printf: Remove unused 'bprintf'
[drm/drm-misc.git] / fs / xfs / xfs_trans_buf.c
blob8e886ecfd69a3b6cf4e4566a846da9024472d7d3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_buf_item.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
19 * Check to see if a buffer matching the given parameters is already
20 * a part of the given transaction.
22 STATIC struct xfs_buf *
23 xfs_trans_buf_item_match(
24 struct xfs_trans *tp,
25 struct xfs_buftarg *target,
26 struct xfs_buf_map *map,
27 int nmaps)
29 struct xfs_log_item *lip;
30 struct xfs_buf_log_item *blip;
31 int len = 0;
32 int i;
34 for (i = 0; i < nmaps; i++)
35 len += map[i].bm_len;
37 list_for_each_entry(lip, &tp->t_items, li_trans) {
38 blip = (struct xfs_buf_log_item *)lip;
39 if (blip->bli_item.li_type == XFS_LI_BUF &&
40 blip->bli_buf->b_target == target &&
41 xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
42 blip->bli_buf->b_length == len) {
43 ASSERT(blip->bli_buf->b_map_count == nmaps);
44 return blip->bli_buf;
48 return NULL;
52 * Add the locked buffer to the transaction.
54 * The buffer must be locked, and it cannot be associated with any
55 * transaction.
57 * If the buffer does not yet have a buf log item associated with it,
58 * then allocate one for it. Then add the buf item to the transaction.
60 STATIC void
61 _xfs_trans_bjoin(
62 struct xfs_trans *tp,
63 struct xfs_buf *bp,
64 int reset_recur)
66 struct xfs_buf_log_item *bip;
68 ASSERT(bp->b_transp == NULL);
71 * The xfs_buf_log_item pointer is stored in b_log_item. If
72 * it doesn't have one yet, then allocate one and initialize it.
73 * The checks to see if one is there are in xfs_buf_item_init().
75 xfs_buf_item_init(bp, tp->t_mountp);
76 bip = bp->b_log_item;
77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 if (reset_recur)
81 bip->bli_recur = 0;
84 * Take a reference for this transaction on the buf item.
86 atomic_inc(&bip->bli_refcount);
89 * Attach the item to the transaction so we can find it in
90 * xfs_trans_get_buf() and friends.
92 xfs_trans_add_item(tp, &bip->bli_item);
93 bp->b_transp = tp;
97 void
98 xfs_trans_bjoin(
99 struct xfs_trans *tp,
100 struct xfs_buf *bp)
102 _xfs_trans_bjoin(tp, bp, 0);
103 trace_xfs_trans_bjoin(bp->b_log_item);
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction. If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
116 xfs_trans_get_buf_map(
117 struct xfs_trans *tp,
118 struct xfs_buftarg *target,
119 struct xfs_buf_map *map,
120 int nmaps,
121 xfs_buf_flags_t flags,
122 struct xfs_buf **bpp)
124 struct xfs_buf *bp;
125 struct xfs_buf_log_item *bip;
126 int error;
128 *bpp = NULL;
129 if (!tp)
130 return xfs_buf_get_map(target, map, nmaps, flags, bpp);
133 * If we find the buffer in the cache with this transaction
134 * pointer in its b_fsprivate2 field, then we know we already
135 * have it locked. In this case we just increment the lock
136 * recursion count and return the buffer to the caller.
138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139 if (bp != NULL) {
140 ASSERT(xfs_buf_islocked(bp));
141 if (xfs_is_shutdown(tp->t_mountp)) {
142 xfs_buf_stale(bp);
143 bp->b_flags |= XBF_DONE;
146 ASSERT(bp->b_transp == tp);
147 bip = bp->b_log_item;
148 ASSERT(bip != NULL);
149 ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 bip->bli_recur++;
151 trace_xfs_trans_get_buf_recur(bip);
152 *bpp = bp;
153 return 0;
156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 if (error)
158 return error;
160 ASSERT(!bp->b_error);
162 _xfs_trans_bjoin(tp, bp, 1);
163 trace_xfs_trans_get_buf(bp->b_log_item);
164 *bpp = bp;
165 return 0;
169 * Get and lock the superblock buffer for the given transaction.
171 static struct xfs_buf *
172 __xfs_trans_getsb(
173 struct xfs_trans *tp,
174 struct xfs_buf *bp)
177 * Just increment the lock recursion count if the buffer is already
178 * attached to this transaction.
180 if (bp->b_transp == tp) {
181 struct xfs_buf_log_item *bip = bp->b_log_item;
183 ASSERT(bip != NULL);
184 ASSERT(atomic_read(&bip->bli_refcount) > 0);
185 bip->bli_recur++;
187 trace_xfs_trans_getsb_recur(bip);
188 } else {
189 xfs_buf_lock(bp);
190 xfs_buf_hold(bp);
191 _xfs_trans_bjoin(tp, bp, 1);
193 trace_xfs_trans_getsb(bp->b_log_item);
196 return bp;
199 struct xfs_buf *
200 xfs_trans_getsb(
201 struct xfs_trans *tp)
203 return __xfs_trans_getsb(tp, tp->t_mountp->m_sb_bp);
206 struct xfs_buf *
207 xfs_trans_getrtsb(
208 struct xfs_trans *tp)
210 if (!tp->t_mountp->m_rtsb_bp)
211 return NULL;
212 return __xfs_trans_getsb(tp, tp->t_mountp->m_rtsb_bp);
216 * Get and lock the buffer for the caller if it is not already
217 * locked within the given transaction. If it has not yet been
218 * read in, read it from disk. If it is already locked
219 * within the transaction and already read in, just increment its
220 * lock recursion count and return a pointer to it.
222 * If the transaction pointer is NULL, make this just a normal
223 * read_buf() call.
226 xfs_trans_read_buf_map(
227 struct xfs_mount *mp,
228 struct xfs_trans *tp,
229 struct xfs_buftarg *target,
230 struct xfs_buf_map *map,
231 int nmaps,
232 xfs_buf_flags_t flags,
233 struct xfs_buf **bpp,
234 const struct xfs_buf_ops *ops)
236 struct xfs_buf *bp = NULL;
237 struct xfs_buf_log_item *bip;
238 int error;
240 *bpp = NULL;
242 * If we find the buffer in the cache with this transaction
243 * pointer in its b_fsprivate2 field, then we know we already
244 * have it locked. If it is already read in we just increment
245 * the lock recursion count and return the buffer to the caller.
246 * If the buffer is not yet read in, then we read it in, increment
247 * the lock recursion count, and return it to the caller.
249 if (tp)
250 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
251 if (bp) {
252 ASSERT(xfs_buf_islocked(bp));
253 ASSERT(bp->b_transp == tp);
254 ASSERT(bp->b_log_item != NULL);
255 ASSERT(!bp->b_error);
256 ASSERT(bp->b_flags & XBF_DONE);
259 * We never locked this buf ourselves, so we shouldn't
260 * brelse it either. Just get out.
262 if (xfs_is_shutdown(mp)) {
263 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
264 return -EIO;
268 * Check if the caller is trying to read a buffer that is
269 * already attached to the transaction yet has no buffer ops
270 * assigned. Ops are usually attached when the buffer is
271 * attached to the transaction, or by the read caller if
272 * special circumstances. That didn't happen, which is not
273 * how this is supposed to go.
275 * If the buffer passes verification we'll let this go, but if
276 * not we have to shut down. Let the transaction cleanup code
277 * release this buffer when it kills the tranaction.
279 ASSERT(bp->b_ops != NULL);
280 error = xfs_buf_reverify(bp, ops);
281 if (error) {
282 xfs_buf_ioerror_alert(bp, __return_address);
284 if (tp->t_flags & XFS_TRANS_DIRTY)
285 xfs_force_shutdown(tp->t_mountp,
286 SHUTDOWN_META_IO_ERROR);
288 /* bad CRC means corrupted metadata */
289 if (error == -EFSBADCRC)
290 error = -EFSCORRUPTED;
291 return error;
294 bip = bp->b_log_item;
295 bip->bli_recur++;
297 ASSERT(atomic_read(&bip->bli_refcount) > 0);
298 trace_xfs_trans_read_buf_recur(bip);
299 ASSERT(bp->b_ops != NULL || ops == NULL);
300 *bpp = bp;
301 return 0;
304 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
305 __return_address);
306 switch (error) {
307 case 0:
308 break;
309 default:
310 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
311 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
312 fallthrough;
313 case -ENOMEM:
314 case -EAGAIN:
315 return error;
318 if (xfs_is_shutdown(mp)) {
319 xfs_buf_relse(bp);
320 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
321 return -EIO;
324 if (tp) {
325 _xfs_trans_bjoin(tp, bp, 1);
326 trace_xfs_trans_read_buf(bp->b_log_item);
328 ASSERT(bp->b_ops != NULL || ops == NULL);
329 *bpp = bp;
330 return 0;
334 /* Has this buffer been dirtied by anyone? */
335 bool
336 xfs_trans_buf_is_dirty(
337 struct xfs_buf *bp)
339 struct xfs_buf_log_item *bip = bp->b_log_item;
341 if (!bip)
342 return false;
343 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
344 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
348 * Release a buffer previously joined to the transaction. If the buffer is
349 * modified within this transaction, decrement the recursion count but do not
350 * release the buffer even if the count goes to 0. If the buffer is not modified
351 * within the transaction, decrement the recursion count and release the buffer
352 * if the recursion count goes to 0.
354 * If the buffer is to be released and it was not already dirty before this
355 * transaction began, then also free the buf_log_item associated with it.
357 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
359 void
360 xfs_trans_brelse(
361 struct xfs_trans *tp,
362 struct xfs_buf *bp)
364 struct xfs_buf_log_item *bip = bp->b_log_item;
366 ASSERT(bp->b_transp == tp);
368 if (!tp) {
369 xfs_buf_relse(bp);
370 return;
373 trace_xfs_trans_brelse(bip);
374 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
375 ASSERT(atomic_read(&bip->bli_refcount) > 0);
378 * If the release is for a recursive lookup, then decrement the count
379 * and return.
381 if (bip->bli_recur > 0) {
382 bip->bli_recur--;
383 return;
387 * If the buffer is invalidated or dirty in this transaction, we can't
388 * release it until we commit.
390 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
391 return;
392 if (bip->bli_flags & XFS_BLI_STALE)
393 return;
396 * Unlink the log item from the transaction and clear the hold flag, if
397 * set. We wouldn't want the next user of the buffer to get confused.
399 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
400 xfs_trans_del_item(&bip->bli_item);
401 bip->bli_flags &= ~XFS_BLI_HOLD;
403 /* drop the reference to the bli */
404 xfs_buf_item_put(bip);
406 bp->b_transp = NULL;
407 xfs_buf_relse(bp);
411 * Forcibly detach a buffer previously joined to the transaction. The caller
412 * will retain its locked reference to the buffer after this function returns.
413 * The buffer must be completely clean and must not be held to the transaction.
415 void
416 xfs_trans_bdetach(
417 struct xfs_trans *tp,
418 struct xfs_buf *bp)
420 struct xfs_buf_log_item *bip = bp->b_log_item;
422 ASSERT(tp != NULL);
423 ASSERT(bp->b_transp == tp);
424 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
425 ASSERT(atomic_read(&bip->bli_refcount) > 0);
427 trace_xfs_trans_bdetach(bip);
430 * Erase all recursion count, since we're removing this buffer from the
431 * transaction.
433 bip->bli_recur = 0;
436 * The buffer must be completely clean. Specifically, it had better
437 * not be dirty, stale, logged, ordered, or held to the transaction.
439 ASSERT(!test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
440 ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY));
441 ASSERT(!(bip->bli_flags & XFS_BLI_HOLD));
442 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
443 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
444 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
446 /* Unlink the log item from the transaction and drop the log item. */
447 xfs_trans_del_item(&bip->bli_item);
448 xfs_buf_item_put(bip);
449 bp->b_transp = NULL;
453 * Mark the buffer as not needing to be unlocked when the buf item's
454 * iop_committing() routine is called. The buffer must already be locked
455 * and associated with the given transaction.
457 /* ARGSUSED */
458 void
459 xfs_trans_bhold(
460 xfs_trans_t *tp,
461 struct xfs_buf *bp)
463 struct xfs_buf_log_item *bip = bp->b_log_item;
465 ASSERT(bp->b_transp == tp);
466 ASSERT(bip != NULL);
467 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
468 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
469 ASSERT(atomic_read(&bip->bli_refcount) > 0);
471 bip->bli_flags |= XFS_BLI_HOLD;
472 trace_xfs_trans_bhold(bip);
476 * Cancel the previous buffer hold request made on this buffer
477 * for this transaction.
479 void
480 xfs_trans_bhold_release(
481 xfs_trans_t *tp,
482 struct xfs_buf *bp)
484 struct xfs_buf_log_item *bip = bp->b_log_item;
486 ASSERT(bp->b_transp == tp);
487 ASSERT(bip != NULL);
488 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
489 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
490 ASSERT(atomic_read(&bip->bli_refcount) > 0);
491 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
493 bip->bli_flags &= ~XFS_BLI_HOLD;
494 trace_xfs_trans_bhold_release(bip);
498 * Mark a buffer dirty in the transaction.
500 void
501 xfs_trans_dirty_buf(
502 struct xfs_trans *tp,
503 struct xfs_buf *bp)
505 struct xfs_buf_log_item *bip = bp->b_log_item;
507 ASSERT(bp->b_transp == tp);
508 ASSERT(bip != NULL);
511 * Mark the buffer as needing to be written out eventually,
512 * and set its iodone function to remove the buffer's buf log
513 * item from the AIL and free it when the buffer is flushed
514 * to disk.
516 bp->b_flags |= XBF_DONE;
518 ASSERT(atomic_read(&bip->bli_refcount) > 0);
521 * If we invalidated the buffer within this transaction, then
522 * cancel the invalidation now that we're dirtying the buffer
523 * again. There are no races with the code in xfs_buf_item_unpin(),
524 * because we have a reference to the buffer this entire time.
526 if (bip->bli_flags & XFS_BLI_STALE) {
527 bip->bli_flags &= ~XFS_BLI_STALE;
528 ASSERT(bp->b_flags & XBF_STALE);
529 bp->b_flags &= ~XBF_STALE;
530 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
532 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
534 tp->t_flags |= XFS_TRANS_DIRTY;
535 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
539 * This is called to mark bytes first through last inclusive of the given
540 * buffer as needing to be logged when the transaction is committed.
541 * The buffer must already be associated with the given transaction.
543 * First and last are numbers relative to the beginning of this buffer,
544 * so the first byte in the buffer is numbered 0 regardless of the
545 * value of b_blkno.
547 void
548 xfs_trans_log_buf(
549 struct xfs_trans *tp,
550 struct xfs_buf *bp,
551 uint first,
552 uint last)
554 struct xfs_buf_log_item *bip = bp->b_log_item;
556 ASSERT(first <= last && last < BBTOB(bp->b_length));
557 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
559 xfs_trans_dirty_buf(tp, bp);
561 trace_xfs_trans_log_buf(bip);
562 xfs_buf_item_log(bip, first, last);
567 * Invalidate a buffer that is being used within a transaction.
569 * Typically this is because the blocks in the buffer are being freed, so we
570 * need to prevent it from being written out when we're done. Allowing it
571 * to be written again might overwrite data in the free blocks if they are
572 * reallocated to a file.
574 * We prevent the buffer from being written out by marking it stale. We can't
575 * get rid of the buf log item at this point because the buffer may still be
576 * pinned by another transaction. If that is the case, then we'll wait until
577 * the buffer is committed to disk for the last time (we can tell by the ref
578 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
579 * keep the buffer locked so that the buffer and buf log item are not reused.
581 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
582 * the buf item. This will be used at recovery time to determine that copies
583 * of the buffer in the log before this should not be replayed.
585 * We mark the item descriptor and the transaction dirty so that we'll hold
586 * the buffer until after the commit.
588 * Since we're invalidating the buffer, we also clear the state about which
589 * parts of the buffer have been logged. We also clear the flag indicating
590 * that this is an inode buffer since the data in the buffer will no longer
591 * be valid.
593 * We set the stale bit in the buffer as well since we're getting rid of it.
595 void
596 xfs_trans_binval(
597 xfs_trans_t *tp,
598 struct xfs_buf *bp)
600 struct xfs_buf_log_item *bip = bp->b_log_item;
601 int i;
603 ASSERT(bp->b_transp == tp);
604 ASSERT(bip != NULL);
605 ASSERT(atomic_read(&bip->bli_refcount) > 0);
607 trace_xfs_trans_binval(bip);
609 if (bip->bli_flags & XFS_BLI_STALE) {
611 * If the buffer is already invalidated, then
612 * just return.
614 ASSERT(bp->b_flags & XBF_STALE);
615 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
616 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
617 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
618 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
619 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
620 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
621 return;
624 xfs_buf_stale(bp);
626 bip->bli_flags |= XFS_BLI_STALE;
627 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
628 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
629 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
630 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
631 for (i = 0; i < bip->bli_format_count; i++) {
632 memset(bip->bli_formats[i].blf_data_map, 0,
633 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
635 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
636 tp->t_flags |= XFS_TRANS_DIRTY;
640 * This call is used to indicate that the buffer contains on-disk inodes which
641 * must be handled specially during recovery. They require special handling
642 * because only the di_next_unlinked from the inodes in the buffer should be
643 * recovered. The rest of the data in the buffer is logged via the inodes
644 * themselves.
646 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
647 * transferred to the buffer's log format structure so that we'll know what to
648 * do at recovery time.
650 void
651 xfs_trans_inode_buf(
652 xfs_trans_t *tp,
653 struct xfs_buf *bp)
655 struct xfs_buf_log_item *bip = bp->b_log_item;
657 ASSERT(bp->b_transp == tp);
658 ASSERT(bip != NULL);
659 ASSERT(atomic_read(&bip->bli_refcount) > 0);
661 bip->bli_flags |= XFS_BLI_INODE_BUF;
662 bp->b_flags |= _XBF_INODES;
663 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
667 * This call is used to indicate that the buffer is going to
668 * be staled and was an inode buffer. This means it gets
669 * special processing during unpin - where any inodes
670 * associated with the buffer should be removed from ail.
671 * There is also special processing during recovery,
672 * any replay of the inodes in the buffer needs to be
673 * prevented as the buffer may have been reused.
675 void
676 xfs_trans_stale_inode_buf(
677 xfs_trans_t *tp,
678 struct xfs_buf *bp)
680 struct xfs_buf_log_item *bip = bp->b_log_item;
682 ASSERT(bp->b_transp == tp);
683 ASSERT(bip != NULL);
684 ASSERT(atomic_read(&bip->bli_refcount) > 0);
686 bip->bli_flags |= XFS_BLI_STALE_INODE;
687 bp->b_flags |= _XBF_INODES;
688 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
692 * Mark the buffer as being one which contains newly allocated
693 * inodes. We need to make sure that even if this buffer is
694 * relogged as an 'inode buf' we still recover all of the inode
695 * images in the face of a crash. This works in coordination with
696 * xfs_buf_item_committed() to ensure that the buffer remains in the
697 * AIL at its original location even after it has been relogged.
699 /* ARGSUSED */
700 void
701 xfs_trans_inode_alloc_buf(
702 xfs_trans_t *tp,
703 struct xfs_buf *bp)
705 struct xfs_buf_log_item *bip = bp->b_log_item;
707 ASSERT(bp->b_transp == tp);
708 ASSERT(bip != NULL);
709 ASSERT(atomic_read(&bip->bli_refcount) > 0);
711 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
712 bp->b_flags |= _XBF_INODES;
713 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
717 * Mark the buffer as ordered for this transaction. This means that the contents
718 * of the buffer are not recorded in the transaction but it is tracked in the
719 * AIL as though it was. This allows us to record logical changes in
720 * transactions rather than the physical changes we make to the buffer without
721 * changing writeback ordering constraints of metadata buffers.
723 bool
724 xfs_trans_ordered_buf(
725 struct xfs_trans *tp,
726 struct xfs_buf *bp)
728 struct xfs_buf_log_item *bip = bp->b_log_item;
730 ASSERT(bp->b_transp == tp);
731 ASSERT(bip != NULL);
732 ASSERT(atomic_read(&bip->bli_refcount) > 0);
734 if (xfs_buf_item_dirty_format(bip))
735 return false;
737 bip->bli_flags |= XFS_BLI_ORDERED;
738 trace_xfs_buf_item_ordered(bip);
741 * We don't log a dirty range of an ordered buffer but it still needs
742 * to be marked dirty and that it has been logged.
744 xfs_trans_dirty_buf(tp, bp);
745 return true;
749 * Set the type of the buffer for log recovery so that it can correctly identify
750 * and hence attach the correct buffer ops to the buffer after replay.
752 void
753 xfs_trans_buf_set_type(
754 struct xfs_trans *tp,
755 struct xfs_buf *bp,
756 enum xfs_blft type)
758 struct xfs_buf_log_item *bip = bp->b_log_item;
760 if (!tp)
761 return;
763 ASSERT(bp->b_transp == tp);
764 ASSERT(bip != NULL);
765 ASSERT(atomic_read(&bip->bli_refcount) > 0);
767 xfs_blft_to_flags(&bip->__bli_format, type);
770 void
771 xfs_trans_buf_copy_type(
772 struct xfs_buf *dst_bp,
773 struct xfs_buf *src_bp)
775 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
776 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
777 enum xfs_blft type;
779 type = xfs_blft_from_flags(&sbip->__bli_format);
780 xfs_blft_to_flags(&dbip->__bli_format, type);
784 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
785 * dquots. However, unlike in inode buffer recovery, dquot buffers get
786 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
787 * The only thing that makes dquot buffers different from regular
788 * buffers is that we must not replay dquot bufs when recovering
789 * if a _corresponding_ quotaoff has happened. We also have to distinguish
790 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
791 * can be turned off independently.
793 /* ARGSUSED */
794 void
795 xfs_trans_dquot_buf(
796 xfs_trans_t *tp,
797 struct xfs_buf *bp,
798 uint type)
800 struct xfs_buf_log_item *bip = bp->b_log_item;
802 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
803 type == XFS_BLF_PDQUOT_BUF ||
804 type == XFS_BLF_GDQUOT_BUF);
806 bip->__bli_format.blf_flags |= type;
808 switch (type) {
809 case XFS_BLF_UDQUOT_BUF:
810 type = XFS_BLFT_UDQUOT_BUF;
811 break;
812 case XFS_BLF_PDQUOT_BUF:
813 type = XFS_BLFT_PDQUOT_BUF;
814 break;
815 case XFS_BLF_GDQUOT_BUF:
816 type = XFS_BLFT_GDQUOT_BUF;
817 break;
818 default:
819 type = XFS_BLFT_UNKNOWN_BUF;
820 break;
823 bp->b_flags |= _XBF_DQUOTS;
824 xfs_trans_buf_set_type(tp, bp, type);