printf: Remove unused 'bprintf'
[drm/drm-misc.git] / include / linux / pid.h
bloba3aad9b4074cb09b12ec1cb98c8148250c506e0a
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
5 #include <linux/pid_types.h>
6 #include <linux/rculist.h>
7 #include <linux/rcupdate.h>
8 #include <linux/refcount.h>
9 #include <linux/sched.h>
10 #include <linux/wait.h>
13 * What is struct pid?
15 * A struct pid is the kernel's internal notion of a process identifier.
16 * It refers to individual tasks, process groups, and sessions. While
17 * there are processes attached to it the struct pid lives in a hash
18 * table, so it and then the processes that it refers to can be found
19 * quickly from the numeric pid value. The attached processes may be
20 * quickly accessed by following pointers from struct pid.
22 * Storing pid_t values in the kernel and referring to them later has a
23 * problem. The process originally with that pid may have exited and the
24 * pid allocator wrapped, and another process could have come along
25 * and been assigned that pid.
27 * Referring to user space processes by holding a reference to struct
28 * task_struct has a problem. When the user space process exits
29 * the now useless task_struct is still kept. A task_struct plus a
30 * stack consumes around 10K of low kernel memory. More precisely
31 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
32 * a struct pid is about 64 bytes.
34 * Holding a reference to struct pid solves both of these problems.
35 * It is small so holding a reference does not consume a lot of
36 * resources, and since a new struct pid is allocated when the numeric pid
37 * value is reused (when pids wrap around) we don't mistakenly refer to new
38 * processes.
43 * struct upid is used to get the id of the struct pid, as it is
44 * seen in particular namespace. Later the struct pid is found with
45 * find_pid_ns() using the int nr and struct pid_namespace *ns.
48 #define RESERVED_PIDS 300
50 struct upid {
51 int nr;
52 struct pid_namespace *ns;
55 struct pid
57 refcount_t count;
58 unsigned int level;
59 spinlock_t lock;
60 struct dentry *stashed;
61 u64 ino;
62 /* lists of tasks that use this pid */
63 struct hlist_head tasks[PIDTYPE_MAX];
64 struct hlist_head inodes;
65 /* wait queue for pidfd notifications */
66 wait_queue_head_t wait_pidfd;
67 struct rcu_head rcu;
68 struct upid numbers[];
71 extern struct pid init_struct_pid;
73 struct file;
75 struct pid *pidfd_pid(const struct file *file);
76 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
77 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
78 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
79 void do_notify_pidfd(struct task_struct *task);
81 static inline struct pid *get_pid(struct pid *pid)
83 if (pid)
84 refcount_inc(&pid->count);
85 return pid;
88 extern void put_pid(struct pid *pid);
89 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
90 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
92 return !hlist_empty(&pid->tasks[type]);
94 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
96 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
99 * these helpers must be called with the tasklist_lock write-held.
101 extern void attach_pid(struct task_struct *task, enum pid_type);
102 extern void detach_pid(struct task_struct *task, enum pid_type);
103 extern void change_pid(struct task_struct *task, enum pid_type,
104 struct pid *pid);
105 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
106 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
107 enum pid_type);
109 extern int pid_max;
110 extern int pid_max_min, pid_max_max;
113 * look up a PID in the hash table. Must be called with the tasklist_lock
114 * or rcu_read_lock() held.
116 * find_pid_ns() finds the pid in the namespace specified
117 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
119 * see also find_task_by_vpid() set in include/linux/sched.h
121 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
122 extern struct pid *find_vpid(int nr);
125 * Lookup a PID in the hash table, and return with it's count elevated.
127 extern struct pid *find_get_pid(int nr);
128 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
130 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
131 size_t set_tid_size);
132 extern void free_pid(struct pid *pid);
133 extern void disable_pid_allocation(struct pid_namespace *ns);
136 * ns_of_pid() returns the pid namespace in which the specified pid was
137 * allocated.
139 * NOTE:
140 * ns_of_pid() is expected to be called for a process (task) that has
141 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
142 * is expected to be non-NULL. If @pid is NULL, caller should handle
143 * the resulting NULL pid-ns.
145 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
147 struct pid_namespace *ns = NULL;
148 if (pid)
149 ns = pid->numbers[pid->level].ns;
150 return ns;
154 * is_child_reaper returns true if the pid is the init process
155 * of the current namespace. As this one could be checked before
156 * pid_ns->child_reaper is assigned in copy_process, we check
157 * with the pid number.
159 static inline bool is_child_reaper(struct pid *pid)
161 return pid->numbers[pid->level].nr == 1;
165 * the helpers to get the pid's id seen from different namespaces
167 * pid_nr() : global id, i.e. the id seen from the init namespace;
168 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
169 * current.
170 * pid_nr_ns() : id seen from the ns specified.
172 * see also task_xid_nr() etc in include/linux/sched.h
175 static inline pid_t pid_nr(struct pid *pid)
177 pid_t nr = 0;
178 if (pid)
179 nr = pid->numbers[0].nr;
180 return nr;
183 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
184 pid_t pid_vnr(struct pid *pid);
186 #define do_each_pid_task(pid, type, task) \
187 do { \
188 if ((pid) != NULL) \
189 hlist_for_each_entry_rcu((task), \
190 &(pid)->tasks[type], pid_links[type]) {
193 * Both old and new leaders may be attached to
194 * the same pid in the middle of de_thread().
196 #define while_each_pid_task(pid, type, task) \
197 if (type == PIDTYPE_PID) \
198 break; \
200 } while (0)
202 #define do_each_pid_thread(pid, type, task) \
203 do_each_pid_task(pid, type, task) { \
204 struct task_struct *tg___ = task; \
205 for_each_thread(tg___, task) {
207 #define while_each_pid_thread(pid, type, task) \
209 task = tg___; \
210 } while_each_pid_task(pid, type, task)
212 static inline struct pid *task_pid(struct task_struct *task)
214 return task->thread_pid;
218 * the helpers to get the task's different pids as they are seen
219 * from various namespaces
221 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
222 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
223 * current.
224 * task_xid_nr_ns() : id seen from the ns specified;
226 * see also pid_nr() etc in include/linux/pid.h
228 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
230 static inline pid_t task_pid_nr(struct task_struct *tsk)
232 return tsk->pid;
235 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
237 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
240 static inline pid_t task_pid_vnr(struct task_struct *tsk)
242 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
246 static inline pid_t task_tgid_nr(struct task_struct *tsk)
248 return tsk->tgid;
252 * pid_alive - check that a task structure is not stale
253 * @p: Task structure to be checked.
255 * Test if a process is not yet dead (at most zombie state)
256 * If pid_alive fails, then pointers within the task structure
257 * can be stale and must not be dereferenced.
259 * Return: 1 if the process is alive. 0 otherwise.
261 static inline int pid_alive(const struct task_struct *p)
263 return p->thread_pid != NULL;
266 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
268 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
271 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
273 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
277 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
279 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
282 static inline pid_t task_session_vnr(struct task_struct *tsk)
284 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
287 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
289 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
292 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
294 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
297 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
299 pid_t pid = 0;
301 rcu_read_lock();
302 if (pid_alive(tsk))
303 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
304 rcu_read_unlock();
306 return pid;
309 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
311 return task_ppid_nr_ns(tsk, &init_pid_ns);
314 /* Obsolete, do not use: */
315 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
317 return task_pgrp_nr_ns(tsk, &init_pid_ns);
321 * is_global_init - check if a task structure is init. Since init
322 * is free to have sub-threads we need to check tgid.
323 * @tsk: Task structure to be checked.
325 * Check if a task structure is the first user space task the kernel created.
327 * Return: 1 if the task structure is init. 0 otherwise.
329 static inline int is_global_init(struct task_struct *tsk)
331 return task_tgid_nr(tsk) == 1;
334 #endif /* _LINUX_PID_H */