1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 #include <linux/rw_hint.h>
14 struct blk_flush_queue
;
16 #define BLKDEV_MIN_RQ 4
17 #define BLKDEV_DEFAULT_RQ 128
24 typedef enum rq_end_io_ret (rq_end_io_fn
)(struct request
*, blk_status_t
);
28 typedef __u32 __bitwise req_flags_t
;
30 /* Keep rqf_name[] in sync with the definitions below */
32 /* drive already may have started this one */
34 /* request for flush sequence */
36 /* merge of different types, fail separately */
38 /* don't call prep for this one */
40 /* use hctx->sched_tags */
42 /* use an I/O scheduler for this request */
44 /* vaguely specified driver internal error. Ignored by block layer */
46 /* don't warn about errors */
48 /* account into disk and partition IO statistics */
50 /* runtime pm request */
52 /* on IO scheduler merge hash */
54 /* track IO completion time */
56 /* Look at ->special_vec for the actual data payload instead of the
58 __RQF_SPECIAL_PAYLOAD
,
59 /* request completion needs to be signaled to zone write plugging. */
60 __RQF_ZONE_WRITE_PLUGGING
,
61 /* ->timeout has been called, don't expire again */
67 #define RQF_STARTED ((__force req_flags_t)(1 << __RQF_STARTED))
68 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << __RQF_FLUSH_SEQ))
69 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << __RQF_MIXED_MERGE))
70 #define RQF_DONTPREP ((__force req_flags_t)(1 << __RQF_DONTPREP))
71 #define RQF_SCHED_TAGS ((__force req_flags_t)(1 << __RQF_SCHED_TAGS))
72 #define RQF_USE_SCHED ((__force req_flags_t)(1 << __RQF_USE_SCHED))
73 #define RQF_FAILED ((__force req_flags_t)(1 << __RQF_FAILED))
74 #define RQF_QUIET ((__force req_flags_t)(1 << __RQF_QUIET))
75 #define RQF_IO_STAT ((__force req_flags_t)(1 << __RQF_IO_STAT))
76 #define RQF_PM ((__force req_flags_t)(1 << __RQF_PM))
77 #define RQF_HASHED ((__force req_flags_t)(1 << __RQF_HASHED))
78 #define RQF_STATS ((__force req_flags_t)(1 << __RQF_STATS))
79 #define RQF_SPECIAL_PAYLOAD \
80 ((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD))
81 #define RQF_ZONE_WRITE_PLUGGING \
82 ((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING))
83 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << __RQF_TIMED_OUT))
84 #define RQF_RESV ((__force req_flags_t)(1 << __RQF_RESV))
86 /* flags that prevent us from merging requests: */
87 #define RQF_NOMERGE_FLAGS \
88 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
97 * Try to put the fields that are referenced together in the same cacheline.
99 * If you modify this structure, make sure to update blk_rq_init() and
100 * especially blk_mq_rq_ctx_init() to take care of the added fields.
103 struct request_queue
*q
;
104 struct blk_mq_ctx
*mq_ctx
;
105 struct blk_mq_hw_ctx
*mq_hctx
;
107 blk_opf_t cmd_flags
; /* op and common flags */
108 req_flags_t rq_flags
;
113 unsigned int timeout
;
115 /* the following two fields are internal, NEVER access directly */
116 unsigned int __data_len
; /* total data len */
117 sector_t __sector
; /* sector cursor */
123 struct list_head queuelist
;
124 struct request
*rq_next
;
127 struct block_device
*part
;
128 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
129 /* Time that the first bio started allocating this request. */
132 /* Time that this request was allocated for this IO. */
134 /* Time that I/O was submitted to the device. */
135 u64 io_start_time_ns
;
137 #ifdef CONFIG_BLK_WBT
138 unsigned short wbt_flags
;
141 * rq sectors used for blk stats. It has the same value
142 * with blk_rq_sectors(rq), except that it never be zeroed
145 unsigned short stats_sectors
;
148 * Number of scatter-gather DMA addr+len pairs after
149 * physical address coalescing is performed.
151 unsigned short nr_phys_segments
;
152 unsigned short nr_integrity_segments
;
154 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
155 struct bio_crypt_ctx
*crypt_ctx
;
156 struct blk_crypto_keyslot
*crypt_keyslot
;
159 enum mq_rq_state state
;
162 unsigned long deadline
;
165 * The hash is used inside the scheduler, and killed once the
166 * request reaches the dispatch list. The ipi_list is only used
167 * to queue the request for softirq completion, which is long
168 * after the request has been unhashed (and even removed from
169 * the dispatch list).
172 struct hlist_node hash
; /* merge hash */
173 struct llist_node ipi_list
;
177 * The rb_node is only used inside the io scheduler, requests
178 * are pruned when moved to the dispatch queue. special_vec must
179 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
180 * insert into an IO scheduler.
183 struct rb_node rb_node
; /* sort/lookup */
184 struct bio_vec special_vec
;
188 * Three pointers are available for the IO schedulers, if they need
189 * more they have to dynamically allocate it.
198 rq_end_io_fn
*saved_end_io
;
204 * completion callback.
206 rq_end_io_fn
*end_io
;
210 static inline enum req_op
req_op(const struct request
*req
)
212 return req
->cmd_flags
& REQ_OP_MASK
;
215 static inline bool blk_rq_is_passthrough(struct request
*rq
)
217 return blk_op_is_passthrough(rq
->cmd_flags
);
220 static inline unsigned short req_get_ioprio(struct request
*req
)
223 return req
->bio
->bi_ioprio
;
227 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
229 #define rq_dma_dir(rq) \
230 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
232 static inline int rq_list_empty(const struct rq_list
*rl
)
234 return rl
->head
== NULL
;
237 static inline void rq_list_init(struct rq_list
*rl
)
243 static inline void rq_list_add_tail(struct rq_list
*rl
, struct request
*rq
)
247 rl
->tail
->rq_next
= rq
;
253 static inline void rq_list_add_head(struct rq_list
*rl
, struct request
*rq
)
255 rq
->rq_next
= rl
->head
;
261 static inline struct request
*rq_list_pop(struct rq_list
*rl
)
263 struct request
*rq
= rl
->head
;
266 rl
->head
= rl
->head
->rq_next
;
275 static inline struct request
*rq_list_peek(struct rq_list
*rl
)
280 #define rq_list_for_each(rl, pos) \
281 for (pos = rq_list_peek((rl)); (pos); pos = pos->rq_next)
283 #define rq_list_for_each_safe(rl, pos, nxt) \
284 for (pos = rq_list_peek((rl)), nxt = pos->rq_next; \
285 pos; pos = nxt, nxt = pos ? pos->rq_next : NULL)
288 * enum blk_eh_timer_return - How the timeout handler should proceed
289 * @BLK_EH_DONE: The block driver completed the command or will complete it at
291 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
292 * request to complete.
294 enum blk_eh_timer_return
{
299 /* Keep alloc_policy_name[] in sync with the definitions below */
301 BLK_TAG_ALLOC_FIFO
, /* allocate starting from 0 */
302 BLK_TAG_ALLOC_RR
, /* allocate starting from last allocated tag */
307 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
310 struct blk_mq_hw_ctx
{
312 /** @lock: Protects the dispatch list. */
315 * @dispatch: Used for requests that are ready to be
316 * dispatched to the hardware but for some reason (e.g. lack of
317 * resources) could not be sent to the hardware. As soon as the
318 * driver can send new requests, requests at this list will
319 * be sent first for a fairer dispatch.
321 struct list_head dispatch
;
323 * @state: BLK_MQ_S_* flags. Defines the state of the hw
324 * queue (active, scheduled to restart, stopped).
327 } ____cacheline_aligned_in_smp
;
330 * @run_work: Used for scheduling a hardware queue run at a later time.
332 struct delayed_work run_work
;
333 /** @cpumask: Map of available CPUs where this hctx can run. */
334 cpumask_var_t cpumask
;
336 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
337 * selection from @cpumask.
341 * @next_cpu_batch: Counter of how many works left in the batch before
342 * changing to the next CPU.
346 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
350 * @sched_data: Pointer owned by the IO scheduler attached to a request
351 * queue. It's up to the IO scheduler how to use this pointer.
355 * @queue: Pointer to the request queue that owns this hardware context.
357 struct request_queue
*queue
;
358 /** @fq: Queue of requests that need to perform a flush operation. */
359 struct blk_flush_queue
*fq
;
362 * @driver_data: Pointer to data owned by the block driver that created
368 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
369 * pending request in that software queue.
371 struct sbitmap ctx_map
;
374 * @dispatch_from: Software queue to be used when no scheduler was
377 struct blk_mq_ctx
*dispatch_from
;
379 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
380 * decide if the hw_queue is busy using Exponential Weighted Moving
383 unsigned int dispatch_busy
;
385 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
387 /** @nr_ctx: Number of software queues. */
388 unsigned short nr_ctx
;
389 /** @ctxs: Array of software queues. */
390 struct blk_mq_ctx
**ctxs
;
392 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
393 spinlock_t dispatch_wait_lock
;
395 * @dispatch_wait: Waitqueue to put requests when there is no tag
396 * available at the moment, to wait for another try in the future.
398 wait_queue_entry_t dispatch_wait
;
401 * @wait_index: Index of next available dispatch_wait queue to insert
407 * @tags: Tags owned by the block driver. A tag at this set is only
408 * assigned when a request is dispatched from a hardware queue.
410 struct blk_mq_tags
*tags
;
412 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
413 * scheduler associated with a request queue, a tag is assigned when
414 * that request is allocated. Else, this member is not used.
416 struct blk_mq_tags
*sched_tags
;
418 /** @numa_node: NUMA node the storage adapter has been connected to. */
419 unsigned int numa_node
;
420 /** @queue_num: Index of this hardware queue. */
421 unsigned int queue_num
;
424 * @nr_active: Number of active requests. Only used when a tag set is
425 * shared across request queues.
429 /** @cpuhp_online: List to store request if CPU is going to die */
430 struct hlist_node cpuhp_online
;
431 /** @cpuhp_dead: List to store request if some CPU die. */
432 struct hlist_node cpuhp_dead
;
433 /** @kobj: Kernel object for sysfs. */
436 #ifdef CONFIG_BLK_DEBUG_FS
438 * @debugfs_dir: debugfs directory for this hardware queue. Named
439 * as cpu<cpu_number>.
441 struct dentry
*debugfs_dir
;
442 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
443 struct dentry
*sched_debugfs_dir
;
447 * @hctx_list: if this hctx is not in use, this is an entry in
448 * q->unused_hctx_list.
450 struct list_head hctx_list
;
454 * struct blk_mq_queue_map - Map software queues to hardware queues
455 * @mq_map: CPU ID to hardware queue index map. This is an array
456 * with nr_cpu_ids elements. Each element has a value in the range
457 * [@queue_offset, @queue_offset + @nr_queues).
458 * @nr_queues: Number of hardware queues to map CPU IDs onto.
459 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
460 * driver to map each hardware queue type (enum hctx_type) onto a distinct
461 * set of hardware queues.
463 struct blk_mq_queue_map
{
464 unsigned int *mq_map
;
465 unsigned int nr_queues
;
466 unsigned int queue_offset
;
470 * enum hctx_type - Type of hardware queue
471 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
472 * @HCTX_TYPE_READ: Just for READ I/O.
473 * @HCTX_TYPE_POLL: Polled I/O of any kind.
474 * @HCTX_MAX_TYPES: Number of types of hctx.
485 * struct blk_mq_tag_set - tag set that can be shared between request queues
486 * @ops: Pointers to functions that implement block driver behavior.
487 * @map: One or more ctx -> hctx mappings. One map exists for each
488 * hardware queue type (enum hctx_type) that the driver wishes
489 * to support. There are no restrictions on maps being of the
490 * same size, and it's perfectly legal to share maps between
492 * @nr_maps: Number of elements in the @map array. A number in the range
493 * [1, HCTX_MAX_TYPES].
494 * @nr_hw_queues: Number of hardware queues supported by the block driver that
495 * owns this data structure.
496 * @queue_depth: Number of tags per hardware queue, reserved tags included.
497 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
499 * @cmd_size: Number of additional bytes to allocate per request. The block
500 * driver owns these additional bytes.
501 * @numa_node: NUMA node the storage adapter has been connected to.
502 * @timeout: Request processing timeout in jiffies.
503 * @flags: Zero or more BLK_MQ_F_* flags.
504 * @driver_data: Pointer to data owned by the block driver that created this
506 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
509 * Shared set of tags. Has @nr_hw_queues elements. If set,
510 * shared by all @tags.
511 * @tag_list_lock: Serializes tag_list accesses.
512 * @tag_list: List of the request queues that use this tag set. See also
513 * request_queue.tag_set_list.
514 * @srcu: Use as lock when type of the request queue is blocking
515 * (BLK_MQ_F_BLOCKING).
517 struct blk_mq_tag_set
{
518 const struct blk_mq_ops
*ops
;
519 struct blk_mq_queue_map map
[HCTX_MAX_TYPES
];
520 unsigned int nr_maps
;
521 unsigned int nr_hw_queues
;
522 unsigned int queue_depth
;
523 unsigned int reserved_tags
;
524 unsigned int cmd_size
;
526 unsigned int timeout
;
530 struct blk_mq_tags
**tags
;
532 struct blk_mq_tags
*shared_tags
;
534 struct mutex tag_list_lock
;
535 struct list_head tag_list
;
536 struct srcu_struct
*srcu
;
540 * struct blk_mq_queue_data - Data about a request inserted in a queue
542 * @rq: Request pointer.
543 * @last: If it is the last request in the queue.
545 struct blk_mq_queue_data
{
550 typedef bool (busy_tag_iter_fn
)(struct request
*, void *);
553 * struct blk_mq_ops - Callback functions that implements block driver
558 * @queue_rq: Queue a new request from block IO.
560 blk_status_t (*queue_rq
)(struct blk_mq_hw_ctx
*,
561 const struct blk_mq_queue_data
*);
564 * @commit_rqs: If a driver uses bd->last to judge when to submit
565 * requests to hardware, it must define this function. In case of errors
566 * that make us stop issuing further requests, this hook serves the
567 * purpose of kicking the hardware (which the last request otherwise
570 void (*commit_rqs
)(struct blk_mq_hw_ctx
*);
573 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
574 * that each request belongs to the same queue. If the driver doesn't
575 * empty the @rqlist completely, then the rest will be queued
576 * individually by the block layer upon return.
578 void (*queue_rqs
)(struct rq_list
*rqlist
);
581 * @get_budget: Reserve budget before queue request, once .queue_rq is
582 * run, it is driver's responsibility to release the
583 * reserved budget. Also we have to handle failure case
584 * of .get_budget for avoiding I/O deadlock.
586 int (*get_budget
)(struct request_queue
*);
589 * @put_budget: Release the reserved budget.
591 void (*put_budget
)(struct request_queue
*, int);
594 * @set_rq_budget_token: store rq's budget token
596 void (*set_rq_budget_token
)(struct request
*, int);
598 * @get_rq_budget_token: retrieve rq's budget token
600 int (*get_rq_budget_token
)(struct request
*);
603 * @timeout: Called on request timeout.
605 enum blk_eh_timer_return (*timeout
)(struct request
*);
608 * @poll: Called to poll for completion of a specific tag.
610 int (*poll
)(struct blk_mq_hw_ctx
*, struct io_comp_batch
*);
613 * @complete: Mark the request as complete.
615 void (*complete
)(struct request
*);
618 * @init_hctx: Called when the block layer side of a hardware queue has
619 * been set up, allowing the driver to allocate/init matching
622 int (*init_hctx
)(struct blk_mq_hw_ctx
*, void *, unsigned int);
624 * @exit_hctx: Ditto for exit/teardown.
626 void (*exit_hctx
)(struct blk_mq_hw_ctx
*, unsigned int);
629 * @init_request: Called for every command allocated by the block layer
630 * to allow the driver to set up driver specific data.
632 * Tag greater than or equal to queue_depth is for setting up
635 int (*init_request
)(struct blk_mq_tag_set
*set
, struct request
*,
636 unsigned int, unsigned int);
638 * @exit_request: Ditto for exit/teardown.
640 void (*exit_request
)(struct blk_mq_tag_set
*set
, struct request
*,
644 * @cleanup_rq: Called before freeing one request which isn't completed
645 * yet, and usually for freeing the driver private data.
647 void (*cleanup_rq
)(struct request
*);
650 * @busy: If set, returns whether or not this queue currently is busy.
652 bool (*busy
)(struct request_queue
*);
655 * @map_queues: This allows drivers specify their own queue mapping by
656 * overriding the setup-time function that builds the mq_map.
658 void (*map_queues
)(struct blk_mq_tag_set
*set
);
660 #ifdef CONFIG_BLK_DEBUG_FS
662 * @show_rq: Used by the debugfs implementation to show driver-specific
663 * information about a request.
665 void (*show_rq
)(struct seq_file
*m
, struct request
*rq
);
669 /* Keep hctx_flag_name[] in sync with the definitions below */
671 BLK_MQ_F_SHOULD_MERGE
= 1 << 0,
672 BLK_MQ_F_TAG_QUEUE_SHARED
= 1 << 1,
674 * Set when this device requires underlying blk-mq device for
677 BLK_MQ_F_STACKING
= 1 << 2,
678 BLK_MQ_F_TAG_HCTX_SHARED
= 1 << 3,
679 BLK_MQ_F_BLOCKING
= 1 << 4,
680 /* Do not allow an I/O scheduler to be configured. */
681 BLK_MQ_F_NO_SCHED
= 1 << 5,
684 * Select 'none' during queue registration in case of a single hwq
685 * or shared hwqs instead of 'mq-deadline'.
687 BLK_MQ_F_NO_SCHED_BY_DEFAULT
= 1 << 6,
688 BLK_MQ_F_ALLOC_POLICY_START_BIT
= 7,
689 BLK_MQ_F_ALLOC_POLICY_BITS
= 1,
691 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
692 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
693 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
694 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
695 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
696 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
698 #define BLK_MQ_MAX_DEPTH (10240)
699 #define BLK_MQ_NO_HCTX_IDX (-1U)
702 /* Keep hctx_state_name[] in sync with the definitions below */
705 BLK_MQ_S_SCHED_RESTART
,
706 /* hw queue is inactive after all its CPUs become offline */
711 struct gendisk
*__blk_mq_alloc_disk(struct blk_mq_tag_set
*set
,
712 struct queue_limits
*lim
, void *queuedata
,
713 struct lock_class_key
*lkclass
);
714 #define blk_mq_alloc_disk(set, lim, queuedata) \
716 static struct lock_class_key __key; \
718 __blk_mq_alloc_disk(set, lim, queuedata, &__key); \
720 struct gendisk
*blk_mq_alloc_disk_for_queue(struct request_queue
*q
,
721 struct lock_class_key
*lkclass
);
722 struct request_queue
*blk_mq_alloc_queue(struct blk_mq_tag_set
*set
,
723 struct queue_limits
*lim
, void *queuedata
);
724 int blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
725 struct request_queue
*q
);
726 void blk_mq_destroy_queue(struct request_queue
*);
728 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
);
729 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set
*set
,
730 const struct blk_mq_ops
*ops
, unsigned int queue_depth
,
731 unsigned int set_flags
);
732 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
);
734 void blk_mq_free_request(struct request
*rq
);
735 int blk_rq_poll(struct request
*rq
, struct io_comp_batch
*iob
,
736 unsigned int poll_flags
);
738 bool blk_mq_queue_inflight(struct request_queue
*q
);
741 /* return when out of requests */
742 BLK_MQ_REQ_NOWAIT
= (__force blk_mq_req_flags_t
)(1 << 0),
743 /* allocate from reserved pool */
744 BLK_MQ_REQ_RESERVED
= (__force blk_mq_req_flags_t
)(1 << 1),
746 BLK_MQ_REQ_PM
= (__force blk_mq_req_flags_t
)(1 << 2),
749 struct request
*blk_mq_alloc_request(struct request_queue
*q
, blk_opf_t opf
,
750 blk_mq_req_flags_t flags
);
751 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
752 blk_opf_t opf
, blk_mq_req_flags_t flags
,
753 unsigned int hctx_idx
);
756 * Tag address space map.
759 unsigned int nr_tags
;
760 unsigned int nr_reserved_tags
;
761 unsigned int active_queues
;
763 struct sbitmap_queue bitmap_tags
;
764 struct sbitmap_queue breserved_tags
;
766 struct request
**rqs
;
767 struct request
**static_rqs
;
768 struct list_head page_list
;
771 * used to clear request reference in rqs[] before freeing one
777 static inline struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
,
780 if (tag
< tags
->nr_tags
) {
781 prefetch(tags
->rqs
[tag
]);
782 return tags
->rqs
[tag
];
789 BLK_MQ_UNIQUE_TAG_BITS
= 16,
790 BLK_MQ_UNIQUE_TAG_MASK
= (1 << BLK_MQ_UNIQUE_TAG_BITS
) - 1,
793 u32
blk_mq_unique_tag(struct request
*rq
);
795 static inline u16
blk_mq_unique_tag_to_hwq(u32 unique_tag
)
797 return unique_tag
>> BLK_MQ_UNIQUE_TAG_BITS
;
800 static inline u16
blk_mq_unique_tag_to_tag(u32 unique_tag
)
802 return unique_tag
& BLK_MQ_UNIQUE_TAG_MASK
;
806 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
807 * @rq: target request.
809 static inline enum mq_rq_state
blk_mq_rq_state(struct request
*rq
)
811 return READ_ONCE(rq
->state
);
814 static inline int blk_mq_request_started(struct request
*rq
)
816 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
819 static inline int blk_mq_request_completed(struct request
*rq
)
821 return blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
;
826 * Set the state to complete when completing a request from inside ->queue_rq.
827 * This is used by drivers that want to ensure special complete actions that
828 * need access to the request are called on failure, e.g. by nvme for
831 static inline void blk_mq_set_request_complete(struct request
*rq
)
833 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
837 * Complete the request directly instead of deferring it to softirq or
838 * completing it another CPU. Useful in preemptible instead of an interrupt.
840 static inline void blk_mq_complete_request_direct(struct request
*rq
,
841 void (*complete
)(struct request
*rq
))
843 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
847 void blk_mq_start_request(struct request
*rq
);
848 void blk_mq_end_request(struct request
*rq
, blk_status_t error
);
849 void __blk_mq_end_request(struct request
*rq
, blk_status_t error
);
850 void blk_mq_end_request_batch(struct io_comp_batch
*ib
);
853 * Only need start/end time stamping if we have iostat or
854 * blk stats enabled, or using an IO scheduler.
856 static inline bool blk_mq_need_time_stamp(struct request
*rq
)
858 return (rq
->rq_flags
& (RQF_IO_STAT
| RQF_STATS
| RQF_USE_SCHED
));
861 static inline bool blk_mq_is_reserved_rq(struct request
*rq
)
863 return rq
->rq_flags
& RQF_RESV
;
867 * Batched completions only work when there is no I/O error and no special
870 static inline bool blk_mq_add_to_batch(struct request
*req
,
871 struct io_comp_batch
*iob
, int ioerror
,
872 void (*complete
)(struct io_comp_batch
*))
875 * blk_mq_end_request_batch() can't end request allocated from
878 if (!iob
|| (req
->rq_flags
& RQF_SCHED_TAGS
) || ioerror
||
879 (req
->end_io
&& !blk_rq_is_passthrough(req
)))
883 iob
->complete
= complete
;
884 else if (iob
->complete
!= complete
)
886 iob
->need_ts
|= blk_mq_need_time_stamp(req
);
887 rq_list_add_tail(&iob
->req_list
, req
);
891 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
);
892 void blk_mq_kick_requeue_list(struct request_queue
*q
);
893 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
, unsigned long msecs
);
894 void blk_mq_complete_request(struct request
*rq
);
895 bool blk_mq_complete_request_remote(struct request
*rq
);
896 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
);
897 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
);
898 void blk_mq_stop_hw_queues(struct request_queue
*q
);
899 void blk_mq_start_hw_queues(struct request_queue
*q
);
900 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
);
901 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
);
902 void blk_mq_quiesce_queue(struct request_queue
*q
);
903 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set
*set
);
904 void blk_mq_quiesce_tagset(struct blk_mq_tag_set
*set
);
905 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set
*set
);
906 void blk_mq_unquiesce_queue(struct request_queue
*q
);
907 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
);
908 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
);
909 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
);
910 void blk_mq_delay_run_hw_queues(struct request_queue
*q
, unsigned long msecs
);
911 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set
*tagset
,
912 busy_tag_iter_fn
*fn
, void *priv
);
913 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set
*tagset
);
914 void blk_mq_freeze_queue(struct request_queue
*q
);
915 void blk_mq_unfreeze_queue(struct request_queue
*q
);
916 void blk_freeze_queue_start(struct request_queue
*q
);
917 void blk_mq_freeze_queue_wait(struct request_queue
*q
);
918 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
919 unsigned long timeout
);
920 void blk_mq_unfreeze_queue_non_owner(struct request_queue
*q
);
921 void blk_freeze_queue_start_non_owner(struct request_queue
*q
);
923 void blk_mq_map_queues(struct blk_mq_queue_map
*qmap
);
924 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
);
926 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
);
928 unsigned int blk_mq_rq_cpu(struct request
*rq
);
930 bool __blk_should_fake_timeout(struct request_queue
*q
);
931 static inline bool blk_should_fake_timeout(struct request_queue
*q
)
933 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT
) &&
934 test_bit(QUEUE_FLAG_FAIL_IO
, &q
->queue_flags
))
935 return __blk_should_fake_timeout(q
);
940 * blk_mq_rq_from_pdu - cast a PDU to a request
941 * @pdu: the PDU (Protocol Data Unit) to be casted
945 * Driver command data is immediately after the request. So subtract request
946 * size to get back to the original request.
948 static inline struct request
*blk_mq_rq_from_pdu(void *pdu
)
950 return pdu
- sizeof(struct request
);
954 * blk_mq_rq_to_pdu - cast a request to a PDU
955 * @rq: the request to be casted
957 * Return: pointer to the PDU
959 * Driver command data is immediately after the request. So add request to get
962 static inline void *blk_mq_rq_to_pdu(struct request
*rq
)
967 #define queue_for_each_hw_ctx(q, hctx, i) \
968 xa_for_each(&(q)->hctx_table, (i), (hctx))
970 #define hctx_for_each_ctx(hctx, ctx, i) \
971 for ((i) = 0; (i) < (hctx)->nr_ctx && \
972 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
974 static inline void blk_mq_cleanup_rq(struct request
*rq
)
976 if (rq
->q
->mq_ops
->cleanup_rq
)
977 rq
->q
->mq_ops
->cleanup_rq(rq
);
980 static inline void blk_rq_bio_prep(struct request
*rq
, struct bio
*bio
,
981 unsigned int nr_segs
)
983 rq
->nr_phys_segments
= nr_segs
;
984 rq
->__data_len
= bio
->bi_iter
.bi_size
;
985 rq
->bio
= rq
->biotail
= bio
;
988 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx
*hctx
,
989 struct lock_class_key
*key
);
991 static inline bool rq_is_sync(struct request
*rq
)
993 return op_is_sync(rq
->cmd_flags
);
996 void blk_rq_init(struct request_queue
*q
, struct request
*rq
);
997 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
998 struct bio_set
*bs
, gfp_t gfp_mask
,
999 int (*bio_ctr
)(struct bio
*, struct bio
*, void *), void *data
);
1000 void blk_rq_unprep_clone(struct request
*rq
);
1001 blk_status_t
blk_insert_cloned_request(struct request
*rq
);
1003 struct rq_map_data
{
1004 struct page
**pages
;
1005 unsigned long offset
;
1006 unsigned short page_order
;
1007 unsigned short nr_entries
;
1012 int blk_rq_map_user(struct request_queue
*, struct request
*,
1013 struct rq_map_data
*, void __user
*, unsigned long, gfp_t
);
1014 int blk_rq_map_user_io(struct request
*, struct rq_map_data
*,
1015 void __user
*, unsigned long, gfp_t
, bool, int, bool, int);
1016 int blk_rq_map_user_iov(struct request_queue
*, struct request
*,
1017 struct rq_map_data
*, const struct iov_iter
*, gfp_t
);
1018 int blk_rq_unmap_user(struct bio
*);
1019 int blk_rq_map_kern(struct request_queue
*, struct request
*, void *,
1020 unsigned int, gfp_t
);
1021 int blk_rq_append_bio(struct request
*rq
, struct bio
*bio
);
1022 void blk_execute_rq_nowait(struct request
*rq
, bool at_head
);
1023 blk_status_t
blk_execute_rq(struct request
*rq
, bool at_head
);
1024 bool blk_rq_is_poll(struct request
*rq
);
1026 struct req_iterator
{
1027 struct bvec_iter iter
;
1031 #define __rq_for_each_bio(_bio, rq) \
1033 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1035 #define rq_for_each_segment(bvl, _rq, _iter) \
1036 __rq_for_each_bio(_iter.bio, _rq) \
1037 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1039 #define rq_for_each_bvec(bvl, _rq, _iter) \
1040 __rq_for_each_bio(_iter.bio, _rq) \
1041 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1043 #define rq_iter_last(bvec, _iter) \
1044 (_iter.bio->bi_next == NULL && \
1045 bio_iter_last(bvec, _iter.iter))
1048 * blk_rq_pos() : the current sector
1049 * blk_rq_bytes() : bytes left in the entire request
1050 * blk_rq_cur_bytes() : bytes left in the current segment
1051 * blk_rq_sectors() : sectors left in the entire request
1052 * blk_rq_cur_sectors() : sectors left in the current segment
1053 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1055 static inline sector_t
blk_rq_pos(const struct request
*rq
)
1057 return rq
->__sector
;
1060 static inline unsigned int blk_rq_bytes(const struct request
*rq
)
1062 return rq
->__data_len
;
1065 static inline int blk_rq_cur_bytes(const struct request
*rq
)
1069 if (!bio_has_data(rq
->bio
)) /* dataless requests such as discard */
1070 return rq
->bio
->bi_iter
.bi_size
;
1071 return bio_iovec(rq
->bio
).bv_len
;
1074 static inline unsigned int blk_rq_sectors(const struct request
*rq
)
1076 return blk_rq_bytes(rq
) >> SECTOR_SHIFT
;
1079 static inline unsigned int blk_rq_cur_sectors(const struct request
*rq
)
1081 return blk_rq_cur_bytes(rq
) >> SECTOR_SHIFT
;
1084 static inline unsigned int blk_rq_stats_sectors(const struct request
*rq
)
1086 return rq
->stats_sectors
;
1090 * Some commands like WRITE SAME have a payload or data transfer size which
1091 * is different from the size of the request. Any driver that supports such
1092 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1093 * calculate the data transfer size.
1095 static inline unsigned int blk_rq_payload_bytes(struct request
*rq
)
1097 if (rq
->rq_flags
& RQF_SPECIAL_PAYLOAD
)
1098 return rq
->special_vec
.bv_len
;
1099 return blk_rq_bytes(rq
);
1103 * Return the first full biovec in the request. The caller needs to check that
1104 * there are any bvecs before calling this helper.
1106 static inline struct bio_vec
req_bvec(struct request
*rq
)
1108 if (rq
->rq_flags
& RQF_SPECIAL_PAYLOAD
)
1109 return rq
->special_vec
;
1110 return mp_bvec_iter_bvec(rq
->bio
->bi_io_vec
, rq
->bio
->bi_iter
);
1113 static inline unsigned int blk_rq_count_bios(struct request
*rq
)
1115 unsigned int nr_bios
= 0;
1118 __rq_for_each_bio(bio
, rq
)
1124 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
);
1127 * Request completion related functions.
1129 * blk_update_request() completes given number of bytes and updates
1130 * the request without completing it.
1132 bool blk_update_request(struct request
*rq
, blk_status_t error
,
1133 unsigned int nr_bytes
);
1134 void blk_abort_request(struct request
*);
1137 * Number of physical segments as sent to the device.
1139 * Normally this is the number of discontiguous data segments sent by the
1140 * submitter. But for data-less command like discard we might have no
1141 * actual data segments submitted, but the driver might have to add it's
1142 * own special payload. In that case we still return 1 here so that this
1143 * special payload will be mapped.
1145 static inline unsigned short blk_rq_nr_phys_segments(struct request
*rq
)
1147 if (rq
->rq_flags
& RQF_SPECIAL_PAYLOAD
)
1149 return rq
->nr_phys_segments
;
1153 * Number of discard segments (or ranges) the driver needs to fill in.
1154 * Each discard bio merged into a request is counted as one segment.
1156 static inline unsigned short blk_rq_nr_discard_segments(struct request
*rq
)
1158 return max_t(unsigned short, rq
->nr_phys_segments
, 1);
1161 int __blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
1162 struct scatterlist
*sglist
, struct scatterlist
**last_sg
);
1163 static inline int blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
1164 struct scatterlist
*sglist
)
1166 struct scatterlist
*last_sg
= NULL
;
1168 return __blk_rq_map_sg(q
, rq
, sglist
, &last_sg
);
1170 void blk_dump_rq_flags(struct request
*, char *);
1172 #endif /* BLK_MQ_H */