1 /* SPDX-License-Identifier: GPL-2.0 */
3 * ChromeOS Embedded Controller protocol interface.
5 * Copyright (C) 2012 Google, Inc
8 #ifndef __LINUX_CROS_EC_PROTO_H
9 #define __LINUX_CROS_EC_PROTO_H
11 #include <linux/device.h>
12 #include <linux/lockdep_types.h>
13 #include <linux/mutex.h>
14 #include <linux/notifier.h>
16 #include <linux/platform_data/cros_ec_commands.h>
18 #define CROS_EC_DEV_NAME "cros_ec"
19 #define CROS_EC_DEV_FP_NAME "cros_fp"
20 #define CROS_EC_DEV_ISH_NAME "cros_ish"
21 #define CROS_EC_DEV_PD_NAME "cros_pd"
22 #define CROS_EC_DEV_SCP_NAME "cros_scp"
23 #define CROS_EC_DEV_TP_NAME "cros_tp"
25 #define CROS_EC_DEV_EC_INDEX 0
26 #define CROS_EC_DEV_PD_INDEX 1
29 * The EC is unresponsive for a time after a reboot command. Add a
30 * simple delay to make sure that the bus stays locked.
32 #define EC_REBOOT_DELAY_MS 50
35 * Max bus-specific overhead incurred by request/responses.
36 * I2C requires 1 additional byte for requests.
37 * I2C requires 2 additional bytes for responses.
38 * SPI requires up to 32 additional bytes for responses.
40 #define EC_PROTO_VERSION_UNKNOWN 0
41 #define EC_MAX_REQUEST_OVERHEAD 1
42 #define EC_MAX_RESPONSE_OVERHEAD 32
45 * EC panic is not covered by the standard (0-F) ACPI notify values.
46 * Arbitrarily choosing B0 to notify ec panic, which is in the 84-BF
47 * device specific ACPI notify range.
49 #define ACPI_NOTIFY_CROS_EC_PANIC 0xB0
52 * Command interface between EC and AP, for LPC, I2C and SPI interfaces.
55 EC_MSG_TX_HEADER_BYTES
= 3,
56 EC_MSG_TX_TRAILER_BYTES
= 1,
57 EC_MSG_TX_PROTO_BYTES
= EC_MSG_TX_HEADER_BYTES
+
58 EC_MSG_TX_TRAILER_BYTES
,
59 EC_MSG_RX_PROTO_BYTES
= 3,
61 /* Max length of messages for proto 2*/
62 EC_PROTO2_MSG_BYTES
= EC_PROTO2_MAX_PARAM_SIZE
+
63 EC_MSG_TX_PROTO_BYTES
,
65 EC_MAX_MSG_BYTES
= 64 * 1024,
69 * struct cros_ec_command - Information about a ChromeOS EC command.
70 * @version: Command version number (often 0).
71 * @command: Command to send (EC_CMD_...).
72 * @outsize: Outgoing length in bytes.
73 * @insize: Max number of bytes to accept from the EC.
74 * @result: EC's response to the command (separate from communication failure).
75 * @data: Where to put the incoming data from EC and outgoing data to EC.
77 struct cros_ec_command
{
87 * struct cros_ec_device - Information about a ChromeOS EC device.
88 * @phys_name: Name of physical comms layer (e.g. 'i2c-4').
89 * @dev: Device pointer for physical comms device
90 * @cros_class: The class structure for this device.
91 * @cmd_readmem: Direct read of the EC memory-mapped region, if supported.
92 * @offset: Is within EC_LPC_ADDR_MEMMAP region.
93 * @bytes: Number of bytes to read. zero means "read a string" (including
94 * the trailing '\0'). At most only EC_MEMMAP_SIZE bytes can be
95 * read. Caller must ensure that the buffer is large enough for the
96 * result when reading a string.
97 * @max_request: Max size of message requested.
98 * @max_response: Max size of message response.
99 * @max_passthru: Max sice of passthru message.
100 * @proto_version: The protocol version used for this device.
101 * @priv: Private data.
102 * @irq: Interrupt to use.
104 * @din: Input buffer (for data from EC). This buffer will always be
105 * dword-aligned and include enough space for up to 7 word-alignment
106 * bytes also, so we can ensure that the body of the message is always
107 * dword-aligned (64-bit). We use this alignment to keep ARM and x86
108 * happy. Probably word alignment would be OK, there might be a small
109 * performance advantage to using dword.
110 * @dout: Output buffer (for data to EC). This buffer will always be
111 * dword-aligned and include enough space for up to 7 word-alignment
112 * bytes also, so we can ensure that the body of the message is always
113 * dword-aligned (64-bit). We use this alignment to keep ARM and x86
114 * happy. Probably word alignment would be OK, there might be a small
115 * performance advantage to using dword.
116 * @din_size: Size of din buffer to allocate (zero to use static din).
117 * @dout_size: Size of dout buffer to allocate (zero to use static dout).
118 * @wake_enabled: True if this device can wake the system from sleep.
119 * @suspended: True if this device had been suspended.
120 * @cmd_xfer: Send command to EC and get response.
121 * Returns the number of bytes received if the communication
122 * succeeded, but that doesn't mean the EC was happy with the
123 * command. The caller should check msg.result for the EC's result
125 * @pkt_xfer: Send packet to EC and get response.
126 * @lockdep_key: Lockdep class for each instance. Unused if CONFIG_LOCKDEP is
128 * @lock: One transaction at a time.
129 * @mkbp_event_supported: 0 if MKBP not supported. Otherwise its value is
130 * the maximum supported version of the MKBP host event
132 * @host_sleep_v1: True if this EC supports the sleep v1 command.
133 * @event_notifier: Interrupt event notifier for transport devices.
134 * @event_data: Raw payload transferred with the MKBP event.
135 * @event_size: Size in bytes of the event data.
136 * @host_event_wake_mask: Mask of host events that cause wake from suspend.
137 * @suspend_timeout_ms: The timeout in milliseconds between when sleep event
138 * is received and when the EC will declare sleep
139 * transition failure if the sleep signal is not
140 * asserted. See also struct
141 * ec_params_host_sleep_event_v1 in cros_ec_commands.h.
142 * @last_resume_result: The number of sleep power signal transitions that
143 * occurred since the suspend message. The high bit
144 * indicates a timeout occurred. See also struct
145 * ec_response_host_sleep_event_v1 in cros_ec_commands.h.
146 * @last_event_time: exact time from the hard irq when we got notified of
148 * @notifier_ready: The notifier_block to let the kernel re-query EC
149 * communication protocol when the EC sends
150 * EC_HOST_EVENT_INTERFACE_READY.
151 * @ec: The platform_device used by the mfd driver to interface with the
153 * @pd: The platform_device used by the mfd driver to interface with the
155 * @panic_notifier: EC panic notifier.
157 struct cros_ec_device
{
158 /* These are used by other drivers that want to talk to the EC */
159 const char *phys_name
;
161 struct class *cros_class
;
162 int (*cmd_readmem
)(struct cros_ec_device
*ec
, unsigned int offset
,
163 unsigned int bytes
, void *dest
);
165 /* These are used to implement the platform-specific interface */
178 int (*cmd_xfer
)(struct cros_ec_device
*ec
,
179 struct cros_ec_command
*msg
);
180 int (*pkt_xfer
)(struct cros_ec_device
*ec
,
181 struct cros_ec_command
*msg
);
182 struct lock_class_key lockdep_key
;
184 u8 mkbp_event_supported
;
186 struct blocking_notifier_head event_notifier
;
188 struct ec_response_get_next_event_v3 event_data
;
190 u32 host_event_wake_mask
;
191 u32 last_resume_result
;
192 u16 suspend_timeout_ms
;
193 ktime_t last_event_time
;
194 struct notifier_block notifier_ready
;
196 /* The platform devices used by the mfd driver */
197 struct platform_device
*ec
;
198 struct platform_device
*pd
;
200 struct blocking_notifier_head panic_notifier
;
204 * struct cros_ec_platform - ChromeOS EC platform information.
205 * @ec_name: Name of EC device (e.g. 'cros-ec', 'cros-pd', ...)
206 * used in /dev/ and sysfs.
207 * @cmd_offset: Offset to apply for each command. Set when
208 * registering a device behind another one.
210 struct cros_ec_platform
{
216 * struct cros_ec_dev - ChromeOS EC device entry point.
217 * @class_dev: Device structure used in sysfs.
218 * @ec_dev: cros_ec_device structure to talk to the physical device.
219 * @dev: Pointer to the platform device.
220 * @debug_info: cros_ec_debugfs structure for debugging information.
221 * @has_kb_wake_angle: True if at least 2 accelerometer are connected to the EC.
222 * @cmd_offset: Offset to apply for each command.
223 * @features: Features supported by the EC.
226 struct device class_dev
;
227 struct cros_ec_device
*ec_dev
;
229 struct cros_ec_debugfs
*debug_info
;
230 bool has_kb_wake_angle
;
232 struct ec_response_get_features features
;
235 #define to_cros_ec_dev(dev) container_of(dev, struct cros_ec_dev, class_dev)
237 int cros_ec_prepare_tx(struct cros_ec_device
*ec_dev
,
238 struct cros_ec_command
*msg
);
240 int cros_ec_check_result(struct cros_ec_device
*ec_dev
,
241 struct cros_ec_command
*msg
);
243 int cros_ec_cmd_xfer(struct cros_ec_device
*ec_dev
,
244 struct cros_ec_command
*msg
);
246 int cros_ec_cmd_xfer_status(struct cros_ec_device
*ec_dev
,
247 struct cros_ec_command
*msg
);
249 int cros_ec_query_all(struct cros_ec_device
*ec_dev
);
251 int cros_ec_get_next_event(struct cros_ec_device
*ec_dev
,
253 bool *has_more_events
);
255 u32
cros_ec_get_host_event(struct cros_ec_device
*ec_dev
);
257 bool cros_ec_check_features(struct cros_ec_dev
*ec
, int feature
);
259 int cros_ec_get_sensor_count(struct cros_ec_dev
*ec
);
261 int cros_ec_cmd(struct cros_ec_device
*ec_dev
, unsigned int version
, int command
, const void *outdata
,
262 size_t outsize
, void *indata
, size_t insize
);
264 int cros_ec_cmd_readmem(struct cros_ec_device
*ec_dev
, u8 offset
, u8 size
, void *dest
);
266 int cros_ec_get_cmd_versions(struct cros_ec_device
*ec_dev
, u16 cmd
);
269 * cros_ec_get_time_ns() - Return time in ns.
271 * This is the function used to record the time for last_event_time in struct
272 * cros_ec_device during the hard irq.
274 * Return: ktime_t format since boot.
276 static inline ktime_t
cros_ec_get_time_ns(void)
278 return ktime_get_boottime_ns();
281 #endif /* __LINUX_CROS_EC_PROTO_H */