1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
11 /* This file implements reading and writing the master node */
16 * ubifs_compare_master_node - compare two UBIFS master nodes
17 * @c: UBIFS file-system description object
19 * @m2: the second node
21 * This function compares two UBIFS master nodes. Returns 0 if they are equal
24 int ubifs_compare_master_node(struct ubifs_info
*c
, void *m1
, void *m2
)
28 int hmac_offs
= offsetof(struct ubifs_mst_node
, hmac
);
31 * Do not compare the common node header since the sequence number and
32 * hence the CRC are different.
34 ret
= memcmp(m1
+ UBIFS_CH_SZ
, m2
+ UBIFS_CH_SZ
,
35 hmac_offs
- UBIFS_CH_SZ
);
40 * Do not compare the embedded HMAC as well which also must be different
41 * due to the different common node header.
43 behind
= hmac_offs
+ UBIFS_MAX_HMAC_LEN
;
45 if (UBIFS_MST_NODE_SZ
> behind
)
46 return memcmp(m1
+ behind
, m2
+ behind
, UBIFS_MST_NODE_SZ
- behind
);
51 /* mst_node_check_hash - Check hash of a master node
52 * @c: UBIFS file-system description object
53 * @mst: The master node
54 * @expected: The expected hash of the master node
56 * This checks the hash of a master node against a given expected hash.
57 * Note that we have two master nodes on a UBIFS image which have different
58 * sequence numbers and consequently different CRCs. To be able to match
59 * both master nodes we exclude the common node header containing the sequence
60 * number and CRC from the hash.
62 * Returns 0 if the hashes are equal, a negative error code otherwise.
64 static int mst_node_check_hash(const struct ubifs_info
*c
,
65 const struct ubifs_mst_node
*mst
,
68 u8 calc
[UBIFS_MAX_HASH_LEN
];
69 const void *node
= mst
;
72 ret
= crypto_shash_tfm_digest(c
->hash_tfm
, node
+ sizeof(struct ubifs_ch
),
73 UBIFS_MST_NODE_SZ
- sizeof(struct ubifs_ch
),
78 if (ubifs_check_hash(c
, expected
, calc
))
85 * scan_for_master - search the valid master node.
86 * @c: UBIFS file-system description object
88 * This function scans the master node LEBs and search for the latest master
89 * node. Returns zero in case of success, %-EUCLEAN if there master area is
90 * corrupted and requires recovery, and a negative error code in case of
93 static int scan_for_master(struct ubifs_info
*c
)
95 struct ubifs_scan_leb
*sleb
;
96 struct ubifs_scan_node
*snod
;
97 int lnum
, offs
= 0, nodes_cnt
, err
;
99 lnum
= UBIFS_MST_LNUM
;
101 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
, 1);
103 return PTR_ERR(sleb
);
104 nodes_cnt
= sleb
->nodes_cnt
;
106 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
108 if (snod
->type
!= UBIFS_MST_NODE
)
110 memcpy(c
->mst_node
, snod
->node
, snod
->len
);
113 ubifs_scan_destroy(sleb
);
117 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
, 1);
119 return PTR_ERR(sleb
);
120 if (sleb
->nodes_cnt
!= nodes_cnt
)
122 if (!sleb
->nodes_cnt
)
124 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
, list
);
125 if (snod
->type
!= UBIFS_MST_NODE
)
127 if (snod
->offs
!= offs
)
129 if (ubifs_compare_master_node(c
, c
->mst_node
, snod
->node
))
133 ubifs_scan_destroy(sleb
);
135 if (!ubifs_authenticated(c
))
138 if (ubifs_hmac_zero(c
, c
->mst_node
->hmac
)) {
139 err
= mst_node_check_hash(c
, c
->mst_node
,
140 c
->sup_node
->hash_mst
);
142 ubifs_err(c
, "Failed to verify master node hash");
144 err
= ubifs_node_verify_hmac(c
, c
->mst_node
,
145 sizeof(struct ubifs_mst_node
),
146 offsetof(struct ubifs_mst_node
, hmac
));
148 ubifs_err(c
, "Failed to verify master node HMAC");
157 ubifs_scan_destroy(sleb
);
161 ubifs_err(c
, "unexpected node type %d master LEB %d:%d",
162 snod
->type
, lnum
, snod
->offs
);
163 ubifs_scan_destroy(sleb
);
168 * validate_master - validate master node.
169 * @c: UBIFS file-system description object
171 * This function validates data which was read from master node. Returns zero
172 * if the data is all right and %-EINVAL if not.
174 static int validate_master(const struct ubifs_info
*c
)
179 if (c
->max_sqnum
>= SQNUM_WATERMARK
) {
184 if (c
->cmt_no
>= c
->max_sqnum
) {
189 if (c
->highest_inum
>= INUM_WATERMARK
) {
194 if (c
->lhead_lnum
< UBIFS_LOG_LNUM
||
195 c
->lhead_lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
||
196 c
->lhead_offs
< 0 || c
->lhead_offs
>= c
->leb_size
||
197 c
->lhead_offs
& (c
->min_io_size
- 1)) {
202 if (c
->zroot
.lnum
>= c
->leb_cnt
|| c
->zroot
.lnum
< c
->main_first
||
203 c
->zroot
.offs
>= c
->leb_size
|| c
->zroot
.offs
& 7) {
208 if (c
->zroot
.len
< c
->ranges
[UBIFS_IDX_NODE
].min_len
||
209 c
->zroot
.len
> c
->ranges
[UBIFS_IDX_NODE
].max_len
) {
214 if (c
->gc_lnum
>= c
->leb_cnt
|| c
->gc_lnum
< c
->main_first
) {
219 if (c
->ihead_lnum
>= c
->leb_cnt
|| c
->ihead_lnum
< c
->main_first
||
220 c
->ihead_offs
% c
->min_io_size
|| c
->ihead_offs
< 0 ||
221 c
->ihead_offs
> c
->leb_size
|| c
->ihead_offs
& 7) {
226 main_sz
= (long long)c
->main_lebs
* c
->leb_size
;
227 if (c
->bi
.old_idx_sz
& 7 || c
->bi
.old_idx_sz
>= main_sz
) {
232 if (c
->lpt_lnum
< c
->lpt_first
|| c
->lpt_lnum
> c
->lpt_last
||
233 c
->lpt_offs
< 0 || c
->lpt_offs
+ c
->nnode_sz
> c
->leb_size
) {
238 if (c
->nhead_lnum
< c
->lpt_first
|| c
->nhead_lnum
> c
->lpt_last
||
239 c
->nhead_offs
< 0 || c
->nhead_offs
% c
->min_io_size
||
240 c
->nhead_offs
> c
->leb_size
) {
245 if (c
->ltab_lnum
< c
->lpt_first
|| c
->ltab_lnum
> c
->lpt_last
||
247 c
->ltab_offs
+ c
->ltab_sz
> c
->leb_size
) {
252 if (c
->big_lpt
&& (c
->lsave_lnum
< c
->lpt_first
||
253 c
->lsave_lnum
> c
->lpt_last
|| c
->lsave_offs
< 0 ||
254 c
->lsave_offs
+ c
->lsave_sz
> c
->leb_size
)) {
259 if (c
->lscan_lnum
< c
->main_first
|| c
->lscan_lnum
>= c
->leb_cnt
) {
264 if (c
->lst
.empty_lebs
< 0 || c
->lst
.empty_lebs
> c
->main_lebs
- 2) {
269 if (c
->lst
.idx_lebs
< 0 || c
->lst
.idx_lebs
> c
->main_lebs
- 1) {
274 if (c
->lst
.total_free
< 0 || c
->lst
.total_free
> main_sz
||
275 c
->lst
.total_free
& 7) {
280 if (c
->lst
.total_dirty
< 0 || (c
->lst
.total_dirty
& 7)) {
285 if (c
->lst
.total_used
< 0 || (c
->lst
.total_used
& 7)) {
290 if (c
->lst
.total_free
+ c
->lst
.total_dirty
+
291 c
->lst
.total_used
> main_sz
) {
296 if (c
->lst
.total_dead
+ c
->lst
.total_dark
+
297 c
->lst
.total_used
+ c
->bi
.old_idx_sz
> main_sz
) {
302 if (c
->lst
.total_dead
< 0 ||
303 c
->lst
.total_dead
> c
->lst
.total_free
+ c
->lst
.total_dirty
||
304 c
->lst
.total_dead
& 7) {
309 if (c
->lst
.total_dark
< 0 ||
310 c
->lst
.total_dark
> c
->lst
.total_free
+ c
->lst
.total_dirty
||
311 c
->lst
.total_dark
& 7) {
319 ubifs_err(c
, "bad master node at offset %d error %d", c
->mst_offs
, err
);
320 ubifs_dump_node(c
, c
->mst_node
, c
->mst_node_alsz
);
325 * ubifs_read_master - read master node.
326 * @c: UBIFS file-system description object
328 * This function finds and reads the master node during file-system mount. If
329 * the flash is empty, it creates default master node as well. Returns zero in
330 * case of success and a negative error code in case of failure.
332 int ubifs_read_master(struct ubifs_info
*c
)
334 int err
, old_leb_cnt
;
336 c
->mst_node
= kzalloc(c
->mst_node_alsz
, GFP_KERNEL
);
340 err
= scan_for_master(c
);
343 err
= ubifs_recover_master_node(c
);
346 * Note, we do not free 'c->mst_node' here because the
347 * unmount routine will take care of this.
352 /* Make sure that the recovery flag is clear */
353 c
->mst_node
->flags
&= cpu_to_le32(~UBIFS_MST_RCVRY
);
355 c
->max_sqnum
= le64_to_cpu(c
->mst_node
->ch
.sqnum
);
356 c
->highest_inum
= le64_to_cpu(c
->mst_node
->highest_inum
);
357 c
->cmt_no
= le64_to_cpu(c
->mst_node
->cmt_no
);
358 c
->zroot
.lnum
= le32_to_cpu(c
->mst_node
->root_lnum
);
359 c
->zroot
.offs
= le32_to_cpu(c
->mst_node
->root_offs
);
360 c
->zroot
.len
= le32_to_cpu(c
->mst_node
->root_len
);
361 c
->lhead_lnum
= le32_to_cpu(c
->mst_node
->log_lnum
);
362 c
->gc_lnum
= le32_to_cpu(c
->mst_node
->gc_lnum
);
363 c
->ihead_lnum
= le32_to_cpu(c
->mst_node
->ihead_lnum
);
364 c
->ihead_offs
= le32_to_cpu(c
->mst_node
->ihead_offs
);
365 c
->bi
.old_idx_sz
= le64_to_cpu(c
->mst_node
->index_size
);
366 c
->lpt_lnum
= le32_to_cpu(c
->mst_node
->lpt_lnum
);
367 c
->lpt_offs
= le32_to_cpu(c
->mst_node
->lpt_offs
);
368 c
->nhead_lnum
= le32_to_cpu(c
->mst_node
->nhead_lnum
);
369 c
->nhead_offs
= le32_to_cpu(c
->mst_node
->nhead_offs
);
370 c
->ltab_lnum
= le32_to_cpu(c
->mst_node
->ltab_lnum
);
371 c
->ltab_offs
= le32_to_cpu(c
->mst_node
->ltab_offs
);
372 c
->lsave_lnum
= le32_to_cpu(c
->mst_node
->lsave_lnum
);
373 c
->lsave_offs
= le32_to_cpu(c
->mst_node
->lsave_offs
);
374 c
->lscan_lnum
= le32_to_cpu(c
->mst_node
->lscan_lnum
);
375 c
->lst
.empty_lebs
= le32_to_cpu(c
->mst_node
->empty_lebs
);
376 c
->lst
.idx_lebs
= le32_to_cpu(c
->mst_node
->idx_lebs
);
377 old_leb_cnt
= le32_to_cpu(c
->mst_node
->leb_cnt
);
378 c
->lst
.total_free
= le64_to_cpu(c
->mst_node
->total_free
);
379 c
->lst
.total_dirty
= le64_to_cpu(c
->mst_node
->total_dirty
);
380 c
->lst
.total_used
= le64_to_cpu(c
->mst_node
->total_used
);
381 c
->lst
.total_dead
= le64_to_cpu(c
->mst_node
->total_dead
);
382 c
->lst
.total_dark
= le64_to_cpu(c
->mst_node
->total_dark
);
384 ubifs_copy_hash(c
, c
->mst_node
->hash_root_idx
, c
->zroot
.hash
);
386 c
->calc_idx_sz
= c
->bi
.old_idx_sz
;
388 if (c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_NO_ORPHS
))
391 if (old_leb_cnt
!= c
->leb_cnt
) {
392 /* The file system has been resized */
393 int growth
= c
->leb_cnt
- old_leb_cnt
;
395 if (c
->leb_cnt
< old_leb_cnt
||
396 c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
397 ubifs_err(c
, "bad leb_cnt on master node");
398 ubifs_dump_node(c
, c
->mst_node
, c
->mst_node_alsz
);
402 dbg_mnt("Auto resizing (master) from %d LEBs to %d LEBs",
403 old_leb_cnt
, c
->leb_cnt
);
404 c
->lst
.empty_lebs
+= growth
;
405 c
->lst
.total_free
+= growth
* (long long)c
->leb_size
;
406 c
->lst
.total_dark
+= growth
* (long long)c
->dark_wm
;
409 * Reflect changes back onto the master node. N.B. the master
410 * node gets written immediately whenever mounting (or
411 * remounting) in read-write mode, so we do not need to write it
414 c
->mst_node
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
415 c
->mst_node
->empty_lebs
= cpu_to_le32(c
->lst
.empty_lebs
);
416 c
->mst_node
->total_free
= cpu_to_le64(c
->lst
.total_free
);
417 c
->mst_node
->total_dark
= cpu_to_le64(c
->lst
.total_dark
);
420 err
= validate_master(c
);
424 err
= dbg_old_index_check_init(c
, &c
->zroot
);
430 * ubifs_write_master - write master node.
431 * @c: UBIFS file-system description object
433 * This function writes the master node. Returns zero in case of success and a
434 * negative error code in case of failure. The master node is written twice to
437 int ubifs_write_master(struct ubifs_info
*c
)
439 int err
, lnum
, offs
, len
;
441 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
445 lnum
= UBIFS_MST_LNUM
;
446 offs
= c
->mst_offs
+ c
->mst_node_alsz
;
447 len
= UBIFS_MST_NODE_SZ
;
449 if (offs
+ UBIFS_MST_NODE_SZ
> c
->leb_size
) {
450 err
= ubifs_leb_unmap(c
, lnum
);
457 c
->mst_node
->highest_inum
= cpu_to_le64(c
->highest_inum
);
459 ubifs_copy_hash(c
, c
->zroot
.hash
, c
->mst_node
->hash_root_idx
);
460 err
= ubifs_write_node_hmac(c
, c
->mst_node
, len
, lnum
, offs
,
461 offsetof(struct ubifs_mst_node
, hmac
));
468 err
= ubifs_leb_unmap(c
, lnum
);
472 err
= ubifs_write_node_hmac(c
, c
->mst_node
, len
, lnum
, offs
,
473 offsetof(struct ubifs_mst_node
, hmac
));