printf: Remove unused 'bprintf'
[drm/drm-misc.git] / include / linux / sched.h
blobd380bffee2eff846543dabde41add0a36e1a41a7
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
10 #include <uapi/linux/sched.h>
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct pid_namespace;
69 struct pipe_inode_info;
70 struct rcu_node;
71 struct reclaim_state;
72 struct robust_list_head;
73 struct root_domain;
74 struct rq;
75 struct sched_attr;
76 struct sched_dl_entity;
77 struct seq_file;
78 struct sighand_struct;
79 struct signal_struct;
80 struct task_delay_info;
81 struct task_group;
82 struct task_struct;
83 struct user_event_mm;
85 #include <linux/sched/ext.h>
88 * Task state bitmask. NOTE! These bits are also
89 * encoded in fs/proc/array.c: get_task_state().
91 * We have two separate sets of flags: task->__state
92 * is about runnability, while task->exit_state are
93 * about the task exiting. Confusing, but this way
94 * modifying one set can't modify the other one by
95 * mistake.
98 /* Used in tsk->__state: */
99 #define TASK_RUNNING 0x00000000
100 #define TASK_INTERRUPTIBLE 0x00000001
101 #define TASK_UNINTERRUPTIBLE 0x00000002
102 #define __TASK_STOPPED 0x00000004
103 #define __TASK_TRACED 0x00000008
104 /* Used in tsk->exit_state: */
105 #define EXIT_DEAD 0x00000010
106 #define EXIT_ZOMBIE 0x00000020
107 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
108 /* Used in tsk->__state again: */
109 #define TASK_PARKED 0x00000040
110 #define TASK_DEAD 0x00000080
111 #define TASK_WAKEKILL 0x00000100
112 #define TASK_WAKING 0x00000200
113 #define TASK_NOLOAD 0x00000400
114 #define TASK_NEW 0x00000800
115 #define TASK_RTLOCK_WAIT 0x00001000
116 #define TASK_FREEZABLE 0x00002000
117 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
118 #define TASK_FROZEN 0x00008000
119 #define TASK_STATE_MAX 0x00010000
121 #define TASK_ANY (TASK_STATE_MAX-1)
124 * DO NOT ADD ANY NEW USERS !
126 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
128 /* Convenience macros for the sake of set_current_state: */
129 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
130 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
131 #define TASK_TRACED __TASK_TRACED
133 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
135 /* Convenience macros for the sake of wake_up(): */
136 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
138 /* get_task_state(): */
139 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
140 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
141 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
142 TASK_PARKED)
144 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
146 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
147 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
148 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
151 * Special states are those that do not use the normal wait-loop pattern. See
152 * the comment with set_special_state().
154 #define is_special_task_state(state) \
155 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
156 TASK_DEAD | TASK_FROZEN))
158 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
159 # define debug_normal_state_change(state_value) \
160 do { \
161 WARN_ON_ONCE(is_special_task_state(state_value)); \
162 current->task_state_change = _THIS_IP_; \
163 } while (0)
165 # define debug_special_state_change(state_value) \
166 do { \
167 WARN_ON_ONCE(!is_special_task_state(state_value)); \
168 current->task_state_change = _THIS_IP_; \
169 } while (0)
171 # define debug_rtlock_wait_set_state() \
172 do { \
173 current->saved_state_change = current->task_state_change;\
174 current->task_state_change = _THIS_IP_; \
175 } while (0)
177 # define debug_rtlock_wait_restore_state() \
178 do { \
179 current->task_state_change = current->saved_state_change;\
180 } while (0)
182 #else
183 # define debug_normal_state_change(cond) do { } while (0)
184 # define debug_special_state_change(cond) do { } while (0)
185 # define debug_rtlock_wait_set_state() do { } while (0)
186 # define debug_rtlock_wait_restore_state() do { } while (0)
187 #endif
190 * set_current_state() includes a barrier so that the write of current->__state
191 * is correctly serialised wrt the caller's subsequent test of whether to
192 * actually sleep:
194 * for (;;) {
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (CONDITION)
197 * break;
199 * schedule();
201 * __set_current_state(TASK_RUNNING);
203 * If the caller does not need such serialisation (because, for instance, the
204 * CONDITION test and condition change and wakeup are under the same lock) then
205 * use __set_current_state().
207 * The above is typically ordered against the wakeup, which does:
209 * CONDITION = 1;
210 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
212 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
213 * accessing p->__state.
215 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
216 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
217 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
219 * However, with slightly different timing the wakeup TASK_RUNNING store can
220 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
221 * a problem either because that will result in one extra go around the loop
222 * and our @cond test will save the day.
224 * Also see the comments of try_to_wake_up().
226 #define __set_current_state(state_value) \
227 do { \
228 debug_normal_state_change((state_value)); \
229 WRITE_ONCE(current->__state, (state_value)); \
230 } while (0)
232 #define set_current_state(state_value) \
233 do { \
234 debug_normal_state_change((state_value)); \
235 smp_store_mb(current->__state, (state_value)); \
236 } while (0)
239 * set_special_state() should be used for those states when the blocking task
240 * can not use the regular condition based wait-loop. In that case we must
241 * serialize against wakeups such that any possible in-flight TASK_RUNNING
242 * stores will not collide with our state change.
244 #define set_special_state(state_value) \
245 do { \
246 unsigned long flags; /* may shadow */ \
248 raw_spin_lock_irqsave(&current->pi_lock, flags); \
249 debug_special_state_change((state_value)); \
250 WRITE_ONCE(current->__state, (state_value)); \
251 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
252 } while (0)
255 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
257 * RT's spin/rwlock substitutions are state preserving. The state of the
258 * task when blocking on the lock is saved in task_struct::saved_state and
259 * restored after the lock has been acquired. These operations are
260 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
261 * lock related wakeups while the task is blocked on the lock are
262 * redirected to operate on task_struct::saved_state to ensure that these
263 * are not dropped. On restore task_struct::saved_state is set to
264 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
266 * The lock operation looks like this:
268 * current_save_and_set_rtlock_wait_state();
269 * for (;;) {
270 * if (try_lock())
271 * break;
272 * raw_spin_unlock_irq(&lock->wait_lock);
273 * schedule_rtlock();
274 * raw_spin_lock_irq(&lock->wait_lock);
275 * set_current_state(TASK_RTLOCK_WAIT);
277 * current_restore_rtlock_saved_state();
279 #define current_save_and_set_rtlock_wait_state() \
280 do { \
281 lockdep_assert_irqs_disabled(); \
282 raw_spin_lock(&current->pi_lock); \
283 current->saved_state = current->__state; \
284 debug_rtlock_wait_set_state(); \
285 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
286 raw_spin_unlock(&current->pi_lock); \
287 } while (0);
289 #define current_restore_rtlock_saved_state() \
290 do { \
291 lockdep_assert_irqs_disabled(); \
292 raw_spin_lock(&current->pi_lock); \
293 debug_rtlock_wait_restore_state(); \
294 WRITE_ONCE(current->__state, current->saved_state); \
295 current->saved_state = TASK_RUNNING; \
296 raw_spin_unlock(&current->pi_lock); \
297 } while (0);
299 #define get_current_state() READ_ONCE(current->__state)
302 * Define the task command name length as enum, then it can be visible to
303 * BPF programs.
305 enum {
306 TASK_COMM_LEN = 16,
309 extern void sched_tick(void);
311 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
313 extern long schedule_timeout(long timeout);
314 extern long schedule_timeout_interruptible(long timeout);
315 extern long schedule_timeout_killable(long timeout);
316 extern long schedule_timeout_uninterruptible(long timeout);
317 extern long schedule_timeout_idle(long timeout);
318 asmlinkage void schedule(void);
319 extern void schedule_preempt_disabled(void);
320 asmlinkage void preempt_schedule_irq(void);
321 #ifdef CONFIG_PREEMPT_RT
322 extern void schedule_rtlock(void);
323 #endif
325 extern int __must_check io_schedule_prepare(void);
326 extern void io_schedule_finish(int token);
327 extern long io_schedule_timeout(long timeout);
328 extern void io_schedule(void);
331 * struct prev_cputime - snapshot of system and user cputime
332 * @utime: time spent in user mode
333 * @stime: time spent in system mode
334 * @lock: protects the above two fields
336 * Stores previous user/system time values such that we can guarantee
337 * monotonicity.
339 struct prev_cputime {
340 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
341 u64 utime;
342 u64 stime;
343 raw_spinlock_t lock;
344 #endif
347 enum vtime_state {
348 /* Task is sleeping or running in a CPU with VTIME inactive: */
349 VTIME_INACTIVE = 0,
350 /* Task is idle */
351 VTIME_IDLE,
352 /* Task runs in kernelspace in a CPU with VTIME active: */
353 VTIME_SYS,
354 /* Task runs in userspace in a CPU with VTIME active: */
355 VTIME_USER,
356 /* Task runs as guests in a CPU with VTIME active: */
357 VTIME_GUEST,
360 struct vtime {
361 seqcount_t seqcount;
362 unsigned long long starttime;
363 enum vtime_state state;
364 unsigned int cpu;
365 u64 utime;
366 u64 stime;
367 u64 gtime;
371 * Utilization clamp constraints.
372 * @UCLAMP_MIN: Minimum utilization
373 * @UCLAMP_MAX: Maximum utilization
374 * @UCLAMP_CNT: Utilization clamp constraints count
376 enum uclamp_id {
377 UCLAMP_MIN = 0,
378 UCLAMP_MAX,
379 UCLAMP_CNT
382 #ifdef CONFIG_SMP
383 extern struct root_domain def_root_domain;
384 extern struct mutex sched_domains_mutex;
385 #endif
387 struct sched_param {
388 int sched_priority;
391 struct sched_info {
392 #ifdef CONFIG_SCHED_INFO
393 /* Cumulative counters: */
395 /* # of times we have run on this CPU: */
396 unsigned long pcount;
398 /* Time spent waiting on a runqueue: */
399 unsigned long long run_delay;
401 /* Timestamps: */
403 /* When did we last run on a CPU? */
404 unsigned long long last_arrival;
406 /* When were we last queued to run? */
407 unsigned long long last_queued;
409 #endif /* CONFIG_SCHED_INFO */
413 * Integer metrics need fixed point arithmetic, e.g., sched/fair
414 * has a few: load, load_avg, util_avg, freq, and capacity.
416 * We define a basic fixed point arithmetic range, and then formalize
417 * all these metrics based on that basic range.
419 # define SCHED_FIXEDPOINT_SHIFT 10
420 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
422 /* Increase resolution of cpu_capacity calculations */
423 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
424 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
426 struct load_weight {
427 unsigned long weight;
428 u32 inv_weight;
432 * The load/runnable/util_avg accumulates an infinite geometric series
433 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
435 * [load_avg definition]
437 * load_avg = runnable% * scale_load_down(load)
439 * [runnable_avg definition]
441 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
443 * [util_avg definition]
445 * util_avg = running% * SCHED_CAPACITY_SCALE
447 * where runnable% is the time ratio that a sched_entity is runnable and
448 * running% the time ratio that a sched_entity is running.
450 * For cfs_rq, they are the aggregated values of all runnable and blocked
451 * sched_entities.
453 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
454 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
455 * for computing those signals (see update_rq_clock_pelt())
457 * N.B., the above ratios (runnable% and running%) themselves are in the
458 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
459 * to as large a range as necessary. This is for example reflected by
460 * util_avg's SCHED_CAPACITY_SCALE.
462 * [Overflow issue]
464 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
465 * with the highest load (=88761), always runnable on a single cfs_rq,
466 * and should not overflow as the number already hits PID_MAX_LIMIT.
468 * For all other cases (including 32-bit kernels), struct load_weight's
469 * weight will overflow first before we do, because:
471 * Max(load_avg) <= Max(load.weight)
473 * Then it is the load_weight's responsibility to consider overflow
474 * issues.
476 struct sched_avg {
477 u64 last_update_time;
478 u64 load_sum;
479 u64 runnable_sum;
480 u32 util_sum;
481 u32 period_contrib;
482 unsigned long load_avg;
483 unsigned long runnable_avg;
484 unsigned long util_avg;
485 unsigned int util_est;
486 } ____cacheline_aligned;
489 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
490 * updates. When a task is dequeued, its util_est should not be updated if its
491 * util_avg has not been updated in the meantime.
492 * This information is mapped into the MSB bit of util_est at dequeue time.
493 * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
494 * it is safe to use MSB.
496 #define UTIL_EST_WEIGHT_SHIFT 2
497 #define UTIL_AVG_UNCHANGED 0x80000000
499 struct sched_statistics {
500 #ifdef CONFIG_SCHEDSTATS
501 u64 wait_start;
502 u64 wait_max;
503 u64 wait_count;
504 u64 wait_sum;
505 u64 iowait_count;
506 u64 iowait_sum;
508 u64 sleep_start;
509 u64 sleep_max;
510 s64 sum_sleep_runtime;
512 u64 block_start;
513 u64 block_max;
514 s64 sum_block_runtime;
516 s64 exec_max;
517 u64 slice_max;
519 u64 nr_migrations_cold;
520 u64 nr_failed_migrations_affine;
521 u64 nr_failed_migrations_running;
522 u64 nr_failed_migrations_hot;
523 u64 nr_forced_migrations;
525 u64 nr_wakeups;
526 u64 nr_wakeups_sync;
527 u64 nr_wakeups_migrate;
528 u64 nr_wakeups_local;
529 u64 nr_wakeups_remote;
530 u64 nr_wakeups_affine;
531 u64 nr_wakeups_affine_attempts;
532 u64 nr_wakeups_passive;
533 u64 nr_wakeups_idle;
535 #ifdef CONFIG_SCHED_CORE
536 u64 core_forceidle_sum;
537 #endif
538 #endif /* CONFIG_SCHEDSTATS */
539 } ____cacheline_aligned;
541 struct sched_entity {
542 /* For load-balancing: */
543 struct load_weight load;
544 struct rb_node run_node;
545 u64 deadline;
546 u64 min_vruntime;
547 u64 min_slice;
549 struct list_head group_node;
550 unsigned char on_rq;
551 unsigned char sched_delayed;
552 unsigned char rel_deadline;
553 unsigned char custom_slice;
554 /* hole */
556 u64 exec_start;
557 u64 sum_exec_runtime;
558 u64 prev_sum_exec_runtime;
559 u64 vruntime;
560 s64 vlag;
561 u64 slice;
563 u64 nr_migrations;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 int depth;
567 struct sched_entity *parent;
568 /* rq on which this entity is (to be) queued: */
569 struct cfs_rq *cfs_rq;
570 /* rq "owned" by this entity/group: */
571 struct cfs_rq *my_q;
572 /* cached value of my_q->h_nr_running */
573 unsigned long runnable_weight;
574 #endif
576 #ifdef CONFIG_SMP
578 * Per entity load average tracking.
580 * Put into separate cache line so it does not
581 * collide with read-mostly values above.
583 struct sched_avg avg;
584 #endif
587 struct sched_rt_entity {
588 struct list_head run_list;
589 unsigned long timeout;
590 unsigned long watchdog_stamp;
591 unsigned int time_slice;
592 unsigned short on_rq;
593 unsigned short on_list;
595 struct sched_rt_entity *back;
596 #ifdef CONFIG_RT_GROUP_SCHED
597 struct sched_rt_entity *parent;
598 /* rq on which this entity is (to be) queued: */
599 struct rt_rq *rt_rq;
600 /* rq "owned" by this entity/group: */
601 struct rt_rq *my_q;
602 #endif
603 } __randomize_layout;
605 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
606 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
608 struct sched_dl_entity {
609 struct rb_node rb_node;
612 * Original scheduling parameters. Copied here from sched_attr
613 * during sched_setattr(), they will remain the same until
614 * the next sched_setattr().
616 u64 dl_runtime; /* Maximum runtime for each instance */
617 u64 dl_deadline; /* Relative deadline of each instance */
618 u64 dl_period; /* Separation of two instances (period) */
619 u64 dl_bw; /* dl_runtime / dl_period */
620 u64 dl_density; /* dl_runtime / dl_deadline */
623 * Actual scheduling parameters. Initialized with the values above,
624 * they are continuously updated during task execution. Note that
625 * the remaining runtime could be < 0 in case we are in overrun.
627 s64 runtime; /* Remaining runtime for this instance */
628 u64 deadline; /* Absolute deadline for this instance */
629 unsigned int flags; /* Specifying the scheduler behaviour */
632 * Some bool flags:
634 * @dl_throttled tells if we exhausted the runtime. If so, the
635 * task has to wait for a replenishment to be performed at the
636 * next firing of dl_timer.
638 * @dl_yielded tells if task gave up the CPU before consuming
639 * all its available runtime during the last job.
641 * @dl_non_contending tells if the task is inactive while still
642 * contributing to the active utilization. In other words, it
643 * indicates if the inactive timer has been armed and its handler
644 * has not been executed yet. This flag is useful to avoid race
645 * conditions between the inactive timer handler and the wakeup
646 * code.
648 * @dl_overrun tells if the task asked to be informed about runtime
649 * overruns.
651 * @dl_server tells if this is a server entity.
653 * @dl_defer tells if this is a deferred or regular server. For
654 * now only defer server exists.
656 * @dl_defer_armed tells if the deferrable server is waiting
657 * for the replenishment timer to activate it.
659 * @dl_defer_running tells if the deferrable server is actually
660 * running, skipping the defer phase.
662 unsigned int dl_throttled : 1;
663 unsigned int dl_yielded : 1;
664 unsigned int dl_non_contending : 1;
665 unsigned int dl_overrun : 1;
666 unsigned int dl_server : 1;
667 unsigned int dl_defer : 1;
668 unsigned int dl_defer_armed : 1;
669 unsigned int dl_defer_running : 1;
672 * Bandwidth enforcement timer. Each -deadline task has its
673 * own bandwidth to be enforced, thus we need one timer per task.
675 struct hrtimer dl_timer;
678 * Inactive timer, responsible for decreasing the active utilization
679 * at the "0-lag time". When a -deadline task blocks, it contributes
680 * to GRUB's active utilization until the "0-lag time", hence a
681 * timer is needed to decrease the active utilization at the correct
682 * time.
684 struct hrtimer inactive_timer;
687 * Bits for DL-server functionality. Also see the comment near
688 * dl_server_update().
690 * @rq the runqueue this server is for
692 * @server_has_tasks() returns true if @server_pick return a
693 * runnable task.
695 struct rq *rq;
696 dl_server_has_tasks_f server_has_tasks;
697 dl_server_pick_f server_pick_task;
699 #ifdef CONFIG_RT_MUTEXES
701 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
702 * pi_se points to the donor, otherwise points to the dl_se it belongs
703 * to (the original one/itself).
705 struct sched_dl_entity *pi_se;
706 #endif
709 #ifdef CONFIG_UCLAMP_TASK
710 /* Number of utilization clamp buckets (shorter alias) */
711 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
714 * Utilization clamp for a scheduling entity
715 * @value: clamp value "assigned" to a se
716 * @bucket_id: bucket index corresponding to the "assigned" value
717 * @active: the se is currently refcounted in a rq's bucket
718 * @user_defined: the requested clamp value comes from user-space
720 * The bucket_id is the index of the clamp bucket matching the clamp value
721 * which is pre-computed and stored to avoid expensive integer divisions from
722 * the fast path.
724 * The active bit is set whenever a task has got an "effective" value assigned,
725 * which can be different from the clamp value "requested" from user-space.
726 * This allows to know a task is refcounted in the rq's bucket corresponding
727 * to the "effective" bucket_id.
729 * The user_defined bit is set whenever a task has got a task-specific clamp
730 * value requested from userspace, i.e. the system defaults apply to this task
731 * just as a restriction. This allows to relax default clamps when a less
732 * restrictive task-specific value has been requested, thus allowing to
733 * implement a "nice" semantic. For example, a task running with a 20%
734 * default boost can still drop its own boosting to 0%.
736 struct uclamp_se {
737 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
738 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
739 unsigned int active : 1;
740 unsigned int user_defined : 1;
742 #endif /* CONFIG_UCLAMP_TASK */
744 union rcu_special {
745 struct {
746 u8 blocked;
747 u8 need_qs;
748 u8 exp_hint; /* Hint for performance. */
749 u8 need_mb; /* Readers need smp_mb(). */
750 } b; /* Bits. */
751 u32 s; /* Set of bits. */
754 enum perf_event_task_context {
755 perf_invalid_context = -1,
756 perf_hw_context = 0,
757 perf_sw_context,
758 perf_nr_task_contexts,
762 * Number of contexts where an event can trigger:
763 * task, softirq, hardirq, nmi.
765 #define PERF_NR_CONTEXTS 4
767 struct wake_q_node {
768 struct wake_q_node *next;
771 struct kmap_ctrl {
772 #ifdef CONFIG_KMAP_LOCAL
773 int idx;
774 pte_t pteval[KM_MAX_IDX];
775 #endif
778 struct task_struct {
779 #ifdef CONFIG_THREAD_INFO_IN_TASK
781 * For reasons of header soup (see current_thread_info()), this
782 * must be the first element of task_struct.
784 struct thread_info thread_info;
785 #endif
786 unsigned int __state;
788 /* saved state for "spinlock sleepers" */
789 unsigned int saved_state;
792 * This begins the randomizable portion of task_struct. Only
793 * scheduling-critical items should be added above here.
795 randomized_struct_fields_start
797 void *stack;
798 refcount_t usage;
799 /* Per task flags (PF_*), defined further below: */
800 unsigned int flags;
801 unsigned int ptrace;
803 #ifdef CONFIG_MEM_ALLOC_PROFILING
804 struct alloc_tag *alloc_tag;
805 #endif
807 #ifdef CONFIG_SMP
808 int on_cpu;
809 struct __call_single_node wake_entry;
810 unsigned int wakee_flips;
811 unsigned long wakee_flip_decay_ts;
812 struct task_struct *last_wakee;
815 * recent_used_cpu is initially set as the last CPU used by a task
816 * that wakes affine another task. Waker/wakee relationships can
817 * push tasks around a CPU where each wakeup moves to the next one.
818 * Tracking a recently used CPU allows a quick search for a recently
819 * used CPU that may be idle.
821 int recent_used_cpu;
822 int wake_cpu;
823 #endif
824 int on_rq;
826 int prio;
827 int static_prio;
828 int normal_prio;
829 unsigned int rt_priority;
831 struct sched_entity se;
832 struct sched_rt_entity rt;
833 struct sched_dl_entity dl;
834 struct sched_dl_entity *dl_server;
835 #ifdef CONFIG_SCHED_CLASS_EXT
836 struct sched_ext_entity scx;
837 #endif
838 const struct sched_class *sched_class;
840 #ifdef CONFIG_SCHED_CORE
841 struct rb_node core_node;
842 unsigned long core_cookie;
843 unsigned int core_occupation;
844 #endif
846 #ifdef CONFIG_CGROUP_SCHED
847 struct task_group *sched_task_group;
848 #endif
851 #ifdef CONFIG_UCLAMP_TASK
853 * Clamp values requested for a scheduling entity.
854 * Must be updated with task_rq_lock() held.
856 struct uclamp_se uclamp_req[UCLAMP_CNT];
858 * Effective clamp values used for a scheduling entity.
859 * Must be updated with task_rq_lock() held.
861 struct uclamp_se uclamp[UCLAMP_CNT];
862 #endif
864 struct sched_statistics stats;
866 #ifdef CONFIG_PREEMPT_NOTIFIERS
867 /* List of struct preempt_notifier: */
868 struct hlist_head preempt_notifiers;
869 #endif
871 #ifdef CONFIG_BLK_DEV_IO_TRACE
872 unsigned int btrace_seq;
873 #endif
875 unsigned int policy;
876 unsigned long max_allowed_capacity;
877 int nr_cpus_allowed;
878 const cpumask_t *cpus_ptr;
879 cpumask_t *user_cpus_ptr;
880 cpumask_t cpus_mask;
881 void *migration_pending;
882 #ifdef CONFIG_SMP
883 unsigned short migration_disabled;
884 #endif
885 unsigned short migration_flags;
887 #ifdef CONFIG_PREEMPT_RCU
888 int rcu_read_lock_nesting;
889 union rcu_special rcu_read_unlock_special;
890 struct list_head rcu_node_entry;
891 struct rcu_node *rcu_blocked_node;
892 #endif /* #ifdef CONFIG_PREEMPT_RCU */
894 #ifdef CONFIG_TASKS_RCU
895 unsigned long rcu_tasks_nvcsw;
896 u8 rcu_tasks_holdout;
897 u8 rcu_tasks_idx;
898 int rcu_tasks_idle_cpu;
899 struct list_head rcu_tasks_holdout_list;
900 int rcu_tasks_exit_cpu;
901 struct list_head rcu_tasks_exit_list;
902 #endif /* #ifdef CONFIG_TASKS_RCU */
904 #ifdef CONFIG_TASKS_TRACE_RCU
905 int trc_reader_nesting;
906 int trc_ipi_to_cpu;
907 union rcu_special trc_reader_special;
908 struct list_head trc_holdout_list;
909 struct list_head trc_blkd_node;
910 int trc_blkd_cpu;
911 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
913 struct sched_info sched_info;
915 struct list_head tasks;
916 #ifdef CONFIG_SMP
917 struct plist_node pushable_tasks;
918 struct rb_node pushable_dl_tasks;
919 #endif
921 struct mm_struct *mm;
922 struct mm_struct *active_mm;
923 struct address_space *faults_disabled_mapping;
925 int exit_state;
926 int exit_code;
927 int exit_signal;
928 /* The signal sent when the parent dies: */
929 int pdeath_signal;
930 /* JOBCTL_*, siglock protected: */
931 unsigned long jobctl;
933 /* Used for emulating ABI behavior of previous Linux versions: */
934 unsigned int personality;
936 /* Scheduler bits, serialized by scheduler locks: */
937 unsigned sched_reset_on_fork:1;
938 unsigned sched_contributes_to_load:1;
939 unsigned sched_migrated:1;
941 /* Force alignment to the next boundary: */
942 unsigned :0;
944 /* Unserialized, strictly 'current' */
947 * This field must not be in the scheduler word above due to wakelist
948 * queueing no longer being serialized by p->on_cpu. However:
950 * p->XXX = X; ttwu()
951 * schedule() if (p->on_rq && ..) // false
952 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
953 * deactivate_task() ttwu_queue_wakelist())
954 * p->on_rq = 0; p->sched_remote_wakeup = Y;
956 * guarantees all stores of 'current' are visible before
957 * ->sched_remote_wakeup gets used, so it can be in this word.
959 unsigned sched_remote_wakeup:1;
960 #ifdef CONFIG_RT_MUTEXES
961 unsigned sched_rt_mutex:1;
962 #endif
964 /* Bit to tell TOMOYO we're in execve(): */
965 unsigned in_execve:1;
966 unsigned in_iowait:1;
967 #ifndef TIF_RESTORE_SIGMASK
968 unsigned restore_sigmask:1;
969 #endif
970 #ifdef CONFIG_MEMCG_V1
971 unsigned in_user_fault:1;
972 #endif
973 #ifdef CONFIG_LRU_GEN
974 /* whether the LRU algorithm may apply to this access */
975 unsigned in_lru_fault:1;
976 #endif
977 #ifdef CONFIG_COMPAT_BRK
978 unsigned brk_randomized:1;
979 #endif
980 #ifdef CONFIG_CGROUPS
981 /* disallow userland-initiated cgroup migration */
982 unsigned no_cgroup_migration:1;
983 /* task is frozen/stopped (used by the cgroup freezer) */
984 unsigned frozen:1;
985 #endif
986 #ifdef CONFIG_BLK_CGROUP
987 unsigned use_memdelay:1;
988 #endif
989 #ifdef CONFIG_PSI
990 /* Stalled due to lack of memory */
991 unsigned in_memstall:1;
992 #endif
993 #ifdef CONFIG_PAGE_OWNER
994 /* Used by page_owner=on to detect recursion in page tracking. */
995 unsigned in_page_owner:1;
996 #endif
997 #ifdef CONFIG_EVENTFD
998 /* Recursion prevention for eventfd_signal() */
999 unsigned in_eventfd:1;
1000 #endif
1001 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1002 unsigned pasid_activated:1;
1003 #endif
1004 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1005 unsigned reported_split_lock:1;
1006 #endif
1007 #ifdef CONFIG_TASK_DELAY_ACCT
1008 /* delay due to memory thrashing */
1009 unsigned in_thrashing:1;
1010 #endif
1011 #ifdef CONFIG_PREEMPT_RT
1012 struct netdev_xmit net_xmit;
1013 #endif
1014 unsigned long atomic_flags; /* Flags requiring atomic access. */
1016 struct restart_block restart_block;
1018 pid_t pid;
1019 pid_t tgid;
1021 #ifdef CONFIG_STACKPROTECTOR
1022 /* Canary value for the -fstack-protector GCC feature: */
1023 unsigned long stack_canary;
1024 #endif
1026 * Pointers to the (original) parent process, youngest child, younger sibling,
1027 * older sibling, respectively. (p->father can be replaced with
1028 * p->real_parent->pid)
1031 /* Real parent process: */
1032 struct task_struct __rcu *real_parent;
1034 /* Recipient of SIGCHLD, wait4() reports: */
1035 struct task_struct __rcu *parent;
1038 * Children/sibling form the list of natural children:
1040 struct list_head children;
1041 struct list_head sibling;
1042 struct task_struct *group_leader;
1045 * 'ptraced' is the list of tasks this task is using ptrace() on.
1047 * This includes both natural children and PTRACE_ATTACH targets.
1048 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1050 struct list_head ptraced;
1051 struct list_head ptrace_entry;
1053 /* PID/PID hash table linkage. */
1054 struct pid *thread_pid;
1055 struct hlist_node pid_links[PIDTYPE_MAX];
1056 struct list_head thread_node;
1058 struct completion *vfork_done;
1060 /* CLONE_CHILD_SETTID: */
1061 int __user *set_child_tid;
1063 /* CLONE_CHILD_CLEARTID: */
1064 int __user *clear_child_tid;
1066 /* PF_KTHREAD | PF_IO_WORKER */
1067 void *worker_private;
1069 u64 utime;
1070 u64 stime;
1071 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1072 u64 utimescaled;
1073 u64 stimescaled;
1074 #endif
1075 u64 gtime;
1076 struct prev_cputime prev_cputime;
1077 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1078 struct vtime vtime;
1079 #endif
1081 #ifdef CONFIG_NO_HZ_FULL
1082 atomic_t tick_dep_mask;
1083 #endif
1084 /* Context switch counts: */
1085 unsigned long nvcsw;
1086 unsigned long nivcsw;
1088 /* Monotonic time in nsecs: */
1089 u64 start_time;
1091 /* Boot based time in nsecs: */
1092 u64 start_boottime;
1094 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1095 unsigned long min_flt;
1096 unsigned long maj_flt;
1098 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1099 struct posix_cputimers posix_cputimers;
1101 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1102 struct posix_cputimers_work posix_cputimers_work;
1103 #endif
1105 /* Process credentials: */
1107 /* Tracer's credentials at attach: */
1108 const struct cred __rcu *ptracer_cred;
1110 /* Objective and real subjective task credentials (COW): */
1111 const struct cred __rcu *real_cred;
1113 /* Effective (overridable) subjective task credentials (COW): */
1114 const struct cred __rcu *cred;
1116 #ifdef CONFIG_KEYS
1117 /* Cached requested key. */
1118 struct key *cached_requested_key;
1119 #endif
1122 * executable name, excluding path.
1124 * - normally initialized begin_new_exec()
1125 * - set it with set_task_comm()
1126 * - strscpy_pad() to ensure it is always NUL-terminated and
1127 * zero-padded
1128 * - task_lock() to ensure the operation is atomic and the name is
1129 * fully updated.
1131 char comm[TASK_COMM_LEN];
1133 struct nameidata *nameidata;
1135 #ifdef CONFIG_SYSVIPC
1136 struct sysv_sem sysvsem;
1137 struct sysv_shm sysvshm;
1138 #endif
1139 #ifdef CONFIG_DETECT_HUNG_TASK
1140 unsigned long last_switch_count;
1141 unsigned long last_switch_time;
1142 #endif
1143 /* Filesystem information: */
1144 struct fs_struct *fs;
1146 /* Open file information: */
1147 struct files_struct *files;
1149 #ifdef CONFIG_IO_URING
1150 struct io_uring_task *io_uring;
1151 #endif
1153 /* Namespaces: */
1154 struct nsproxy *nsproxy;
1156 /* Signal handlers: */
1157 struct signal_struct *signal;
1158 struct sighand_struct __rcu *sighand;
1159 sigset_t blocked;
1160 sigset_t real_blocked;
1161 /* Restored if set_restore_sigmask() was used: */
1162 sigset_t saved_sigmask;
1163 struct sigpending pending;
1164 unsigned long sas_ss_sp;
1165 size_t sas_ss_size;
1166 unsigned int sas_ss_flags;
1168 struct callback_head *task_works;
1170 #ifdef CONFIG_AUDIT
1171 #ifdef CONFIG_AUDITSYSCALL
1172 struct audit_context *audit_context;
1173 #endif
1174 kuid_t loginuid;
1175 unsigned int sessionid;
1176 #endif
1177 struct seccomp seccomp;
1178 struct syscall_user_dispatch syscall_dispatch;
1180 /* Thread group tracking: */
1181 u64 parent_exec_id;
1182 u64 self_exec_id;
1184 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1185 spinlock_t alloc_lock;
1187 /* Protection of the PI data structures: */
1188 raw_spinlock_t pi_lock;
1190 struct wake_q_node wake_q;
1192 #ifdef CONFIG_RT_MUTEXES
1193 /* PI waiters blocked on a rt_mutex held by this task: */
1194 struct rb_root_cached pi_waiters;
1195 /* Updated under owner's pi_lock and rq lock */
1196 struct task_struct *pi_top_task;
1197 /* Deadlock detection and priority inheritance handling: */
1198 struct rt_mutex_waiter *pi_blocked_on;
1199 #endif
1201 #ifdef CONFIG_DEBUG_MUTEXES
1202 /* Mutex deadlock detection: */
1203 struct mutex_waiter *blocked_on;
1204 #endif
1206 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1207 int non_block_count;
1208 #endif
1210 #ifdef CONFIG_TRACE_IRQFLAGS
1211 struct irqtrace_events irqtrace;
1212 unsigned int hardirq_threaded;
1213 u64 hardirq_chain_key;
1214 int softirqs_enabled;
1215 int softirq_context;
1216 int irq_config;
1217 #endif
1218 #ifdef CONFIG_PREEMPT_RT
1219 int softirq_disable_cnt;
1220 #endif
1222 #ifdef CONFIG_LOCKDEP
1223 # define MAX_LOCK_DEPTH 48UL
1224 u64 curr_chain_key;
1225 int lockdep_depth;
1226 unsigned int lockdep_recursion;
1227 struct held_lock held_locks[MAX_LOCK_DEPTH];
1228 #endif
1230 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1231 unsigned int in_ubsan;
1232 #endif
1234 /* Journalling filesystem info: */
1235 void *journal_info;
1237 /* Stacked block device info: */
1238 struct bio_list *bio_list;
1240 /* Stack plugging: */
1241 struct blk_plug *plug;
1243 /* VM state: */
1244 struct reclaim_state *reclaim_state;
1246 struct io_context *io_context;
1248 #ifdef CONFIG_COMPACTION
1249 struct capture_control *capture_control;
1250 #endif
1251 /* Ptrace state: */
1252 unsigned long ptrace_message;
1253 kernel_siginfo_t *last_siginfo;
1255 struct task_io_accounting ioac;
1256 #ifdef CONFIG_PSI
1257 /* Pressure stall state */
1258 unsigned int psi_flags;
1259 #endif
1260 #ifdef CONFIG_TASK_XACCT
1261 /* Accumulated RSS usage: */
1262 u64 acct_rss_mem1;
1263 /* Accumulated virtual memory usage: */
1264 u64 acct_vm_mem1;
1265 /* stime + utime since last update: */
1266 u64 acct_timexpd;
1267 #endif
1268 #ifdef CONFIG_CPUSETS
1269 /* Protected by ->alloc_lock: */
1270 nodemask_t mems_allowed;
1271 /* Sequence number to catch updates: */
1272 seqcount_spinlock_t mems_allowed_seq;
1273 int cpuset_mem_spread_rotor;
1274 #endif
1275 #ifdef CONFIG_CGROUPS
1276 /* Control Group info protected by css_set_lock: */
1277 struct css_set __rcu *cgroups;
1278 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1279 struct list_head cg_list;
1280 #endif
1281 #ifdef CONFIG_X86_CPU_RESCTRL
1282 u32 closid;
1283 u32 rmid;
1284 #endif
1285 #ifdef CONFIG_FUTEX
1286 struct robust_list_head __user *robust_list;
1287 #ifdef CONFIG_COMPAT
1288 struct compat_robust_list_head __user *compat_robust_list;
1289 #endif
1290 struct list_head pi_state_list;
1291 struct futex_pi_state *pi_state_cache;
1292 struct mutex futex_exit_mutex;
1293 unsigned int futex_state;
1294 #endif
1295 #ifdef CONFIG_PERF_EVENTS
1296 u8 perf_recursion[PERF_NR_CONTEXTS];
1297 struct perf_event_context *perf_event_ctxp;
1298 struct mutex perf_event_mutex;
1299 struct list_head perf_event_list;
1300 #endif
1301 #ifdef CONFIG_DEBUG_PREEMPT
1302 unsigned long preempt_disable_ip;
1303 #endif
1304 #ifdef CONFIG_NUMA
1305 /* Protected by alloc_lock: */
1306 struct mempolicy *mempolicy;
1307 short il_prev;
1308 u8 il_weight;
1309 short pref_node_fork;
1310 #endif
1311 #ifdef CONFIG_NUMA_BALANCING
1312 int numa_scan_seq;
1313 unsigned int numa_scan_period;
1314 unsigned int numa_scan_period_max;
1315 int numa_preferred_nid;
1316 unsigned long numa_migrate_retry;
1317 /* Migration stamp: */
1318 u64 node_stamp;
1319 u64 last_task_numa_placement;
1320 u64 last_sum_exec_runtime;
1321 struct callback_head numa_work;
1324 * This pointer is only modified for current in syscall and
1325 * pagefault context (and for tasks being destroyed), so it can be read
1326 * from any of the following contexts:
1327 * - RCU read-side critical section
1328 * - current->numa_group from everywhere
1329 * - task's runqueue locked, task not running
1331 struct numa_group __rcu *numa_group;
1334 * numa_faults is an array split into four regions:
1335 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1336 * in this precise order.
1338 * faults_memory: Exponential decaying average of faults on a per-node
1339 * basis. Scheduling placement decisions are made based on these
1340 * counts. The values remain static for the duration of a PTE scan.
1341 * faults_cpu: Track the nodes the process was running on when a NUMA
1342 * hinting fault was incurred.
1343 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1344 * during the current scan window. When the scan completes, the counts
1345 * in faults_memory and faults_cpu decay and these values are copied.
1347 unsigned long *numa_faults;
1348 unsigned long total_numa_faults;
1351 * numa_faults_locality tracks if faults recorded during the last
1352 * scan window were remote/local or failed to migrate. The task scan
1353 * period is adapted based on the locality of the faults with different
1354 * weights depending on whether they were shared or private faults
1356 unsigned long numa_faults_locality[3];
1358 unsigned long numa_pages_migrated;
1359 #endif /* CONFIG_NUMA_BALANCING */
1361 #ifdef CONFIG_RSEQ
1362 struct rseq __user *rseq;
1363 u32 rseq_len;
1364 u32 rseq_sig;
1366 * RmW on rseq_event_mask must be performed atomically
1367 * with respect to preemption.
1369 unsigned long rseq_event_mask;
1370 #endif
1372 #ifdef CONFIG_SCHED_MM_CID
1373 int mm_cid; /* Current cid in mm */
1374 int last_mm_cid; /* Most recent cid in mm */
1375 int migrate_from_cpu;
1376 int mm_cid_active; /* Whether cid bitmap is active */
1377 struct callback_head cid_work;
1378 #endif
1380 struct tlbflush_unmap_batch tlb_ubc;
1382 /* Cache last used pipe for splice(): */
1383 struct pipe_inode_info *splice_pipe;
1385 struct page_frag task_frag;
1387 #ifdef CONFIG_TASK_DELAY_ACCT
1388 struct task_delay_info *delays;
1389 #endif
1391 #ifdef CONFIG_FAULT_INJECTION
1392 int make_it_fail;
1393 unsigned int fail_nth;
1394 #endif
1396 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1397 * balance_dirty_pages() for a dirty throttling pause:
1399 int nr_dirtied;
1400 int nr_dirtied_pause;
1401 /* Start of a write-and-pause period: */
1402 unsigned long dirty_paused_when;
1404 #ifdef CONFIG_LATENCYTOP
1405 int latency_record_count;
1406 struct latency_record latency_record[LT_SAVECOUNT];
1407 #endif
1409 * Time slack values; these are used to round up poll() and
1410 * select() etc timeout values. These are in nanoseconds.
1412 u64 timer_slack_ns;
1413 u64 default_timer_slack_ns;
1415 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1416 unsigned int kasan_depth;
1417 #endif
1419 #ifdef CONFIG_KCSAN
1420 struct kcsan_ctx kcsan_ctx;
1421 #ifdef CONFIG_TRACE_IRQFLAGS
1422 struct irqtrace_events kcsan_save_irqtrace;
1423 #endif
1424 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1425 int kcsan_stack_depth;
1426 #endif
1427 #endif
1429 #ifdef CONFIG_KMSAN
1430 struct kmsan_ctx kmsan_ctx;
1431 #endif
1433 #if IS_ENABLED(CONFIG_KUNIT)
1434 struct kunit *kunit_test;
1435 #endif
1437 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1438 /* Index of current stored address in ret_stack: */
1439 int curr_ret_stack;
1440 int curr_ret_depth;
1442 /* Stack of return addresses for return function tracing: */
1443 unsigned long *ret_stack;
1445 /* Timestamp for last schedule: */
1446 unsigned long long ftrace_timestamp;
1447 unsigned long long ftrace_sleeptime;
1450 * Number of functions that haven't been traced
1451 * because of depth overrun:
1453 atomic_t trace_overrun;
1455 /* Pause tracing: */
1456 atomic_t tracing_graph_pause;
1457 #endif
1459 #ifdef CONFIG_TRACING
1460 /* Bitmask and counter of trace recursion: */
1461 unsigned long trace_recursion;
1462 #endif /* CONFIG_TRACING */
1464 #ifdef CONFIG_KCOV
1465 /* See kernel/kcov.c for more details. */
1467 /* Coverage collection mode enabled for this task (0 if disabled): */
1468 unsigned int kcov_mode;
1470 /* Size of the kcov_area: */
1471 unsigned int kcov_size;
1473 /* Buffer for coverage collection: */
1474 void *kcov_area;
1476 /* KCOV descriptor wired with this task or NULL: */
1477 struct kcov *kcov;
1479 /* KCOV common handle for remote coverage collection: */
1480 u64 kcov_handle;
1482 /* KCOV sequence number: */
1483 int kcov_sequence;
1485 /* Collect coverage from softirq context: */
1486 unsigned int kcov_softirq;
1487 #endif
1489 #ifdef CONFIG_MEMCG_V1
1490 struct mem_cgroup *memcg_in_oom;
1491 #endif
1493 #ifdef CONFIG_MEMCG
1494 /* Number of pages to reclaim on returning to userland: */
1495 unsigned int memcg_nr_pages_over_high;
1497 /* Used by memcontrol for targeted memcg charge: */
1498 struct mem_cgroup *active_memcg;
1500 /* Cache for current->cgroups->memcg->objcg lookups: */
1501 struct obj_cgroup *objcg;
1502 #endif
1504 #ifdef CONFIG_BLK_CGROUP
1505 struct gendisk *throttle_disk;
1506 #endif
1508 #ifdef CONFIG_UPROBES
1509 struct uprobe_task *utask;
1510 #endif
1511 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1512 unsigned int sequential_io;
1513 unsigned int sequential_io_avg;
1514 #endif
1515 struct kmap_ctrl kmap_ctrl;
1516 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1517 unsigned long task_state_change;
1518 # ifdef CONFIG_PREEMPT_RT
1519 unsigned long saved_state_change;
1520 # endif
1521 #endif
1522 struct rcu_head rcu;
1523 refcount_t rcu_users;
1524 int pagefault_disabled;
1525 #ifdef CONFIG_MMU
1526 struct task_struct *oom_reaper_list;
1527 struct timer_list oom_reaper_timer;
1528 #endif
1529 #ifdef CONFIG_VMAP_STACK
1530 struct vm_struct *stack_vm_area;
1531 #endif
1532 #ifdef CONFIG_THREAD_INFO_IN_TASK
1533 /* A live task holds one reference: */
1534 refcount_t stack_refcount;
1535 #endif
1536 #ifdef CONFIG_LIVEPATCH
1537 int patch_state;
1538 #endif
1539 #ifdef CONFIG_SECURITY
1540 /* Used by LSM modules for access restriction: */
1541 void *security;
1542 #endif
1543 #ifdef CONFIG_BPF_SYSCALL
1544 /* Used by BPF task local storage */
1545 struct bpf_local_storage __rcu *bpf_storage;
1546 /* Used for BPF run context */
1547 struct bpf_run_ctx *bpf_ctx;
1548 #endif
1549 /* Used by BPF for per-TASK xdp storage */
1550 struct bpf_net_context *bpf_net_context;
1552 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1553 unsigned long lowest_stack;
1554 unsigned long prev_lowest_stack;
1555 #endif
1557 #ifdef CONFIG_X86_MCE
1558 void __user *mce_vaddr;
1559 __u64 mce_kflags;
1560 u64 mce_addr;
1561 __u64 mce_ripv : 1,
1562 mce_whole_page : 1,
1563 __mce_reserved : 62;
1564 struct callback_head mce_kill_me;
1565 int mce_count;
1566 #endif
1568 #ifdef CONFIG_KRETPROBES
1569 struct llist_head kretprobe_instances;
1570 #endif
1571 #ifdef CONFIG_RETHOOK
1572 struct llist_head rethooks;
1573 #endif
1575 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1577 * If L1D flush is supported on mm context switch
1578 * then we use this callback head to queue kill work
1579 * to kill tasks that are not running on SMT disabled
1580 * cores
1582 struct callback_head l1d_flush_kill;
1583 #endif
1585 #ifdef CONFIG_RV
1587 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1588 * If we find justification for more monitors, we can think
1589 * about adding more or developing a dynamic method. So far,
1590 * none of these are justified.
1592 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1593 #endif
1595 #ifdef CONFIG_USER_EVENTS
1596 struct user_event_mm *user_event_mm;
1597 #endif
1600 * New fields for task_struct should be added above here, so that
1601 * they are included in the randomized portion of task_struct.
1603 randomized_struct_fields_end
1605 /* CPU-specific state of this task: */
1606 struct thread_struct thread;
1609 * WARNING: on x86, 'thread_struct' contains a variable-sized
1610 * structure. It *MUST* be at the end of 'task_struct'.
1612 * Do not put anything below here!
1616 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1617 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1619 static inline unsigned int __task_state_index(unsigned int tsk_state,
1620 unsigned int tsk_exit_state)
1622 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1624 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1626 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1627 state = TASK_REPORT_IDLE;
1630 * We're lying here, but rather than expose a completely new task state
1631 * to userspace, we can make this appear as if the task has gone through
1632 * a regular rt_mutex_lock() call.
1634 if (tsk_state & TASK_RTLOCK_WAIT)
1635 state = TASK_UNINTERRUPTIBLE;
1637 return fls(state);
1640 static inline unsigned int task_state_index(struct task_struct *tsk)
1642 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1645 static inline char task_index_to_char(unsigned int state)
1647 static const char state_char[] = "RSDTtXZPI";
1649 BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1651 return state_char[state];
1654 static inline char task_state_to_char(struct task_struct *tsk)
1656 return task_index_to_char(task_state_index(tsk));
1659 extern struct pid *cad_pid;
1662 * Per process flags
1664 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1665 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1666 #define PF_EXITING 0x00000004 /* Getting shut down */
1667 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1668 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1669 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1670 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1671 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1672 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1673 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1674 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1675 #define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1676 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1677 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1678 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1679 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1680 #define PF__HOLE__00010000 0x00010000
1681 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1682 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1683 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1684 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1685 * I am cleaning dirty pages from some other bdi. */
1686 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1687 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1688 #define PF__HOLE__00800000 0x00800000
1689 #define PF__HOLE__01000000 0x01000000
1690 #define PF__HOLE__02000000 0x02000000
1691 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1692 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1693 #define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
1694 * See memalloc_pin_save() */
1695 #define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
1696 #define PF__HOLE__40000000 0x40000000
1697 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1700 * Only the _current_ task can read/write to tsk->flags, but other
1701 * tasks can access tsk->flags in readonly mode for example
1702 * with tsk_used_math (like during threaded core dumping).
1703 * There is however an exception to this rule during ptrace
1704 * or during fork: the ptracer task is allowed to write to the
1705 * child->flags of its traced child (same goes for fork, the parent
1706 * can write to the child->flags), because we're guaranteed the
1707 * child is not running and in turn not changing child->flags
1708 * at the same time the parent does it.
1710 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1711 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1712 #define clear_used_math() clear_stopped_child_used_math(current)
1713 #define set_used_math() set_stopped_child_used_math(current)
1715 #define conditional_stopped_child_used_math(condition, child) \
1716 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1718 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1720 #define copy_to_stopped_child_used_math(child) \
1721 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1725 #define used_math() tsk_used_math(current)
1727 static __always_inline bool is_percpu_thread(void)
1729 #ifdef CONFIG_SMP
1730 return (current->flags & PF_NO_SETAFFINITY) &&
1731 (current->nr_cpus_allowed == 1);
1732 #else
1733 return true;
1734 #endif
1737 /* Per-process atomic flags. */
1738 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1739 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1740 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1741 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1742 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1743 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1744 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1745 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1747 #define TASK_PFA_TEST(name, func) \
1748 static inline bool task_##func(struct task_struct *p) \
1749 { return test_bit(PFA_##name, &p->atomic_flags); }
1751 #define TASK_PFA_SET(name, func) \
1752 static inline void task_set_##func(struct task_struct *p) \
1753 { set_bit(PFA_##name, &p->atomic_flags); }
1755 #define TASK_PFA_CLEAR(name, func) \
1756 static inline void task_clear_##func(struct task_struct *p) \
1757 { clear_bit(PFA_##name, &p->atomic_flags); }
1759 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1760 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1762 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1763 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1764 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1766 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1767 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1768 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1770 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1771 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1772 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1774 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1775 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1776 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1778 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1779 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1781 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1782 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1783 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1785 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1786 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1788 static inline void
1789 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1791 current->flags &= ~flags;
1792 current->flags |= orig_flags & flags;
1795 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1796 extern int task_can_attach(struct task_struct *p);
1797 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1798 extern void dl_bw_free(int cpu, u64 dl_bw);
1799 #ifdef CONFIG_SMP
1801 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1802 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1805 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1806 * @p: the task
1807 * @new_mask: CPU affinity mask
1809 * Return: zero if successful, or a negative error code
1811 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1812 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1813 extern void release_user_cpus_ptr(struct task_struct *p);
1814 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1815 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1816 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1817 #else
1818 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1821 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1823 /* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1824 if ((*cpumask_bits(new_mask) & 1) == 0)
1825 return -EINVAL;
1826 return 0;
1828 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1830 if (src->user_cpus_ptr)
1831 return -EINVAL;
1832 return 0;
1834 static inline void release_user_cpus_ptr(struct task_struct *p)
1836 WARN_ON(p->user_cpus_ptr);
1839 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1841 return 0;
1843 #endif
1845 extern int yield_to(struct task_struct *p, bool preempt);
1846 extern void set_user_nice(struct task_struct *p, long nice);
1847 extern int task_prio(const struct task_struct *p);
1850 * task_nice - return the nice value of a given task.
1851 * @p: the task in question.
1853 * Return: The nice value [ -20 ... 0 ... 19 ].
1855 static inline int task_nice(const struct task_struct *p)
1857 return PRIO_TO_NICE((p)->static_prio);
1860 extern int can_nice(const struct task_struct *p, const int nice);
1861 extern int task_curr(const struct task_struct *p);
1862 extern int idle_cpu(int cpu);
1863 extern int available_idle_cpu(int cpu);
1864 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1865 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1866 extern void sched_set_fifo(struct task_struct *p);
1867 extern void sched_set_fifo_low(struct task_struct *p);
1868 extern void sched_set_normal(struct task_struct *p, int nice);
1869 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1870 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1871 extern struct task_struct *idle_task(int cpu);
1874 * is_idle_task - is the specified task an idle task?
1875 * @p: the task in question.
1877 * Return: 1 if @p is an idle task. 0 otherwise.
1879 static __always_inline bool is_idle_task(const struct task_struct *p)
1881 return !!(p->flags & PF_IDLE);
1884 extern struct task_struct *curr_task(int cpu);
1885 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1887 void yield(void);
1889 union thread_union {
1890 struct task_struct task;
1891 #ifndef CONFIG_THREAD_INFO_IN_TASK
1892 struct thread_info thread_info;
1893 #endif
1894 unsigned long stack[THREAD_SIZE/sizeof(long)];
1897 #ifndef CONFIG_THREAD_INFO_IN_TASK
1898 extern struct thread_info init_thread_info;
1899 #endif
1901 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1903 #ifdef CONFIG_THREAD_INFO_IN_TASK
1904 # define task_thread_info(task) (&(task)->thread_info)
1905 #else
1906 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1907 #endif
1910 * find a task by one of its numerical ids
1912 * find_task_by_pid_ns():
1913 * finds a task by its pid in the specified namespace
1914 * find_task_by_vpid():
1915 * finds a task by its virtual pid
1917 * see also find_vpid() etc in include/linux/pid.h
1920 extern struct task_struct *find_task_by_vpid(pid_t nr);
1921 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1924 * find a task by its virtual pid and get the task struct
1926 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1928 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1929 extern int wake_up_process(struct task_struct *tsk);
1930 extern void wake_up_new_task(struct task_struct *tsk);
1932 #ifdef CONFIG_SMP
1933 extern void kick_process(struct task_struct *tsk);
1934 #else
1935 static inline void kick_process(struct task_struct *tsk) { }
1936 #endif
1938 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1940 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1942 __set_task_comm(tsk, from, false);
1946 * - Why not use task_lock()?
1947 * User space can randomly change their names anyway, so locking for readers
1948 * doesn't make sense. For writers, locking is probably necessary, as a race
1949 * condition could lead to long-term mixed results.
1950 * The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1951 * always NUL-terminated and zero-padded. Therefore the race condition between
1952 * reader and writer is not an issue.
1954 * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1955 * Since the callers don't perform any return value checks, this safeguard is
1956 * necessary.
1958 #define get_task_comm(buf, tsk) ({ \
1959 BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN); \
1960 strscpy_pad(buf, (tsk)->comm); \
1961 buf; \
1964 #ifdef CONFIG_SMP
1965 static __always_inline void scheduler_ipi(void)
1968 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1969 * TIF_NEED_RESCHED remotely (for the first time) will also send
1970 * this IPI.
1972 preempt_fold_need_resched();
1974 #else
1975 static inline void scheduler_ipi(void) { }
1976 #endif
1978 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1981 * Set thread flags in other task's structures.
1982 * See asm/thread_info.h for TIF_xxxx flags available:
1984 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1986 set_ti_thread_flag(task_thread_info(tsk), flag);
1989 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1991 clear_ti_thread_flag(task_thread_info(tsk), flag);
1994 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1995 bool value)
1997 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2000 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2002 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2005 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2007 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2010 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2012 return test_ti_thread_flag(task_thread_info(tsk), flag);
2015 static inline void set_tsk_need_resched(struct task_struct *tsk)
2017 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2020 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2022 atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2023 (atomic_long_t *)&task_thread_info(tsk)->flags);
2026 static inline int test_tsk_need_resched(struct task_struct *tsk)
2028 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2032 * cond_resched() and cond_resched_lock(): latency reduction via
2033 * explicit rescheduling in places that are safe. The return
2034 * value indicates whether a reschedule was done in fact.
2035 * cond_resched_lock() will drop the spinlock before scheduling,
2037 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2038 extern int __cond_resched(void);
2040 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2042 void sched_dynamic_klp_enable(void);
2043 void sched_dynamic_klp_disable(void);
2045 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2047 static __always_inline int _cond_resched(void)
2049 return static_call_mod(cond_resched)();
2052 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2054 extern int dynamic_cond_resched(void);
2056 static __always_inline int _cond_resched(void)
2058 return dynamic_cond_resched();
2061 #else /* !CONFIG_PREEMPTION */
2063 static inline int _cond_resched(void)
2065 klp_sched_try_switch();
2066 return __cond_resched();
2069 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2071 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2073 static inline int _cond_resched(void)
2075 klp_sched_try_switch();
2076 return 0;
2079 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2081 #define cond_resched() ({ \
2082 __might_resched(__FILE__, __LINE__, 0); \
2083 _cond_resched(); \
2086 extern int __cond_resched_lock(spinlock_t *lock);
2087 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2088 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2090 #define MIGHT_RESCHED_RCU_SHIFT 8
2091 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2093 #ifndef CONFIG_PREEMPT_RT
2095 * Non RT kernels have an elevated preempt count due to the held lock,
2096 * but are not allowed to be inside a RCU read side critical section
2098 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2099 #else
2101 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2102 * cond_resched*lock() has to take that into account because it checks for
2103 * preempt_count() and rcu_preempt_depth().
2105 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2106 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2107 #endif
2109 #define cond_resched_lock(lock) ({ \
2110 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2111 __cond_resched_lock(lock); \
2114 #define cond_resched_rwlock_read(lock) ({ \
2115 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2116 __cond_resched_rwlock_read(lock); \
2119 #define cond_resched_rwlock_write(lock) ({ \
2120 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2121 __cond_resched_rwlock_write(lock); \
2124 static __always_inline bool need_resched(void)
2126 return unlikely(tif_need_resched());
2130 * Wrappers for p->thread_info->cpu access. No-op on UP.
2132 #ifdef CONFIG_SMP
2134 static inline unsigned int task_cpu(const struct task_struct *p)
2136 return READ_ONCE(task_thread_info(p)->cpu);
2139 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2141 #else
2143 static inline unsigned int task_cpu(const struct task_struct *p)
2145 return 0;
2148 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2152 #endif /* CONFIG_SMP */
2154 static inline bool task_is_runnable(struct task_struct *p)
2156 return p->on_rq && !p->se.sched_delayed;
2159 extern bool sched_task_on_rq(struct task_struct *p);
2160 extern unsigned long get_wchan(struct task_struct *p);
2161 extern struct task_struct *cpu_curr_snapshot(int cpu);
2163 #include <linux/spinlock.h>
2166 * In order to reduce various lock holder preemption latencies provide an
2167 * interface to see if a vCPU is currently running or not.
2169 * This allows us to terminate optimistic spin loops and block, analogous to
2170 * the native optimistic spin heuristic of testing if the lock owner task is
2171 * running or not.
2173 #ifndef vcpu_is_preempted
2174 static inline bool vcpu_is_preempted(int cpu)
2176 return false;
2178 #endif
2180 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2181 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2183 #ifndef TASK_SIZE_OF
2184 #define TASK_SIZE_OF(tsk) TASK_SIZE
2185 #endif
2187 #ifdef CONFIG_SMP
2188 static inline bool owner_on_cpu(struct task_struct *owner)
2191 * As lock holder preemption issue, we both skip spinning if
2192 * task is not on cpu or its cpu is preempted
2194 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2197 /* Returns effective CPU energy utilization, as seen by the scheduler */
2198 unsigned long sched_cpu_util(int cpu);
2199 #endif /* CONFIG_SMP */
2201 #ifdef CONFIG_SCHED_CORE
2202 extern void sched_core_free(struct task_struct *tsk);
2203 extern void sched_core_fork(struct task_struct *p);
2204 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2205 unsigned long uaddr);
2206 extern int sched_core_idle_cpu(int cpu);
2207 #else
2208 static inline void sched_core_free(struct task_struct *tsk) { }
2209 static inline void sched_core_fork(struct task_struct *p) { }
2210 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2211 #endif
2213 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2215 #ifdef CONFIG_MEM_ALLOC_PROFILING
2216 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2218 swap(current->alloc_tag, tag);
2219 return tag;
2222 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2224 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2225 WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2226 #endif
2227 current->alloc_tag = old;
2229 #else
2230 #define alloc_tag_save(_tag) NULL
2231 #define alloc_tag_restore(_tag, _old) do {} while (0)
2232 #endif
2234 #endif