1 // SPDX-License-Identifier: GPL-2.0-only
6 * Super block routines for the OSTA-UDF(tm) filesystem.
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
39 #include <linux/blkdev.h>
40 #include <linux/slab.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/stat.h>
44 #include <linux/cdrom.h>
45 #include <linux/nls.h>
46 #include <linux/vfs.h>
47 #include <linux/vmalloc.h>
48 #include <linux/errno.h>
49 #include <linux/seq_file.h>
50 #include <linux/bitmap.h>
51 #include <linux/crc-itu-t.h>
52 #include <linux/log2.h>
53 #include <asm/byteorder.h>
54 #include <linux/iversion.h>
55 #include <linux/fs_context.h>
56 #include <linux/fs_parser.h>
61 #include <linux/init.h>
62 #include <linux/uaccess.h>
65 VDS_POS_PRIMARY_VOL_DESC
,
66 VDS_POS_UNALLOC_SPACE_DESC
,
67 VDS_POS_LOGICAL_VOL_DESC
,
68 VDS_POS_IMP_USE_VOL_DESC
,
72 #define VSD_FIRST_SECTOR_OFFSET 32768
73 #define VSD_MAX_SECTOR_OFFSET 0x800000
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
81 #define UDF_MAX_TD_NESTING 64
82 #define UDF_MAX_LVID_NESTING 1000
84 enum { UDF_MAX_LINKS
= 0xffff };
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
91 #define UDF_MAX_FILESIZE (1ULL << 42)
93 /* These are the "meat" - everything else is stuffing */
94 static int udf_fill_super(struct super_block
*sb
, struct fs_context
*fc
);
95 static void udf_put_super(struct super_block
*);
96 static int udf_sync_fs(struct super_block
*, int);
97 static void udf_load_logicalvolint(struct super_block
*, struct kernel_extent_ad
);
98 static void udf_open_lvid(struct super_block
*);
99 static void udf_close_lvid(struct super_block
*);
100 static unsigned int udf_count_free(struct super_block
*);
101 static int udf_statfs(struct dentry
*, struct kstatfs
*);
102 static int udf_show_options(struct seq_file
*, struct dentry
*);
103 static int udf_init_fs_context(struct fs_context
*fc
);
104 static int udf_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
);
105 static int udf_reconfigure(struct fs_context
*fc
);
106 static void udf_free_fc(struct fs_context
*fc
);
107 static const struct fs_parameter_spec udf_param_spec
[];
109 struct logicalVolIntegrityDescImpUse
*udf_sb_lvidiu(struct super_block
*sb
)
111 struct logicalVolIntegrityDesc
*lvid
;
112 unsigned int partnum
;
115 if (!UDF_SB(sb
)->s_lvid_bh
)
117 lvid
= (struct logicalVolIntegrityDesc
*)UDF_SB(sb
)->s_lvid_bh
->b_data
;
118 partnum
= le32_to_cpu(lvid
->numOfPartitions
);
119 /* The offset is to skip freeSpaceTable and sizeTable arrays */
120 offset
= partnum
* 2 * sizeof(uint32_t);
121 return (struct logicalVolIntegrityDescImpUse
*)
122 (((uint8_t *)(lvid
+ 1)) + offset
);
125 /* UDF filesystem type */
126 static int udf_get_tree(struct fs_context
*fc
)
128 return get_tree_bdev(fc
, udf_fill_super
);
131 static const struct fs_context_operations udf_context_ops
= {
132 .parse_param
= udf_parse_param
,
133 .get_tree
= udf_get_tree
,
134 .reconfigure
= udf_reconfigure
,
138 static struct file_system_type udf_fstype
= {
139 .owner
= THIS_MODULE
,
141 .kill_sb
= kill_block_super
,
142 .fs_flags
= FS_REQUIRES_DEV
,
143 .init_fs_context
= udf_init_fs_context
,
144 .parameters
= udf_param_spec
,
146 MODULE_ALIAS_FS("udf");
148 static struct kmem_cache
*udf_inode_cachep
;
150 static struct inode
*udf_alloc_inode(struct super_block
*sb
)
152 struct udf_inode_info
*ei
;
153 ei
= alloc_inode_sb(sb
, udf_inode_cachep
, GFP_KERNEL
);
158 ei
->i_lenExtents
= 0;
159 ei
->i_lenStreams
= 0;
160 ei
->i_next_alloc_block
= 0;
161 ei
->i_next_alloc_goal
= 0;
165 init_rwsem(&ei
->i_data_sem
);
166 ei
->cached_extent
.lstart
= -1;
167 spin_lock_init(&ei
->i_extent_cache_lock
);
168 inode_set_iversion(&ei
->vfs_inode
, 1);
170 return &ei
->vfs_inode
;
173 static void udf_free_in_core_inode(struct inode
*inode
)
175 kmem_cache_free(udf_inode_cachep
, UDF_I(inode
));
178 static void init_once(void *foo
)
180 struct udf_inode_info
*ei
= foo
;
183 inode_init_once(&ei
->vfs_inode
);
186 static int __init
init_inodecache(void)
188 udf_inode_cachep
= kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info
),
190 0, (SLAB_RECLAIM_ACCOUNT
|
193 if (!udf_inode_cachep
)
198 static void destroy_inodecache(void)
201 * Make sure all delayed rcu free inodes are flushed before we
205 kmem_cache_destroy(udf_inode_cachep
);
208 /* Superblock operations */
209 static const struct super_operations udf_sb_ops
= {
210 .alloc_inode
= udf_alloc_inode
,
211 .free_inode
= udf_free_in_core_inode
,
212 .write_inode
= udf_write_inode
,
213 .evict_inode
= udf_evict_inode
,
214 .put_super
= udf_put_super
,
215 .sync_fs
= udf_sync_fs
,
216 .statfs
= udf_statfs
,
217 .show_options
= udf_show_options
,
221 unsigned int blocksize
;
222 unsigned int session
;
223 unsigned int lastblock
;
231 struct nls_table
*nls_map
;
235 * UDF has historically preserved prior mount options across
236 * a remount, so copy those here if remounting, otherwise set
237 * initial mount defaults.
239 static void udf_init_options(struct fs_context
*fc
, struct udf_options
*uopt
)
241 if (fc
->purpose
== FS_CONTEXT_FOR_RECONFIGURE
) {
242 struct super_block
*sb
= fc
->root
->d_sb
;
243 struct udf_sb_info
*sbi
= UDF_SB(sb
);
245 uopt
->flags
= sbi
->s_flags
;
246 uopt
->uid
= sbi
->s_uid
;
247 uopt
->gid
= sbi
->s_gid
;
248 uopt
->umask
= sbi
->s_umask
;
249 uopt
->fmode
= sbi
->s_fmode
;
250 uopt
->dmode
= sbi
->s_dmode
;
251 uopt
->nls_map
= NULL
;
253 uopt
->flags
= (1 << UDF_FLAG_USE_AD_IN_ICB
) |
254 (1 << UDF_FLAG_STRICT
);
256 * By default we'll use overflow[ug]id when UDF
259 uopt
->uid
= make_kuid(current_user_ns(), overflowuid
);
260 uopt
->gid
= make_kgid(current_user_ns(), overflowgid
);
262 uopt
->fmode
= UDF_INVALID_MODE
;
263 uopt
->dmode
= UDF_INVALID_MODE
;
264 uopt
->nls_map
= NULL
;
265 uopt
->session
= 0xFFFFFFFF;
269 static int udf_init_fs_context(struct fs_context
*fc
)
271 struct udf_options
*uopt
;
273 uopt
= kzalloc(sizeof(*uopt
), GFP_KERNEL
);
277 udf_init_options(fc
, uopt
);
279 fc
->fs_private
= uopt
;
280 fc
->ops
= &udf_context_ops
;
285 static void udf_free_fc(struct fs_context
*fc
)
287 struct udf_options
*uopt
= fc
->fs_private
;
289 unload_nls(uopt
->nls_map
);
290 kfree(fc
->fs_private
);
293 static int __init
init_udf_fs(void)
297 err
= init_inodecache();
300 err
= register_filesystem(&udf_fstype
);
307 destroy_inodecache();
313 static void __exit
exit_udf_fs(void)
315 unregister_filesystem(&udf_fstype
);
316 destroy_inodecache();
319 static int udf_sb_alloc_partition_maps(struct super_block
*sb
, u32 count
)
321 struct udf_sb_info
*sbi
= UDF_SB(sb
);
323 sbi
->s_partmaps
= kcalloc(count
, sizeof(*sbi
->s_partmaps
), GFP_KERNEL
);
324 if (!sbi
->s_partmaps
) {
325 sbi
->s_partitions
= 0;
329 sbi
->s_partitions
= count
;
333 static void udf_sb_free_bitmap(struct udf_bitmap
*bitmap
)
336 int nr_groups
= bitmap
->s_nr_groups
;
338 for (i
= 0; i
< nr_groups
; i
++)
339 if (!IS_ERR_OR_NULL(bitmap
->s_block_bitmap
[i
]))
340 brelse(bitmap
->s_block_bitmap
[i
]);
345 static void udf_free_partition(struct udf_part_map
*map
)
348 struct udf_meta_data
*mdata
;
350 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_TABLE
)
351 iput(map
->s_uspace
.s_table
);
352 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_BITMAP
)
353 udf_sb_free_bitmap(map
->s_uspace
.s_bitmap
);
354 if (map
->s_partition_type
== UDF_SPARABLE_MAP15
)
355 for (i
= 0; i
< 4; i
++)
356 brelse(map
->s_type_specific
.s_sparing
.s_spar_map
[i
]);
357 else if (map
->s_partition_type
== UDF_METADATA_MAP25
) {
358 mdata
= &map
->s_type_specific
.s_metadata
;
359 iput(mdata
->s_metadata_fe
);
360 mdata
->s_metadata_fe
= NULL
;
362 iput(mdata
->s_mirror_fe
);
363 mdata
->s_mirror_fe
= NULL
;
365 iput(mdata
->s_bitmap_fe
);
366 mdata
->s_bitmap_fe
= NULL
;
370 static void udf_sb_free_partitions(struct super_block
*sb
)
372 struct udf_sb_info
*sbi
= UDF_SB(sb
);
375 if (!sbi
->s_partmaps
)
377 for (i
= 0; i
< sbi
->s_partitions
; i
++)
378 udf_free_partition(&sbi
->s_partmaps
[i
]);
379 kfree(sbi
->s_partmaps
);
380 sbi
->s_partmaps
= NULL
;
383 static int udf_show_options(struct seq_file
*seq
, struct dentry
*root
)
385 struct super_block
*sb
= root
->d_sb
;
386 struct udf_sb_info
*sbi
= UDF_SB(sb
);
388 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_STRICT
))
389 seq_puts(seq
, ",nostrict");
390 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_BLOCKSIZE_SET
))
391 seq_printf(seq
, ",bs=%lu", sb
->s_blocksize
);
392 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UNHIDE
))
393 seq_puts(seq
, ",unhide");
394 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UNDELETE
))
395 seq_puts(seq
, ",undelete");
396 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_USE_AD_IN_ICB
))
397 seq_puts(seq
, ",noadinicb");
398 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_USE_SHORT_AD
))
399 seq_puts(seq
, ",shortad");
400 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UID_FORGET
))
401 seq_puts(seq
, ",uid=forget");
402 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_GID_FORGET
))
403 seq_puts(seq
, ",gid=forget");
404 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UID_SET
))
405 seq_printf(seq
, ",uid=%u", from_kuid(&init_user_ns
, sbi
->s_uid
));
406 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_GID_SET
))
407 seq_printf(seq
, ",gid=%u", from_kgid(&init_user_ns
, sbi
->s_gid
));
408 if (sbi
->s_umask
!= 0)
409 seq_printf(seq
, ",umask=%ho", sbi
->s_umask
);
410 if (sbi
->s_fmode
!= UDF_INVALID_MODE
)
411 seq_printf(seq
, ",mode=%ho", sbi
->s_fmode
);
412 if (sbi
->s_dmode
!= UDF_INVALID_MODE
)
413 seq_printf(seq
, ",dmode=%ho", sbi
->s_dmode
);
414 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_SESSION_SET
))
415 seq_printf(seq
, ",session=%d", sbi
->s_session
);
416 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_LASTBLOCK_SET
))
417 seq_printf(seq
, ",lastblock=%u", sbi
->s_last_block
);
418 if (sbi
->s_anchor
!= 0)
419 seq_printf(seq
, ",anchor=%u", sbi
->s_anchor
);
421 seq_printf(seq
, ",iocharset=%s", sbi
->s_nls_map
->charset
);
423 seq_puts(seq
, ",iocharset=utf8");
432 * Parse mount options.
435 * The following mount options are supported:
437 * gid= Set the default group.
438 * umask= Set the default umask.
439 * mode= Set the default file permissions.
440 * dmode= Set the default directory permissions.
441 * uid= Set the default user.
442 * bs= Set the block size.
443 * unhide Show otherwise hidden files.
444 * undelete Show deleted files in lists.
445 * adinicb Embed data in the inode (default)
446 * noadinicb Don't embed data in the inode
447 * shortad Use short ad's
448 * longad Use long ad's (default)
449 * nostrict Unset strict conformance
450 * iocharset= Set the NLS character set
452 * The remaining are for debugging and disaster recovery:
454 * novrs Skip volume sequence recognition
456 * The following expect a offset from 0.
458 * session= Set the CDROM session (default= last session)
459 * anchor= Override standard anchor location. (default= 256)
460 * volume= Override the VolumeDesc location. (unused)
461 * partition= Override the PartitionDesc location. (unused)
462 * lastblock= Set the last block of the filesystem/
464 * The following expect a offset from the partition root.
466 * fileset= Override the fileset block location. (unused)
467 * rootdir= Override the root directory location. (unused)
468 * WARNING: overriding the rootdir to a non-directory may
469 * yield highly unpredictable results.
472 * fc fs_context with pointer to mount options variable.
473 * param Pointer to fs_parameter being parsed.
476 * <return> 0 Mount options parsed okay.
477 * <return> errno Error parsing mount options.
480 * July 1, 1997 - Andrew E. Mileski
481 * Written, tested, and released.
485 Opt_novrs
, Opt_nostrict
, Opt_bs
, Opt_unhide
, Opt_undelete
,
486 Opt_noadinicb
, Opt_adinicb
, Opt_shortad
, Opt_longad
,
487 Opt_gid
, Opt_uid
, Opt_umask
, Opt_session
, Opt_lastblock
,
488 Opt_anchor
, Opt_volume
, Opt_partition
, Opt_fileset
,
489 Opt_rootdir
, Opt_utf8
, Opt_iocharset
, Opt_err
, Opt_fmode
, Opt_dmode
492 static const struct fs_parameter_spec udf_param_spec
[] = {
493 fsparam_flag ("novrs", Opt_novrs
),
494 fsparam_flag ("nostrict", Opt_nostrict
),
495 fsparam_u32 ("bs", Opt_bs
),
496 fsparam_flag ("unhide", Opt_unhide
),
497 fsparam_flag ("undelete", Opt_undelete
),
498 fsparam_flag_no ("adinicb", Opt_adinicb
),
499 fsparam_flag ("shortad", Opt_shortad
),
500 fsparam_flag ("longad", Opt_longad
),
501 fsparam_string ("gid", Opt_gid
),
502 fsparam_string ("uid", Opt_uid
),
503 fsparam_u32 ("umask", Opt_umask
),
504 fsparam_u32 ("session", Opt_session
),
505 fsparam_u32 ("lastblock", Opt_lastblock
),
506 fsparam_u32 ("anchor", Opt_anchor
),
507 fsparam_u32 ("volume", Opt_volume
),
508 fsparam_u32 ("partition", Opt_partition
),
509 fsparam_u32 ("fileset", Opt_fileset
),
510 fsparam_u32 ("rootdir", Opt_rootdir
),
511 fsparam_flag ("utf8", Opt_utf8
),
512 fsparam_string ("iocharset", Opt_iocharset
),
513 fsparam_u32 ("mode", Opt_fmode
),
514 fsparam_u32 ("dmode", Opt_dmode
),
518 static int udf_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
522 struct udf_options
*uopt
= fc
->fs_private
;
523 struct fs_parse_result result
;
525 bool remount
= (fc
->purpose
& FS_CONTEXT_FOR_RECONFIGURE
);
527 token
= fs_parse(fc
, udf_param_spec
, param
, &result
);
533 uopt
->flags
|= (1 << UDF_FLAG_NOVRS
);
537 if (n
!= 512 && n
!= 1024 && n
!= 2048 && n
!= 4096)
540 uopt
->flags
|= (1 << UDF_FLAG_BLOCKSIZE_SET
);
543 uopt
->flags
|= (1 << UDF_FLAG_UNHIDE
);
546 uopt
->flags
|= (1 << UDF_FLAG_UNDELETE
);
550 uopt
->flags
&= ~(1 << UDF_FLAG_USE_AD_IN_ICB
);
552 uopt
->flags
|= (1 << UDF_FLAG_USE_AD_IN_ICB
);
555 uopt
->flags
|= (1 << UDF_FLAG_USE_SHORT_AD
);
558 uopt
->flags
&= ~(1 << UDF_FLAG_USE_SHORT_AD
);
561 if (kstrtoint(param
->string
, 10, &uv
) == 0) {
562 kgid_t gid
= make_kgid(current_user_ns(), uv
);
566 uopt
->flags
|= (1 << UDF_FLAG_GID_SET
);
567 } else if (!strcmp(param
->string
, "forget")) {
568 uopt
->flags
|= (1 << UDF_FLAG_GID_FORGET
);
569 } else if (!strcmp(param
->string
, "ignore")) {
570 /* this option is superseded by gid=<number> */
577 if (kstrtoint(param
->string
, 10, &uv
) == 0) {
578 kuid_t uid
= make_kuid(current_user_ns(), uv
);
582 uopt
->flags
|= (1 << UDF_FLAG_UID_SET
);
583 } else if (!strcmp(param
->string
, "forget")) {
584 uopt
->flags
|= (1 << UDF_FLAG_UID_FORGET
);
585 } else if (!strcmp(param
->string
, "ignore")) {
586 /* this option is superseded by uid=<number> */
593 uopt
->umask
= result
.uint_32
;
596 uopt
->flags
&= ~(1 << UDF_FLAG_STRICT
);
599 uopt
->session
= result
.uint_32
;
601 uopt
->flags
|= (1 << UDF_FLAG_SESSION_SET
);
604 uopt
->lastblock
= result
.uint_32
;
606 uopt
->flags
|= (1 << UDF_FLAG_LASTBLOCK_SET
);
609 uopt
->anchor
= result
.uint_32
;
615 /* Ignored (never implemented properly) */
619 unload_nls(uopt
->nls_map
);
620 uopt
->nls_map
= NULL
;
625 unload_nls(uopt
->nls_map
);
626 uopt
->nls_map
= NULL
;
628 /* When nls_map is not loaded then UTF-8 is used */
629 if (!remount
&& strcmp(param
->string
, "utf8") != 0) {
630 uopt
->nls_map
= load_nls(param
->string
);
631 if (!uopt
->nls_map
) {
632 errorf(fc
, "iocharset %s not found",
639 uopt
->fmode
= result
.uint_32
& 0777;
642 uopt
->dmode
= result
.uint_32
& 0777;
650 static int udf_reconfigure(struct fs_context
*fc
)
652 struct udf_options
*uopt
= fc
->fs_private
;
653 struct super_block
*sb
= fc
->root
->d_sb
;
654 struct udf_sb_info
*sbi
= UDF_SB(sb
);
655 int readonly
= fc
->sb_flags
& SB_RDONLY
;
658 if (!readonly
&& UDF_QUERY_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
))
663 write_lock(&sbi
->s_cred_lock
);
664 sbi
->s_flags
= uopt
->flags
;
665 sbi
->s_uid
= uopt
->uid
;
666 sbi
->s_gid
= uopt
->gid
;
667 sbi
->s_umask
= uopt
->umask
;
668 sbi
->s_fmode
= uopt
->fmode
;
669 sbi
->s_dmode
= uopt
->dmode
;
670 write_unlock(&sbi
->s_cred_lock
);
672 if (readonly
== sb_rdonly(sb
))
685 * Check VSD descriptor. Returns -1 in case we are at the end of volume
686 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
687 * we found one of NSR descriptors we are looking for.
689 static int identify_vsd(const struct volStructDesc
*vsd
)
693 if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_CD001
, VSD_STD_ID_LEN
)) {
694 switch (vsd
->structType
) {
696 udf_debug("ISO9660 Boot Record found\n");
699 udf_debug("ISO9660 Primary Volume Descriptor found\n");
702 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705 udf_debug("ISO9660 Volume Partition Descriptor found\n");
708 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711 udf_debug("ISO9660 VRS (%u) found\n", vsd
->structType
);
714 } else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_BEA01
, VSD_STD_ID_LEN
))
716 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_NSR02
, VSD_STD_ID_LEN
))
718 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_NSR03
, VSD_STD_ID_LEN
))
720 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_BOOT2
, VSD_STD_ID_LEN
))
722 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_CDW02
, VSD_STD_ID_LEN
))
725 /* TEA01 or invalid id : end of volume recognition area */
733 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
734 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
735 * @return 1 if NSR02 or NSR03 found,
736 * -1 if first sector read error, 0 otherwise
738 static int udf_check_vsd(struct super_block
*sb
)
740 struct volStructDesc
*vsd
= NULL
;
741 loff_t sector
= VSD_FIRST_SECTOR_OFFSET
;
743 struct buffer_head
*bh
= NULL
;
745 struct udf_sb_info
*sbi
;
746 loff_t session_offset
;
749 if (sb
->s_blocksize
< sizeof(struct volStructDesc
))
750 sectorsize
= sizeof(struct volStructDesc
);
752 sectorsize
= sb
->s_blocksize
;
754 session_offset
= (loff_t
)sbi
->s_session
<< sb
->s_blocksize_bits
;
755 sector
+= session_offset
;
757 udf_debug("Starting at sector %u (%lu byte sectors)\n",
758 (unsigned int)(sector
>> sb
->s_blocksize_bits
),
760 /* Process the sequence (if applicable). The hard limit on the sector
761 * offset is arbitrary, hopefully large enough so that all valid UDF
762 * filesystems will be recognised. There is no mention of an upper
763 * bound to the size of the volume recognition area in the standard.
764 * The limit will prevent the code to read all the sectors of a
765 * specially crafted image (like a bluray disc full of CD001 sectors),
766 * potentially causing minutes or even hours of uninterruptible I/O
767 * activity. This actually happened with uninitialised SSD partitions
768 * (all 0xFF) before the check for the limit and all valid IDs were
770 for (; !nsr
&& sector
< VSD_MAX_SECTOR_OFFSET
; sector
+= sectorsize
) {
772 bh
= sb_bread(sb
, sector
>> sb
->s_blocksize_bits
);
776 vsd
= (struct volStructDesc
*)(bh
->b_data
+
777 (sector
& (sb
->s_blocksize
- 1)));
778 nsr
= identify_vsd(vsd
);
779 /* Found NSR or end? */
785 * Special handling for improperly formatted VRS (e.g., Win10)
786 * where components are separated by 2048 bytes even though
789 if (sb
->s_blocksize
== 4096) {
790 nsr
= identify_vsd(vsd
+ 1);
791 /* Ignore unknown IDs... */
800 else if (!bh
&& sector
- session_offset
== VSD_FIRST_SECTOR_OFFSET
)
806 static int udf_verify_domain_identifier(struct super_block
*sb
,
807 struct regid
*ident
, char *dname
)
809 struct domainIdentSuffix
*suffix
;
811 if (memcmp(ident
->ident
, UDF_ID_COMPLIANT
, strlen(UDF_ID_COMPLIANT
))) {
812 udf_warn(sb
, "Not OSTA UDF compliant %s descriptor.\n", dname
);
815 if (ident
->flags
& ENTITYID_FLAGS_DIRTY
) {
816 udf_warn(sb
, "Possibly not OSTA UDF compliant %s descriptor.\n",
820 suffix
= (struct domainIdentSuffix
*)ident
->identSuffix
;
821 if ((suffix
->domainFlags
& DOMAIN_FLAGS_HARD_WRITE_PROTECT
) ||
822 (suffix
->domainFlags
& DOMAIN_FLAGS_SOFT_WRITE_PROTECT
)) {
823 if (!sb_rdonly(sb
)) {
824 udf_warn(sb
, "Descriptor for %s marked write protected."
825 " Forcing read only mount.\n", dname
);
834 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
838 static int udf_load_fileset(struct super_block
*sb
, struct fileSetDesc
*fset
,
839 struct kernel_lb_addr
*root
)
843 ret
= udf_verify_domain_identifier(sb
, &fset
->domainIdent
, "file set");
847 *root
= lelb_to_cpu(fset
->rootDirectoryICB
.extLocation
);
848 UDF_SB(sb
)->s_serial_number
= le16_to_cpu(fset
->descTag
.tagSerialNum
);
850 udf_debug("Rootdir at block=%u, partition=%u\n",
851 root
->logicalBlockNum
, root
->partitionReferenceNum
);
855 static int udf_find_fileset(struct super_block
*sb
,
856 struct kernel_lb_addr
*fileset
,
857 struct kernel_lb_addr
*root
)
859 struct buffer_head
*bh
;
863 if (fileset
->logicalBlockNum
== 0xFFFFFFFF &&
864 fileset
->partitionReferenceNum
== 0xFFFF)
867 bh
= udf_read_ptagged(sb
, fileset
, 0, &ident
);
870 if (ident
!= TAG_IDENT_FSD
) {
875 udf_debug("Fileset at block=%u, partition=%u\n",
876 fileset
->logicalBlockNum
, fileset
->partitionReferenceNum
);
878 UDF_SB(sb
)->s_partition
= fileset
->partitionReferenceNum
;
879 ret
= udf_load_fileset(sb
, (struct fileSetDesc
*)bh
->b_data
, root
);
885 * Load primary Volume Descriptor Sequence
887 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890 static int udf_load_pvoldesc(struct super_block
*sb
, sector_t block
)
892 struct primaryVolDesc
*pvoldesc
;
894 struct buffer_head
*bh
;
897 struct timestamp
*ts
;
899 outstr
= kzalloc(128, GFP_KERNEL
);
903 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
909 if (ident
!= TAG_IDENT_PVD
) {
914 pvoldesc
= (struct primaryVolDesc
*)bh
->b_data
;
916 udf_disk_stamp_to_time(&UDF_SB(sb
)->s_record_time
,
917 pvoldesc
->recordingDateAndTime
);
918 ts
= &pvoldesc
->recordingDateAndTime
;
919 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
920 le16_to_cpu(ts
->year
), ts
->month
, ts
->day
, ts
->hour
,
921 ts
->minute
, le16_to_cpu(ts
->typeAndTimezone
));
923 ret
= udf_dstrCS0toChar(sb
, outstr
, 31, pvoldesc
->volIdent
, 32);
925 strscpy_pad(UDF_SB(sb
)->s_volume_ident
, "InvalidName");
926 pr_warn("incorrect volume identification, setting to "
929 strscpy_pad(UDF_SB(sb
)->s_volume_ident
, outstr
);
931 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb
)->s_volume_ident
);
933 ret
= udf_dstrCS0toChar(sb
, outstr
, 127, pvoldesc
->volSetIdent
, 128);
939 udf_debug("volSetIdent[] = '%s'\n", outstr
);
949 struct inode
*udf_find_metadata_inode_efe(struct super_block
*sb
,
950 u32 meta_file_loc
, u32 partition_ref
)
952 struct kernel_lb_addr addr
;
953 struct inode
*metadata_fe
;
955 addr
.logicalBlockNum
= meta_file_loc
;
956 addr
.partitionReferenceNum
= partition_ref
;
958 metadata_fe
= udf_iget_special(sb
, &addr
);
960 if (IS_ERR(metadata_fe
)) {
961 udf_warn(sb
, "metadata inode efe not found\n");
964 if (UDF_I(metadata_fe
)->i_alloc_type
!= ICBTAG_FLAG_AD_SHORT
) {
965 udf_warn(sb
, "metadata inode efe does not have short allocation descriptors!\n");
967 return ERR_PTR(-EIO
);
973 static int udf_load_metadata_files(struct super_block
*sb
, int partition
,
976 struct udf_sb_info
*sbi
= UDF_SB(sb
);
977 struct udf_part_map
*map
;
978 struct udf_meta_data
*mdata
;
979 struct kernel_lb_addr addr
;
982 map
= &sbi
->s_partmaps
[partition
];
983 mdata
= &map
->s_type_specific
.s_metadata
;
984 mdata
->s_phys_partition_ref
= type1_index
;
986 /* metadata address */
987 udf_debug("Metadata file location: block = %u part = %u\n",
988 mdata
->s_meta_file_loc
, mdata
->s_phys_partition_ref
);
990 fe
= udf_find_metadata_inode_efe(sb
, mdata
->s_meta_file_loc
,
991 mdata
->s_phys_partition_ref
);
993 /* mirror file entry */
994 udf_debug("Mirror metadata file location: block = %u part = %u\n",
995 mdata
->s_mirror_file_loc
, mdata
->s_phys_partition_ref
);
997 fe
= udf_find_metadata_inode_efe(sb
, mdata
->s_mirror_file_loc
,
998 mdata
->s_phys_partition_ref
);
1001 udf_err(sb
, "Both metadata and mirror metadata inode efe can not found\n");
1004 mdata
->s_mirror_fe
= fe
;
1006 mdata
->s_metadata_fe
= fe
;
1012 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1014 if (mdata
->s_bitmap_file_loc
!= 0xFFFFFFFF) {
1015 addr
.logicalBlockNum
= mdata
->s_bitmap_file_loc
;
1016 addr
.partitionReferenceNum
= mdata
->s_phys_partition_ref
;
1018 udf_debug("Bitmap file location: block = %u part = %u\n",
1019 addr
.logicalBlockNum
, addr
.partitionReferenceNum
);
1021 fe
= udf_iget_special(sb
, &addr
);
1024 udf_warn(sb
, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1026 udf_err(sb
, "bitmap inode efe not found and attempted read-write mount\n");
1030 mdata
->s_bitmap_fe
= fe
;
1033 udf_debug("udf_load_metadata_files Ok\n");
1037 int udf_compute_nr_groups(struct super_block
*sb
, u32 partition
)
1039 struct udf_part_map
*map
= &UDF_SB(sb
)->s_partmaps
[partition
];
1040 return DIV_ROUND_UP(map
->s_partition_len
+
1041 (sizeof(struct spaceBitmapDesc
) << 3),
1042 sb
->s_blocksize
* 8);
1045 static struct udf_bitmap
*udf_sb_alloc_bitmap(struct super_block
*sb
, u32 index
)
1047 struct udf_bitmap
*bitmap
;
1048 int nr_groups
= udf_compute_nr_groups(sb
, index
);
1050 bitmap
= kvzalloc(struct_size(bitmap
, s_block_bitmap
, nr_groups
),
1055 bitmap
->s_nr_groups
= nr_groups
;
1059 static int check_partition_desc(struct super_block
*sb
,
1060 struct partitionDesc
*p
,
1061 struct udf_part_map
*map
)
1063 bool umap
, utable
, fmap
, ftable
;
1064 struct partitionHeaderDesc
*phd
;
1066 switch (le32_to_cpu(p
->accessType
)) {
1067 case PD_ACCESS_TYPE_READ_ONLY
:
1068 case PD_ACCESS_TYPE_WRITE_ONCE
:
1069 case PD_ACCESS_TYPE_NONE
:
1073 /* No Partition Header Descriptor? */
1074 if (strcmp(p
->partitionContents
.ident
, PD_PARTITION_CONTENTS_NSR02
) &&
1075 strcmp(p
->partitionContents
.ident
, PD_PARTITION_CONTENTS_NSR03
))
1078 phd
= (struct partitionHeaderDesc
*)p
->partitionContentsUse
;
1079 utable
= phd
->unallocSpaceTable
.extLength
;
1080 umap
= phd
->unallocSpaceBitmap
.extLength
;
1081 ftable
= phd
->freedSpaceTable
.extLength
;
1082 fmap
= phd
->freedSpaceBitmap
.extLength
;
1084 /* No allocation info? */
1085 if (!utable
&& !umap
&& !ftable
&& !fmap
)
1088 /* We don't support blocks that require erasing before overwrite */
1091 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1095 if (map
->s_partition_type
== UDF_VIRTUAL_MAP15
||
1096 map
->s_partition_type
== UDF_VIRTUAL_MAP20
||
1097 map
->s_partition_type
== UDF_METADATA_MAP25
)
1104 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
1108 static int udf_fill_partdesc_info(struct super_block
*sb
,
1109 struct partitionDesc
*p
, int p_index
)
1111 struct udf_part_map
*map
;
1112 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1113 struct partitionHeaderDesc
*phd
;
1117 map
= &sbi
->s_partmaps
[p_index
];
1119 map
->s_partition_len
= le32_to_cpu(p
->partitionLength
); /* blocks */
1120 map
->s_partition_root
= le32_to_cpu(p
->partitionStartingLocation
);
1121 if (check_add_overflow(map
->s_partition_root
, map
->s_partition_len
,
1123 udf_err(sb
, "Partition %d has invalid location %u + %u\n",
1124 p_index
, map
->s_partition_root
, map
->s_partition_len
);
1125 return -EFSCORRUPTED
;
1128 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY
))
1129 map
->s_partition_flags
|= UDF_PART_FLAG_READ_ONLY
;
1130 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE
))
1131 map
->s_partition_flags
|= UDF_PART_FLAG_WRITE_ONCE
;
1132 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE
))
1133 map
->s_partition_flags
|= UDF_PART_FLAG_REWRITABLE
;
1134 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE
))
1135 map
->s_partition_flags
|= UDF_PART_FLAG_OVERWRITABLE
;
1137 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1138 p_index
, map
->s_partition_type
,
1139 map
->s_partition_root
, map
->s_partition_len
);
1141 err
= check_partition_desc(sb
, p
, map
);
1146 * Skip loading allocation info it we cannot ever write to the fs.
1147 * This is a correctness thing as we may have decided to force ro mount
1148 * to avoid allocation info we don't support.
1150 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
))
1153 phd
= (struct partitionHeaderDesc
*)p
->partitionContentsUse
;
1154 if (phd
->unallocSpaceTable
.extLength
) {
1155 struct kernel_lb_addr loc
= {
1156 .logicalBlockNum
= le32_to_cpu(
1157 phd
->unallocSpaceTable
.extPosition
),
1158 .partitionReferenceNum
= p_index
,
1160 struct inode
*inode
;
1162 inode
= udf_iget_special(sb
, &loc
);
1163 if (IS_ERR(inode
)) {
1164 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1166 return PTR_ERR(inode
);
1168 map
->s_uspace
.s_table
= inode
;
1169 map
->s_partition_flags
|= UDF_PART_FLAG_UNALLOC_TABLE
;
1170 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1171 p_index
, map
->s_uspace
.s_table
->i_ino
);
1174 if (phd
->unallocSpaceBitmap
.extLength
) {
1175 struct udf_bitmap
*bitmap
= udf_sb_alloc_bitmap(sb
, p_index
);
1178 map
->s_uspace
.s_bitmap
= bitmap
;
1179 bitmap
->s_extPosition
= le32_to_cpu(
1180 phd
->unallocSpaceBitmap
.extPosition
);
1181 map
->s_partition_flags
|= UDF_PART_FLAG_UNALLOC_BITMAP
;
1182 /* Check whether math over bitmap won't overflow. */
1183 if (check_add_overflow(map
->s_partition_len
,
1184 sizeof(struct spaceBitmapDesc
) << 3,
1186 udf_err(sb
, "Partition %d is too long (%u)\n", p_index
,
1187 map
->s_partition_len
);
1188 return -EFSCORRUPTED
;
1190 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1191 p_index
, bitmap
->s_extPosition
);
1197 static void udf_find_vat_block(struct super_block
*sb
, int p_index
,
1198 int type1_index
, sector_t start_block
)
1200 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1201 struct udf_part_map
*map
= &sbi
->s_partmaps
[p_index
];
1203 struct kernel_lb_addr ino
;
1204 struct inode
*inode
;
1207 * VAT file entry is in the last recorded block. Some broken disks have
1208 * it a few blocks before so try a bit harder...
1210 ino
.partitionReferenceNum
= type1_index
;
1211 for (vat_block
= start_block
;
1212 vat_block
>= map
->s_partition_root
&&
1213 vat_block
>= start_block
- 3; vat_block
--) {
1214 ino
.logicalBlockNum
= vat_block
- map
->s_partition_root
;
1215 inode
= udf_iget_special(sb
, &ino
);
1216 if (!IS_ERR(inode
)) {
1217 sbi
->s_vat_inode
= inode
;
1223 static int udf_load_vat(struct super_block
*sb
, int p_index
, int type1_index
)
1225 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1226 struct udf_part_map
*map
= &sbi
->s_partmaps
[p_index
];
1227 struct buffer_head
*bh
= NULL
;
1228 struct udf_inode_info
*vati
;
1229 struct virtualAllocationTable20
*vat20
;
1230 sector_t blocks
= sb_bdev_nr_blocks(sb
);
1232 udf_find_vat_block(sb
, p_index
, type1_index
, sbi
->s_last_block
);
1233 if (!sbi
->s_vat_inode
&&
1234 sbi
->s_last_block
!= blocks
- 1) {
1235 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1236 (unsigned long)sbi
->s_last_block
,
1237 (unsigned long)blocks
- 1);
1238 udf_find_vat_block(sb
, p_index
, type1_index
, blocks
- 1);
1240 if (!sbi
->s_vat_inode
)
1243 if (map
->s_partition_type
== UDF_VIRTUAL_MAP15
) {
1244 map
->s_type_specific
.s_virtual
.s_start_offset
= 0;
1245 map
->s_type_specific
.s_virtual
.s_num_entries
=
1246 (sbi
->s_vat_inode
->i_size
- 36) >> 2;
1247 } else if (map
->s_partition_type
== UDF_VIRTUAL_MAP20
) {
1248 vati
= UDF_I(sbi
->s_vat_inode
);
1249 if (vati
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
) {
1252 bh
= udf_bread(sbi
->s_vat_inode
, 0, 0, &err
);
1255 err
= -EFSCORRUPTED
;
1258 vat20
= (struct virtualAllocationTable20
*)bh
->b_data
;
1260 vat20
= (struct virtualAllocationTable20
*)
1264 map
->s_type_specific
.s_virtual
.s_start_offset
=
1265 le16_to_cpu(vat20
->lengthHeader
);
1266 map
->s_type_specific
.s_virtual
.s_num_entries
=
1267 (sbi
->s_vat_inode
->i_size
-
1268 map
->s_type_specific
.s_virtual
.
1269 s_start_offset
) >> 2;
1276 * Load partition descriptor block
1278 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1281 static int udf_load_partdesc(struct super_block
*sb
, sector_t block
)
1283 struct buffer_head
*bh
;
1284 struct partitionDesc
*p
;
1285 struct udf_part_map
*map
;
1286 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1288 uint16_t partitionNumber
;
1292 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1295 if (ident
!= TAG_IDENT_PD
) {
1300 p
= (struct partitionDesc
*)bh
->b_data
;
1301 partitionNumber
= le16_to_cpu(p
->partitionNumber
);
1303 /* First scan for TYPE1 and SPARABLE partitions */
1304 for (i
= 0; i
< sbi
->s_partitions
; i
++) {
1305 map
= &sbi
->s_partmaps
[i
];
1306 udf_debug("Searching map: (%u == %u)\n",
1307 map
->s_partition_num
, partitionNumber
);
1308 if (map
->s_partition_num
== partitionNumber
&&
1309 (map
->s_partition_type
== UDF_TYPE1_MAP15
||
1310 map
->s_partition_type
== UDF_SPARABLE_MAP15
))
1314 if (i
>= sbi
->s_partitions
) {
1315 udf_debug("Partition (%u) not found in partition map\n",
1321 ret
= udf_fill_partdesc_info(sb
, p
, i
);
1326 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1327 * PHYSICAL partitions are already set up
1330 map
= NULL
; /* supress 'maybe used uninitialized' warning */
1331 for (i
= 0; i
< sbi
->s_partitions
; i
++) {
1332 map
= &sbi
->s_partmaps
[i
];
1334 if (map
->s_partition_num
== partitionNumber
&&
1335 (map
->s_partition_type
== UDF_VIRTUAL_MAP15
||
1336 map
->s_partition_type
== UDF_VIRTUAL_MAP20
||
1337 map
->s_partition_type
== UDF_METADATA_MAP25
))
1341 if (i
>= sbi
->s_partitions
) {
1346 ret
= udf_fill_partdesc_info(sb
, p
, i
);
1350 if (map
->s_partition_type
== UDF_METADATA_MAP25
) {
1351 ret
= udf_load_metadata_files(sb
, i
, type1_idx
);
1353 udf_err(sb
, "error loading MetaData partition map %d\n",
1359 * If we have a partition with virtual map, we don't handle
1360 * writing to it (we overwrite blocks instead of relocating
1363 if (!sb_rdonly(sb
)) {
1367 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
1368 ret
= udf_load_vat(sb
, i
, type1_idx
);
1374 /* In case loading failed, we handle cleanup in udf_fill_super */
1379 static int udf_load_sparable_map(struct super_block
*sb
,
1380 struct udf_part_map
*map
,
1381 struct sparablePartitionMap
*spm
)
1385 struct sparingTable
*st
;
1386 struct udf_sparing_data
*sdata
= &map
->s_type_specific
.s_sparing
;
1388 struct buffer_head
*bh
;
1390 map
->s_partition_type
= UDF_SPARABLE_MAP15
;
1391 sdata
->s_packet_len
= le16_to_cpu(spm
->packetLength
);
1392 if (!is_power_of_2(sdata
->s_packet_len
)) {
1393 udf_err(sb
, "error loading logical volume descriptor: "
1394 "Invalid packet length %u\n",
1395 (unsigned)sdata
->s_packet_len
);
1398 if (spm
->numSparingTables
> 4) {
1399 udf_err(sb
, "error loading logical volume descriptor: "
1400 "Too many sparing tables (%d)\n",
1401 (int)spm
->numSparingTables
);
1404 if (le32_to_cpu(spm
->sizeSparingTable
) > sb
->s_blocksize
) {
1405 udf_err(sb
, "error loading logical volume descriptor: "
1406 "Too big sparing table size (%u)\n",
1407 le32_to_cpu(spm
->sizeSparingTable
));
1411 for (i
= 0; i
< spm
->numSparingTables
; i
++) {
1412 loc
= le32_to_cpu(spm
->locSparingTable
[i
]);
1413 bh
= udf_read_tagged(sb
, loc
, loc
, &ident
);
1417 st
= (struct sparingTable
*)bh
->b_data
;
1419 strncmp(st
->sparingIdent
.ident
, UDF_ID_SPARING
,
1420 strlen(UDF_ID_SPARING
)) ||
1421 sizeof(*st
) + le16_to_cpu(st
->reallocationTableLen
) >
1427 sdata
->s_spar_map
[i
] = bh
;
1429 map
->s_partition_func
= udf_get_pblock_spar15
;
1433 static int udf_load_logicalvol(struct super_block
*sb
, sector_t block
,
1434 struct kernel_lb_addr
*fileset
)
1436 struct logicalVolDesc
*lvd
;
1439 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1440 struct genericPartitionMap
*gpm
;
1442 struct buffer_head
*bh
;
1443 unsigned int table_len
;
1446 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1449 BUG_ON(ident
!= TAG_IDENT_LVD
);
1450 lvd
= (struct logicalVolDesc
*)bh
->b_data
;
1451 table_len
= le32_to_cpu(lvd
->mapTableLength
);
1452 if (table_len
> sb
->s_blocksize
- sizeof(*lvd
)) {
1453 udf_err(sb
, "error loading logical volume descriptor: "
1454 "Partition table too long (%u > %lu)\n", table_len
,
1455 sb
->s_blocksize
- sizeof(*lvd
));
1460 ret
= udf_verify_domain_identifier(sb
, &lvd
->domainIdent
,
1464 ret
= udf_sb_alloc_partition_maps(sb
, le32_to_cpu(lvd
->numPartitionMaps
));
1468 for (i
= 0, offset
= 0;
1469 i
< sbi
->s_partitions
&& offset
< table_len
;
1470 i
++, offset
+= gpm
->partitionMapLength
) {
1471 struct udf_part_map
*map
= &sbi
->s_partmaps
[i
];
1472 gpm
= (struct genericPartitionMap
*)
1473 &(lvd
->partitionMaps
[offset
]);
1474 type
= gpm
->partitionMapType
;
1476 struct genericPartitionMap1
*gpm1
=
1477 (struct genericPartitionMap1
*)gpm
;
1478 map
->s_partition_type
= UDF_TYPE1_MAP15
;
1479 map
->s_volumeseqnum
= le16_to_cpu(gpm1
->volSeqNum
);
1480 map
->s_partition_num
= le16_to_cpu(gpm1
->partitionNum
);
1481 map
->s_partition_func
= NULL
;
1482 } else if (type
== 2) {
1483 struct udfPartitionMap2
*upm2
=
1484 (struct udfPartitionMap2
*)gpm
;
1485 if (!strncmp(upm2
->partIdent
.ident
, UDF_ID_VIRTUAL
,
1486 strlen(UDF_ID_VIRTUAL
))) {
1488 le16_to_cpu(((__le16
*)upm2
->partIdent
.
1491 map
->s_partition_type
=
1493 map
->s_partition_func
=
1494 udf_get_pblock_virt15
;
1496 map
->s_partition_type
=
1498 map
->s_partition_func
=
1499 udf_get_pblock_virt20
;
1501 } else if (!strncmp(upm2
->partIdent
.ident
,
1503 strlen(UDF_ID_SPARABLE
))) {
1504 ret
= udf_load_sparable_map(sb
, map
,
1505 (struct sparablePartitionMap
*)gpm
);
1508 } else if (!strncmp(upm2
->partIdent
.ident
,
1510 strlen(UDF_ID_METADATA
))) {
1511 struct udf_meta_data
*mdata
=
1512 &map
->s_type_specific
.s_metadata
;
1513 struct metadataPartitionMap
*mdm
=
1514 (struct metadataPartitionMap
*)
1515 &(lvd
->partitionMaps
[offset
]);
1516 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1517 i
, type
, UDF_ID_METADATA
);
1519 map
->s_partition_type
= UDF_METADATA_MAP25
;
1520 map
->s_partition_func
= udf_get_pblock_meta25
;
1522 mdata
->s_meta_file_loc
=
1523 le32_to_cpu(mdm
->metadataFileLoc
);
1524 mdata
->s_mirror_file_loc
=
1525 le32_to_cpu(mdm
->metadataMirrorFileLoc
);
1526 mdata
->s_bitmap_file_loc
=
1527 le32_to_cpu(mdm
->metadataBitmapFileLoc
);
1528 mdata
->s_alloc_unit_size
=
1529 le32_to_cpu(mdm
->allocUnitSize
);
1530 mdata
->s_align_unit_size
=
1531 le16_to_cpu(mdm
->alignUnitSize
);
1532 if (mdm
->flags
& 0x01)
1533 mdata
->s_flags
|= MF_DUPLICATE_MD
;
1535 udf_debug("Metadata Ident suffix=0x%x\n",
1536 le16_to_cpu(*(__le16
*)
1537 mdm
->partIdent
.identSuffix
));
1538 udf_debug("Metadata part num=%u\n",
1539 le16_to_cpu(mdm
->partitionNum
));
1540 udf_debug("Metadata part alloc unit size=%u\n",
1541 le32_to_cpu(mdm
->allocUnitSize
));
1542 udf_debug("Metadata file loc=%u\n",
1543 le32_to_cpu(mdm
->metadataFileLoc
));
1544 udf_debug("Mirror file loc=%u\n",
1545 le32_to_cpu(mdm
->metadataMirrorFileLoc
));
1546 udf_debug("Bitmap file loc=%u\n",
1547 le32_to_cpu(mdm
->metadataBitmapFileLoc
));
1548 udf_debug("Flags: %d %u\n",
1549 mdata
->s_flags
, mdm
->flags
);
1551 udf_debug("Unknown ident: %s\n",
1552 upm2
->partIdent
.ident
);
1555 map
->s_volumeseqnum
= le16_to_cpu(upm2
->volSeqNum
);
1556 map
->s_partition_num
= le16_to_cpu(upm2
->partitionNum
);
1558 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1559 i
, map
->s_partition_num
, type
, map
->s_volumeseqnum
);
1563 struct long_ad
*la
= (struct long_ad
*)&(lvd
->logicalVolContentsUse
[0]);
1565 *fileset
= lelb_to_cpu(la
->extLocation
);
1566 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1567 fileset
->logicalBlockNum
,
1568 fileset
->partitionReferenceNum
);
1570 if (lvd
->integritySeqExt
.extLength
)
1571 udf_load_logicalvolint(sb
, leea_to_cpu(lvd
->integritySeqExt
));
1574 if (!sbi
->s_lvid_bh
) {
1575 /* We can't generate unique IDs without a valid LVID */
1576 if (sb_rdonly(sb
)) {
1577 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
1579 udf_warn(sb
, "Damaged or missing LVID, forcing "
1580 "readonly mount\n");
1589 static bool udf_lvid_valid(struct super_block
*sb
,
1590 struct logicalVolIntegrityDesc
*lvid
)
1592 u32 parts
, impuselen
;
1594 parts
= le32_to_cpu(lvid
->numOfPartitions
);
1595 impuselen
= le32_to_cpu(lvid
->lengthOfImpUse
);
1596 if (parts
>= sb
->s_blocksize
|| impuselen
>= sb
->s_blocksize
||
1597 sizeof(struct logicalVolIntegrityDesc
) + impuselen
+
1598 2 * parts
* sizeof(u32
) > sb
->s_blocksize
)
1604 * Find the prevailing Logical Volume Integrity Descriptor.
1606 static void udf_load_logicalvolint(struct super_block
*sb
, struct kernel_extent_ad loc
)
1608 struct buffer_head
*bh
, *final_bh
;
1610 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1611 struct logicalVolIntegrityDesc
*lvid
;
1612 int indirections
= 0;
1614 while (++indirections
<= UDF_MAX_LVID_NESTING
) {
1616 while (loc
.extLength
> 0 &&
1617 (bh
= udf_read_tagged(sb
, loc
.extLocation
,
1618 loc
.extLocation
, &ident
))) {
1619 if (ident
!= TAG_IDENT_LVID
) {
1627 loc
.extLength
-= sb
->s_blocksize
;
1634 lvid
= (struct logicalVolIntegrityDesc
*)final_bh
->b_data
;
1635 if (udf_lvid_valid(sb
, lvid
)) {
1636 brelse(sbi
->s_lvid_bh
);
1637 sbi
->s_lvid_bh
= final_bh
;
1639 udf_warn(sb
, "Corrupted LVID (parts=%u, impuselen=%u), "
1641 le32_to_cpu(lvid
->numOfPartitions
),
1642 le32_to_cpu(lvid
->lengthOfImpUse
));
1645 if (lvid
->nextIntegrityExt
.extLength
== 0)
1648 loc
= leea_to_cpu(lvid
->nextIntegrityExt
);
1651 udf_warn(sb
, "Too many LVID indirections (max %u), ignoring.\n",
1652 UDF_MAX_LVID_NESTING
);
1653 brelse(sbi
->s_lvid_bh
);
1654 sbi
->s_lvid_bh
= NULL
;
1658 * Step for reallocation of table of partition descriptor sequence numbers.
1659 * Must be power of 2.
1661 #define PART_DESC_ALLOC_STEP 32
1663 struct part_desc_seq_scan_data
{
1664 struct udf_vds_record rec
;
1668 struct desc_seq_scan_data
{
1669 struct udf_vds_record vds
[VDS_POS_LENGTH
];
1670 unsigned int size_part_descs
;
1671 unsigned int num_part_descs
;
1672 struct part_desc_seq_scan_data
*part_descs_loc
;
1675 static struct udf_vds_record
*handle_partition_descriptor(
1676 struct buffer_head
*bh
,
1677 struct desc_seq_scan_data
*data
)
1679 struct partitionDesc
*desc
= (struct partitionDesc
*)bh
->b_data
;
1683 partnum
= le16_to_cpu(desc
->partitionNumber
);
1684 for (i
= 0; i
< data
->num_part_descs
; i
++)
1685 if (partnum
== data
->part_descs_loc
[i
].partnum
)
1686 return &(data
->part_descs_loc
[i
].rec
);
1687 if (data
->num_part_descs
>= data
->size_part_descs
) {
1688 struct part_desc_seq_scan_data
*new_loc
;
1689 unsigned int new_size
= ALIGN(partnum
, PART_DESC_ALLOC_STEP
);
1691 new_loc
= kcalloc(new_size
, sizeof(*new_loc
), GFP_KERNEL
);
1693 return ERR_PTR(-ENOMEM
);
1694 memcpy(new_loc
, data
->part_descs_loc
,
1695 data
->size_part_descs
* sizeof(*new_loc
));
1696 kfree(data
->part_descs_loc
);
1697 data
->part_descs_loc
= new_loc
;
1698 data
->size_part_descs
= new_size
;
1700 return &(data
->part_descs_loc
[data
->num_part_descs
++].rec
);
1704 static struct udf_vds_record
*get_volume_descriptor_record(uint16_t ident
,
1705 struct buffer_head
*bh
, struct desc_seq_scan_data
*data
)
1708 case TAG_IDENT_PVD
: /* ISO 13346 3/10.1 */
1709 return &(data
->vds
[VDS_POS_PRIMARY_VOL_DESC
]);
1710 case TAG_IDENT_IUVD
: /* ISO 13346 3/10.4 */
1711 return &(data
->vds
[VDS_POS_IMP_USE_VOL_DESC
]);
1712 case TAG_IDENT_LVD
: /* ISO 13346 3/10.6 */
1713 return &(data
->vds
[VDS_POS_LOGICAL_VOL_DESC
]);
1714 case TAG_IDENT_USD
: /* ISO 13346 3/10.8 */
1715 return &(data
->vds
[VDS_POS_UNALLOC_SPACE_DESC
]);
1716 case TAG_IDENT_PD
: /* ISO 13346 3/10.5 */
1717 return handle_partition_descriptor(bh
, data
);
1723 * Process a main/reserve volume descriptor sequence.
1724 * @block First block of first extent of the sequence.
1725 * @lastblock Lastblock of first extent of the sequence.
1726 * @fileset There we store extent containing root fileset
1728 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1731 static noinline
int udf_process_sequence(
1732 struct super_block
*sb
,
1733 sector_t block
, sector_t lastblock
,
1734 struct kernel_lb_addr
*fileset
)
1736 struct buffer_head
*bh
= NULL
;
1737 struct udf_vds_record
*curr
;
1738 struct generic_desc
*gd
;
1739 struct volDescPtr
*vdp
;
1744 unsigned int indirections
= 0;
1745 struct desc_seq_scan_data data
;
1748 memset(data
.vds
, 0, sizeof(struct udf_vds_record
) * VDS_POS_LENGTH
);
1749 data
.size_part_descs
= PART_DESC_ALLOC_STEP
;
1750 data
.num_part_descs
= 0;
1751 data
.part_descs_loc
= kcalloc(data
.size_part_descs
,
1752 sizeof(*data
.part_descs_loc
),
1754 if (!data
.part_descs_loc
)
1758 * Read the main descriptor sequence and find which descriptors
1761 for (; (!done
&& block
<= lastblock
); block
++) {
1762 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1766 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1767 gd
= (struct generic_desc
*)bh
->b_data
;
1768 vdsn
= le32_to_cpu(gd
->volDescSeqNum
);
1770 case TAG_IDENT_VDP
: /* ISO 13346 3/10.3 */
1771 if (++indirections
> UDF_MAX_TD_NESTING
) {
1772 udf_err(sb
, "too many Volume Descriptor "
1773 "Pointers (max %u supported)\n",
1774 UDF_MAX_TD_NESTING
);
1780 vdp
= (struct volDescPtr
*)bh
->b_data
;
1781 block
= le32_to_cpu(vdp
->nextVolDescSeqExt
.extLocation
);
1782 lastblock
= le32_to_cpu(
1783 vdp
->nextVolDescSeqExt
.extLength
) >>
1784 sb
->s_blocksize_bits
;
1785 lastblock
+= block
- 1;
1786 /* For loop is going to increment 'block' again */
1789 case TAG_IDENT_PVD
: /* ISO 13346 3/10.1 */
1790 case TAG_IDENT_IUVD
: /* ISO 13346 3/10.4 */
1791 case TAG_IDENT_LVD
: /* ISO 13346 3/10.6 */
1792 case TAG_IDENT_USD
: /* ISO 13346 3/10.8 */
1793 case TAG_IDENT_PD
: /* ISO 13346 3/10.5 */
1794 curr
= get_volume_descriptor_record(ident
, bh
, &data
);
1797 ret
= PTR_ERR(curr
);
1800 /* Descriptor we don't care about? */
1803 if (vdsn
>= curr
->volDescSeqNum
) {
1804 curr
->volDescSeqNum
= vdsn
;
1805 curr
->block
= block
;
1808 case TAG_IDENT_TD
: /* ISO 13346 3/10.9 */
1815 * Now read interesting descriptors again and process them
1816 * in a suitable order
1818 if (!data
.vds
[VDS_POS_PRIMARY_VOL_DESC
].block
) {
1819 udf_err(sb
, "Primary Volume Descriptor not found!\n");
1823 ret
= udf_load_pvoldesc(sb
, data
.vds
[VDS_POS_PRIMARY_VOL_DESC
].block
);
1827 if (data
.vds
[VDS_POS_LOGICAL_VOL_DESC
].block
) {
1828 ret
= udf_load_logicalvol(sb
,
1829 data
.vds
[VDS_POS_LOGICAL_VOL_DESC
].block
,
1835 /* Now handle prevailing Partition Descriptors */
1836 for (i
= 0; i
< data
.num_part_descs
; i
++) {
1837 ret
= udf_load_partdesc(sb
, data
.part_descs_loc
[i
].rec
.block
);
1843 kfree(data
.part_descs_loc
);
1848 * Load Volume Descriptor Sequence described by anchor in bh
1850 * Returns <0 on error, 0 on success
1852 static int udf_load_sequence(struct super_block
*sb
, struct buffer_head
*bh
,
1853 struct kernel_lb_addr
*fileset
)
1855 struct anchorVolDescPtr
*anchor
;
1856 sector_t main_s
, main_e
, reserve_s
, reserve_e
;
1859 anchor
= (struct anchorVolDescPtr
*)bh
->b_data
;
1861 /* Locate the main sequence */
1862 main_s
= le32_to_cpu(anchor
->mainVolDescSeqExt
.extLocation
);
1863 main_e
= le32_to_cpu(anchor
->mainVolDescSeqExt
.extLength
);
1864 main_e
= main_e
>> sb
->s_blocksize_bits
;
1865 main_e
+= main_s
- 1;
1867 /* Locate the reserve sequence */
1868 reserve_s
= le32_to_cpu(anchor
->reserveVolDescSeqExt
.extLocation
);
1869 reserve_e
= le32_to_cpu(anchor
->reserveVolDescSeqExt
.extLength
);
1870 reserve_e
= reserve_e
>> sb
->s_blocksize_bits
;
1871 reserve_e
+= reserve_s
- 1;
1873 /* Process the main & reserve sequences */
1874 /* responsible for finding the PartitionDesc(s) */
1875 ret
= udf_process_sequence(sb
, main_s
, main_e
, fileset
);
1878 udf_sb_free_partitions(sb
);
1879 ret
= udf_process_sequence(sb
, reserve_s
, reserve_e
, fileset
);
1881 udf_sb_free_partitions(sb
);
1882 /* No sequence was OK, return -EIO */
1890 * Check whether there is an anchor block in the given block and
1891 * load Volume Descriptor Sequence if so.
1893 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1896 static int udf_check_anchor_block(struct super_block
*sb
, sector_t block
,
1897 struct kernel_lb_addr
*fileset
)
1899 struct buffer_head
*bh
;
1903 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1906 if (ident
!= TAG_IDENT_AVDP
) {
1910 ret
= udf_load_sequence(sb
, bh
, fileset
);
1916 * Search for an anchor volume descriptor pointer.
1918 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1921 static int udf_scan_anchors(struct super_block
*sb
, udf_pblk_t
*lastblock
,
1922 struct kernel_lb_addr
*fileset
)
1926 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1930 /* First try user provided anchor */
1931 if (sbi
->s_anchor
) {
1932 ret
= udf_check_anchor_block(sb
, sbi
->s_anchor
, fileset
);
1937 * according to spec, anchor is in either:
1941 * however, if the disc isn't closed, it could be 512.
1943 ret
= udf_check_anchor_block(sb
, sbi
->s_session
+ 256, fileset
);
1947 * The trouble is which block is the last one. Drives often misreport
1948 * this so we try various possibilities.
1950 last
[last_count
++] = *lastblock
;
1951 if (*lastblock
>= 1)
1952 last
[last_count
++] = *lastblock
- 1;
1953 last
[last_count
++] = *lastblock
+ 1;
1954 if (*lastblock
>= 2)
1955 last
[last_count
++] = *lastblock
- 2;
1956 if (*lastblock
>= 150)
1957 last
[last_count
++] = *lastblock
- 150;
1958 if (*lastblock
>= 152)
1959 last
[last_count
++] = *lastblock
- 152;
1961 for (i
= 0; i
< last_count
; i
++) {
1962 if (last
[i
] >= sb_bdev_nr_blocks(sb
))
1964 ret
= udf_check_anchor_block(sb
, last
[i
], fileset
);
1965 if (ret
!= -EAGAIN
) {
1967 *lastblock
= last
[i
];
1972 ret
= udf_check_anchor_block(sb
, last
[i
] - 256, fileset
);
1973 if (ret
!= -EAGAIN
) {
1975 *lastblock
= last
[i
];
1980 /* Finally try block 512 in case media is open */
1981 return udf_check_anchor_block(sb
, sbi
->s_session
+ 512, fileset
);
1985 * Check Volume Structure Descriptor, find Anchor block and load Volume
1986 * Descriptor Sequence.
1988 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1989 * block was not found.
1991 static int udf_load_vrs(struct super_block
*sb
, struct udf_options
*uopt
,
1992 int silent
, struct kernel_lb_addr
*fileset
)
1994 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1998 if (!sb_set_blocksize(sb
, uopt
->blocksize
)) {
2000 udf_warn(sb
, "Bad block size\n");
2003 sbi
->s_last_block
= uopt
->lastblock
;
2004 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_NOVRS
)) {
2005 /* Check that it is NSR02 compliant */
2006 nsr
= udf_check_vsd(sb
);
2009 udf_warn(sb
, "No VRS found\n");
2013 udf_debug("Failed to read sector at offset %d. "
2014 "Assuming open disc. Skipping validity "
2015 "check\n", VSD_FIRST_SECTOR_OFFSET
);
2016 if (!sbi
->s_last_block
)
2017 sbi
->s_last_block
= udf_get_last_block(sb
);
2019 udf_debug("Validity check skipped because of novrs option\n");
2022 /* Look for anchor block and load Volume Descriptor Sequence */
2023 sbi
->s_anchor
= uopt
->anchor
;
2024 ret
= udf_scan_anchors(sb
, &sbi
->s_last_block
, fileset
);
2026 if (!silent
&& ret
== -EAGAIN
)
2027 udf_warn(sb
, "No anchor found\n");
2033 static void udf_finalize_lvid(struct logicalVolIntegrityDesc
*lvid
)
2035 struct timespec64 ts
;
2037 ktime_get_real_ts64(&ts
);
2038 udf_time_to_disk_stamp(&lvid
->recordingDateAndTime
, ts
);
2039 lvid
->descTag
.descCRC
= cpu_to_le16(
2040 crc_itu_t(0, (char *)lvid
+ sizeof(struct tag
),
2041 le16_to_cpu(lvid
->descTag
.descCRCLength
)));
2042 lvid
->descTag
.tagChecksum
= udf_tag_checksum(&lvid
->descTag
);
2045 static void udf_open_lvid(struct super_block
*sb
)
2047 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2048 struct buffer_head
*bh
= sbi
->s_lvid_bh
;
2049 struct logicalVolIntegrityDesc
*lvid
;
2050 struct logicalVolIntegrityDescImpUse
*lvidiu
;
2054 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2055 lvidiu
= udf_sb_lvidiu(sb
);
2059 mutex_lock(&sbi
->s_alloc_mutex
);
2060 lvidiu
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
2061 lvidiu
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
2062 if (le32_to_cpu(lvid
->integrityType
) == LVID_INTEGRITY_TYPE_CLOSE
)
2063 lvid
->integrityType
= cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN
);
2065 UDF_SET_FLAG(sb
, UDF_FLAG_INCONSISTENT
);
2067 udf_finalize_lvid(lvid
);
2068 mark_buffer_dirty(bh
);
2069 sbi
->s_lvid_dirty
= 0;
2070 mutex_unlock(&sbi
->s_alloc_mutex
);
2071 /* Make opening of filesystem visible on the media immediately */
2072 sync_dirty_buffer(bh
);
2075 static void udf_close_lvid(struct super_block
*sb
)
2077 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2078 struct buffer_head
*bh
= sbi
->s_lvid_bh
;
2079 struct logicalVolIntegrityDesc
*lvid
;
2080 struct logicalVolIntegrityDescImpUse
*lvidiu
;
2084 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2085 lvidiu
= udf_sb_lvidiu(sb
);
2089 mutex_lock(&sbi
->s_alloc_mutex
);
2090 lvidiu
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
2091 lvidiu
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
2092 if (UDF_MAX_WRITE_VERSION
> le16_to_cpu(lvidiu
->maxUDFWriteRev
))
2093 lvidiu
->maxUDFWriteRev
= cpu_to_le16(UDF_MAX_WRITE_VERSION
);
2094 if (sbi
->s_udfrev
> le16_to_cpu(lvidiu
->minUDFReadRev
))
2095 lvidiu
->minUDFReadRev
= cpu_to_le16(sbi
->s_udfrev
);
2096 if (sbi
->s_udfrev
> le16_to_cpu(lvidiu
->minUDFWriteRev
))
2097 lvidiu
->minUDFWriteRev
= cpu_to_le16(sbi
->s_udfrev
);
2098 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_INCONSISTENT
))
2099 lvid
->integrityType
= cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE
);
2102 * We set buffer uptodate unconditionally here to avoid spurious
2103 * warnings from mark_buffer_dirty() when previous EIO has marked
2104 * the buffer as !uptodate
2106 set_buffer_uptodate(bh
);
2107 udf_finalize_lvid(lvid
);
2108 mark_buffer_dirty(bh
);
2109 sbi
->s_lvid_dirty
= 0;
2110 mutex_unlock(&sbi
->s_alloc_mutex
);
2111 /* Make closing of filesystem visible on the media immediately */
2112 sync_dirty_buffer(bh
);
2115 u64
lvid_get_unique_id(struct super_block
*sb
)
2117 struct buffer_head
*bh
;
2118 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2119 struct logicalVolIntegrityDesc
*lvid
;
2120 struct logicalVolHeaderDesc
*lvhd
;
2124 bh
= sbi
->s_lvid_bh
;
2128 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2129 lvhd
= (struct logicalVolHeaderDesc
*)lvid
->logicalVolContentsUse
;
2131 mutex_lock(&sbi
->s_alloc_mutex
);
2132 ret
= uniqueID
= le64_to_cpu(lvhd
->uniqueID
);
2133 if (!(++uniqueID
& 0xFFFFFFFF))
2135 lvhd
->uniqueID
= cpu_to_le64(uniqueID
);
2136 udf_updated_lvid(sb
);
2137 mutex_unlock(&sbi
->s_alloc_mutex
);
2142 static int udf_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
2145 struct inode
*inode
= NULL
;
2146 struct udf_options
*uopt
= fc
->fs_private
;
2147 struct kernel_lb_addr rootdir
, fileset
;
2148 struct udf_sb_info
*sbi
;
2149 bool lvid_open
= false;
2150 int silent
= fc
->sb_flags
& SB_SILENT
;
2152 sbi
= kzalloc(sizeof(*sbi
), GFP_KERNEL
);
2156 sb
->s_fs_info
= sbi
;
2158 mutex_init(&sbi
->s_alloc_mutex
);
2160 fileset
.logicalBlockNum
= 0xFFFFFFFF;
2161 fileset
.partitionReferenceNum
= 0xFFFF;
2163 sbi
->s_flags
= uopt
->flags
;
2164 sbi
->s_uid
= uopt
->uid
;
2165 sbi
->s_gid
= uopt
->gid
;
2166 sbi
->s_umask
= uopt
->umask
;
2167 sbi
->s_fmode
= uopt
->fmode
;
2168 sbi
->s_dmode
= uopt
->dmode
;
2169 sbi
->s_nls_map
= uopt
->nls_map
;
2170 uopt
->nls_map
= NULL
;
2171 rwlock_init(&sbi
->s_cred_lock
);
2173 if (uopt
->session
== 0xFFFFFFFF)
2174 sbi
->s_session
= udf_get_last_session(sb
);
2176 sbi
->s_session
= uopt
->session
;
2178 udf_debug("Multi-session=%d\n", sbi
->s_session
);
2180 /* Fill in the rest of the superblock */
2181 sb
->s_op
= &udf_sb_ops
;
2182 sb
->s_export_op
= &udf_export_ops
;
2184 sb
->s_magic
= UDF_SUPER_MAGIC
;
2185 sb
->s_time_gran
= 1000;
2187 if (uopt
->flags
& (1 << UDF_FLAG_BLOCKSIZE_SET
)) {
2188 ret
= udf_load_vrs(sb
, uopt
, silent
, &fileset
);
2190 uopt
->blocksize
= bdev_logical_block_size(sb
->s_bdev
);
2191 while (uopt
->blocksize
<= 4096) {
2192 ret
= udf_load_vrs(sb
, uopt
, silent
, &fileset
);
2194 if (!silent
&& ret
!= -EACCES
) {
2195 pr_notice("Scanning with blocksize %u failed\n",
2198 brelse(sbi
->s_lvid_bh
);
2199 sbi
->s_lvid_bh
= NULL
;
2201 * EACCES is special - we want to propagate to
2202 * upper layers that we cannot handle RW mount.
2209 uopt
->blocksize
<<= 1;
2213 if (ret
== -EAGAIN
) {
2214 udf_warn(sb
, "No partition found (1)\n");
2220 udf_debug("Lastblock=%u\n", sbi
->s_last_block
);
2222 if (sbi
->s_lvid_bh
) {
2223 struct logicalVolIntegrityDescImpUse
*lvidiu
=
2225 uint16_t minUDFReadRev
;
2226 uint16_t minUDFWriteRev
;
2232 minUDFReadRev
= le16_to_cpu(lvidiu
->minUDFReadRev
);
2233 minUDFWriteRev
= le16_to_cpu(lvidiu
->minUDFWriteRev
);
2234 if (minUDFReadRev
> UDF_MAX_READ_VERSION
) {
2235 udf_err(sb
, "minUDFReadRev=%x (max is %x)\n",
2237 UDF_MAX_READ_VERSION
);
2240 } else if (minUDFWriteRev
> UDF_MAX_WRITE_VERSION
) {
2241 if (!sb_rdonly(sb
)) {
2245 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
2248 sbi
->s_udfrev
= minUDFWriteRev
;
2250 if (minUDFReadRev
>= UDF_VERS_USE_EXTENDED_FE
)
2251 UDF_SET_FLAG(sb
, UDF_FLAG_USE_EXTENDED_FE
);
2252 if (minUDFReadRev
>= UDF_VERS_USE_STREAMS
)
2253 UDF_SET_FLAG(sb
, UDF_FLAG_USE_STREAMS
);
2256 if (!sbi
->s_partitions
) {
2257 udf_warn(sb
, "No partition found (2)\n");
2262 if (sbi
->s_partmaps
[sbi
->s_partition
].s_partition_flags
&
2263 UDF_PART_FLAG_READ_ONLY
) {
2264 if (!sb_rdonly(sb
)) {
2268 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
2271 ret
= udf_find_fileset(sb
, &fileset
, &rootdir
);
2273 udf_warn(sb
, "No fileset found\n");
2278 struct timestamp ts
;
2279 udf_time_to_disk_stamp(&ts
, sbi
->s_record_time
);
2280 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2281 sbi
->s_volume_ident
,
2282 le16_to_cpu(ts
.year
), ts
.month
, ts
.day
,
2283 ts
.hour
, ts
.minute
, le16_to_cpu(ts
.typeAndTimezone
));
2285 if (!sb_rdonly(sb
)) {
2290 /* Assign the root inode */
2291 /* assign inodes by physical block number */
2292 /* perhaps it's not extensible enough, but for now ... */
2293 inode
= udf_iget(sb
, &rootdir
);
2294 if (IS_ERR(inode
)) {
2295 udf_err(sb
, "Error in udf_iget, block=%u, partition=%u\n",
2296 rootdir
.logicalBlockNum
, rootdir
.partitionReferenceNum
);
2297 ret
= PTR_ERR(inode
);
2301 /* Allocate a dentry for the root inode */
2302 sb
->s_root
= d_make_root(inode
);
2304 udf_err(sb
, "Couldn't allocate root dentry\n");
2308 sb
->s_maxbytes
= UDF_MAX_FILESIZE
;
2309 sb
->s_max_links
= UDF_MAX_LINKS
;
2313 iput(sbi
->s_vat_inode
);
2314 unload_nls(uopt
->nls_map
);
2317 brelse(sbi
->s_lvid_bh
);
2318 udf_sb_free_partitions(sb
);
2320 sb
->s_fs_info
= NULL
;
2325 void _udf_err(struct super_block
*sb
, const char *function
,
2326 const char *fmt
, ...)
2328 struct va_format vaf
;
2331 va_start(args
, fmt
);
2336 pr_err("error (device %s): %s: %pV", sb
->s_id
, function
, &vaf
);
2341 void _udf_warn(struct super_block
*sb
, const char *function
,
2342 const char *fmt
, ...)
2344 struct va_format vaf
;
2347 va_start(args
, fmt
);
2352 pr_warn("warning (device %s): %s: %pV", sb
->s_id
, function
, &vaf
);
2357 static void udf_put_super(struct super_block
*sb
)
2359 struct udf_sb_info
*sbi
;
2363 iput(sbi
->s_vat_inode
);
2364 unload_nls(sbi
->s_nls_map
);
2367 brelse(sbi
->s_lvid_bh
);
2368 udf_sb_free_partitions(sb
);
2369 mutex_destroy(&sbi
->s_alloc_mutex
);
2370 kfree(sb
->s_fs_info
);
2371 sb
->s_fs_info
= NULL
;
2374 static int udf_sync_fs(struct super_block
*sb
, int wait
)
2376 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2378 mutex_lock(&sbi
->s_alloc_mutex
);
2379 if (sbi
->s_lvid_dirty
) {
2380 struct buffer_head
*bh
= sbi
->s_lvid_bh
;
2381 struct logicalVolIntegrityDesc
*lvid
;
2383 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2384 udf_finalize_lvid(lvid
);
2387 * Blockdevice will be synced later so we don't have to submit
2390 mark_buffer_dirty(bh
);
2391 sbi
->s_lvid_dirty
= 0;
2393 mutex_unlock(&sbi
->s_alloc_mutex
);
2398 static int udf_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2400 struct super_block
*sb
= dentry
->d_sb
;
2401 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2402 struct logicalVolIntegrityDescImpUse
*lvidiu
;
2403 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
2405 lvidiu
= udf_sb_lvidiu(sb
);
2406 buf
->f_type
= UDF_SUPER_MAGIC
;
2407 buf
->f_bsize
= sb
->s_blocksize
;
2408 buf
->f_blocks
= sbi
->s_partmaps
[sbi
->s_partition
].s_partition_len
;
2409 buf
->f_bfree
= udf_count_free(sb
);
2410 buf
->f_bavail
= buf
->f_bfree
;
2412 * Let's pretend each free block is also a free 'inode' since UDF does
2413 * not have separate preallocated table of inodes.
2415 buf
->f_files
= (lvidiu
!= NULL
? (le32_to_cpu(lvidiu
->numFiles
) +
2416 le32_to_cpu(lvidiu
->numDirs
)) : 0)
2418 buf
->f_ffree
= buf
->f_bfree
;
2419 buf
->f_namelen
= UDF_NAME_LEN
;
2420 buf
->f_fsid
= u64_to_fsid(id
);
2425 static unsigned int udf_count_free_bitmap(struct super_block
*sb
,
2426 struct udf_bitmap
*bitmap
)
2428 struct buffer_head
*bh
= NULL
;
2429 unsigned int accum
= 0;
2431 udf_pblk_t block
= 0, newblock
;
2432 struct kernel_lb_addr loc
;
2436 struct spaceBitmapDesc
*bm
;
2438 loc
.logicalBlockNum
= bitmap
->s_extPosition
;
2439 loc
.partitionReferenceNum
= UDF_SB(sb
)->s_partition
;
2440 bh
= udf_read_ptagged(sb
, &loc
, 0, &ident
);
2443 udf_err(sb
, "udf_count_free failed\n");
2445 } else if (ident
!= TAG_IDENT_SBD
) {
2447 udf_err(sb
, "udf_count_free failed\n");
2451 bm
= (struct spaceBitmapDesc
*)bh
->b_data
;
2452 bytes
= le32_to_cpu(bm
->numOfBytes
);
2453 index
= sizeof(struct spaceBitmapDesc
); /* offset in first block only */
2454 ptr
= (uint8_t *)bh
->b_data
;
2457 u32 cur_bytes
= min_t(u32
, bytes
, sb
->s_blocksize
- index
);
2458 accum
+= bitmap_weight((const unsigned long *)(ptr
+ index
),
2463 newblock
= udf_get_lb_pblock(sb
, &loc
, ++block
);
2464 bh
= sb_bread(sb
, newblock
);
2466 udf_debug("read failed\n");
2470 ptr
= (uint8_t *)bh
->b_data
;
2478 static unsigned int udf_count_free_table(struct super_block
*sb
,
2479 struct inode
*table
)
2481 unsigned int accum
= 0;
2483 struct kernel_lb_addr eloc
;
2484 struct extent_position epos
;
2487 mutex_lock(&UDF_SB(sb
)->s_alloc_mutex
);
2488 epos
.block
= UDF_I(table
)->i_location
;
2489 epos
.offset
= sizeof(struct unallocSpaceEntry
);
2492 while (udf_next_aext(table
, &epos
, &eloc
, &elen
, &etype
, 1) > 0)
2493 accum
+= (elen
>> table
->i_sb
->s_blocksize_bits
);
2496 mutex_unlock(&UDF_SB(sb
)->s_alloc_mutex
);
2501 static unsigned int udf_count_free(struct super_block
*sb
)
2503 unsigned int accum
= 0;
2504 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2505 struct udf_part_map
*map
;
2506 unsigned int part
= sbi
->s_partition
;
2507 int ptype
= sbi
->s_partmaps
[part
].s_partition_type
;
2509 if (ptype
== UDF_METADATA_MAP25
) {
2510 part
= sbi
->s_partmaps
[part
].s_type_specific
.s_metadata
.
2511 s_phys_partition_ref
;
2512 } else if (ptype
== UDF_VIRTUAL_MAP15
|| ptype
== UDF_VIRTUAL_MAP20
) {
2514 * Filesystems with VAT are append-only and we cannot write to
2515 * them. Let's just report 0 here.
2520 if (sbi
->s_lvid_bh
) {
2521 struct logicalVolIntegrityDesc
*lvid
=
2522 (struct logicalVolIntegrityDesc
*)
2523 sbi
->s_lvid_bh
->b_data
;
2524 if (le32_to_cpu(lvid
->numOfPartitions
) > part
) {
2525 accum
= le32_to_cpu(
2526 lvid
->freeSpaceTable
[part
]);
2527 if (accum
== 0xFFFFFFFF)
2535 map
= &sbi
->s_partmaps
[part
];
2536 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_BITMAP
) {
2537 accum
+= udf_count_free_bitmap(sb
,
2538 map
->s_uspace
.s_bitmap
);
2543 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_TABLE
) {
2544 accum
+= udf_count_free_table(sb
,
2545 map
->s_uspace
.s_table
);
2550 MODULE_AUTHOR("Ben Fennema");
2551 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2552 MODULE_LICENSE("GPL");
2553 module_init(init_udf_fs
)
2554 module_exit(exit_udf_fs
)