1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/fs_context.h>
23 #include <linux/fs_parser.h>
24 #include <linux/seq_file.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
29 static int ubifs_default_version_set(const char *val
, const struct kernel_param
*kp
)
33 ret
= kstrtoint(val
, 10, &n
);
34 if (ret
!= 0 || n
< 4 || n
> UBIFS_FORMAT_VERSION
)
36 return param_set_int(val
, kp
);
39 static const struct kernel_param_ops ubifs_default_version_ops
= {
40 .set
= ubifs_default_version_set
,
44 int ubifs_default_version
= UBIFS_FORMAT_VERSION
;
45 module_param_cb(default_version
, &ubifs_default_version_ops
, &ubifs_default_version
, 0600);
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
51 #define UBIFS_KMALLOC_OK (128*1024)
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache
*ubifs_inode_slab
;
56 /* UBIFS TNC shrinker description */
57 static struct shrinker
*ubifs_shrinker_info
;
60 * validate_inode - validate inode.
61 * @c: UBIFS file-system description object
62 * @inode: the inode to validate
64 * This is a helper function for 'ubifs_iget()' which validates various fields
65 * of a newly built inode to make sure they contain sane values and prevent
66 * possible vulnerabilities. Returns zero if the inode is all right and
67 * a non-zero error code if not.
69 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
72 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
74 if (inode
->i_size
> c
->max_inode_sz
) {
75 ubifs_err(c
, "inode is too large (%lld)",
76 (long long)inode
->i_size
);
80 if (ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
81 ubifs_err(c
, "unknown compression type %d", ui
->compr_type
);
85 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
88 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
91 if (ui
->xattr
&& !S_ISREG(inode
->i_mode
))
94 if (!ubifs_compr_present(c
, ui
->compr_type
)) {
95 ubifs_warn(c
, "inode %lu uses '%s' compression, but it was not compiled in",
96 inode
->i_ino
, ubifs_compr_name(c
, ui
->compr_type
));
99 err
= dbg_check_dir(c
, inode
);
103 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
107 struct ubifs_ino_node
*ino
;
108 struct ubifs_info
*c
= sb
->s_fs_info
;
110 struct ubifs_inode
*ui
;
112 dbg_gen("inode %lu", inum
);
114 inode
= iget_locked(sb
, inum
);
116 return ERR_PTR(-ENOMEM
);
117 if (!(inode
->i_state
& I_NEW
))
119 ui
= ubifs_inode(inode
);
121 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
127 ino_key_init(c
, &key
, inode
->i_ino
);
129 err
= ubifs_tnc_lookup(c
, &key
, ino
);
133 inode
->i_flags
|= S_NOCMTIME
;
135 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
136 inode
->i_flags
|= S_NOATIME
;
138 set_nlink(inode
, le32_to_cpu(ino
->nlink
));
139 i_uid_write(inode
, le32_to_cpu(ino
->uid
));
140 i_gid_write(inode
, le32_to_cpu(ino
->gid
));
141 inode_set_atime(inode
, (int64_t)le64_to_cpu(ino
->atime_sec
),
142 le32_to_cpu(ino
->atime_nsec
));
143 inode_set_mtime(inode
, (int64_t)le64_to_cpu(ino
->mtime_sec
),
144 le32_to_cpu(ino
->mtime_nsec
));
145 inode_set_ctime(inode
, (int64_t)le64_to_cpu(ino
->ctime_sec
),
146 le32_to_cpu(ino
->ctime_nsec
));
147 inode
->i_mode
= le32_to_cpu(ino
->mode
);
148 inode
->i_size
= le64_to_cpu(ino
->size
);
150 ui
->data_len
= le32_to_cpu(ino
->data_len
);
151 ui
->flags
= le32_to_cpu(ino
->flags
);
152 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
153 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
154 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
155 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
156 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
157 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
159 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
161 err
= validate_inode(c
, inode
);
165 switch (inode
->i_mode
& S_IFMT
) {
167 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
168 inode
->i_op
= &ubifs_file_inode_operations
;
169 inode
->i_fop
= &ubifs_file_operations
;
171 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
176 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
177 ((char *)ui
->data
)[ui
->data_len
] = '\0';
178 } else if (ui
->data_len
!= 0) {
184 inode
->i_op
= &ubifs_dir_inode_operations
;
185 inode
->i_fop
= &ubifs_dir_operations
;
186 if (ui
->data_len
!= 0) {
192 inode
->i_op
= &ubifs_symlink_inode_operations
;
193 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
197 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
202 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
203 ((char *)ui
->data
)[ui
->data_len
] = '\0';
209 union ubifs_dev_desc
*dev
;
211 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
217 dev
= (union ubifs_dev_desc
*)ino
->data
;
218 if (ui
->data_len
== sizeof(dev
->new))
219 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
220 else if (ui
->data_len
== sizeof(dev
->huge
))
221 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
226 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
227 inode
->i_op
= &ubifs_file_inode_operations
;
228 init_special_inode(inode
, inode
->i_mode
, rdev
);
233 inode
->i_op
= &ubifs_file_inode_operations
;
234 init_special_inode(inode
, inode
->i_mode
, 0);
235 if (ui
->data_len
!= 0) {
246 ubifs_set_inode_flags(inode
);
247 unlock_new_inode(inode
);
251 ubifs_err(c
, "inode %lu validation failed, error %d", inode
->i_ino
, err
);
252 ubifs_dump_node(c
, ino
, UBIFS_MAX_INO_NODE_SZ
);
253 ubifs_dump_inode(c
, inode
);
258 ubifs_err(c
, "failed to read inode %lu, error %d", inode
->i_ino
, err
);
263 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
265 struct ubifs_inode
*ui
;
267 ui
= alloc_inode_sb(sb
, ubifs_inode_slab
, GFP_NOFS
);
271 memset((void *)ui
+ sizeof(struct inode
), 0,
272 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
273 mutex_init(&ui
->ui_mutex
);
274 init_rwsem(&ui
->xattr_sem
);
275 spin_lock_init(&ui
->ui_lock
);
276 return &ui
->vfs_inode
;
279 static void ubifs_free_inode(struct inode
*inode
)
281 struct ubifs_inode
*ui
= ubifs_inode(inode
);
284 fscrypt_free_inode(inode
);
286 kmem_cache_free(ubifs_inode_slab
, ui
);
290 * Note, Linux write-back code calls this without 'i_mutex'.
292 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
295 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
296 struct ubifs_inode
*ui
= ubifs_inode(inode
);
298 ubifs_assert(c
, !ui
->xattr
);
299 if (is_bad_inode(inode
))
302 mutex_lock(&ui
->ui_mutex
);
304 * Due to races between write-back forced by budgeting
305 * (see 'sync_some_inodes()') and background write-back, the inode may
306 * have already been synchronized, do not do this again. This might
307 * also happen if it was synchronized in an VFS operation, e.g.
311 mutex_unlock(&ui
->ui_mutex
);
316 * As an optimization, do not write orphan inodes to the media just
317 * because this is not needed.
319 dbg_gen("inode %lu, mode %#x, nlink %u",
320 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
321 if (inode
->i_nlink
) {
322 err
= ubifs_jnl_write_inode(c
, inode
);
324 ubifs_err(c
, "can't write inode %lu, error %d",
327 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
331 mutex_unlock(&ui
->ui_mutex
);
332 ubifs_release_dirty_inode_budget(c
, ui
);
336 static int ubifs_drop_inode(struct inode
*inode
)
338 int drop
= generic_drop_inode(inode
);
341 drop
= fscrypt_drop_inode(inode
);
346 static void ubifs_evict_inode(struct inode
*inode
)
349 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
350 struct ubifs_inode
*ui
= ubifs_inode(inode
);
354 * Extended attribute inode deletions are fully handled in
355 * 'ubifs_removexattr()'. These inodes are special and have
356 * limited usage, so there is nothing to do here.
360 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
361 ubifs_assert(c
, !atomic_read(&inode
->i_count
));
363 truncate_inode_pages_final(&inode
->i_data
);
368 if (is_bad_inode(inode
))
371 ui
->ui_size
= inode
->i_size
= 0;
372 err
= ubifs_jnl_delete_inode(c
, inode
);
375 * Worst case we have a lost orphan inode wasting space, so a
376 * simple error message is OK here.
378 ubifs_err(c
, "can't delete inode %lu, error %d",
383 ubifs_release_dirty_inode_budget(c
, ui
);
385 /* We've deleted something - clean the "no space" flags */
386 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
391 fscrypt_put_encryption_info(inode
);
394 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
396 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
397 struct ubifs_inode
*ui
= ubifs_inode(inode
);
399 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
402 dbg_gen("inode %lu", inode
->i_ino
);
406 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
408 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
409 unsigned long long free
;
410 __le32
*uuid
= (__le32
*)c
->uuid
;
412 free
= ubifs_get_free_space(c
);
413 dbg_gen("free space %lld bytes (%lld blocks)",
414 free
, free
>> UBIFS_BLOCK_SHIFT
);
416 buf
->f_type
= UBIFS_SUPER_MAGIC
;
417 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
418 buf
->f_blocks
= c
->block_cnt
;
419 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
420 if (free
> c
->report_rp_size
)
421 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
426 buf
->f_namelen
= UBIFS_MAX_NLEN
;
427 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
428 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
429 ubifs_assert(c
, buf
->f_bfree
<= c
->block_cnt
);
433 static int ubifs_show_options(struct seq_file
*s
, struct dentry
*root
)
435 struct ubifs_info
*c
= root
->d_sb
->s_fs_info
;
437 if (c
->mount_opts
.unmount_mode
== 2)
438 seq_puts(s
, ",fast_unmount");
439 else if (c
->mount_opts
.unmount_mode
== 1)
440 seq_puts(s
, ",norm_unmount");
442 if (c
->mount_opts
.bulk_read
== 2)
443 seq_puts(s
, ",bulk_read");
444 else if (c
->mount_opts
.bulk_read
== 1)
445 seq_puts(s
, ",no_bulk_read");
447 if (c
->mount_opts
.chk_data_crc
== 2)
448 seq_puts(s
, ",chk_data_crc");
449 else if (c
->mount_opts
.chk_data_crc
== 1)
450 seq_puts(s
, ",no_chk_data_crc");
452 if (c
->mount_opts
.override_compr
) {
453 seq_printf(s
, ",compr=%s",
454 ubifs_compr_name(c
, c
->mount_opts
.compr_type
));
457 seq_printf(s
, ",assert=%s", ubifs_assert_action_name(c
));
458 seq_printf(s
, ",ubi=%d,vol=%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
463 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
466 struct ubifs_info
*c
= sb
->s_fs_info
;
469 * Zero @wait is just an advisory thing to help the file system shove
470 * lots of data into the queues, and there will be the second
471 * '->sync_fs()' call, with non-zero @wait.
477 * Synchronize write buffers, because 'ubifs_run_commit()' does not
478 * do this if it waits for an already running commit.
480 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
481 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
487 * Strictly speaking, it is not necessary to commit the journal here,
488 * synchronizing write-buffers would be enough. But committing makes
489 * UBIFS free space predictions much more accurate, so we want to let
490 * the user be able to get more accurate results of 'statfs()' after
491 * they synchronize the file system.
493 err
= ubifs_run_commit(c
);
497 return ubi_sync(c
->vi
.ubi_num
);
501 * init_constants_early - initialize UBIFS constants.
502 * @c: UBIFS file-system description object
504 * This function initialize UBIFS constants which do not need the superblock to
505 * be read. It also checks that the UBI volume satisfies basic UBIFS
506 * requirements. Returns zero in case of success and a negative error code in
509 static int init_constants_early(struct ubifs_info
*c
)
511 if (c
->vi
.corrupted
) {
512 ubifs_warn(c
, "UBI volume is corrupted - read-only mode");
517 ubifs_msg(c
, "read-only UBI device");
521 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
522 ubifs_msg(c
, "static UBI volume - read-only mode");
526 c
->leb_cnt
= c
->vi
.size
;
527 c
->leb_size
= c
->vi
.usable_leb_size
;
528 c
->leb_start
= c
->di
.leb_start
;
529 c
->half_leb_size
= c
->leb_size
/ 2;
530 c
->min_io_size
= c
->di
.min_io_size
;
531 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
532 c
->max_write_size
= c
->di
.max_write_size
;
533 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
535 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
536 ubifs_errc(c
, "too small LEBs (%d bytes), min. is %d bytes",
537 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
541 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
542 ubifs_errc(c
, "too few LEBs (%d), min. is %d",
543 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
547 if (!is_power_of_2(c
->min_io_size
)) {
548 ubifs_errc(c
, "bad min. I/O size %d", c
->min_io_size
);
553 * Maximum write size has to be greater or equivalent to min. I/O
554 * size, and be multiple of min. I/O size.
556 if (c
->max_write_size
< c
->min_io_size
||
557 c
->max_write_size
% c
->min_io_size
||
558 !is_power_of_2(c
->max_write_size
)) {
559 ubifs_errc(c
, "bad write buffer size %d for %d min. I/O unit",
560 c
->max_write_size
, c
->min_io_size
);
565 * UBIFS aligns all node to 8-byte boundary, so to make function in
566 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
569 if (c
->min_io_size
< 8) {
572 if (c
->max_write_size
< c
->min_io_size
) {
573 c
->max_write_size
= c
->min_io_size
;
574 c
->max_write_shift
= c
->min_io_shift
;
578 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
579 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
582 * Initialize node length ranges which are mostly needed for node
585 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
586 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
587 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
588 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
589 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
590 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
591 c
->ranges
[UBIFS_AUTH_NODE
].min_len
= UBIFS_AUTH_NODE_SZ
;
592 c
->ranges
[UBIFS_AUTH_NODE
].max_len
= UBIFS_AUTH_NODE_SZ
+
594 c
->ranges
[UBIFS_SIG_NODE
].min_len
= UBIFS_SIG_NODE_SZ
;
595 c
->ranges
[UBIFS_SIG_NODE
].max_len
= c
->leb_size
- UBIFS_SB_NODE_SZ
;
597 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
598 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
599 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
600 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
601 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
602 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
603 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
604 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
605 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
606 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
607 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
609 * Minimum indexing node size is amended later when superblock is
610 * read and the key length is known.
612 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
614 * Maximum indexing node size is amended later when superblock is
615 * read and the fanout is known.
617 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
620 * Initialize dead and dark LEB space watermarks. See gc.c for comments
621 * about these values.
623 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
624 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
627 * Calculate how many bytes would be wasted at the end of LEB if it was
628 * fully filled with data nodes of maximum size. This is used in
629 * calculations when reporting free space.
631 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
633 /* Buffer size for bulk-reads */
634 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
635 if (c
->max_bu_buf_len
> c
->leb_size
)
636 c
->max_bu_buf_len
= c
->leb_size
;
638 /* Log is ready, preserve one LEB for commits. */
639 c
->min_log_bytes
= c
->leb_size
;
645 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
646 * @c: UBIFS file-system description object
647 * @lnum: LEB the write-buffer was synchronized to
648 * @free: how many free bytes left in this LEB
649 * @pad: how many bytes were padded
651 * This is a callback function which is called by the I/O unit when the
652 * write-buffer is synchronized. We need this to correctly maintain space
653 * accounting in bud logical eraseblocks. This function returns zero in case of
654 * success and a negative error code in case of failure.
656 * This function actually belongs to the journal, but we keep it here because
657 * we want to keep it static.
659 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
661 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
665 * init_constants_sb - initialize UBIFS constants.
666 * @c: UBIFS file-system description object
668 * This is a helper function which initializes various UBIFS constants after
669 * the superblock has been read. It also checks various UBIFS parameters and
670 * makes sure they are all right. Returns zero in case of success and a
671 * negative error code in case of failure.
673 static int init_constants_sb(struct ubifs_info
*c
)
678 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
679 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
680 c
->fanout
* sizeof(struct ubifs_zbranch
);
682 tmp
= ubifs_idx_node_sz(c
, 1);
683 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
684 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
686 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
687 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
688 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
690 /* Make sure LEB size is large enough to fit full commit */
691 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
692 tmp
= ALIGN(tmp
, c
->min_io_size
);
693 if (tmp
> c
->leb_size
) {
694 ubifs_err(c
, "too small LEB size %d, at least %d needed",
700 * Make sure that the log is large enough to fit reference nodes for
701 * all buds plus one reserved LEB.
703 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
704 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
705 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
708 if (c
->log_lebs
< tmp
) {
709 ubifs_err(c
, "too small log %d LEBs, required min. %d LEBs",
715 * When budgeting we assume worst-case scenarios when the pages are not
716 * be compressed and direntries are of the maximum size.
718 * Note, data, which may be stored in inodes is budgeted separately, so
719 * it is not included into 'c->bi.inode_budget'.
721 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
722 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
723 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
726 * When the amount of flash space used by buds becomes
727 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
728 * The writers are unblocked when the commit is finished. To avoid
729 * writers to be blocked UBIFS initiates background commit in advance,
730 * when number of bud bytes becomes above the limit defined below.
732 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
735 * Ensure minimum journal size. All the bytes in the journal heads are
736 * considered to be used, when calculating the current journal usage.
737 * Consequently, if the journal is too small, UBIFS will treat it as
740 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
741 if (c
->bg_bud_bytes
< tmp64
)
742 c
->bg_bud_bytes
= tmp64
;
743 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
744 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
746 err
= ubifs_calc_lpt_geom(c
);
750 /* Initialize effective LEB size used in budgeting calculations */
751 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
756 * init_constants_master - initialize UBIFS constants.
757 * @c: UBIFS file-system description object
759 * This is a helper function which initializes various UBIFS constants after
760 * the master node has been read. It also checks various UBIFS parameters and
761 * makes sure they are all right.
763 static void init_constants_master(struct ubifs_info
*c
)
767 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
768 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
771 * Calculate total amount of FS blocks. This number is not used
772 * internally because it does not make much sense for UBIFS, but it is
773 * necessary to report something for the 'statfs()' call.
775 * Subtract the LEB reserved for GC, the LEB which is reserved for
776 * deletions, minimum LEBs for the index, and assume only one journal
779 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
780 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
781 tmp64
= ubifs_reported_space(c
, tmp64
);
782 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
786 * take_gc_lnum - reserve GC LEB.
787 * @c: UBIFS file-system description object
789 * This function ensures that the LEB reserved for garbage collection is marked
790 * as "taken" in lprops. We also have to set free space to LEB size and dirty
791 * space to zero, because lprops may contain out-of-date information if the
792 * file-system was un-mounted before it has been committed. This function
793 * returns zero in case of success and a negative error code in case of
796 static int take_gc_lnum(struct ubifs_info
*c
)
800 if (c
->gc_lnum
== -1) {
801 ubifs_err(c
, "no LEB for GC");
805 /* And we have to tell lprops that this LEB is taken */
806 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
812 * alloc_wbufs - allocate write-buffers.
813 * @c: UBIFS file-system description object
815 * This helper function allocates and initializes UBIFS write-buffers. Returns
816 * zero in case of success and %-ENOMEM in case of failure.
818 static int alloc_wbufs(struct ubifs_info
*c
)
822 c
->jheads
= kcalloc(c
->jhead_cnt
, sizeof(struct ubifs_jhead
),
827 /* Initialize journal heads */
828 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
829 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
830 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
834 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
835 c
->jheads
[i
].wbuf
.jhead
= i
;
836 c
->jheads
[i
].grouped
= 1;
837 c
->jheads
[i
].log_hash
= ubifs_hash_get_desc(c
);
838 if (IS_ERR(c
->jheads
[i
].log_hash
)) {
839 err
= PTR_ERR(c
->jheads
[i
].log_hash
);
845 * Garbage Collector head does not need to be synchronized by timer.
846 * Also GC head nodes are not grouped.
848 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
849 c
->jheads
[GCHD
].grouped
= 0;
854 kfree(c
->jheads
[i
].wbuf
.buf
);
855 kfree(c
->jheads
[i
].wbuf
.inodes
);
859 kfree(c
->jheads
[i
].wbuf
.buf
);
860 kfree(c
->jheads
[i
].wbuf
.inodes
);
861 kfree(c
->jheads
[i
].log_hash
);
870 * free_wbufs - free write-buffers.
871 * @c: UBIFS file-system description object
873 static void free_wbufs(struct ubifs_info
*c
)
878 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
879 kfree(c
->jheads
[i
].wbuf
.buf
);
880 kfree(c
->jheads
[i
].wbuf
.inodes
);
881 kfree(c
->jheads
[i
].log_hash
);
889 * free_orphans - free orphans.
890 * @c: UBIFS file-system description object
892 static void free_orphans(struct ubifs_info
*c
)
894 struct ubifs_orphan
*orph
;
896 while (c
->orph_dnext
) {
897 orph
= c
->orph_dnext
;
898 c
->orph_dnext
= orph
->dnext
;
899 list_del(&orph
->list
);
903 while (!list_empty(&c
->orph_list
)) {
904 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
905 list_del(&orph
->list
);
907 ubifs_err(c
, "orphan list not empty at unmount");
915 * free_buds - free per-bud objects.
916 * @c: UBIFS file-system description object
918 static void free_buds(struct ubifs_info
*c
)
920 struct ubifs_bud
*bud
, *n
;
922 rbtree_postorder_for_each_entry_safe(bud
, n
, &c
->buds
, rb
) {
923 kfree(bud
->log_hash
);
929 * check_volume_empty - check if the UBI volume is empty.
930 * @c: UBIFS file-system description object
932 * This function checks if the UBIFS volume is empty by looking if its LEBs are
933 * mapped or not. The result of checking is stored in the @c->empty variable.
934 * Returns zero in case of success and a negative error code in case of
937 static int check_volume_empty(struct ubifs_info
*c
)
942 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
943 err
= ubifs_is_mapped(c
, lnum
);
944 if (unlikely(err
< 0))
958 * UBIFS mount options.
960 * Opt_fast_unmount: do not run a journal commit before un-mounting
961 * Opt_norm_unmount: run a journal commit before un-mounting
962 * Opt_bulk_read: enable bulk-reads
963 * Opt_no_bulk_read: disable bulk-reads
964 * Opt_chk_data_crc: check CRCs when reading data nodes
965 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
966 * Opt_override_compr: override default compressor
967 * Opt_assert: set ubifs_assert() action
968 * Opt_auth_key: The key name used for authentication
969 * Opt_auth_hash_name: The hash type used for authentication
970 * Opt_err: just end of array marker
986 static const struct constant_table ubifs_param_compr
[] = {
987 { "none", UBIFS_COMPR_NONE
},
988 { "lzo", UBIFS_COMPR_LZO
},
989 { "zlib", UBIFS_COMPR_ZLIB
},
990 { "zstd", UBIFS_COMPR_ZSTD
},
994 static const struct constant_table ubifs_param_assert
[] = {
995 { "report", ASSACT_REPORT
},
996 { "read-only", ASSACT_RO
},
997 { "panic", ASSACT_PANIC
},
1001 static const struct fs_parameter_spec ubifs_fs_param_spec
[] = {
1002 fsparam_flag ("fast_unmount", Opt_fast_unmount
),
1003 fsparam_flag ("norm_unmount", Opt_norm_unmount
),
1004 fsparam_flag ("bulk_read", Opt_bulk_read
),
1005 fsparam_flag ("no_bulk_read", Opt_no_bulk_read
),
1006 fsparam_flag ("chk_data_crc", Opt_chk_data_crc
),
1007 fsparam_flag ("no_chk_data_crc", Opt_no_chk_data_crc
),
1008 fsparam_enum ("compr", Opt_override_compr
, ubifs_param_compr
),
1009 fsparam_enum ("assert", Opt_assert
, ubifs_param_assert
),
1010 fsparam_string ("auth_key", Opt_auth_key
),
1011 fsparam_string ("auth_hash_name", Opt_auth_hash_name
),
1012 fsparam_string ("ubi", Opt_ignore
),
1013 fsparam_string ("vol", Opt_ignore
),
1017 struct ubifs_fs_context
{
1018 struct ubifs_mount_opts mount_opts
;
1019 char *auth_key_name
;
1020 char *auth_hash_name
;
1021 unsigned int no_chk_data_crc
:1;
1022 unsigned int bulk_read
:1;
1023 unsigned int default_compr
:2;
1024 unsigned int assert_action
:2;
1028 * ubifs_parse_param - parse a parameter.
1029 * @fc: the filesystem context
1030 * @param: the parameter to parse
1032 * This function parses UBIFS mount options and returns zero in case success
1033 * and a negative error code in case of failure.
1035 static int ubifs_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1037 struct ubifs_fs_context
*ctx
= fc
->fs_private
;
1038 struct fs_parse_result result
;
1039 bool is_remount
= (fc
->purpose
& FS_CONTEXT_FOR_RECONFIGURE
);
1042 opt
= fs_parse(fc
, ubifs_fs_param_spec
, param
, &result
);
1048 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1049 * We accept them in order to be backward-compatible. But this
1050 * should be removed at some point.
1052 case Opt_fast_unmount
:
1053 ctx
->mount_opts
.unmount_mode
= 2;
1055 case Opt_norm_unmount
:
1056 ctx
->mount_opts
.unmount_mode
= 1;
1059 ctx
->mount_opts
.bulk_read
= 2;
1062 case Opt_no_bulk_read
:
1063 ctx
->mount_opts
.bulk_read
= 1;
1066 case Opt_chk_data_crc
:
1067 ctx
->mount_opts
.chk_data_crc
= 2;
1068 ctx
->no_chk_data_crc
= 0;
1070 case Opt_no_chk_data_crc
:
1071 ctx
->mount_opts
.chk_data_crc
= 1;
1072 ctx
->no_chk_data_crc
= 1;
1074 case Opt_override_compr
:
1075 ctx
->mount_opts
.compr_type
= result
.uint_32
;
1076 ctx
->mount_opts
.override_compr
= 1;
1077 ctx
->default_compr
= ctx
->mount_opts
.compr_type
;
1080 ctx
->assert_action
= result
.uint_32
;
1084 kfree(ctx
->auth_key_name
);
1085 ctx
->auth_key_name
= param
->string
;
1086 param
->string
= NULL
;
1089 case Opt_auth_hash_name
:
1091 kfree(ctx
->auth_hash_name
);
1092 ctx
->auth_hash_name
= param
->string
;
1093 param
->string
= NULL
;
1104 * ubifs_release_options - release mount parameters which have been dumped.
1105 * @c: UBIFS file-system description object
1107 static void ubifs_release_options(struct ubifs_info
*c
)
1109 kfree(c
->auth_key_name
);
1110 c
->auth_key_name
= NULL
;
1111 kfree(c
->auth_hash_name
);
1112 c
->auth_hash_name
= NULL
;
1116 * destroy_journal - destroy journal data structures.
1117 * @c: UBIFS file-system description object
1119 * This function destroys journal data structures including those that may have
1120 * been created by recovery functions.
1122 static void destroy_journal(struct ubifs_info
*c
)
1124 while (!list_empty(&c
->unclean_leb_list
)) {
1125 struct ubifs_unclean_leb
*ucleb
;
1127 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1128 struct ubifs_unclean_leb
, list
);
1129 list_del(&ucleb
->list
);
1132 while (!list_empty(&c
->old_buds
)) {
1133 struct ubifs_bud
*bud
;
1135 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1136 list_del(&bud
->list
);
1137 kfree(bud
->log_hash
);
1140 ubifs_destroy_idx_gc(c
);
1141 ubifs_destroy_size_tree(c
);
1147 * bu_init - initialize bulk-read information.
1148 * @c: UBIFS file-system description object
1150 static void bu_init(struct ubifs_info
*c
)
1152 ubifs_assert(c
, c
->bulk_read
== 1);
1155 return; /* Already initialized */
1158 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1160 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1161 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1165 /* Just disable bulk-read */
1166 ubifs_warn(c
, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1168 c
->mount_opts
.bulk_read
= 1;
1175 * check_free_space - check if there is enough free space to mount.
1176 * @c: UBIFS file-system description object
1178 * This function makes sure UBIFS has enough free space to be mounted in
1179 * read/write mode. UBIFS must always have some free space to allow deletions.
1181 static int check_free_space(struct ubifs_info
*c
)
1183 ubifs_assert(c
, c
->dark_wm
> 0);
1184 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1185 ubifs_err(c
, "insufficient free space to mount in R/W mode");
1186 ubifs_dump_budg(c
, &c
->bi
);
1187 ubifs_dump_lprops(c
);
1194 * mount_ubifs - mount UBIFS file-system.
1195 * @c: UBIFS file-system description object
1197 * This function mounts UBIFS file system. Returns zero in case of success and
1198 * a negative error code in case of failure.
1200 static int mount_ubifs(struct ubifs_info
*c
)
1206 c
->ro_mount
= !!sb_rdonly(c
->vfs_sb
);
1207 /* Suppress error messages while probing if SB_SILENT is set */
1208 c
->probing
= !!(c
->vfs_sb
->s_flags
& SB_SILENT
);
1210 err
= init_constants_early(c
);
1214 err
= ubifs_debugging_init(c
);
1218 err
= ubifs_sysfs_register(c
);
1222 err
= check_volume_empty(c
);
1226 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1228 * This UBI volume is empty, and read-only, or the file system
1229 * is mounted read-only - we cannot format it.
1231 ubifs_err(c
, "can't format empty UBI volume: read-only %s",
1232 c
->ro_media
? "UBI volume" : "mount");
1237 if (c
->ro_media
&& !c
->ro_mount
) {
1238 ubifs_err(c
, "cannot mount read-write - read-only media");
1244 * The requirement for the buffer is that it should fit indexing B-tree
1245 * height amount of integers. We assume the height if the TNC tree will
1249 c
->bottom_up_buf
= kmalloc_array(BOTTOM_UP_HEIGHT
, sizeof(int),
1251 if (!c
->bottom_up_buf
)
1254 c
->sbuf
= vmalloc(c
->leb_size
);
1259 c
->ileb_buf
= vmalloc(c
->leb_size
);
1264 if (c
->bulk_read
== 1)
1268 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1269 UBIFS_CIPHER_BLOCK_SIZE
,
1271 if (!c
->write_reserve_buf
)
1277 if (c
->auth_key_name
) {
1278 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION
)) {
1279 err
= ubifs_init_authentication(c
);
1283 ubifs_err(c
, "auth_key_name, but UBIFS is built without"
1284 " authentication support");
1290 err
= ubifs_read_superblock(c
);
1297 * Make sure the compressor which is set as default in the superblock
1298 * or overridden by mount options is actually compiled in.
1300 if (!ubifs_compr_present(c
, c
->default_compr
)) {
1301 ubifs_err(c
, "'compressor \"%s\" is not compiled in",
1302 ubifs_compr_name(c
, c
->default_compr
));
1307 err
= init_constants_sb(c
);
1311 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
) * 2;
1312 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1318 err
= alloc_wbufs(c
);
1322 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1324 /* Create background thread */
1325 c
->bgt
= kthread_run(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1326 if (IS_ERR(c
->bgt
)) {
1327 err
= PTR_ERR(c
->bgt
);
1329 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1335 err
= ubifs_read_master(c
);
1339 init_constants_master(c
);
1341 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1342 ubifs_msg(c
, "recovery needed");
1343 c
->need_recovery
= 1;
1346 if (c
->need_recovery
&& !c
->ro_mount
) {
1347 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1352 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1356 if (!c
->ro_mount
&& c
->space_fixup
) {
1357 err
= ubifs_fixup_free_space(c
);
1362 if (!c
->ro_mount
&& !c
->need_recovery
) {
1364 * Set the "dirty" flag so that if we reboot uncleanly we
1365 * will notice this immediately on the next mount.
1367 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1368 err
= ubifs_write_master(c
);
1374 * Handle offline signed images: Now that the master node is
1375 * written and its validation no longer depends on the hash
1376 * in the superblock, we can update the offline signed
1377 * superblock with a HMAC version,
1379 if (ubifs_authenticated(c
) && ubifs_hmac_zero(c
, c
->sup_node
->hmac
)) {
1380 err
= ubifs_hmac_wkm(c
, c
->sup_node
->hmac_wkm
);
1383 c
->superblock_need_write
= 1;
1386 if (!c
->ro_mount
&& c
->superblock_need_write
) {
1387 err
= ubifs_write_sb_node(c
, c
->sup_node
);
1390 c
->superblock_need_write
= 0;
1393 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1397 err
= ubifs_replay_journal(c
);
1401 /* Calculate 'min_idx_lebs' after journal replay */
1402 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1404 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1411 err
= check_free_space(c
);
1415 /* Check for enough log space */
1416 lnum
= c
->lhead_lnum
+ 1;
1417 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1418 lnum
= UBIFS_LOG_LNUM
;
1419 if (lnum
== c
->ltail_lnum
) {
1420 err
= ubifs_consolidate_log(c
);
1425 if (c
->need_recovery
) {
1426 if (!ubifs_authenticated(c
)) {
1427 err
= ubifs_recover_size(c
, true);
1432 err
= ubifs_rcvry_gc_commit(c
);
1436 if (ubifs_authenticated(c
)) {
1437 err
= ubifs_recover_size(c
, false);
1442 err
= take_gc_lnum(c
);
1447 * GC LEB may contain garbage if there was an unclean
1448 * reboot, and it should be un-mapped.
1450 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1455 err
= dbg_check_lprops(c
);
1458 } else if (c
->need_recovery
) {
1459 err
= ubifs_recover_size(c
, false);
1464 * Even if we mount read-only, we have to set space in GC LEB
1465 * to proper value because this affects UBIFS free space
1466 * reporting. We do not want to have a situation when
1467 * re-mounting from R/O to R/W changes amount of free space.
1469 err
= take_gc_lnum(c
);
1474 spin_lock(&ubifs_infos_lock
);
1475 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1476 spin_unlock(&ubifs_infos_lock
);
1478 if (c
->need_recovery
) {
1480 ubifs_msg(c
, "recovery deferred");
1482 c
->need_recovery
= 0;
1483 ubifs_msg(c
, "recovery completed");
1485 * GC LEB has to be empty and taken at this point. But
1486 * the journal head LEBs may also be accounted as
1487 * "empty taken" if they are empty.
1489 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1492 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1494 err
= dbg_check_filesystem(c
);
1498 dbg_debugfs_init_fs(c
);
1502 ubifs_msg(c
, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1503 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
,
1504 c
->ro_mount
? ", R/O mode" : "");
1505 x
= (long long)c
->main_lebs
* c
->leb_size
;
1506 y
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1507 ubifs_msg(c
, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1508 c
->leb_size
, c
->leb_size
>> 10, c
->min_io_size
,
1510 ubifs_msg(c
, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1511 x
, x
>> 20, c
->main_lebs
, c
->max_leb_cnt
,
1512 y
, y
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1513 ubifs_msg(c
, "reserved for root: %llu bytes (%llu KiB)",
1514 c
->report_rp_size
, c
->report_rp_size
>> 10);
1515 ubifs_msg(c
, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1516 c
->fmt_version
, c
->ro_compat_version
,
1517 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
, c
->uuid
,
1518 c
->big_lpt
? ", big LPT model" : ", small LPT model");
1520 dbg_gen("default compressor: %s", ubifs_compr_name(c
, c
->default_compr
));
1521 dbg_gen("data journal heads: %d",
1522 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1523 dbg_gen("log LEBs: %d (%d - %d)",
1524 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1525 dbg_gen("LPT area LEBs: %d (%d - %d)",
1526 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1527 dbg_gen("orphan area LEBs: %d (%d - %d)",
1528 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1529 dbg_gen("main area LEBs: %d (%d - %d)",
1530 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1531 dbg_gen("index LEBs: %d", c
->lst
.idx_lebs
);
1532 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)",
1533 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1534 c
->bi
.old_idx_sz
>> 20);
1535 dbg_gen("key hash type: %d", c
->key_hash_type
);
1536 dbg_gen("tree fanout: %d", c
->fanout
);
1537 dbg_gen("reserved GC LEB: %d", c
->gc_lnum
);
1538 dbg_gen("max. znode size %d", c
->max_znode_sz
);
1539 dbg_gen("max. index node size %d", c
->max_idx_node_sz
);
1540 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1541 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1542 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1543 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1544 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1545 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1546 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1547 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1548 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1549 dbg_gen("dead watermark: %d", c
->dead_wm
);
1550 dbg_gen("dark watermark: %d", c
->dark_wm
);
1551 dbg_gen("LEB overhead: %d", c
->leb_overhead
);
1552 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1553 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1554 x
, x
>> 10, x
>> 20);
1555 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1556 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1557 c
->max_bud_bytes
>> 20);
1558 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1559 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1560 c
->bg_bud_bytes
>> 20);
1561 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1562 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1563 dbg_gen("max. seq. number: %llu", c
->max_sqnum
);
1564 dbg_gen("commit number: %llu", c
->cmt_no
);
1565 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c
));
1566 dbg_gen("max orphans: %d", c
->max_orphans
);
1571 spin_lock(&ubifs_infos_lock
);
1572 list_del(&c
->infos_list
);
1573 spin_unlock(&ubifs_infos_lock
);
1579 ubifs_lpt_free(c
, 0);
1582 kfree(c
->rcvrd_mst_node
);
1584 kthread_stop(c
->bgt
);
1590 ubifs_exit_authentication(c
);
1592 kfree(c
->write_reserve_buf
);
1596 kfree(c
->bottom_up_buf
);
1598 ubifs_sysfs_unregister(c
);
1600 ubifs_debugging_exit(c
);
1605 * ubifs_umount - un-mount UBIFS file-system.
1606 * @c: UBIFS file-system description object
1608 * Note, this function is called to free allocated resourced when un-mounting,
1609 * as well as free resources when an error occurred while we were half way
1610 * through mounting (error path cleanup function). So it has to make sure the
1611 * resource was actually allocated before freeing it.
1613 static void ubifs_umount(struct ubifs_info
*c
)
1615 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1618 dbg_debugfs_exit_fs(c
);
1619 spin_lock(&ubifs_infos_lock
);
1620 list_del(&c
->infos_list
);
1621 spin_unlock(&ubifs_infos_lock
);
1624 kthread_stop(c
->bgt
);
1629 ubifs_lpt_free(c
, 0);
1630 ubifs_exit_authentication(c
);
1632 ubifs_release_options(c
);
1634 kfree(c
->rcvrd_mst_node
);
1636 kfree(c
->write_reserve_buf
);
1640 kfree(c
->bottom_up_buf
);
1642 ubifs_debugging_exit(c
);
1643 ubifs_sysfs_unregister(c
);
1647 * ubifs_remount_rw - re-mount in read-write mode.
1648 * @c: UBIFS file-system description object
1650 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1651 * mode. This function allocates the needed resources and re-mounts UBIFS in
1654 static int ubifs_remount_rw(struct ubifs_info
*c
)
1658 if (c
->rw_incompat
) {
1659 ubifs_err(c
, "the file-system is not R/W-compatible");
1660 ubifs_msg(c
, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1661 c
->fmt_version
, c
->ro_compat_version
,
1662 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1666 mutex_lock(&c
->umount_mutex
);
1667 dbg_save_space_info(c
);
1668 c
->remounting_rw
= 1;
1671 if (c
->space_fixup
) {
1672 err
= ubifs_fixup_free_space(c
);
1677 err
= check_free_space(c
);
1681 if (c
->need_recovery
) {
1682 ubifs_msg(c
, "completing deferred recovery");
1683 err
= ubifs_write_rcvrd_mst_node(c
);
1686 if (!ubifs_authenticated(c
)) {
1687 err
= ubifs_recover_size(c
, true);
1691 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1694 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1698 /* A readonly mount is not allowed to have orphans */
1699 ubifs_assert(c
, c
->tot_orphans
== 0);
1700 err
= ubifs_clear_orphans(c
);
1705 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1706 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1707 err
= ubifs_write_master(c
);
1712 if (c
->superblock_need_write
) {
1713 struct ubifs_sb_node
*sup
= c
->sup_node
;
1715 err
= ubifs_write_sb_node(c
, sup
);
1719 c
->superblock_need_write
= 0;
1722 c
->ileb_buf
= vmalloc(c
->leb_size
);
1728 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1729 UBIFS_CIPHER_BLOCK_SIZE
, GFP_KERNEL
);
1730 if (!c
->write_reserve_buf
) {
1735 err
= ubifs_lpt_init(c
, 0, 1);
1739 /* Create background thread */
1740 c
->bgt
= kthread_run(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1741 if (IS_ERR(c
->bgt
)) {
1742 err
= PTR_ERR(c
->bgt
);
1744 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1749 c
->orph_buf
= vmalloc(c
->leb_size
);
1755 /* Check for enough log space */
1756 lnum
= c
->lhead_lnum
+ 1;
1757 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1758 lnum
= UBIFS_LOG_LNUM
;
1759 if (lnum
== c
->ltail_lnum
) {
1760 err
= ubifs_consolidate_log(c
);
1765 if (c
->need_recovery
) {
1766 err
= ubifs_rcvry_gc_commit(c
);
1770 if (ubifs_authenticated(c
)) {
1771 err
= ubifs_recover_size(c
, false);
1776 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1781 dbg_gen("re-mounted read-write");
1782 c
->remounting_rw
= 0;
1784 if (c
->need_recovery
) {
1785 c
->need_recovery
= 0;
1786 ubifs_msg(c
, "deferred recovery completed");
1789 * Do not run the debugging space check if the were doing
1790 * recovery, because when we saved the information we had the
1791 * file-system in a state where the TNC and lprops has been
1792 * modified in memory, but all the I/O operations (including a
1793 * commit) were deferred. So the file-system was in
1794 * "non-committed" state. Now the file-system is in committed
1795 * state, and of course the amount of free space will change
1796 * because, for example, the old index size was imprecise.
1798 err
= dbg_check_space_info(c
);
1801 mutex_unlock(&c
->umount_mutex
);
1809 kthread_stop(c
->bgt
);
1812 kfree(c
->write_reserve_buf
);
1813 c
->write_reserve_buf
= NULL
;
1816 ubifs_lpt_free(c
, 1);
1817 c
->remounting_rw
= 0;
1818 mutex_unlock(&c
->umount_mutex
);
1823 * ubifs_remount_ro - re-mount in read-only mode.
1824 * @c: UBIFS file-system description object
1826 * We assume VFS has stopped writing. Possibly the background thread could be
1827 * running a commit, however kthread_stop will wait in that case.
1829 static void ubifs_remount_ro(struct ubifs_info
*c
)
1833 ubifs_assert(c
, !c
->need_recovery
);
1834 ubifs_assert(c
, !c
->ro_mount
);
1836 mutex_lock(&c
->umount_mutex
);
1838 kthread_stop(c
->bgt
);
1842 dbg_save_space_info(c
);
1844 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1845 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1847 ubifs_ro_mode(c
, err
);
1850 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1851 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1852 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1853 err
= ubifs_write_master(c
);
1855 ubifs_ro_mode(c
, err
);
1859 kfree(c
->write_reserve_buf
);
1860 c
->write_reserve_buf
= NULL
;
1863 ubifs_lpt_free(c
, 1);
1865 err
= dbg_check_space_info(c
);
1867 ubifs_ro_mode(c
, err
);
1868 mutex_unlock(&c
->umount_mutex
);
1871 static void ubifs_put_super(struct super_block
*sb
)
1874 struct ubifs_info
*c
= sb
->s_fs_info
;
1876 ubifs_msg(c
, "un-mount UBI device %d", c
->vi
.ubi_num
);
1879 * The following asserts are only valid if there has not been a failure
1880 * of the media. For example, there will be dirty inodes if we failed
1881 * to write them back because of I/O errors.
1884 ubifs_assert(c
, c
->bi
.idx_growth
== 0);
1885 ubifs_assert(c
, c
->bi
.dd_growth
== 0);
1886 ubifs_assert(c
, c
->bi
.data_growth
== 0);
1890 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1891 * and file system un-mount. Namely, it prevents the shrinker from
1892 * picking this superblock for shrinking - it will be just skipped if
1893 * the mutex is locked.
1895 mutex_lock(&c
->umount_mutex
);
1898 * First of all kill the background thread to make sure it does
1899 * not interfere with un-mounting and freeing resources.
1902 kthread_stop(c
->bgt
);
1907 * On fatal errors c->ro_error is set to 1, in which case we do
1908 * not write the master node.
1913 /* Synchronize write-buffers */
1914 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1915 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1917 ubifs_ro_mode(c
, err
);
1921 * We are being cleanly unmounted which means the
1922 * orphans were killed - indicate this in the master
1923 * node. Also save the reserved GC LEB number.
1925 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1926 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1927 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1928 err
= ubifs_write_master(c
);
1931 * Recovery will attempt to fix the master area
1932 * next mount, so we just print a message and
1933 * continue to unmount normally.
1935 ubifs_err(c
, "failed to write master node, error %d",
1938 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1939 /* Make sure write-buffer timers are canceled */
1940 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1945 ubi_close_volume(c
->ubi
);
1946 mutex_unlock(&c
->umount_mutex
);
1949 static int ubifs_reconfigure(struct fs_context
*fc
)
1951 struct ubifs_fs_context
*ctx
= fc
->fs_private
;
1952 struct super_block
*sb
= fc
->root
->d_sb
;
1954 struct ubifs_info
*c
= sb
->s_fs_info
;
1956 sync_filesystem(sb
);
1957 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, fc
->sb_flags
);
1960 * Apply the mount option changes.
1961 * auth_key_name and auth_hash_name are ignored on remount.
1963 c
->mount_opts
= ctx
->mount_opts
;
1964 c
->bulk_read
= ctx
->bulk_read
;
1965 c
->no_chk_data_crc
= ctx
->no_chk_data_crc
;
1966 c
->default_compr
= ctx
->default_compr
;
1967 c
->assert_action
= ctx
->assert_action
;
1969 if (c
->ro_mount
&& !(fc
->sb_flags
& SB_RDONLY
)) {
1971 ubifs_msg(c
, "cannot re-mount R/W due to prior errors");
1975 ubifs_msg(c
, "cannot re-mount R/W - UBI volume is R/O");
1978 err
= ubifs_remount_rw(c
);
1981 } else if (!c
->ro_mount
&& (fc
->sb_flags
& SB_RDONLY
)) {
1983 ubifs_msg(c
, "cannot re-mount R/O due to prior errors");
1986 ubifs_remount_ro(c
);
1989 if (c
->bulk_read
== 1)
1992 dbg_gen("disable bulk-read");
1993 mutex_lock(&c
->bu_mutex
);
1996 mutex_unlock(&c
->bu_mutex
);
1999 if (!c
->need_recovery
)
2000 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
2005 const struct super_operations ubifs_super_operations
= {
2006 .alloc_inode
= ubifs_alloc_inode
,
2007 .free_inode
= ubifs_free_inode
,
2008 .put_super
= ubifs_put_super
,
2009 .write_inode
= ubifs_write_inode
,
2010 .drop_inode
= ubifs_drop_inode
,
2011 .evict_inode
= ubifs_evict_inode
,
2012 .statfs
= ubifs_statfs
,
2013 .dirty_inode
= ubifs_dirty_inode
,
2014 .show_options
= ubifs_show_options
,
2015 .sync_fs
= ubifs_sync_fs
,
2019 * open_ubi - parse UBI device name string and open the UBI device.
2020 * @fc: The filesystem context
2021 * @mode: UBI volume open mode
2023 * The primary method of mounting UBIFS is by specifying the UBI volume
2024 * character device node path. However, UBIFS may also be mounted without any
2025 * character device node using one of the following methods:
2027 * o ubiX_Y - mount UBI device number X, volume Y;
2028 * o ubiY - mount UBI device number 0, volume Y;
2029 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2030 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2032 * Alternative '!' separator may be used instead of ':' (because some shells
2033 * like busybox may interpret ':' as an NFS host name separator). This function
2034 * returns UBI volume description object in case of success and a negative
2035 * error code in case of failure.
2037 static struct ubi_volume_desc
*open_ubi(struct fs_context
*fc
, int mode
)
2039 struct ubi_volume_desc
*ubi
;
2040 const char *name
= fc
->source
;
2044 /* First, try to open using the device node path method */
2045 ubi
= ubi_open_volume_path(name
, mode
);
2049 /* Try the "nodev" method */
2050 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
2051 goto invalid_source
;
2053 /* ubi:NAME method */
2054 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
2055 return ubi_open_volume_nm(0, name
+ 4, mode
);
2057 if (!isdigit(name
[3]))
2058 goto invalid_source
;
2060 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
2063 if (*endptr
== '\0')
2064 return ubi_open_volume(0, dev
, mode
);
2067 if (*endptr
== '_' && isdigit(endptr
[1])) {
2068 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
2069 if (*endptr
!= '\0')
2070 goto invalid_source
;
2071 return ubi_open_volume(dev
, vol
, mode
);
2074 /* ubiX:NAME method */
2075 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
2076 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
2079 return ERR_PTR(invalf(fc
, "Invalid source name"));
2082 static struct ubifs_info
*alloc_ubifs_info(struct ubi_volume_desc
*ubi
)
2084 struct ubifs_info
*c
;
2086 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
2088 spin_lock_init(&c
->cnt_lock
);
2089 spin_lock_init(&c
->cs_lock
);
2090 spin_lock_init(&c
->buds_lock
);
2091 spin_lock_init(&c
->space_lock
);
2092 spin_lock_init(&c
->orphan_lock
);
2093 init_rwsem(&c
->commit_sem
);
2094 mutex_init(&c
->lp_mutex
);
2095 mutex_init(&c
->tnc_mutex
);
2096 mutex_init(&c
->log_mutex
);
2097 mutex_init(&c
->umount_mutex
);
2098 mutex_init(&c
->bu_mutex
);
2099 mutex_init(&c
->write_reserve_mutex
);
2100 init_waitqueue_head(&c
->cmt_wq
);
2101 init_waitqueue_head(&c
->reserve_space_wq
);
2102 atomic_set(&c
->need_wait_space
, 0);
2104 c
->old_idx
= RB_ROOT
;
2105 c
->size_tree
= RB_ROOT
;
2106 c
->orph_tree
= RB_ROOT
;
2107 INIT_LIST_HEAD(&c
->infos_list
);
2108 INIT_LIST_HEAD(&c
->idx_gc
);
2109 INIT_LIST_HEAD(&c
->replay_list
);
2110 INIT_LIST_HEAD(&c
->replay_buds
);
2111 INIT_LIST_HEAD(&c
->uncat_list
);
2112 INIT_LIST_HEAD(&c
->empty_list
);
2113 INIT_LIST_HEAD(&c
->freeable_list
);
2114 INIT_LIST_HEAD(&c
->frdi_idx_list
);
2115 INIT_LIST_HEAD(&c
->unclean_leb_list
);
2116 INIT_LIST_HEAD(&c
->old_buds
);
2117 INIT_LIST_HEAD(&c
->orph_list
);
2118 INIT_LIST_HEAD(&c
->orph_new
);
2119 c
->no_chk_data_crc
= 1;
2120 c
->assert_action
= ASSACT_RO
;
2122 c
->highest_inum
= UBIFS_FIRST_INO
;
2123 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
2125 ubi_get_volume_info(ubi
, &c
->vi
);
2126 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
2131 static int ubifs_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
2133 struct ubifs_info
*c
= sb
->s_fs_info
;
2134 struct ubifs_fs_context
*ctx
= fc
->fs_private
;
2139 /* Re-open the UBI device in read-write mode */
2140 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2141 if (IS_ERR(c
->ubi
)) {
2142 err
= PTR_ERR(c
->ubi
);
2146 /* Copy in parsed mount options */
2147 c
->mount_opts
= ctx
->mount_opts
;
2148 c
->auth_key_name
= ctx
->auth_key_name
;
2149 c
->auth_hash_name
= ctx
->auth_hash_name
;
2150 c
->no_chk_data_crc
= ctx
->no_chk_data_crc
;
2151 c
->bulk_read
= ctx
->bulk_read
;
2152 c
->default_compr
= ctx
->default_compr
;
2153 c
->assert_action
= ctx
->assert_action
;
2155 /* ubifs_info owns auth strings now */
2156 ctx
->auth_key_name
= NULL
;
2157 ctx
->auth_hash_name
= NULL
;
2160 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2161 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2162 * which means the user would have to wait not just for their own I/O
2163 * but the read-ahead I/O as well i.e. completely pointless.
2165 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2166 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2167 * writeback happening.
2169 err
= super_setup_bdi_name(sb
, "ubifs_%d_%d", c
->vi
.ubi_num
,
2173 sb
->s_bdi
->ra_pages
= 0;
2174 sb
->s_bdi
->io_pages
= 0;
2177 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2178 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2179 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2180 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2181 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2182 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2183 sb
->s_op
= &ubifs_super_operations
;
2184 sb
->s_xattr
= ubifs_xattr_handlers
;
2185 fscrypt_set_ops(sb
, &ubifs_crypt_operations
);
2187 mutex_lock(&c
->umount_mutex
);
2188 err
= mount_ubifs(c
);
2190 ubifs_assert(c
, err
< 0);
2194 /* Read the root inode */
2195 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2197 err
= PTR_ERR(root
);
2201 generic_set_sb_d_ops(sb
);
2202 sb
->s_root
= d_make_root(root
);
2208 super_set_uuid(sb
, c
->uuid
, sizeof(c
->uuid
));
2210 mutex_unlock(&c
->umount_mutex
);
2216 mutex_unlock(&c
->umount_mutex
);
2218 ubifs_release_options(c
);
2219 ubi_close_volume(c
->ubi
);
2224 static int sb_test(struct super_block
*sb
, struct fs_context
*fc
)
2226 struct ubifs_info
*c1
= fc
->s_fs_info
;
2227 struct ubifs_info
*c
= sb
->s_fs_info
;
2229 return c
->vi
.cdev
== c1
->vi
.cdev
;
2232 static int ubifs_get_tree(struct fs_context
*fc
)
2234 struct ubi_volume_desc
*ubi
;
2235 struct ubifs_info
*c
;
2236 struct super_block
*sb
;
2239 if (!fc
->source
|| !*fc
->source
)
2240 return invalf(fc
, "No source specified");
2242 dbg_gen("name %s, flags %#x", fc
->source
, fc
->sb_flags
);
2245 * Get UBI device number and volume ID. Mount it read-only so far
2246 * because this might be a new mount point, and UBI allows only one
2247 * read-write user at a time.
2249 ubi
= open_ubi(fc
, UBI_READONLY
);
2252 if (!(fc
->sb_flags
& SB_SILENT
))
2253 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2254 current
->pid
, fc
->source
, err
);
2258 c
= alloc_ubifs_info(ubi
);
2265 dbg_gen("opened ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2267 sb
= sget_fc(fc
, sb_test
, set_anon_super_fc
);
2275 struct ubifs_info
*c1
= sb
->s_fs_info
;
2277 /* A new mount point for already mounted UBIFS */
2278 dbg_gen("this ubi volume is already mounted");
2279 if (!!(fc
->sb_flags
& SB_RDONLY
) != c1
->ro_mount
) {
2284 err
= ubifs_fill_super(sb
, fc
);
2287 /* We do not support atime */
2288 sb
->s_flags
|= SB_ACTIVE
;
2289 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
2290 ubifs_msg(c
, "full atime support is enabled.");
2292 sb
->s_flags
|= SB_NOATIME
;
2295 /* 'fill_super()' opens ubi again so we must close it here */
2296 ubi_close_volume(ubi
);
2298 fc
->root
= dget(sb
->s_root
);
2302 deactivate_locked_super(sb
);
2304 ubi_close_volume(ubi
);
2308 static void kill_ubifs_super(struct super_block
*s
)
2310 struct ubifs_info
*c
= s
->s_fs_info
;
2315 static void ubifs_free_fc(struct fs_context
*fc
)
2317 struct ubifs_fs_context
*ctx
= fc
->fs_private
;
2320 kfree(ctx
->auth_key_name
);
2321 kfree(ctx
->auth_hash_name
);
2326 static const struct fs_context_operations ubifs_context_ops
= {
2327 .free
= ubifs_free_fc
,
2328 .parse_param
= ubifs_parse_param
,
2329 .get_tree
= ubifs_get_tree
,
2330 .reconfigure
= ubifs_reconfigure
,
2333 static int ubifs_init_fs_context(struct fs_context
*fc
)
2335 struct ubifs_fs_context
*ctx
;
2337 ctx
= kzalloc(sizeof(struct ubifs_fs_context
), GFP_KERNEL
);
2341 if (fc
->purpose
!= FS_CONTEXT_FOR_RECONFIGURE
) {
2342 /* Iniitialize for first mount */
2343 ctx
->no_chk_data_crc
= 1;
2344 ctx
->assert_action
= ASSACT_RO
;
2346 struct ubifs_info
*c
= fc
->root
->d_sb
->s_fs_info
;
2349 * Preserve existing options across remounts.
2350 * auth_key_name and auth_hash_name are not remountable.
2352 ctx
->mount_opts
= c
->mount_opts
;
2353 ctx
->bulk_read
= c
->bulk_read
;
2354 ctx
->no_chk_data_crc
= c
->no_chk_data_crc
;
2355 ctx
->default_compr
= c
->default_compr
;
2356 ctx
->assert_action
= c
->assert_action
;
2359 fc
->ops
= &ubifs_context_ops
;
2360 fc
->fs_private
= ctx
;
2365 static struct file_system_type ubifs_fs_type
= {
2367 .owner
= THIS_MODULE
,
2368 .init_fs_context
= ubifs_init_fs_context
,
2369 .parameters
= ubifs_fs_param_spec
,
2370 .kill_sb
= kill_ubifs_super
,
2372 MODULE_ALIAS_FS("ubifs");
2375 * Inode slab cache constructor.
2377 static void inode_slab_ctor(void *obj
)
2379 struct ubifs_inode
*ui
= obj
;
2380 inode_init_once(&ui
->vfs_inode
);
2383 static int __init
ubifs_init(void)
2387 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2389 /* Make sure node sizes are 8-byte aligned */
2390 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2391 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2392 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2393 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2394 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2395 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2396 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2397 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2398 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2399 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2400 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2402 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2403 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2404 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2405 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2406 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2407 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2409 /* Check min. node size */
2410 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2411 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2412 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2413 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2415 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2416 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2417 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2418 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2420 /* Defined node sizes */
2421 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2422 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2423 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2424 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2427 * We use 2 bit wide bit-fields to store compression type, which should
2428 * be amended if more compressors are added. The bit-fields are:
2429 * @compr_type in 'struct ubifs_inode', @default_compr in
2430 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2432 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2435 * We require that PAGE_SIZE is greater-than-or-equal-to
2436 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2438 if (PAGE_SIZE
< UBIFS_BLOCK_SIZE
) {
2439 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2440 current
->pid
, (unsigned int)PAGE_SIZE
);
2444 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2445 sizeof(struct ubifs_inode
), 0,
2446 SLAB_RECLAIM_ACCOUNT
| SLAB_ACCOUNT
,
2448 if (!ubifs_inode_slab
)
2451 ubifs_shrinker_info
= shrinker_alloc(0, "ubifs-slab");
2452 if (!ubifs_shrinker_info
)
2455 ubifs_shrinker_info
->count_objects
= ubifs_shrink_count
;
2456 ubifs_shrinker_info
->scan_objects
= ubifs_shrink_scan
;
2458 shrinker_register(ubifs_shrinker_info
);
2460 err
= ubifs_compressors_init();
2466 err
= ubifs_sysfs_init();
2470 err
= register_filesystem(&ubifs_fs_type
);
2472 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2482 ubifs_compressors_exit();
2484 shrinker_free(ubifs_shrinker_info
);
2486 kmem_cache_destroy(ubifs_inode_slab
);
2489 /* late_initcall to let compressors initialize first */
2490 late_initcall(ubifs_init
);
2492 static void __exit
ubifs_exit(void)
2494 WARN_ON(!list_empty(&ubifs_infos
));
2495 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt
) != 0);
2499 ubifs_compressors_exit();
2500 shrinker_free(ubifs_shrinker_info
);
2503 * Make sure all delayed rcu free inodes are flushed before we
2507 kmem_cache_destroy(ubifs_inode_slab
);
2508 unregister_filesystem(&ubifs_fs_type
);
2510 module_exit(ubifs_exit
);
2512 MODULE_LICENSE("GPL");
2513 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2514 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2515 MODULE_DESCRIPTION("UBIFS - UBI File System");