shared
1900 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1902 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1903 foliop
, fsdata
, di_bh
, NULL
);
1914 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1917 ocfs2_inode_unlock(inode
, 1);
1922 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1923 unsigned len
, unsigned *copied
,
1924 struct ocfs2_dinode
*di
,
1925 struct ocfs2_write_ctxt
*wc
)
1929 if (unlikely(*copied
< len
)) {
1930 if (!PageUptodate(wc
->w_target_page
)) {
1936 kaddr
= kmap_atomic(wc
->w_target_page
);
1937 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1938 kunmap_atomic(kaddr
);
1940 trace_ocfs2_write_end_inline(
1941 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1942 (unsigned long long)pos
, *copied
,
1943 le16_to_cpu(di
->id2
.i_data
.id_count
),
1944 le16_to_cpu(di
->i_dyn_features
));
1947 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1948 loff_t pos
, unsigned len
, unsigned copied
, void *fsdata
)
1951 unsigned from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1952 struct inode
*inode
= mapping
->host
;
1953 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1954 struct ocfs2_write_ctxt
*wc
= fsdata
;
1955 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1956 handle_t
*handle
= wc
->w_handle
;
1957 struct page
*tmppage
;
1959 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1962 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1963 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
1971 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1972 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1973 goto out_write_size
;
1976 if (unlikely(copied
< len
) && wc
->w_target_page
) {
1979 if (!PageUptodate(wc
->w_target_page
))
1982 new_isize
= max_t(loff_t
, i_size_read(inode
), pos
+ copied
);
1983 if (new_isize
> page_offset(wc
->w_target_page
))
1984 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1988 * When page is fully beyond new isize (data copy
1989 * failed), do not bother zeroing the page. Invalidate
1990 * it instead so that writeback does not get confused
1991 * put page & buffer dirty bits into inconsistent
1994 block_invalidate_folio(page_folio(wc
->w_target_page
),
1998 if (wc
->w_target_page
)
1999 flush_dcache_page(wc
->w_target_page
);
2001 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
2002 tmppage
= wc
->w_pages
[i
];
2004 /* This is the direct io target page. */
2005 if (tmppage
== NULL
)
2008 if (tmppage
== wc
->w_target_page
) {
2009 from
= wc
->w_target_from
;
2010 to
= wc
->w_target_to
;
2012 BUG_ON(from
> PAGE_SIZE
||
2017 * Pages adjacent to the target (if any) imply
2018 * a hole-filling write in which case we want
2019 * to flush their entire range.
2025 if (page_has_buffers(tmppage
)) {
2026 if (handle
&& ocfs2_should_order_data(inode
)) {
2028 ((loff_t
)tmppage
->index
<< PAGE_SHIFT
) +
2030 loff_t length
= to
- from
;
2031 ocfs2_jbd2_inode_add_write(handle
, inode
,
2032 start_byte
, length
);
2034 block_commit_write(tmppage
, from
, to
);
2039 /* Direct io do not update i_size here. */
2040 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2042 if (pos
> i_size_read(inode
)) {
2043 i_size_write(inode
, pos
);
2044 mark_inode_dirty(inode
);
2046 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2047 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2048 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
2049 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode_get_mtime_sec(inode
));
2050 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode_get_mtime_nsec(inode
));
2052 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2055 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2058 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2059 * lock, or it will cause a deadlock since journal commit threads holds
2060 * this lock and will ask for the page lock when flushing the data.
2061 * put it here to preserve the unlock order.
2063 ocfs2_unlock_pages(wc
);
2066 ocfs2_commit_trans(osb
, handle
);
2068 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2070 brelse(wc
->w_di_bh
);
2076 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2077 loff_t pos
, unsigned len
, unsigned copied
,
2078 struct folio
*folio
, void *fsdata
)
2081 struct inode
*inode
= mapping
->host
;
2083 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, fsdata
);
2085 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2086 ocfs2_inode_unlock(inode
, 1);
2091 struct ocfs2_dio_write_ctxt
{
2092 struct list_head dw_zero_list
;
2093 unsigned dw_zero_count
;
2095 pid_t dw_writer_pid
;
2098 static struct ocfs2_dio_write_ctxt
*
2099 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2101 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2104 return bh
->b_private
;
2106 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2109 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2110 dwc
->dw_zero_count
= 0;
2111 dwc
->dw_orphaned
= 0;
2112 dwc
->dw_writer_pid
= task_pid_nr(current
);
2113 bh
->b_private
= dwc
;
2119 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2120 struct ocfs2_dio_write_ctxt
*dwc
)
2122 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2127 * TODO: Make this into a generic get_blocks function.
2129 * From do_direct_io in direct-io.c:
2130 * "So what we do is to permit the ->get_blocks function to populate
2131 * bh.b_size with the size of IO which is permitted at this offset and
2134 * This function is called directly from get_more_blocks in direct-io.c.
2136 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2137 * fs_count, map_bh, dio->rw == WRITE);
2139 static int ocfs2_dio_wr_get_block(struct inode
*inode
, sector_t iblock
,
2140 struct buffer_head
*bh_result
, int create
)
2142 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2143 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2144 struct ocfs2_write_ctxt
*wc
;
2145 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2146 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2147 struct buffer_head
*di_bh
= NULL
;
2149 unsigned int i_blkbits
= inode
->i_sb
->s_blocksize_bits
;
2150 loff_t pos
= iblock
<< i_blkbits
;
2151 sector_t endblk
= (i_size_read(inode
) - 1) >> i_blkbits
;
2152 unsigned len
, total_len
= bh_result
->b_size
;
2153 int ret
= 0, first_get_block
= 0;
2155 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2156 len
= min(total_len
, len
);
2159 * bh_result->b_size is count in get_more_blocks according to write
2160 * "pos" and "end", we need map twice to return different buffer state:
2161 * 1. area in file size, not set NEW;
2162 * 2. area out file size, set NEW.
2165 * |--------|---------|---------|---------
2166 * |<-------area in file------->|
2169 if ((iblock
<= endblk
) &&
2170 ((iblock
+ ((len
- 1) >> i_blkbits
)) > endblk
))
2171 len
= (endblk
- iblock
+ 1) << i_blkbits
;
2173 mlog(0, "get block of %lu at %llu:%u req %u\n",
2174 inode
->i_ino
, pos
, len
, total_len
);
2177 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2178 * we may need to add it to orphan dir. So can not fall to fast path
2179 * while file size will be changed.
2181 if (pos
+ total_len
<= i_size_read(inode
)) {
2183 /* This is the fast path for re-write. */
2184 ret
= ocfs2_lock_get_block(inode
, iblock
, bh_result
, create
);
2185 if (buffer_mapped(bh_result
) &&
2186 !buffer_new(bh_result
) &&
2190 /* Clear state set by ocfs2_get_block. */
2191 bh_result
->b_state
= 0;
2194 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2195 if (unlikely(dwc
== NULL
)) {
2201 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2202 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2203 !dwc
->dw_orphaned
) {
2205 * when we are going to alloc extents beyond file size, add the
2206 * inode to orphan dir, so we can recall those spaces when
2207 * system crashed during write.
2209 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2214 dwc
->dw_orphaned
= 1;
2217 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2223 down_write(&oi
->ip_alloc_sem
);
2225 if (first_get_block
) {
2226 if (ocfs2_sparse_alloc(osb
))
2227 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2229 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2237 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2238 OCFS2_WRITE_DIRECT
, NULL
,
2239 (void **)&wc
, di_bh
, NULL
);
2245 desc
= &wc
->w_desc
[0];
2247 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2248 BUG_ON(p_blkno
== 0);
2249 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2251 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2252 bh_result
->b_size
= len
;
2253 if (desc
->c_needs_zero
)
2254 set_buffer_new(bh_result
);
2256 if (iblock
> endblk
)
2257 set_buffer_new(bh_result
);
2259 /* May sleep in end_io. It should not happen in a irq context. So defer
2260 * it to dio work queue. */
2261 set_buffer_defer_completion(bh_result
);
2263 if (!list_empty(&wc
->w_unwritten_list
)) {
2264 struct ocfs2_unwritten_extent
*ue
= NULL
;
2266 ue
= list_first_entry(&wc
->w_unwritten_list
,
2267 struct ocfs2_unwritten_extent
,
2269 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2270 /* The physical address may be 0, fill it. */
2271 ue
->ue_phys
= desc
->c_phys
;
2273 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2274 dwc
->dw_zero_count
+= wc
->w_unwritten_count
;
2277 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, wc
);
2281 up_write(&oi
->ip_alloc_sem
);
2282 ocfs2_inode_unlock(inode
, 1);
2288 static int ocfs2_dio_end_io_write(struct inode
*inode
,
2289 struct ocfs2_dio_write_ctxt
*dwc
,
2293 struct ocfs2_cached_dealloc_ctxt dealloc
;
2294 struct ocfs2_extent_tree et
;
2295 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2296 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2297 struct ocfs2_unwritten_extent
*ue
= NULL
;
2298 struct buffer_head
*di_bh
= NULL
;
2299 struct ocfs2_dinode
*di
;
2300 struct ocfs2_alloc_context
*data_ac
= NULL
;
2301 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2302 handle_t
*handle
= NULL
;
2303 loff_t end
= offset
+ bytes
;
2304 int ret
= 0, credits
= 0;
2306 ocfs2_init_dealloc_ctxt(&dealloc
);
2308 /* We do clear unwritten, delete orphan, change i_size here. If neither
2309 * of these happen, we can skip all this. */
2310 if (list_empty(&dwc
->dw_zero_list
) &&
2311 end
<= i_size_read(inode
) &&
2315 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2321 down_write(&oi
->ip_alloc_sem
);
2323 /* Delete orphan before acquire i_rwsem. */
2324 if (dwc
->dw_orphaned
) {
2325 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2327 end
= end
> i_size_read(inode
) ? end
: 0;
2329 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2335 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2337 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2339 /* Attach dealloc with extent tree in case that we may reuse extents
2340 * which are already unlinked from current extent tree due to extent
2341 * rotation and merging.
2343 et
.et_dealloc
= &dealloc
;
2345 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2346 &data_ac
, &meta_ac
);
2352 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2354 handle
= ocfs2_start_trans(osb
, credits
);
2355 if (IS_ERR(handle
)) {
2356 ret
= PTR_ERR(handle
);
2360 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2361 OCFS2_JOURNAL_ACCESS_WRITE
);
2367 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2368 ret
= ocfs2_assure_trans_credits(handle
, credits
);
2373 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2383 if (end
> i_size_read(inode
)) {
2384 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2389 ocfs2_commit_trans(osb
, handle
);
2391 up_write(&oi
->ip_alloc_sem
);
2392 ocfs2_inode_unlock(inode
, 1);
2396 ocfs2_free_alloc_context(data_ac
);
2398 ocfs2_free_alloc_context(meta_ac
);
2399 ocfs2_run_deallocs(osb
, &dealloc
);
2400 ocfs2_dio_free_write_ctx(inode
, dwc
);
2406 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2407 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2408 * to protect io on one node from truncation on another.
2410 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2415 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2419 /* this io's submitter should not have unlocked this before we could */
2420 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2423 mlog_ratelimited(ML_ERROR
, "Direct IO failed, bytes = %lld",
2427 ret
= ocfs2_dio_end_io_write(inode
, private, offset
,
2430 ocfs2_dio_free_write_ctx(inode
, private);
2433 ocfs2_iocb_clear_rw_locked(iocb
);
2435 level
= ocfs2_iocb_rw_locked_level(iocb
);
2436 ocfs2_rw_unlock(inode
, level
);
2440 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2442 struct file
*file
= iocb
->ki_filp
;
2443 struct inode
*inode
= file
->f_mapping
->host
;
2444 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2445 get_block_t
*get_block
;
2448 * Fallback to buffered I/O if we see an inode without
2451 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2454 /* Fallback to buffered I/O if we do not support append dio. */
2455 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2456 !ocfs2_supports_append_dio(osb
))
2459 if (iov_iter_rw(iter
) == READ
)
2460 get_block
= ocfs2_lock_get_block
;
2462 get_block
= ocfs2_dio_wr_get_block
;
2464 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2466 ocfs2_dio_end_io
, 0);
2469 const struct address_space_operations ocfs2_aops
= {
2470 .dirty_folio
= block_dirty_folio
,
2471 .read_folio
= ocfs2_read_folio
,
2472 .readahead
= ocfs2_readahead
,
2473 .writepages
= ocfs2_writepages
,
2474 .write_begin
= ocfs2_write_begin
,
2475 .write_end
= ocfs2_write_end
,
2477 .direct_IO
= ocfs2_direct_IO
,
2478 .invalidate_folio
= block_invalidate_folio
,
2479 .release_folio
= ocfs2_release_folio
,
2480 .migrate_folio
= buffer_migrate_folio
,
2481 .is_partially_uptodate
= block_is_partially_uptodate
,
2482 .error_remove_folio
= generic_error_remove_folio
,