printf: Remove unused 'bprintf'
[drm/drm-misc.git] / include / linux / min_heap.h
blobe781727c891619e543329f74491e3583a4af08af
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MIN_HEAP_H
3 #define _LINUX_MIN_HEAP_H
5 #include <linux/bug.h>
6 #include <linux/string.h>
7 #include <linux/types.h>
9 /**
10 * Data structure to hold a min-heap.
11 * @nr: Number of elements currently in the heap.
12 * @size: Maximum number of elements that can be held in current storage.
13 * @data: Pointer to the start of array holding the heap elements.
14 * @preallocated: Start of the static preallocated array holding the heap elements.
16 #define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \
17 struct _name { \
18 int nr; \
19 int size; \
20 _type *data; \
21 _type preallocated[_nr]; \
24 #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
26 typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
28 #define __minheap_cast(_heap) (typeof((_heap)->data[0]) *)
29 #define __minheap_obj_size(_heap) sizeof((_heap)->data[0])
31 /**
32 * struct min_heap_callbacks - Data/functions to customise the min_heap.
33 * @less: Partial order function for this heap.
34 * @swp: Swap elements function.
36 struct min_heap_callbacks {
37 bool (*less)(const void *lhs, const void *rhs, void *args);
38 void (*swp)(void *lhs, void *rhs, void *args);
41 /**
42 * is_aligned - is this pointer & size okay for word-wide copying?
43 * @base: pointer to data
44 * @size: size of each element
45 * @align: required alignment (typically 4 or 8)
47 * Returns true if elements can be copied using word loads and stores.
48 * The size must be a multiple of the alignment, and the base address must
49 * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
51 * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
52 * to "if ((a | b) & mask)", so we do that by hand.
54 __attribute_const__ __always_inline
55 static bool is_aligned(const void *base, size_t size, unsigned char align)
57 unsigned char lsbits = (unsigned char)size;
59 (void)base;
60 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
61 lsbits |= (unsigned char)(uintptr_t)base;
62 #endif
63 return (lsbits & (align - 1)) == 0;
66 /**
67 * swap_words_32 - swap two elements in 32-bit chunks
68 * @a: pointer to the first element to swap
69 * @b: pointer to the second element to swap
70 * @n: element size (must be a multiple of 4)
72 * Exchange the two objects in memory. This exploits base+index addressing,
73 * which basically all CPUs have, to minimize loop overhead computations.
75 * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
76 * bottom of the loop, even though the zero flag is still valid from the
77 * subtract (since the intervening mov instructions don't alter the flags).
78 * Gcc 8.1.0 doesn't have that problem.
80 static __always_inline
81 void swap_words_32(void *a, void *b, size_t n)
83 do {
84 u32 t = *(u32 *)(a + (n -= 4));
85 *(u32 *)(a + n) = *(u32 *)(b + n);
86 *(u32 *)(b + n) = t;
87 } while (n);
90 /**
91 * swap_words_64 - swap two elements in 64-bit chunks
92 * @a: pointer to the first element to swap
93 * @b: pointer to the second element to swap
94 * @n: element size (must be a multiple of 8)
96 * Exchange the two objects in memory. This exploits base+index
97 * addressing, which basically all CPUs have, to minimize loop overhead
98 * computations.
100 * We'd like to use 64-bit loads if possible. If they're not, emulating
101 * one requires base+index+4 addressing which x86 has but most other
102 * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads,
103 * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
104 * x32 ABI). Are there any cases the kernel needs to worry about?
106 static __always_inline
107 void swap_words_64(void *a, void *b, size_t n)
109 do {
110 #ifdef CONFIG_64BIT
111 u64 t = *(u64 *)(a + (n -= 8));
112 *(u64 *)(a + n) = *(u64 *)(b + n);
113 *(u64 *)(b + n) = t;
114 #else
115 /* Use two 32-bit transfers to avoid base+index+4 addressing */
116 u32 t = *(u32 *)(a + (n -= 4));
117 *(u32 *)(a + n) = *(u32 *)(b + n);
118 *(u32 *)(b + n) = t;
120 t = *(u32 *)(a + (n -= 4));
121 *(u32 *)(a + n) = *(u32 *)(b + n);
122 *(u32 *)(b + n) = t;
123 #endif
124 } while (n);
128 * swap_bytes - swap two elements a byte at a time
129 * @a: pointer to the first element to swap
130 * @b: pointer to the second element to swap
131 * @n: element size
133 * This is the fallback if alignment doesn't allow using larger chunks.
135 static __always_inline
136 void swap_bytes(void *a, void *b, size_t n)
138 do {
139 char t = ((char *)a)[--n];
140 ((char *)a)[n] = ((char *)b)[n];
141 ((char *)b)[n] = t;
142 } while (n);
146 * The values are arbitrary as long as they can't be confused with
147 * a pointer, but small integers make for the smallest compare
148 * instructions.
150 #define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0)
151 #define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1)
152 #define SWAP_BYTES ((void (*)(void *, void *, void *))2)
155 * Selects the appropriate swap function based on the element size.
157 static __always_inline
158 void *select_swap_func(const void *base, size_t size)
160 if (is_aligned(base, size, 8))
161 return SWAP_WORDS_64;
162 else if (is_aligned(base, size, 4))
163 return SWAP_WORDS_32;
164 else
165 return SWAP_BYTES;
168 static __always_inline
169 void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args),
170 void *priv)
172 if (swap_func == SWAP_WORDS_64)
173 swap_words_64(a, b, size);
174 else if (swap_func == SWAP_WORDS_32)
175 swap_words_32(a, b, size);
176 else if (swap_func == SWAP_BYTES)
177 swap_bytes(a, b, size);
178 else
179 swap_func(a, b, priv);
183 * parent - given the offset of the child, find the offset of the parent.
184 * @i: the offset of the heap element whose parent is sought. Non-zero.
185 * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
186 * @size: size of each element
188 * In terms of array indexes, the parent of element j = @i/@size is simply
189 * (j-1)/2. But when working in byte offsets, we can't use implicit
190 * truncation of integer divides.
192 * Fortunately, we only need one bit of the quotient, not the full divide.
193 * @size has a least significant bit. That bit will be clear if @i is
194 * an even multiple of @size, and set if it's an odd multiple.
196 * Logically, we're doing "if (i & lsbit) i -= size;", but since the
197 * branch is unpredictable, it's done with a bit of clever branch-free
198 * code instead.
200 __attribute_const__ __always_inline
201 static size_t parent(size_t i, unsigned int lsbit, size_t size)
203 i -= size;
204 i -= size & -(i & lsbit);
205 return i / 2;
208 /* Initialize a min-heap. */
209 static __always_inline
210 void __min_heap_init_inline(min_heap_char *heap, void *data, int size)
212 heap->nr = 0;
213 heap->size = size;
214 if (data)
215 heap->data = data;
216 else
217 heap->data = heap->preallocated;
220 #define min_heap_init_inline(_heap, _data, _size) \
221 __min_heap_init_inline((min_heap_char *)_heap, _data, _size)
223 /* Get the minimum element from the heap. */
224 static __always_inline
225 void *__min_heap_peek_inline(struct min_heap_char *heap)
227 return heap->nr ? heap->data : NULL;
230 #define min_heap_peek_inline(_heap) \
231 (__minheap_cast(_heap) __min_heap_peek_inline((min_heap_char *)_heap))
233 /* Check if the heap is full. */
234 static __always_inline
235 bool __min_heap_full_inline(min_heap_char *heap)
237 return heap->nr == heap->size;
240 #define min_heap_full_inline(_heap) \
241 __min_heap_full_inline((min_heap_char *)_heap)
243 /* Sift the element at pos down the heap. */
244 static __always_inline
245 void __min_heap_sift_down_inline(min_heap_char *heap, int pos, size_t elem_size,
246 const struct min_heap_callbacks *func, void *args)
248 const unsigned long lsbit = elem_size & -elem_size;
249 void *data = heap->data;
250 void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
251 /* pre-scale counters for performance */
252 size_t a = pos * elem_size;
253 size_t b, c, d;
254 size_t n = heap->nr * elem_size;
256 if (!swp)
257 swp = select_swap_func(data, elem_size);
259 /* Find the sift-down path all the way to the leaves. */
260 for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;)
261 b = func->less(data + c, data + d, args) ? c : d;
263 /* Special case for the last leaf with no sibling. */
264 if (d == n)
265 b = c;
267 /* Backtrack to the correct location. */
268 while (b != a && func->less(data + a, data + b, args))
269 b = parent(b, lsbit, elem_size);
271 /* Shift the element into its correct place. */
272 c = b;
273 while (b != a) {
274 b = parent(b, lsbit, elem_size);
275 do_swap(data + b, data + c, elem_size, swp, args);
279 #define min_heap_sift_down_inline(_heap, _pos, _func, _args) \
280 __min_heap_sift_down_inline((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), \
281 _func, _args)
283 /* Sift up ith element from the heap, O(log2(nr)). */
284 static __always_inline
285 void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx,
286 const struct min_heap_callbacks *func, void *args)
288 const unsigned long lsbit = elem_size & -elem_size;
289 void *data = heap->data;
290 void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
291 /* pre-scale counters for performance */
292 size_t a = idx * elem_size, b;
294 if (!swp)
295 swp = select_swap_func(data, elem_size);
297 while (a) {
298 b = parent(a, lsbit, elem_size);
299 if (func->less(data + b, data + a, args))
300 break;
301 do_swap(data + a, data + b, elem_size, swp, args);
302 a = b;
306 #define min_heap_sift_up_inline(_heap, _idx, _func, _args) \
307 __min_heap_sift_up_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
308 _func, _args)
310 /* Floyd's approach to heapification that is O(nr). */
311 static __always_inline
312 void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size,
313 const struct min_heap_callbacks *func, void *args)
315 int i;
317 for (i = heap->nr / 2 - 1; i >= 0; i--)
318 __min_heap_sift_down_inline(heap, i, elem_size, func, args);
321 #define min_heapify_all_inline(_heap, _func, _args) \
322 __min_heapify_all_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
324 /* Remove minimum element from the heap, O(log2(nr)). */
325 static __always_inline
326 bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size,
327 const struct min_heap_callbacks *func, void *args)
329 void *data = heap->data;
331 if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
332 return false;
334 /* Place last element at the root (position 0) and then sift down. */
335 heap->nr--;
336 memcpy(data, data + (heap->nr * elem_size), elem_size);
337 __min_heap_sift_down_inline(heap, 0, elem_size, func, args);
339 return true;
342 #define min_heap_pop_inline(_heap, _func, _args) \
343 __min_heap_pop_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
346 * Remove the minimum element and then push the given element. The
347 * implementation performs 1 sift (O(log2(nr))) and is therefore more
348 * efficient than a pop followed by a push that does 2.
350 static __always_inline
351 void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
352 const struct min_heap_callbacks *func, void *args)
354 memcpy(heap->data, element, elem_size);
355 __min_heap_sift_down_inline(heap, 0, elem_size, func, args);
358 #define min_heap_pop_push_inline(_heap, _element, _func, _args) \
359 __min_heap_pop_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
360 _func, _args)
362 /* Push an element on to the heap, O(log2(nr)). */
363 static __always_inline
364 bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
365 const struct min_heap_callbacks *func, void *args)
367 void *data = heap->data;
368 int pos;
370 if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
371 return false;
373 /* Place at the end of data. */
374 pos = heap->nr;
375 memcpy(data + (pos * elem_size), element, elem_size);
376 heap->nr++;
378 /* Sift child at pos up. */
379 __min_heap_sift_up_inline(heap, elem_size, pos, func, args);
381 return true;
384 #define min_heap_push_inline(_heap, _element, _func, _args) \
385 __min_heap_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
386 _func, _args)
388 /* Remove ith element from the heap, O(log2(nr)). */
389 static __always_inline
390 bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx,
391 const struct min_heap_callbacks *func, void *args)
393 void *data = heap->data;
394 void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
396 if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
397 return false;
399 if (!swp)
400 swp = select_swap_func(data, elem_size);
402 /* Place last element at the root (position 0) and then sift down. */
403 heap->nr--;
404 if (idx == heap->nr)
405 return true;
406 do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args);
407 __min_heap_sift_up_inline(heap, elem_size, idx, func, args);
408 __min_heap_sift_down_inline(heap, idx, elem_size, func, args);
410 return true;
413 #define min_heap_del_inline(_heap, _idx, _func, _args) \
414 __min_heap_del_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
415 _func, _args)
417 void __min_heap_init(min_heap_char *heap, void *data, int size);
418 void *__min_heap_peek(struct min_heap_char *heap);
419 bool __min_heap_full(min_heap_char *heap);
420 void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size,
421 const struct min_heap_callbacks *func, void *args);
422 void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
423 const struct min_heap_callbacks *func, void *args);
424 void __min_heapify_all(min_heap_char *heap, size_t elem_size,
425 const struct min_heap_callbacks *func, void *args);
426 bool __min_heap_pop(min_heap_char *heap, size_t elem_size,
427 const struct min_heap_callbacks *func, void *args);
428 void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size,
429 const struct min_heap_callbacks *func, void *args);
430 bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
431 const struct min_heap_callbacks *func, void *args);
432 bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
433 const struct min_heap_callbacks *func, void *args);
435 #define min_heap_init(_heap, _data, _size) \
436 __min_heap_init((min_heap_char *)_heap, _data, _size)
437 #define min_heap_peek(_heap) \
438 (__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap))
439 #define min_heap_full(_heap) \
440 __min_heap_full((min_heap_char *)_heap)
441 #define min_heap_sift_down(_heap, _pos, _func, _args) \
442 __min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args)
443 #define min_heap_sift_up(_heap, _idx, _func, _args) \
444 __min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
445 #define min_heapify_all(_heap, _func, _args) \
446 __min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
447 #define min_heap_pop(_heap, _func, _args) \
448 __min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
449 #define min_heap_pop_push(_heap, _element, _func, _args) \
450 __min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
451 _func, _args)
452 #define min_heap_push(_heap, _element, _func, _args) \
453 __min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
454 #define min_heap_del(_heap, _idx, _func, _args) \
455 __min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
457 #endif /* _LINUX_MIN_HEAP_H */