1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
78 #include <uapi/linux/io_uring.h>
97 #include "uring_cmd.h"
104 #include "alloc_cache.h"
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
125 struct io_defer_entry
{
126 struct list_head list
;
127 struct io_kiocb
*req
;
131 /* requests with any of those set should undergo io_disarm_next() */
132 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
133 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
136 * No waiters. It's larger than any valid value of the tw counter
137 * so that tests against ->cq_wait_nr would fail and skip wake_up().
139 #define IO_CQ_WAKE_INIT (-1U)
140 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
141 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx
*ctx
,
144 struct io_uring_task
*tctx
,
147 static void io_queue_sqe(struct io_kiocb
*req
);
149 static __read_mostly
DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray
);
151 struct kmem_cache
*req_cachep
;
152 static struct workqueue_struct
*iou_wq __ro_after_init
;
154 static int __read_mostly sysctl_io_uring_disabled
;
155 static int __read_mostly sysctl_io_uring_group
= -1;
158 static struct ctl_table kernel_io_uring_disabled_table
[] = {
160 .procname
= "io_uring_disabled",
161 .data
= &sysctl_io_uring_disabled
,
162 .maxlen
= sizeof(sysctl_io_uring_disabled
),
164 .proc_handler
= proc_dointvec_minmax
,
165 .extra1
= SYSCTL_ZERO
,
166 .extra2
= SYSCTL_TWO
,
169 .procname
= "io_uring_group",
170 .data
= &sysctl_io_uring_group
,
171 .maxlen
= sizeof(gid_t
),
173 .proc_handler
= proc_dointvec
,
178 static inline unsigned int __io_cqring_events(struct io_ring_ctx
*ctx
)
180 return ctx
->cached_cq_tail
- READ_ONCE(ctx
->rings
->cq
.head
);
183 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx
*ctx
)
185 return READ_ONCE(ctx
->rings
->cq
.tail
) - READ_ONCE(ctx
->rings
->cq
.head
);
188 static bool io_match_linked(struct io_kiocb
*head
)
190 struct io_kiocb
*req
;
192 io_for_each_link(req
, head
) {
193 if (req
->flags
& REQ_F_INFLIGHT
)
200 * As io_match_task() but protected against racing with linked timeouts.
201 * User must not hold timeout_lock.
203 bool io_match_task_safe(struct io_kiocb
*head
, struct io_uring_task
*tctx
,
208 if (tctx
&& head
->tctx
!= tctx
)
213 if (head
->flags
& REQ_F_LINK_TIMEOUT
) {
214 struct io_ring_ctx
*ctx
= head
->ctx
;
216 /* protect against races with linked timeouts */
217 spin_lock_irq(&ctx
->timeout_lock
);
218 matched
= io_match_linked(head
);
219 spin_unlock_irq(&ctx
->timeout_lock
);
221 matched
= io_match_linked(head
);
226 static inline void req_fail_link_node(struct io_kiocb
*req
, int res
)
229 io_req_set_res(req
, res
, 0);
232 static inline void io_req_add_to_cache(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
)
234 wq_stack_add_head(&req
->comp_list
, &ctx
->submit_state
.free_list
);
237 static __cold
void io_ring_ctx_ref_free(struct percpu_ref
*ref
)
239 struct io_ring_ctx
*ctx
= container_of(ref
, struct io_ring_ctx
, refs
);
241 complete(&ctx
->ref_comp
);
244 static __cold
void io_fallback_req_func(struct work_struct
*work
)
246 struct io_ring_ctx
*ctx
= container_of(work
, struct io_ring_ctx
,
248 struct llist_node
*node
= llist_del_all(&ctx
->fallback_llist
);
249 struct io_kiocb
*req
, *tmp
;
250 struct io_tw_state ts
= {};
252 percpu_ref_get(&ctx
->refs
);
253 mutex_lock(&ctx
->uring_lock
);
254 llist_for_each_entry_safe(req
, tmp
, node
, io_task_work
.node
)
255 req
->io_task_work
.func(req
, &ts
);
256 io_submit_flush_completions(ctx
);
257 mutex_unlock(&ctx
->uring_lock
);
258 percpu_ref_put(&ctx
->refs
);
261 static int io_alloc_hash_table(struct io_hash_table
*table
, unsigned bits
)
263 unsigned int hash_buckets
;
267 hash_buckets
= 1U << bits
;
268 table
->hbs
= kvmalloc_array(hash_buckets
, sizeof(table
->hbs
[0]),
277 table
->hash_bits
= bits
;
278 for (i
= 0; i
< hash_buckets
; i
++)
279 INIT_HLIST_HEAD(&table
->hbs
[i
].list
);
283 static __cold
struct io_ring_ctx
*io_ring_ctx_alloc(struct io_uring_params
*p
)
285 struct io_ring_ctx
*ctx
;
289 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
293 xa_init(&ctx
->io_bl_xa
);
296 * Use 5 bits less than the max cq entries, that should give us around
297 * 32 entries per hash list if totally full and uniformly spread, but
298 * don't keep too many buckets to not overconsume memory.
300 hash_bits
= ilog2(p
->cq_entries
) - 5;
301 hash_bits
= clamp(hash_bits
, 1, 8);
302 if (io_alloc_hash_table(&ctx
->cancel_table
, hash_bits
))
304 if (percpu_ref_init(&ctx
->refs
, io_ring_ctx_ref_free
,
308 ctx
->flags
= p
->flags
;
309 ctx
->hybrid_poll_time
= LLONG_MAX
;
310 atomic_set(&ctx
->cq_wait_nr
, IO_CQ_WAKE_INIT
);
311 init_waitqueue_head(&ctx
->sqo_sq_wait
);
312 INIT_LIST_HEAD(&ctx
->sqd_list
);
313 INIT_LIST_HEAD(&ctx
->cq_overflow_list
);
314 INIT_LIST_HEAD(&ctx
->io_buffers_cache
);
315 ret
= io_alloc_cache_init(&ctx
->apoll_cache
, IO_POLL_ALLOC_CACHE_MAX
,
316 sizeof(struct async_poll
));
317 ret
|= io_alloc_cache_init(&ctx
->netmsg_cache
, IO_ALLOC_CACHE_MAX
,
318 sizeof(struct io_async_msghdr
));
319 ret
|= io_alloc_cache_init(&ctx
->rw_cache
, IO_ALLOC_CACHE_MAX
,
320 sizeof(struct io_async_rw
));
321 ret
|= io_alloc_cache_init(&ctx
->uring_cache
, IO_ALLOC_CACHE_MAX
,
322 sizeof(struct uring_cache
));
323 spin_lock_init(&ctx
->msg_lock
);
324 ret
|= io_alloc_cache_init(&ctx
->msg_cache
, IO_ALLOC_CACHE_MAX
,
325 sizeof(struct io_kiocb
));
326 ret
|= io_futex_cache_init(ctx
);
329 init_completion(&ctx
->ref_comp
);
330 xa_init_flags(&ctx
->personalities
, XA_FLAGS_ALLOC1
);
331 mutex_init(&ctx
->uring_lock
);
332 init_waitqueue_head(&ctx
->cq_wait
);
333 init_waitqueue_head(&ctx
->poll_wq
);
334 spin_lock_init(&ctx
->completion_lock
);
335 spin_lock_init(&ctx
->timeout_lock
);
336 INIT_WQ_LIST(&ctx
->iopoll_list
);
337 INIT_LIST_HEAD(&ctx
->io_buffers_comp
);
338 INIT_LIST_HEAD(&ctx
->defer_list
);
339 INIT_LIST_HEAD(&ctx
->timeout_list
);
340 INIT_LIST_HEAD(&ctx
->ltimeout_list
);
341 init_llist_head(&ctx
->work_llist
);
342 INIT_LIST_HEAD(&ctx
->tctx_list
);
343 ctx
->submit_state
.free_list
.next
= NULL
;
344 INIT_HLIST_HEAD(&ctx
->waitid_list
);
346 INIT_HLIST_HEAD(&ctx
->futex_list
);
348 INIT_DELAYED_WORK(&ctx
->fallback_work
, io_fallback_req_func
);
349 INIT_WQ_LIST(&ctx
->submit_state
.compl_reqs
);
350 INIT_HLIST_HEAD(&ctx
->cancelable_uring_cmd
);
352 mutex_init(&ctx
->resize_lock
);
357 percpu_ref_exit(&ctx
->refs
);
359 io_alloc_cache_free(&ctx
->apoll_cache
, kfree
);
360 io_alloc_cache_free(&ctx
->netmsg_cache
, io_netmsg_cache_free
);
361 io_alloc_cache_free(&ctx
->rw_cache
, io_rw_cache_free
);
362 io_alloc_cache_free(&ctx
->uring_cache
, kfree
);
363 io_alloc_cache_free(&ctx
->msg_cache
, io_msg_cache_free
);
364 io_futex_cache_free(ctx
);
365 kvfree(ctx
->cancel_table
.hbs
);
366 xa_destroy(&ctx
->io_bl_xa
);
371 static void io_account_cq_overflow(struct io_ring_ctx
*ctx
)
373 struct io_rings
*r
= ctx
->rings
;
375 WRITE_ONCE(r
->cq_overflow
, READ_ONCE(r
->cq_overflow
) + 1);
379 static bool req_need_defer(struct io_kiocb
*req
, u32 seq
)
381 if (unlikely(req
->flags
& REQ_F_IO_DRAIN
)) {
382 struct io_ring_ctx
*ctx
= req
->ctx
;
384 return seq
+ READ_ONCE(ctx
->cq_extra
) != ctx
->cached_cq_tail
;
390 static void io_clean_op(struct io_kiocb
*req
)
392 if (req
->flags
& REQ_F_BUFFER_SELECTED
) {
393 spin_lock(&req
->ctx
->completion_lock
);
395 spin_unlock(&req
->ctx
->completion_lock
);
398 if (req
->flags
& REQ_F_NEED_CLEANUP
) {
399 const struct io_cold_def
*def
= &io_cold_defs
[req
->opcode
];
404 if ((req
->flags
& REQ_F_POLLED
) && req
->apoll
) {
405 kfree(req
->apoll
->double_poll
);
409 if (req
->flags
& REQ_F_INFLIGHT
)
410 atomic_dec(&req
->tctx
->inflight_tracked
);
411 if (req
->flags
& REQ_F_CREDS
)
412 put_cred(req
->creds
);
413 if (req
->flags
& REQ_F_ASYNC_DATA
) {
414 kfree(req
->async_data
);
415 req
->async_data
= NULL
;
417 req
->flags
&= ~IO_REQ_CLEAN_FLAGS
;
420 static inline void io_req_track_inflight(struct io_kiocb
*req
)
422 if (!(req
->flags
& REQ_F_INFLIGHT
)) {
423 req
->flags
|= REQ_F_INFLIGHT
;
424 atomic_inc(&req
->tctx
->inflight_tracked
);
428 static struct io_kiocb
*__io_prep_linked_timeout(struct io_kiocb
*req
)
430 if (WARN_ON_ONCE(!req
->link
))
433 req
->flags
&= ~REQ_F_ARM_LTIMEOUT
;
434 req
->flags
|= REQ_F_LINK_TIMEOUT
;
436 /* linked timeouts should have two refs once prep'ed */
437 io_req_set_refcount(req
);
438 __io_req_set_refcount(req
->link
, 2);
442 static inline struct io_kiocb
*io_prep_linked_timeout(struct io_kiocb
*req
)
444 if (likely(!(req
->flags
& REQ_F_ARM_LTIMEOUT
)))
446 return __io_prep_linked_timeout(req
);
449 static noinline
void __io_arm_ltimeout(struct io_kiocb
*req
)
451 io_queue_linked_timeout(__io_prep_linked_timeout(req
));
454 static inline void io_arm_ltimeout(struct io_kiocb
*req
)
456 if (unlikely(req
->flags
& REQ_F_ARM_LTIMEOUT
))
457 __io_arm_ltimeout(req
);
460 static void io_prep_async_work(struct io_kiocb
*req
)
462 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
463 struct io_ring_ctx
*ctx
= req
->ctx
;
465 if (!(req
->flags
& REQ_F_CREDS
)) {
466 req
->flags
|= REQ_F_CREDS
;
467 req
->creds
= get_current_cred();
470 req
->work
.list
.next
= NULL
;
471 atomic_set(&req
->work
.flags
, 0);
472 if (req
->flags
& REQ_F_FORCE_ASYNC
)
473 atomic_or(IO_WQ_WORK_CONCURRENT
, &req
->work
.flags
);
475 if (req
->file
&& !(req
->flags
& REQ_F_FIXED_FILE
))
476 req
->flags
|= io_file_get_flags(req
->file
);
478 if (req
->file
&& (req
->flags
& REQ_F_ISREG
)) {
479 bool should_hash
= def
->hash_reg_file
;
481 /* don't serialize this request if the fs doesn't need it */
482 if (should_hash
&& (req
->file
->f_flags
& O_DIRECT
) &&
483 (req
->file
->f_op
->fop_flags
& FOP_DIO_PARALLEL_WRITE
))
485 if (should_hash
|| (ctx
->flags
& IORING_SETUP_IOPOLL
))
486 io_wq_hash_work(&req
->work
, file_inode(req
->file
));
487 } else if (!req
->file
|| !S_ISBLK(file_inode(req
->file
)->i_mode
)) {
488 if (def
->unbound_nonreg_file
)
489 atomic_or(IO_WQ_WORK_UNBOUND
, &req
->work
.flags
);
493 static void io_prep_async_link(struct io_kiocb
*req
)
495 struct io_kiocb
*cur
;
497 if (req
->flags
& REQ_F_LINK_TIMEOUT
) {
498 struct io_ring_ctx
*ctx
= req
->ctx
;
500 spin_lock_irq(&ctx
->timeout_lock
);
501 io_for_each_link(cur
, req
)
502 io_prep_async_work(cur
);
503 spin_unlock_irq(&ctx
->timeout_lock
);
505 io_for_each_link(cur
, req
)
506 io_prep_async_work(cur
);
510 static void io_queue_iowq(struct io_kiocb
*req
)
512 struct io_kiocb
*link
= io_prep_linked_timeout(req
);
513 struct io_uring_task
*tctx
= req
->tctx
;
516 BUG_ON(!tctx
->io_wq
);
518 /* init ->work of the whole link before punting */
519 io_prep_async_link(req
);
522 * Not expected to happen, but if we do have a bug where this _can_
523 * happen, catch it here and ensure the request is marked as
524 * canceled. That will make io-wq go through the usual work cancel
525 * procedure rather than attempt to run this request (or create a new
528 if (WARN_ON_ONCE(!same_thread_group(tctx
->task
, current
)))
529 atomic_or(IO_WQ_WORK_CANCEL
, &req
->work
.flags
);
531 trace_io_uring_queue_async_work(req
, io_wq_is_hashed(&req
->work
));
532 io_wq_enqueue(tctx
->io_wq
, &req
->work
);
534 io_queue_linked_timeout(link
);
537 static void io_req_queue_iowq_tw(struct io_kiocb
*req
, struct io_tw_state
*ts
)
542 void io_req_queue_iowq(struct io_kiocb
*req
)
544 req
->io_task_work
.func
= io_req_queue_iowq_tw
;
545 io_req_task_work_add(req
);
548 static __cold
void io_queue_deferred(struct io_ring_ctx
*ctx
)
550 while (!list_empty(&ctx
->defer_list
)) {
551 struct io_defer_entry
*de
= list_first_entry(&ctx
->defer_list
,
552 struct io_defer_entry
, list
);
554 if (req_need_defer(de
->req
, de
->seq
))
556 list_del_init(&de
->list
);
557 io_req_task_queue(de
->req
);
562 void __io_commit_cqring_flush(struct io_ring_ctx
*ctx
)
564 if (ctx
->poll_activated
)
565 io_poll_wq_wake(ctx
);
566 if (ctx
->off_timeout_used
)
567 io_flush_timeouts(ctx
);
568 if (ctx
->drain_active
) {
569 spin_lock(&ctx
->completion_lock
);
570 io_queue_deferred(ctx
);
571 spin_unlock(&ctx
->completion_lock
);
574 io_eventfd_flush_signal(ctx
);
577 static inline void __io_cq_lock(struct io_ring_ctx
*ctx
)
579 if (!ctx
->lockless_cq
)
580 spin_lock(&ctx
->completion_lock
);
583 static inline void io_cq_lock(struct io_ring_ctx
*ctx
)
584 __acquires(ctx
->completion_lock
)
586 spin_lock(&ctx
->completion_lock
);
589 static inline void __io_cq_unlock_post(struct io_ring_ctx
*ctx
)
591 io_commit_cqring(ctx
);
592 if (!ctx
->task_complete
) {
593 if (!ctx
->lockless_cq
)
594 spin_unlock(&ctx
->completion_lock
);
595 /* IOPOLL rings only need to wake up if it's also SQPOLL */
596 if (!ctx
->syscall_iopoll
)
599 io_commit_cqring_flush(ctx
);
602 static void io_cq_unlock_post(struct io_ring_ctx
*ctx
)
603 __releases(ctx
->completion_lock
)
605 io_commit_cqring(ctx
);
606 spin_unlock(&ctx
->completion_lock
);
608 io_commit_cqring_flush(ctx
);
611 static void __io_cqring_overflow_flush(struct io_ring_ctx
*ctx
, bool dying
)
613 size_t cqe_size
= sizeof(struct io_uring_cqe
);
615 lockdep_assert_held(&ctx
->uring_lock
);
617 /* don't abort if we're dying, entries must get freed */
618 if (!dying
&& __io_cqring_events(ctx
) == ctx
->cq_entries
)
621 if (ctx
->flags
& IORING_SETUP_CQE32
)
625 while (!list_empty(&ctx
->cq_overflow_list
)) {
626 struct io_uring_cqe
*cqe
;
627 struct io_overflow_cqe
*ocqe
;
629 ocqe
= list_first_entry(&ctx
->cq_overflow_list
,
630 struct io_overflow_cqe
, list
);
633 if (!io_get_cqe_overflow(ctx
, &cqe
, true))
635 memcpy(cqe
, &ocqe
->cqe
, cqe_size
);
637 list_del(&ocqe
->list
);
641 * For silly syzbot cases that deliberately overflow by huge
642 * amounts, check if we need to resched and drop and
643 * reacquire the locks if so. Nothing real would ever hit this.
644 * Ideally we'd have a non-posting unlock for this, but hard
645 * to care for a non-real case.
647 if (need_resched()) {
648 io_cq_unlock_post(ctx
);
649 mutex_unlock(&ctx
->uring_lock
);
651 mutex_lock(&ctx
->uring_lock
);
656 if (list_empty(&ctx
->cq_overflow_list
)) {
657 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
);
658 atomic_andnot(IORING_SQ_CQ_OVERFLOW
, &ctx
->rings
->sq_flags
);
660 io_cq_unlock_post(ctx
);
663 static void io_cqring_overflow_kill(struct io_ring_ctx
*ctx
)
666 __io_cqring_overflow_flush(ctx
, true);
669 static void io_cqring_do_overflow_flush(struct io_ring_ctx
*ctx
)
671 mutex_lock(&ctx
->uring_lock
);
672 __io_cqring_overflow_flush(ctx
, false);
673 mutex_unlock(&ctx
->uring_lock
);
676 /* must to be called somewhat shortly after putting a request */
677 static inline void io_put_task(struct io_kiocb
*req
)
679 struct io_uring_task
*tctx
= req
->tctx
;
681 if (likely(tctx
->task
== current
)) {
684 percpu_counter_sub(&tctx
->inflight
, 1);
685 if (unlikely(atomic_read(&tctx
->in_cancel
)))
686 wake_up(&tctx
->wait
);
687 put_task_struct(tctx
->task
);
691 void io_task_refs_refill(struct io_uring_task
*tctx
)
693 unsigned int refill
= -tctx
->cached_refs
+ IO_TCTX_REFS_CACHE_NR
;
695 percpu_counter_add(&tctx
->inflight
, refill
);
696 refcount_add(refill
, ¤t
->usage
);
697 tctx
->cached_refs
+= refill
;
700 static __cold
void io_uring_drop_tctx_refs(struct task_struct
*task
)
702 struct io_uring_task
*tctx
= task
->io_uring
;
703 unsigned int refs
= tctx
->cached_refs
;
706 tctx
->cached_refs
= 0;
707 percpu_counter_sub(&tctx
->inflight
, refs
);
708 put_task_struct_many(task
, refs
);
712 static bool io_cqring_event_overflow(struct io_ring_ctx
*ctx
, u64 user_data
,
713 s32 res
, u32 cflags
, u64 extra1
, u64 extra2
)
715 struct io_overflow_cqe
*ocqe
;
716 size_t ocq_size
= sizeof(struct io_overflow_cqe
);
717 bool is_cqe32
= (ctx
->flags
& IORING_SETUP_CQE32
);
719 lockdep_assert_held(&ctx
->completion_lock
);
722 ocq_size
+= sizeof(struct io_uring_cqe
);
724 ocqe
= kmalloc(ocq_size
, GFP_ATOMIC
| __GFP_ACCOUNT
);
725 trace_io_uring_cqe_overflow(ctx
, user_data
, res
, cflags
, ocqe
);
728 * If we're in ring overflow flush mode, or in task cancel mode,
729 * or cannot allocate an overflow entry, then we need to drop it
732 io_account_cq_overflow(ctx
);
733 set_bit(IO_CHECK_CQ_DROPPED_BIT
, &ctx
->check_cq
);
736 if (list_empty(&ctx
->cq_overflow_list
)) {
737 set_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
);
738 atomic_or(IORING_SQ_CQ_OVERFLOW
, &ctx
->rings
->sq_flags
);
741 ocqe
->cqe
.user_data
= user_data
;
743 ocqe
->cqe
.flags
= cflags
;
745 ocqe
->cqe
.big_cqe
[0] = extra1
;
746 ocqe
->cqe
.big_cqe
[1] = extra2
;
748 list_add_tail(&ocqe
->list
, &ctx
->cq_overflow_list
);
752 static void io_req_cqe_overflow(struct io_kiocb
*req
)
754 io_cqring_event_overflow(req
->ctx
, req
->cqe
.user_data
,
755 req
->cqe
.res
, req
->cqe
.flags
,
756 req
->big_cqe
.extra1
, req
->big_cqe
.extra2
);
757 memset(&req
->big_cqe
, 0, sizeof(req
->big_cqe
));
761 * writes to the cq entry need to come after reading head; the
762 * control dependency is enough as we're using WRITE_ONCE to
765 bool io_cqe_cache_refill(struct io_ring_ctx
*ctx
, bool overflow
)
767 struct io_rings
*rings
= ctx
->rings
;
768 unsigned int off
= ctx
->cached_cq_tail
& (ctx
->cq_entries
- 1);
769 unsigned int free
, queued
, len
;
772 * Posting into the CQ when there are pending overflowed CQEs may break
773 * ordering guarantees, which will affect links, F_MORE users and more.
774 * Force overflow the completion.
776 if (!overflow
&& (ctx
->check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
)))
779 /* userspace may cheat modifying the tail, be safe and do min */
780 queued
= min(__io_cqring_events(ctx
), ctx
->cq_entries
);
781 free
= ctx
->cq_entries
- queued
;
782 /* we need a contiguous range, limit based on the current array offset */
783 len
= min(free
, ctx
->cq_entries
- off
);
787 if (ctx
->flags
& IORING_SETUP_CQE32
) {
792 ctx
->cqe_cached
= &rings
->cqes
[off
];
793 ctx
->cqe_sentinel
= ctx
->cqe_cached
+ len
;
797 static bool io_fill_cqe_aux(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
,
800 struct io_uring_cqe
*cqe
;
805 * If we can't get a cq entry, userspace overflowed the
806 * submission (by quite a lot). Increment the overflow count in
809 if (likely(io_get_cqe(ctx
, &cqe
))) {
810 WRITE_ONCE(cqe
->user_data
, user_data
);
811 WRITE_ONCE(cqe
->res
, res
);
812 WRITE_ONCE(cqe
->flags
, cflags
);
814 if (ctx
->flags
& IORING_SETUP_CQE32
) {
815 WRITE_ONCE(cqe
->big_cqe
[0], 0);
816 WRITE_ONCE(cqe
->big_cqe
[1], 0);
819 trace_io_uring_complete(ctx
, NULL
, cqe
);
825 static bool __io_post_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
,
830 filled
= io_fill_cqe_aux(ctx
, user_data
, res
, cflags
);
832 filled
= io_cqring_event_overflow(ctx
, user_data
, res
, cflags
, 0, 0);
837 bool io_post_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
, u32 cflags
)
842 filled
= __io_post_aux_cqe(ctx
, user_data
, res
, cflags
);
843 io_cq_unlock_post(ctx
);
848 * Must be called from inline task_work so we now a flush will happen later,
849 * and obviously with ctx->uring_lock held (tw always has that).
851 void io_add_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
, u32 cflags
)
853 if (!io_fill_cqe_aux(ctx
, user_data
, res
, cflags
)) {
854 spin_lock(&ctx
->completion_lock
);
855 io_cqring_event_overflow(ctx
, user_data
, res
, cflags
, 0, 0);
856 spin_unlock(&ctx
->completion_lock
);
858 ctx
->submit_state
.cq_flush
= true;
862 * A helper for multishot requests posting additional CQEs.
863 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
865 bool io_req_post_cqe(struct io_kiocb
*req
, s32 res
, u32 cflags
)
867 struct io_ring_ctx
*ctx
= req
->ctx
;
870 lockdep_assert(!io_wq_current_is_worker());
871 lockdep_assert_held(&ctx
->uring_lock
);
874 posted
= io_fill_cqe_aux(ctx
, req
->cqe
.user_data
, res
, cflags
);
875 ctx
->submit_state
.cq_flush
= true;
876 __io_cq_unlock_post(ctx
);
880 static void io_req_complete_post(struct io_kiocb
*req
, unsigned issue_flags
)
882 struct io_ring_ctx
*ctx
= req
->ctx
;
885 * All execution paths but io-wq use the deferred completions by
886 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
888 if (WARN_ON_ONCE(!(issue_flags
& IO_URING_F_IOWQ
)))
892 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
893 * the submitter task context, IOPOLL protects with uring_lock.
895 if (ctx
->task_complete
|| (ctx
->flags
& IORING_SETUP_IOPOLL
)) {
896 req
->io_task_work
.func
= io_req_task_complete
;
897 io_req_task_work_add(req
);
902 if (!(req
->flags
& REQ_F_CQE_SKIP
)) {
903 if (!io_fill_cqe_req(ctx
, req
))
904 io_req_cqe_overflow(req
);
906 io_cq_unlock_post(ctx
);
909 * We don't free the request here because we know it's called from
910 * io-wq only, which holds a reference, so it cannot be the last put.
915 void io_req_defer_failed(struct io_kiocb
*req
, s32 res
)
916 __must_hold(&ctx
->uring_lock
)
918 const struct io_cold_def
*def
= &io_cold_defs
[req
->opcode
];
920 lockdep_assert_held(&req
->ctx
->uring_lock
);
923 io_req_set_res(req
, res
, io_put_kbuf(req
, res
, IO_URING_F_UNLOCKED
));
926 io_req_complete_defer(req
);
930 * Don't initialise the fields below on every allocation, but do that in
931 * advance and keep them valid across allocations.
933 static void io_preinit_req(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
)
936 req
->buf_node
= NULL
;
937 req
->file_node
= NULL
;
939 req
->async_data
= NULL
;
940 /* not necessary, but safer to zero */
941 memset(&req
->cqe
, 0, sizeof(req
->cqe
));
942 memset(&req
->big_cqe
, 0, sizeof(req
->big_cqe
));
946 * A request might get retired back into the request caches even before opcode
947 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
948 * Because of that, io_alloc_req() should be called only under ->uring_lock
949 * and with extra caution to not get a request that is still worked on.
951 __cold
bool __io_alloc_req_refill(struct io_ring_ctx
*ctx
)
952 __must_hold(&ctx
->uring_lock
)
954 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
955 void *reqs
[IO_REQ_ALLOC_BATCH
];
958 ret
= kmem_cache_alloc_bulk(req_cachep
, gfp
, ARRAY_SIZE(reqs
), reqs
);
961 * Bulk alloc is all-or-nothing. If we fail to get a batch,
962 * retry single alloc to be on the safe side.
964 if (unlikely(ret
<= 0)) {
965 reqs
[0] = kmem_cache_alloc(req_cachep
, gfp
);
971 percpu_ref_get_many(&ctx
->refs
, ret
);
973 struct io_kiocb
*req
= reqs
[ret
];
975 io_preinit_req(req
, ctx
);
976 io_req_add_to_cache(req
, ctx
);
981 __cold
void io_free_req(struct io_kiocb
*req
)
983 /* refs were already put, restore them for io_req_task_complete() */
984 req
->flags
&= ~REQ_F_REFCOUNT
;
985 /* we only want to free it, don't post CQEs */
986 req
->flags
|= REQ_F_CQE_SKIP
;
987 req
->io_task_work
.func
= io_req_task_complete
;
988 io_req_task_work_add(req
);
991 static void __io_req_find_next_prep(struct io_kiocb
*req
)
993 struct io_ring_ctx
*ctx
= req
->ctx
;
995 spin_lock(&ctx
->completion_lock
);
997 spin_unlock(&ctx
->completion_lock
);
1000 static inline struct io_kiocb
*io_req_find_next(struct io_kiocb
*req
)
1002 struct io_kiocb
*nxt
;
1005 * If LINK is set, we have dependent requests in this chain. If we
1006 * didn't fail this request, queue the first one up, moving any other
1007 * dependencies to the next request. In case of failure, fail the rest
1010 if (unlikely(req
->flags
& IO_DISARM_MASK
))
1011 __io_req_find_next_prep(req
);
1017 static void ctx_flush_and_put(struct io_ring_ctx
*ctx
, struct io_tw_state
*ts
)
1021 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1022 atomic_andnot(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1024 io_submit_flush_completions(ctx
);
1025 mutex_unlock(&ctx
->uring_lock
);
1026 percpu_ref_put(&ctx
->refs
);
1030 * Run queued task_work, returning the number of entries processed in *count.
1031 * If more entries than max_entries are available, stop processing once this
1032 * is reached and return the rest of the list.
1034 struct llist_node
*io_handle_tw_list(struct llist_node
*node
,
1035 unsigned int *count
,
1036 unsigned int max_entries
)
1038 struct io_ring_ctx
*ctx
= NULL
;
1039 struct io_tw_state ts
= { };
1042 struct llist_node
*next
= node
->next
;
1043 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1046 if (req
->ctx
!= ctx
) {
1047 ctx_flush_and_put(ctx
, &ts
);
1049 mutex_lock(&ctx
->uring_lock
);
1050 percpu_ref_get(&ctx
->refs
);
1052 INDIRECT_CALL_2(req
->io_task_work
.func
,
1053 io_poll_task_func
, io_req_rw_complete
,
1057 if (unlikely(need_resched())) {
1058 ctx_flush_and_put(ctx
, &ts
);
1062 } while (node
&& *count
< max_entries
);
1064 ctx_flush_and_put(ctx
, &ts
);
1068 static __cold
void __io_fallback_tw(struct llist_node
*node
, bool sync
)
1070 struct io_ring_ctx
*last_ctx
= NULL
;
1071 struct io_kiocb
*req
;
1074 req
= container_of(node
, struct io_kiocb
, io_task_work
.node
);
1076 if (sync
&& last_ctx
!= req
->ctx
) {
1078 flush_delayed_work(&last_ctx
->fallback_work
);
1079 percpu_ref_put(&last_ctx
->refs
);
1081 last_ctx
= req
->ctx
;
1082 percpu_ref_get(&last_ctx
->refs
);
1084 if (llist_add(&req
->io_task_work
.node
,
1085 &req
->ctx
->fallback_llist
))
1086 schedule_delayed_work(&req
->ctx
->fallback_work
, 1);
1090 flush_delayed_work(&last_ctx
->fallback_work
);
1091 percpu_ref_put(&last_ctx
->refs
);
1095 static void io_fallback_tw(struct io_uring_task
*tctx
, bool sync
)
1097 struct llist_node
*node
= llist_del_all(&tctx
->task_list
);
1099 __io_fallback_tw(node
, sync
);
1102 struct llist_node
*tctx_task_work_run(struct io_uring_task
*tctx
,
1103 unsigned int max_entries
,
1104 unsigned int *count
)
1106 struct llist_node
*node
;
1108 if (unlikely(current
->flags
& PF_EXITING
)) {
1109 io_fallback_tw(tctx
, true);
1113 node
= llist_del_all(&tctx
->task_list
);
1115 node
= llist_reverse_order(node
);
1116 node
= io_handle_tw_list(node
, count
, max_entries
);
1119 /* relaxed read is enough as only the task itself sets ->in_cancel */
1120 if (unlikely(atomic_read(&tctx
->in_cancel
)))
1121 io_uring_drop_tctx_refs(current
);
1123 trace_io_uring_task_work_run(tctx
, *count
);
1127 void tctx_task_work(struct callback_head
*cb
)
1129 struct io_uring_task
*tctx
;
1130 struct llist_node
*ret
;
1131 unsigned int count
= 0;
1133 tctx
= container_of(cb
, struct io_uring_task
, task_work
);
1134 ret
= tctx_task_work_run(tctx
, UINT_MAX
, &count
);
1139 static inline void io_req_local_work_add(struct io_kiocb
*req
,
1140 struct io_ring_ctx
*ctx
,
1143 unsigned nr_wait
, nr_tw
, nr_tw_prev
;
1144 struct llist_node
*head
;
1146 /* See comment above IO_CQ_WAKE_INIT */
1147 BUILD_BUG_ON(IO_CQ_WAKE_FORCE
<= IORING_MAX_CQ_ENTRIES
);
1150 * We don't know how many reuqests is there in the link and whether
1151 * they can even be queued lazily, fall back to non-lazy.
1153 if (req
->flags
& (REQ_F_LINK
| REQ_F_HARDLINK
))
1154 flags
&= ~IOU_F_TWQ_LAZY_WAKE
;
1158 head
= READ_ONCE(ctx
->work_llist
.first
);
1162 struct io_kiocb
*first_req
= container_of(head
,
1166 * Might be executed at any moment, rely on
1167 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1169 nr_tw_prev
= READ_ONCE(first_req
->nr_tw
);
1173 * Theoretically, it can overflow, but that's fine as one of
1174 * previous adds should've tried to wake the task.
1176 nr_tw
= nr_tw_prev
+ 1;
1177 if (!(flags
& IOU_F_TWQ_LAZY_WAKE
))
1178 nr_tw
= IO_CQ_WAKE_FORCE
;
1181 req
->io_task_work
.node
.next
= head
;
1182 } while (!try_cmpxchg(&ctx
->work_llist
.first
, &head
,
1183 &req
->io_task_work
.node
));
1186 * cmpxchg implies a full barrier, which pairs with the barrier
1187 * in set_current_state() on the io_cqring_wait() side. It's used
1188 * to ensure that either we see updated ->cq_wait_nr, or waiters
1189 * going to sleep will observe the work added to the list, which
1190 * is similar to the wait/wawke task state sync.
1194 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1195 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1197 io_eventfd_signal(ctx
);
1200 nr_wait
= atomic_read(&ctx
->cq_wait_nr
);
1201 /* not enough or no one is waiting */
1202 if (nr_tw
< nr_wait
)
1204 /* the previous add has already woken it up */
1205 if (nr_tw_prev
>= nr_wait
)
1207 wake_up_state(ctx
->submitter_task
, TASK_INTERRUPTIBLE
);
1210 static void io_req_normal_work_add(struct io_kiocb
*req
)
1212 struct io_uring_task
*tctx
= req
->tctx
;
1213 struct io_ring_ctx
*ctx
= req
->ctx
;
1215 /* task_work already pending, we're done */
1216 if (!llist_add(&req
->io_task_work
.node
, &tctx
->task_list
))
1219 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1220 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1222 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1223 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
1224 struct io_sq_data
*sqd
= ctx
->sq_data
;
1227 __set_notify_signal(sqd
->thread
);
1231 if (likely(!task_work_add(tctx
->task
, &tctx
->task_work
, ctx
->notify_method
)))
1234 io_fallback_tw(tctx
, false);
1237 void __io_req_task_work_add(struct io_kiocb
*req
, unsigned flags
)
1239 if (req
->ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
1240 io_req_local_work_add(req
, req
->ctx
, flags
);
1242 io_req_normal_work_add(req
);
1245 void io_req_task_work_add_remote(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
,
1248 if (WARN_ON_ONCE(!(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)))
1250 io_req_local_work_add(req
, ctx
, flags
);
1253 static void __cold
io_move_task_work_from_local(struct io_ring_ctx
*ctx
)
1255 struct llist_node
*node
= llist_del_all(&ctx
->work_llist
);
1257 __io_fallback_tw(node
, false);
1260 static bool io_run_local_work_continue(struct io_ring_ctx
*ctx
, int events
,
1263 if (llist_empty(&ctx
->work_llist
))
1265 if (events
< min_events
)
1267 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1268 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1272 static int __io_run_local_work(struct io_ring_ctx
*ctx
, struct io_tw_state
*ts
,
1275 struct llist_node
*node
;
1276 unsigned int loops
= 0;
1279 if (WARN_ON_ONCE(ctx
->submitter_task
!= current
))
1281 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1282 atomic_andnot(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1285 * llists are in reverse order, flip it back the right way before
1286 * running the pending items.
1288 node
= llist_reverse_order(llist_del_all(&ctx
->work_llist
));
1290 struct llist_node
*next
= node
->next
;
1291 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1293 INDIRECT_CALL_2(req
->io_task_work
.func
,
1294 io_poll_task_func
, io_req_rw_complete
,
1301 if (io_run_local_work_continue(ctx
, ret
, min_events
))
1303 io_submit_flush_completions(ctx
);
1304 if (io_run_local_work_continue(ctx
, ret
, min_events
))
1307 trace_io_uring_local_work_run(ctx
, ret
, loops
);
1311 static inline int io_run_local_work_locked(struct io_ring_ctx
*ctx
,
1314 struct io_tw_state ts
= {};
1316 if (llist_empty(&ctx
->work_llist
))
1318 return __io_run_local_work(ctx
, &ts
, min_events
);
1321 static int io_run_local_work(struct io_ring_ctx
*ctx
, int min_events
)
1323 struct io_tw_state ts
= {};
1326 mutex_lock(&ctx
->uring_lock
);
1327 ret
= __io_run_local_work(ctx
, &ts
, min_events
);
1328 mutex_unlock(&ctx
->uring_lock
);
1332 static void io_req_task_cancel(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1334 io_tw_lock(req
->ctx
, ts
);
1335 io_req_defer_failed(req
, req
->cqe
.res
);
1338 void io_req_task_submit(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1340 io_tw_lock(req
->ctx
, ts
);
1341 if (unlikely(io_should_terminate_tw()))
1342 io_req_defer_failed(req
, -EFAULT
);
1343 else if (req
->flags
& REQ_F_FORCE_ASYNC
)
1349 void io_req_task_queue_fail(struct io_kiocb
*req
, int ret
)
1351 io_req_set_res(req
, ret
, 0);
1352 req
->io_task_work
.func
= io_req_task_cancel
;
1353 io_req_task_work_add(req
);
1356 void io_req_task_queue(struct io_kiocb
*req
)
1358 req
->io_task_work
.func
= io_req_task_submit
;
1359 io_req_task_work_add(req
);
1362 void io_queue_next(struct io_kiocb
*req
)
1364 struct io_kiocb
*nxt
= io_req_find_next(req
);
1367 io_req_task_queue(nxt
);
1370 static void io_free_batch_list(struct io_ring_ctx
*ctx
,
1371 struct io_wq_work_node
*node
)
1372 __must_hold(&ctx
->uring_lock
)
1375 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1378 if (unlikely(req
->flags
& IO_REQ_CLEAN_SLOW_FLAGS
)) {
1379 if (req
->flags
& REQ_F_REFCOUNT
) {
1380 node
= req
->comp_list
.next
;
1381 if (!req_ref_put_and_test(req
))
1384 if ((req
->flags
& REQ_F_POLLED
) && req
->apoll
) {
1385 struct async_poll
*apoll
= req
->apoll
;
1387 if (apoll
->double_poll
)
1388 kfree(apoll
->double_poll
);
1389 if (!io_alloc_cache_put(&ctx
->apoll_cache
, apoll
))
1391 req
->flags
&= ~REQ_F_POLLED
;
1393 if (req
->flags
& IO_REQ_LINK_FLAGS
)
1395 if (unlikely(req
->flags
& IO_REQ_CLEAN_FLAGS
))
1399 io_req_put_rsrc_nodes(req
);
1402 node
= req
->comp_list
.next
;
1403 io_req_add_to_cache(req
, ctx
);
1407 void __io_submit_flush_completions(struct io_ring_ctx
*ctx
)
1408 __must_hold(&ctx
->uring_lock
)
1410 struct io_submit_state
*state
= &ctx
->submit_state
;
1411 struct io_wq_work_node
*node
;
1414 __wq_list_for_each(node
, &state
->compl_reqs
) {
1415 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1418 if (!(req
->flags
& REQ_F_CQE_SKIP
) &&
1419 unlikely(!io_fill_cqe_req(ctx
, req
))) {
1420 if (ctx
->lockless_cq
) {
1421 spin_lock(&ctx
->completion_lock
);
1422 io_req_cqe_overflow(req
);
1423 spin_unlock(&ctx
->completion_lock
);
1425 io_req_cqe_overflow(req
);
1429 __io_cq_unlock_post(ctx
);
1431 if (!wq_list_empty(&state
->compl_reqs
)) {
1432 io_free_batch_list(ctx
, state
->compl_reqs
.first
);
1433 INIT_WQ_LIST(&state
->compl_reqs
);
1435 ctx
->submit_state
.cq_flush
= false;
1438 static unsigned io_cqring_events(struct io_ring_ctx
*ctx
)
1440 /* See comment at the top of this file */
1442 return __io_cqring_events(ctx
);
1446 * We can't just wait for polled events to come to us, we have to actively
1447 * find and complete them.
1449 static __cold
void io_iopoll_try_reap_events(struct io_ring_ctx
*ctx
)
1451 if (!(ctx
->flags
& IORING_SETUP_IOPOLL
))
1454 mutex_lock(&ctx
->uring_lock
);
1455 while (!wq_list_empty(&ctx
->iopoll_list
)) {
1456 /* let it sleep and repeat later if can't complete a request */
1457 if (io_do_iopoll(ctx
, true) == 0)
1460 * Ensure we allow local-to-the-cpu processing to take place,
1461 * in this case we need to ensure that we reap all events.
1462 * Also let task_work, etc. to progress by releasing the mutex
1464 if (need_resched()) {
1465 mutex_unlock(&ctx
->uring_lock
);
1467 mutex_lock(&ctx
->uring_lock
);
1470 mutex_unlock(&ctx
->uring_lock
);
1473 static int io_iopoll_check(struct io_ring_ctx
*ctx
, long min
)
1475 unsigned int nr_events
= 0;
1476 unsigned long check_cq
;
1478 lockdep_assert_held(&ctx
->uring_lock
);
1480 if (!io_allowed_run_tw(ctx
))
1483 check_cq
= READ_ONCE(ctx
->check_cq
);
1484 if (unlikely(check_cq
)) {
1485 if (check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
))
1486 __io_cqring_overflow_flush(ctx
, false);
1488 * Similarly do not spin if we have not informed the user of any
1491 if (check_cq
& BIT(IO_CHECK_CQ_DROPPED_BIT
))
1495 * Don't enter poll loop if we already have events pending.
1496 * If we do, we can potentially be spinning for commands that
1497 * already triggered a CQE (eg in error).
1499 if (io_cqring_events(ctx
))
1506 * If a submit got punted to a workqueue, we can have the
1507 * application entering polling for a command before it gets
1508 * issued. That app will hold the uring_lock for the duration
1509 * of the poll right here, so we need to take a breather every
1510 * now and then to ensure that the issue has a chance to add
1511 * the poll to the issued list. Otherwise we can spin here
1512 * forever, while the workqueue is stuck trying to acquire the
1515 if (wq_list_empty(&ctx
->iopoll_list
) ||
1516 io_task_work_pending(ctx
)) {
1517 u32 tail
= ctx
->cached_cq_tail
;
1519 (void) io_run_local_work_locked(ctx
, min
);
1521 if (task_work_pending(current
) ||
1522 wq_list_empty(&ctx
->iopoll_list
)) {
1523 mutex_unlock(&ctx
->uring_lock
);
1525 mutex_lock(&ctx
->uring_lock
);
1527 /* some requests don't go through iopoll_list */
1528 if (tail
!= ctx
->cached_cq_tail
||
1529 wq_list_empty(&ctx
->iopoll_list
))
1532 ret
= io_do_iopoll(ctx
, !min
);
1533 if (unlikely(ret
< 0))
1536 if (task_sigpending(current
))
1542 } while (nr_events
< min
);
1547 void io_req_task_complete(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1549 io_req_complete_defer(req
);
1553 * After the iocb has been issued, it's safe to be found on the poll list.
1554 * Adding the kiocb to the list AFTER submission ensures that we don't
1555 * find it from a io_do_iopoll() thread before the issuer is done
1556 * accessing the kiocb cookie.
1558 static void io_iopoll_req_issued(struct io_kiocb
*req
, unsigned int issue_flags
)
1560 struct io_ring_ctx
*ctx
= req
->ctx
;
1561 const bool needs_lock
= issue_flags
& IO_URING_F_UNLOCKED
;
1563 /* workqueue context doesn't hold uring_lock, grab it now */
1564 if (unlikely(needs_lock
))
1565 mutex_lock(&ctx
->uring_lock
);
1568 * Track whether we have multiple files in our lists. This will impact
1569 * how we do polling eventually, not spinning if we're on potentially
1570 * different devices.
1572 if (wq_list_empty(&ctx
->iopoll_list
)) {
1573 ctx
->poll_multi_queue
= false;
1574 } else if (!ctx
->poll_multi_queue
) {
1575 struct io_kiocb
*list_req
;
1577 list_req
= container_of(ctx
->iopoll_list
.first
, struct io_kiocb
,
1579 if (list_req
->file
!= req
->file
)
1580 ctx
->poll_multi_queue
= true;
1584 * For fast devices, IO may have already completed. If it has, add
1585 * it to the front so we find it first.
1587 if (READ_ONCE(req
->iopoll_completed
))
1588 wq_list_add_head(&req
->comp_list
, &ctx
->iopoll_list
);
1590 wq_list_add_tail(&req
->comp_list
, &ctx
->iopoll_list
);
1592 if (unlikely(needs_lock
)) {
1594 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1595 * in sq thread task context or in io worker task context. If
1596 * current task context is sq thread, we don't need to check
1597 * whether should wake up sq thread.
1599 if ((ctx
->flags
& IORING_SETUP_SQPOLL
) &&
1600 wq_has_sleeper(&ctx
->sq_data
->wait
))
1601 wake_up(&ctx
->sq_data
->wait
);
1603 mutex_unlock(&ctx
->uring_lock
);
1607 io_req_flags_t
io_file_get_flags(struct file
*file
)
1609 io_req_flags_t res
= 0;
1611 if (S_ISREG(file_inode(file
)->i_mode
))
1613 if ((file
->f_flags
& O_NONBLOCK
) || (file
->f_mode
& FMODE_NOWAIT
))
1614 res
|= REQ_F_SUPPORT_NOWAIT
;
1618 bool io_alloc_async_data(struct io_kiocb
*req
)
1620 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1622 WARN_ON_ONCE(!def
->async_size
);
1623 req
->async_data
= kmalloc(def
->async_size
, GFP_KERNEL
);
1624 if (req
->async_data
) {
1625 req
->flags
|= REQ_F_ASYNC_DATA
;
1631 static u32
io_get_sequence(struct io_kiocb
*req
)
1633 u32 seq
= req
->ctx
->cached_sq_head
;
1634 struct io_kiocb
*cur
;
1636 /* need original cached_sq_head, but it was increased for each req */
1637 io_for_each_link(cur
, req
)
1642 static __cold
void io_drain_req(struct io_kiocb
*req
)
1643 __must_hold(&ctx
->uring_lock
)
1645 struct io_ring_ctx
*ctx
= req
->ctx
;
1646 struct io_defer_entry
*de
;
1648 u32 seq
= io_get_sequence(req
);
1650 /* Still need defer if there is pending req in defer list. */
1651 spin_lock(&ctx
->completion_lock
);
1652 if (!req_need_defer(req
, seq
) && list_empty_careful(&ctx
->defer_list
)) {
1653 spin_unlock(&ctx
->completion_lock
);
1655 ctx
->drain_active
= false;
1656 io_req_task_queue(req
);
1659 spin_unlock(&ctx
->completion_lock
);
1661 io_prep_async_link(req
);
1662 de
= kmalloc(sizeof(*de
), GFP_KERNEL
);
1665 io_req_defer_failed(req
, ret
);
1669 spin_lock(&ctx
->completion_lock
);
1670 if (!req_need_defer(req
, seq
) && list_empty(&ctx
->defer_list
)) {
1671 spin_unlock(&ctx
->completion_lock
);
1676 trace_io_uring_defer(req
);
1679 list_add_tail(&de
->list
, &ctx
->defer_list
);
1680 spin_unlock(&ctx
->completion_lock
);
1683 static bool io_assign_file(struct io_kiocb
*req
, const struct io_issue_def
*def
,
1684 unsigned int issue_flags
)
1686 if (req
->file
|| !def
->needs_file
)
1689 if (req
->flags
& REQ_F_FIXED_FILE
)
1690 req
->file
= io_file_get_fixed(req
, req
->cqe
.fd
, issue_flags
);
1692 req
->file
= io_file_get_normal(req
, req
->cqe
.fd
);
1697 static int io_issue_sqe(struct io_kiocb
*req
, unsigned int issue_flags
)
1699 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1700 const struct cred
*creds
= NULL
;
1703 if (unlikely(!io_assign_file(req
, def
, issue_flags
)))
1706 if (unlikely((req
->flags
& REQ_F_CREDS
) && req
->creds
!= current_cred()))
1707 creds
= override_creds(req
->creds
);
1709 if (!def
->audit_skip
)
1710 audit_uring_entry(req
->opcode
);
1712 ret
= def
->issue(req
, issue_flags
);
1714 if (!def
->audit_skip
)
1715 audit_uring_exit(!ret
, ret
);
1718 revert_creds(creds
);
1720 if (ret
== IOU_OK
) {
1721 if (issue_flags
& IO_URING_F_COMPLETE_DEFER
)
1722 io_req_complete_defer(req
);
1724 io_req_complete_post(req
, issue_flags
);
1729 if (ret
== IOU_ISSUE_SKIP_COMPLETE
) {
1731 io_arm_ltimeout(req
);
1733 /* If the op doesn't have a file, we're not polling for it */
1734 if ((req
->ctx
->flags
& IORING_SETUP_IOPOLL
) && def
->iopoll_queue
)
1735 io_iopoll_req_issued(req
, issue_flags
);
1740 int io_poll_issue(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1742 io_tw_lock(req
->ctx
, ts
);
1743 return io_issue_sqe(req
, IO_URING_F_NONBLOCK
|IO_URING_F_MULTISHOT
|
1744 IO_URING_F_COMPLETE_DEFER
);
1747 struct io_wq_work
*io_wq_free_work(struct io_wq_work
*work
)
1749 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1750 struct io_kiocb
*nxt
= NULL
;
1752 if (req_ref_put_and_test(req
)) {
1753 if (req
->flags
& IO_REQ_LINK_FLAGS
)
1754 nxt
= io_req_find_next(req
);
1757 return nxt
? &nxt
->work
: NULL
;
1760 void io_wq_submit_work(struct io_wq_work
*work
)
1762 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1763 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1764 unsigned int issue_flags
= IO_URING_F_UNLOCKED
| IO_URING_F_IOWQ
;
1765 bool needs_poll
= false;
1766 int ret
= 0, err
= -ECANCELED
;
1768 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1769 if (!(req
->flags
& REQ_F_REFCOUNT
))
1770 __io_req_set_refcount(req
, 2);
1774 io_arm_ltimeout(req
);
1776 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1777 if (atomic_read(&work
->flags
) & IO_WQ_WORK_CANCEL
) {
1779 io_req_task_queue_fail(req
, err
);
1782 if (!io_assign_file(req
, def
, issue_flags
)) {
1784 atomic_or(IO_WQ_WORK_CANCEL
, &work
->flags
);
1789 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1790 * submitter task context. Final request completions are handed to the
1791 * right context, however this is not the case of auxiliary CQEs,
1792 * which is the main mean of operation for multishot requests.
1793 * Don't allow any multishot execution from io-wq. It's more restrictive
1794 * than necessary and also cleaner.
1796 if (req
->flags
& REQ_F_APOLL_MULTISHOT
) {
1798 if (!io_file_can_poll(req
))
1800 if (req
->file
->f_flags
& O_NONBLOCK
||
1801 req
->file
->f_mode
& FMODE_NOWAIT
) {
1803 if (io_arm_poll_handler(req
, issue_flags
) != IO_APOLL_OK
)
1807 req
->flags
&= ~REQ_F_APOLL_MULTISHOT
;
1811 if (req
->flags
& REQ_F_FORCE_ASYNC
) {
1812 bool opcode_poll
= def
->pollin
|| def
->pollout
;
1814 if (opcode_poll
&& io_file_can_poll(req
)) {
1816 issue_flags
|= IO_URING_F_NONBLOCK
;
1821 ret
= io_issue_sqe(req
, issue_flags
);
1826 * If REQ_F_NOWAIT is set, then don't wait or retry with
1827 * poll. -EAGAIN is final for that case.
1829 if (req
->flags
& REQ_F_NOWAIT
)
1833 * We can get EAGAIN for iopolled IO even though we're
1834 * forcing a sync submission from here, since we can't
1835 * wait for request slots on the block side.
1838 if (!(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1840 if (io_wq_worker_stopped())
1846 if (io_arm_poll_handler(req
, issue_flags
) == IO_APOLL_OK
)
1848 /* aborted or ready, in either case retry blocking */
1850 issue_flags
&= ~IO_URING_F_NONBLOCK
;
1853 /* avoid locking problems by failing it from a clean context */
1855 io_req_task_queue_fail(req
, ret
);
1858 inline struct file
*io_file_get_fixed(struct io_kiocb
*req
, int fd
,
1859 unsigned int issue_flags
)
1861 struct io_ring_ctx
*ctx
= req
->ctx
;
1862 struct io_rsrc_node
*node
;
1863 struct file
*file
= NULL
;
1865 io_ring_submit_lock(ctx
, issue_flags
);
1866 node
= io_rsrc_node_lookup(&ctx
->file_table
.data
, fd
);
1868 io_req_assign_rsrc_node(&req
->file_node
, node
);
1869 req
->flags
|= io_slot_flags(node
);
1870 file
= io_slot_file(node
);
1872 io_ring_submit_unlock(ctx
, issue_flags
);
1876 struct file
*io_file_get_normal(struct io_kiocb
*req
, int fd
)
1878 struct file
*file
= fget(fd
);
1880 trace_io_uring_file_get(req
, fd
);
1882 /* we don't allow fixed io_uring files */
1883 if (file
&& io_is_uring_fops(file
))
1884 io_req_track_inflight(req
);
1888 static void io_queue_async(struct io_kiocb
*req
, int ret
)
1889 __must_hold(&req
->ctx
->uring_lock
)
1891 struct io_kiocb
*linked_timeout
;
1893 if (ret
!= -EAGAIN
|| (req
->flags
& REQ_F_NOWAIT
)) {
1894 io_req_defer_failed(req
, ret
);
1898 linked_timeout
= io_prep_linked_timeout(req
);
1900 switch (io_arm_poll_handler(req
, 0)) {
1901 case IO_APOLL_READY
:
1902 io_kbuf_recycle(req
, 0);
1903 io_req_task_queue(req
);
1905 case IO_APOLL_ABORTED
:
1906 io_kbuf_recycle(req
, 0);
1914 io_queue_linked_timeout(linked_timeout
);
1917 static inline void io_queue_sqe(struct io_kiocb
*req
)
1918 __must_hold(&req
->ctx
->uring_lock
)
1922 ret
= io_issue_sqe(req
, IO_URING_F_NONBLOCK
|IO_URING_F_COMPLETE_DEFER
);
1925 * We async punt it if the file wasn't marked NOWAIT, or if the file
1926 * doesn't support non-blocking read/write attempts
1929 io_queue_async(req
, ret
);
1932 static void io_queue_sqe_fallback(struct io_kiocb
*req
)
1933 __must_hold(&req
->ctx
->uring_lock
)
1935 if (unlikely(req
->flags
& REQ_F_FAIL
)) {
1937 * We don't submit, fail them all, for that replace hardlinks
1938 * with normal links. Extra REQ_F_LINK is tolerated.
1940 req
->flags
&= ~REQ_F_HARDLINK
;
1941 req
->flags
|= REQ_F_LINK
;
1942 io_req_defer_failed(req
, req
->cqe
.res
);
1944 if (unlikely(req
->ctx
->drain_active
))
1952 * Check SQE restrictions (opcode and flags).
1954 * Returns 'true' if SQE is allowed, 'false' otherwise.
1956 static inline bool io_check_restriction(struct io_ring_ctx
*ctx
,
1957 struct io_kiocb
*req
,
1958 unsigned int sqe_flags
)
1960 if (!test_bit(req
->opcode
, ctx
->restrictions
.sqe_op
))
1963 if ((sqe_flags
& ctx
->restrictions
.sqe_flags_required
) !=
1964 ctx
->restrictions
.sqe_flags_required
)
1967 if (sqe_flags
& ~(ctx
->restrictions
.sqe_flags_allowed
|
1968 ctx
->restrictions
.sqe_flags_required
))
1974 static void io_init_req_drain(struct io_kiocb
*req
)
1976 struct io_ring_ctx
*ctx
= req
->ctx
;
1977 struct io_kiocb
*head
= ctx
->submit_state
.link
.head
;
1979 ctx
->drain_active
= true;
1982 * If we need to drain a request in the middle of a link, drain
1983 * the head request and the next request/link after the current
1984 * link. Considering sequential execution of links,
1985 * REQ_F_IO_DRAIN will be maintained for every request of our
1988 head
->flags
|= REQ_F_IO_DRAIN
| REQ_F_FORCE_ASYNC
;
1989 ctx
->drain_next
= true;
1993 static __cold
int io_init_fail_req(struct io_kiocb
*req
, int err
)
1995 /* ensure per-opcode data is cleared if we fail before prep */
1996 memset(&req
->cmd
.data
, 0, sizeof(req
->cmd
.data
));
2000 static int io_init_req(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
2001 const struct io_uring_sqe
*sqe
)
2002 __must_hold(&ctx
->uring_lock
)
2004 const struct io_issue_def
*def
;
2005 unsigned int sqe_flags
;
2009 /* req is partially pre-initialised, see io_preinit_req() */
2010 req
->opcode
= opcode
= READ_ONCE(sqe
->opcode
);
2011 /* same numerical values with corresponding REQ_F_*, safe to copy */
2012 sqe_flags
= READ_ONCE(sqe
->flags
);
2013 req
->flags
= (__force io_req_flags_t
) sqe_flags
;
2014 req
->cqe
.user_data
= READ_ONCE(sqe
->user_data
);
2016 req
->tctx
= current
->io_uring
;
2017 req
->cancel_seq_set
= false;
2019 if (unlikely(opcode
>= IORING_OP_LAST
)) {
2021 return io_init_fail_req(req
, -EINVAL
);
2023 def
= &io_issue_defs
[opcode
];
2024 if (unlikely(sqe_flags
& ~SQE_COMMON_FLAGS
)) {
2025 /* enforce forwards compatibility on users */
2026 if (sqe_flags
& ~SQE_VALID_FLAGS
)
2027 return io_init_fail_req(req
, -EINVAL
);
2028 if (sqe_flags
& IOSQE_BUFFER_SELECT
) {
2029 if (!def
->buffer_select
)
2030 return io_init_fail_req(req
, -EOPNOTSUPP
);
2031 req
->buf_index
= READ_ONCE(sqe
->buf_group
);
2033 if (sqe_flags
& IOSQE_CQE_SKIP_SUCCESS
)
2034 ctx
->drain_disabled
= true;
2035 if (sqe_flags
& IOSQE_IO_DRAIN
) {
2036 if (ctx
->drain_disabled
)
2037 return io_init_fail_req(req
, -EOPNOTSUPP
);
2038 io_init_req_drain(req
);
2041 if (unlikely(ctx
->restricted
|| ctx
->drain_active
|| ctx
->drain_next
)) {
2042 if (ctx
->restricted
&& !io_check_restriction(ctx
, req
, sqe_flags
))
2043 return io_init_fail_req(req
, -EACCES
);
2044 /* knock it to the slow queue path, will be drained there */
2045 if (ctx
->drain_active
)
2046 req
->flags
|= REQ_F_FORCE_ASYNC
;
2047 /* if there is no link, we're at "next" request and need to drain */
2048 if (unlikely(ctx
->drain_next
) && !ctx
->submit_state
.link
.head
) {
2049 ctx
->drain_next
= false;
2050 ctx
->drain_active
= true;
2051 req
->flags
|= REQ_F_IO_DRAIN
| REQ_F_FORCE_ASYNC
;
2055 if (!def
->ioprio
&& sqe
->ioprio
)
2056 return io_init_fail_req(req
, -EINVAL
);
2057 if (!def
->iopoll
&& (ctx
->flags
& IORING_SETUP_IOPOLL
))
2058 return io_init_fail_req(req
, -EINVAL
);
2060 if (def
->needs_file
) {
2061 struct io_submit_state
*state
= &ctx
->submit_state
;
2063 req
->cqe
.fd
= READ_ONCE(sqe
->fd
);
2066 * Plug now if we have more than 2 IO left after this, and the
2067 * target is potentially a read/write to block based storage.
2069 if (state
->need_plug
&& def
->plug
) {
2070 state
->plug_started
= true;
2071 state
->need_plug
= false;
2072 blk_start_plug_nr_ios(&state
->plug
, state
->submit_nr
);
2076 personality
= READ_ONCE(sqe
->personality
);
2080 req
->creds
= xa_load(&ctx
->personalities
, personality
);
2082 return io_init_fail_req(req
, -EINVAL
);
2083 get_cred(req
->creds
);
2084 ret
= security_uring_override_creds(req
->creds
);
2086 put_cred(req
->creds
);
2087 return io_init_fail_req(req
, ret
);
2089 req
->flags
|= REQ_F_CREDS
;
2092 return def
->prep(req
, sqe
);
2095 static __cold
int io_submit_fail_init(const struct io_uring_sqe
*sqe
,
2096 struct io_kiocb
*req
, int ret
)
2098 struct io_ring_ctx
*ctx
= req
->ctx
;
2099 struct io_submit_link
*link
= &ctx
->submit_state
.link
;
2100 struct io_kiocb
*head
= link
->head
;
2102 trace_io_uring_req_failed(sqe
, req
, ret
);
2105 * Avoid breaking links in the middle as it renders links with SQPOLL
2106 * unusable. Instead of failing eagerly, continue assembling the link if
2107 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2108 * should find the flag and handle the rest.
2110 req_fail_link_node(req
, ret
);
2111 if (head
&& !(head
->flags
& REQ_F_FAIL
))
2112 req_fail_link_node(head
, -ECANCELED
);
2114 if (!(req
->flags
& IO_REQ_LINK_FLAGS
)) {
2116 link
->last
->link
= req
;
2120 io_queue_sqe_fallback(req
);
2125 link
->last
->link
= req
;
2132 static inline int io_submit_sqe(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
2133 const struct io_uring_sqe
*sqe
)
2134 __must_hold(&ctx
->uring_lock
)
2136 struct io_submit_link
*link
= &ctx
->submit_state
.link
;
2139 ret
= io_init_req(ctx
, req
, sqe
);
2141 return io_submit_fail_init(sqe
, req
, ret
);
2143 trace_io_uring_submit_req(req
);
2146 * If we already have a head request, queue this one for async
2147 * submittal once the head completes. If we don't have a head but
2148 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2149 * submitted sync once the chain is complete. If none of those
2150 * conditions are true (normal request), then just queue it.
2152 if (unlikely(link
->head
)) {
2153 trace_io_uring_link(req
, link
->last
);
2154 link
->last
->link
= req
;
2157 if (req
->flags
& IO_REQ_LINK_FLAGS
)
2159 /* last request of the link, flush it */
2162 if (req
->flags
& (REQ_F_FORCE_ASYNC
| REQ_F_FAIL
))
2165 } else if (unlikely(req
->flags
& (IO_REQ_LINK_FLAGS
|
2166 REQ_F_FORCE_ASYNC
| REQ_F_FAIL
))) {
2167 if (req
->flags
& IO_REQ_LINK_FLAGS
) {
2172 io_queue_sqe_fallback(req
);
2182 * Batched submission is done, ensure local IO is flushed out.
2184 static void io_submit_state_end(struct io_ring_ctx
*ctx
)
2186 struct io_submit_state
*state
= &ctx
->submit_state
;
2188 if (unlikely(state
->link
.head
))
2189 io_queue_sqe_fallback(state
->link
.head
);
2190 /* flush only after queuing links as they can generate completions */
2191 io_submit_flush_completions(ctx
);
2192 if (state
->plug_started
)
2193 blk_finish_plug(&state
->plug
);
2197 * Start submission side cache.
2199 static void io_submit_state_start(struct io_submit_state
*state
,
2200 unsigned int max_ios
)
2202 state
->plug_started
= false;
2203 state
->need_plug
= max_ios
> 2;
2204 state
->submit_nr
= max_ios
;
2205 /* set only head, no need to init link_last in advance */
2206 state
->link
.head
= NULL
;
2209 static void io_commit_sqring(struct io_ring_ctx
*ctx
)
2211 struct io_rings
*rings
= ctx
->rings
;
2214 * Ensure any loads from the SQEs are done at this point,
2215 * since once we write the new head, the application could
2216 * write new data to them.
2218 smp_store_release(&rings
->sq
.head
, ctx
->cached_sq_head
);
2222 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2223 * that is mapped by userspace. This means that care needs to be taken to
2224 * ensure that reads are stable, as we cannot rely on userspace always
2225 * being a good citizen. If members of the sqe are validated and then later
2226 * used, it's important that those reads are done through READ_ONCE() to
2227 * prevent a re-load down the line.
2229 static bool io_get_sqe(struct io_ring_ctx
*ctx
, const struct io_uring_sqe
**sqe
)
2231 unsigned mask
= ctx
->sq_entries
- 1;
2232 unsigned head
= ctx
->cached_sq_head
++ & mask
;
2234 if (static_branch_unlikely(&io_key_has_sqarray
) &&
2235 (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))) {
2236 head
= READ_ONCE(ctx
->sq_array
[head
]);
2237 if (unlikely(head
>= ctx
->sq_entries
)) {
2238 /* drop invalid entries */
2239 spin_lock(&ctx
->completion_lock
);
2241 spin_unlock(&ctx
->completion_lock
);
2242 WRITE_ONCE(ctx
->rings
->sq_dropped
,
2243 READ_ONCE(ctx
->rings
->sq_dropped
) + 1);
2246 head
= array_index_nospec(head
, ctx
->sq_entries
);
2250 * The cached sq head (or cq tail) serves two purposes:
2252 * 1) allows us to batch the cost of updating the user visible
2254 * 2) allows the kernel side to track the head on its own, even
2255 * though the application is the one updating it.
2258 /* double index for 128-byte SQEs, twice as long */
2259 if (ctx
->flags
& IORING_SETUP_SQE128
)
2261 *sqe
= &ctx
->sq_sqes
[head
];
2265 int io_submit_sqes(struct io_ring_ctx
*ctx
, unsigned int nr
)
2266 __must_hold(&ctx
->uring_lock
)
2268 unsigned int entries
= io_sqring_entries(ctx
);
2272 if (unlikely(!entries
))
2274 /* make sure SQ entry isn't read before tail */
2275 ret
= left
= min(nr
, entries
);
2276 io_get_task_refs(left
);
2277 io_submit_state_start(&ctx
->submit_state
, left
);
2280 const struct io_uring_sqe
*sqe
;
2281 struct io_kiocb
*req
;
2283 if (unlikely(!io_alloc_req(ctx
, &req
)))
2285 if (unlikely(!io_get_sqe(ctx
, &sqe
))) {
2286 io_req_add_to_cache(req
, ctx
);
2291 * Continue submitting even for sqe failure if the
2292 * ring was setup with IORING_SETUP_SUBMIT_ALL
2294 if (unlikely(io_submit_sqe(ctx
, req
, sqe
)) &&
2295 !(ctx
->flags
& IORING_SETUP_SUBMIT_ALL
)) {
2301 if (unlikely(left
)) {
2303 /* try again if it submitted nothing and can't allocate a req */
2304 if (!ret
&& io_req_cache_empty(ctx
))
2306 current
->io_uring
->cached_refs
+= left
;
2309 io_submit_state_end(ctx
);
2310 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2311 io_commit_sqring(ctx
);
2315 static int io_wake_function(struct wait_queue_entry
*curr
, unsigned int mode
,
2316 int wake_flags
, void *key
)
2318 struct io_wait_queue
*iowq
= container_of(curr
, struct io_wait_queue
, wq
);
2321 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2322 * the task, and the next invocation will do it.
2324 if (io_should_wake(iowq
) || io_has_work(iowq
->ctx
))
2325 return autoremove_wake_function(curr
, mode
, wake_flags
, key
);
2329 int io_run_task_work_sig(struct io_ring_ctx
*ctx
)
2331 if (!llist_empty(&ctx
->work_llist
)) {
2332 __set_current_state(TASK_RUNNING
);
2333 if (io_run_local_work(ctx
, INT_MAX
) > 0)
2336 if (io_run_task_work() > 0)
2338 if (task_sigpending(current
))
2343 static bool current_pending_io(void)
2345 struct io_uring_task
*tctx
= current
->io_uring
;
2349 return percpu_counter_read_positive(&tctx
->inflight
);
2352 static enum hrtimer_restart
io_cqring_timer_wakeup(struct hrtimer
*timer
)
2354 struct io_wait_queue
*iowq
= container_of(timer
, struct io_wait_queue
, t
);
2356 WRITE_ONCE(iowq
->hit_timeout
, 1);
2357 iowq
->min_timeout
= 0;
2358 wake_up_process(iowq
->wq
.private);
2359 return HRTIMER_NORESTART
;
2363 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2364 * wake up. If not, and we have a normal timeout, switch to that and keep
2367 static enum hrtimer_restart
io_cqring_min_timer_wakeup(struct hrtimer
*timer
)
2369 struct io_wait_queue
*iowq
= container_of(timer
, struct io_wait_queue
, t
);
2370 struct io_ring_ctx
*ctx
= iowq
->ctx
;
2372 /* no general timeout, or shorter (or equal), we are done */
2373 if (iowq
->timeout
== KTIME_MAX
||
2374 ktime_compare(iowq
->min_timeout
, iowq
->timeout
) >= 0)
2376 /* work we may need to run, wake function will see if we need to wake */
2377 if (io_has_work(ctx
))
2379 /* got events since we started waiting, min timeout is done */
2380 if (iowq
->cq_min_tail
!= READ_ONCE(ctx
->rings
->cq
.tail
))
2382 /* if we have any events and min timeout expired, we're done */
2383 if (io_cqring_events(ctx
))
2387 * If using deferred task_work running and application is waiting on
2388 * more than one request, ensure we reset it now where we are switching
2389 * to normal sleeps. Any request completion post min_wait should wake
2390 * the task and return.
2392 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
2393 atomic_set(&ctx
->cq_wait_nr
, 1);
2395 if (!llist_empty(&ctx
->work_llist
))
2399 iowq
->t
.function
= io_cqring_timer_wakeup
;
2400 hrtimer_set_expires(timer
, iowq
->timeout
);
2401 return HRTIMER_RESTART
;
2403 return io_cqring_timer_wakeup(timer
);
2406 static int io_cqring_schedule_timeout(struct io_wait_queue
*iowq
,
2407 clockid_t clock_id
, ktime_t start_time
)
2411 if (iowq
->min_timeout
) {
2412 timeout
= ktime_add_ns(iowq
->min_timeout
, start_time
);
2413 hrtimer_setup_on_stack(&iowq
->t
, io_cqring_min_timer_wakeup
, clock_id
,
2416 timeout
= iowq
->timeout
;
2417 hrtimer_setup_on_stack(&iowq
->t
, io_cqring_timer_wakeup
, clock_id
,
2421 hrtimer_set_expires_range_ns(&iowq
->t
, timeout
, 0);
2422 hrtimer_start_expires(&iowq
->t
, HRTIMER_MODE_ABS
);
2424 if (!READ_ONCE(iowq
->hit_timeout
))
2427 hrtimer_cancel(&iowq
->t
);
2428 destroy_hrtimer_on_stack(&iowq
->t
);
2429 __set_current_state(TASK_RUNNING
);
2431 return READ_ONCE(iowq
->hit_timeout
) ? -ETIME
: 0;
2434 static int __io_cqring_wait_schedule(struct io_ring_ctx
*ctx
,
2435 struct io_wait_queue
*iowq
,
2441 * Mark us as being in io_wait if we have pending requests, so cpufreq
2442 * can take into account that the task is waiting for IO - turns out
2443 * to be important for low QD IO.
2445 if (current_pending_io())
2446 current
->in_iowait
= 1;
2447 if (iowq
->timeout
!= KTIME_MAX
|| iowq
->min_timeout
)
2448 ret
= io_cqring_schedule_timeout(iowq
, ctx
->clockid
, start_time
);
2451 current
->in_iowait
= 0;
2455 /* If this returns > 0, the caller should retry */
2456 static inline int io_cqring_wait_schedule(struct io_ring_ctx
*ctx
,
2457 struct io_wait_queue
*iowq
,
2460 if (unlikely(READ_ONCE(ctx
->check_cq
)))
2462 if (unlikely(!llist_empty(&ctx
->work_llist
)))
2464 if (unlikely(task_work_pending(current
)))
2466 if (unlikely(task_sigpending(current
)))
2468 if (unlikely(io_should_wake(iowq
)))
2471 return __io_cqring_wait_schedule(ctx
, iowq
, start_time
);
2476 struct timespec64 ts
;
2477 const sigset_t __user
*sig
;
2483 * Wait until events become available, if we don't already have some. The
2484 * application must reap them itself, as they reside on the shared cq ring.
2486 static int io_cqring_wait(struct io_ring_ctx
*ctx
, int min_events
, u32 flags
,
2487 struct ext_arg
*ext_arg
)
2489 struct io_wait_queue iowq
;
2490 struct io_rings
*rings
= ctx
->rings
;
2494 if (!io_allowed_run_tw(ctx
))
2496 if (!llist_empty(&ctx
->work_llist
))
2497 io_run_local_work(ctx
, min_events
);
2500 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
)))
2501 io_cqring_do_overflow_flush(ctx
);
2502 if (__io_cqring_events_user(ctx
) >= min_events
)
2505 init_waitqueue_func_entry(&iowq
.wq
, io_wake_function
);
2506 iowq
.wq
.private = current
;
2507 INIT_LIST_HEAD(&iowq
.wq
.entry
);
2509 iowq
.cq_tail
= READ_ONCE(ctx
->rings
->cq
.head
) + min_events
;
2510 iowq
.cq_min_tail
= READ_ONCE(ctx
->rings
->cq
.tail
);
2511 iowq
.nr_timeouts
= atomic_read(&ctx
->cq_timeouts
);
2512 iowq
.hit_timeout
= 0;
2513 iowq
.min_timeout
= ext_arg
->min_time
;
2514 iowq
.timeout
= KTIME_MAX
;
2515 start_time
= io_get_time(ctx
);
2517 if (ext_arg
->ts_set
) {
2518 iowq
.timeout
= timespec64_to_ktime(ext_arg
->ts
);
2519 if (!(flags
& IORING_ENTER_ABS_TIMER
))
2520 iowq
.timeout
= ktime_add(iowq
.timeout
, start_time
);
2524 #ifdef CONFIG_COMPAT
2525 if (in_compat_syscall())
2526 ret
= set_compat_user_sigmask((const compat_sigset_t __user
*)ext_arg
->sig
,
2530 ret
= set_user_sigmask(ext_arg
->sig
, ext_arg
->argsz
);
2536 io_napi_busy_loop(ctx
, &iowq
);
2538 trace_io_uring_cqring_wait(ctx
, min_events
);
2540 unsigned long check_cq
;
2543 /* if min timeout has been hit, don't reset wait count */
2544 if (!iowq
.hit_timeout
)
2545 nr_wait
= (int) iowq
.cq_tail
-
2546 READ_ONCE(ctx
->rings
->cq
.tail
);
2550 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
2551 atomic_set(&ctx
->cq_wait_nr
, nr_wait
);
2552 set_current_state(TASK_INTERRUPTIBLE
);
2554 prepare_to_wait_exclusive(&ctx
->cq_wait
, &iowq
.wq
,
2555 TASK_INTERRUPTIBLE
);
2558 ret
= io_cqring_wait_schedule(ctx
, &iowq
, start_time
);
2559 __set_current_state(TASK_RUNNING
);
2560 atomic_set(&ctx
->cq_wait_nr
, IO_CQ_WAKE_INIT
);
2563 * Run task_work after scheduling and before io_should_wake().
2564 * If we got woken because of task_work being processed, run it
2565 * now rather than let the caller do another wait loop.
2567 if (!llist_empty(&ctx
->work_llist
))
2568 io_run_local_work(ctx
, nr_wait
);
2572 * Non-local task_work will be run on exit to userspace, but
2573 * if we're using DEFER_TASKRUN, then we could have waited
2574 * with a timeout for a number of requests. If the timeout
2575 * hits, we could have some requests ready to process. Ensure
2576 * this break is _after_ we have run task_work, to avoid
2577 * deferring running potentially pending requests until the
2578 * next time we wait for events.
2583 check_cq
= READ_ONCE(ctx
->check_cq
);
2584 if (unlikely(check_cq
)) {
2585 /* let the caller flush overflows, retry */
2586 if (check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
))
2587 io_cqring_do_overflow_flush(ctx
);
2588 if (check_cq
& BIT(IO_CHECK_CQ_DROPPED_BIT
)) {
2594 if (io_should_wake(&iowq
)) {
2601 if (!(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
))
2602 finish_wait(&ctx
->cq_wait
, &iowq
.wq
);
2603 restore_saved_sigmask_unless(ret
== -EINTR
);
2605 return READ_ONCE(rings
->cq
.head
) == READ_ONCE(rings
->cq
.tail
) ? ret
: 0;
2608 static void *io_rings_map(struct io_ring_ctx
*ctx
, unsigned long uaddr
,
2611 return __io_uaddr_map(&ctx
->ring_pages
, &ctx
->n_ring_pages
, uaddr
,
2615 static void *io_sqes_map(struct io_ring_ctx
*ctx
, unsigned long uaddr
,
2618 return __io_uaddr_map(&ctx
->sqe_pages
, &ctx
->n_sqe_pages
, uaddr
,
2622 static void io_rings_free(struct io_ring_ctx
*ctx
)
2624 if (!(ctx
->flags
& IORING_SETUP_NO_MMAP
)) {
2625 io_pages_unmap(ctx
->rings
, &ctx
->ring_pages
, &ctx
->n_ring_pages
,
2627 io_pages_unmap(ctx
->sq_sqes
, &ctx
->sqe_pages
, &ctx
->n_sqe_pages
,
2630 io_pages_free(&ctx
->ring_pages
, ctx
->n_ring_pages
);
2631 ctx
->n_ring_pages
= 0;
2632 io_pages_free(&ctx
->sqe_pages
, ctx
->n_sqe_pages
);
2633 ctx
->n_sqe_pages
= 0;
2635 vunmap(ctx
->sq_sqes
);
2639 ctx
->sq_sqes
= NULL
;
2642 unsigned long rings_size(unsigned int flags
, unsigned int sq_entries
,
2643 unsigned int cq_entries
, size_t *sq_offset
)
2645 struct io_rings
*rings
;
2646 size_t off
, sq_array_size
;
2648 off
= struct_size(rings
, cqes
, cq_entries
);
2649 if (off
== SIZE_MAX
)
2651 if (flags
& IORING_SETUP_CQE32
) {
2652 if (check_shl_overflow(off
, 1, &off
))
2657 off
= ALIGN(off
, SMP_CACHE_BYTES
);
2662 if (flags
& IORING_SETUP_NO_SQARRAY
) {
2663 *sq_offset
= SIZE_MAX
;
2669 sq_array_size
= array_size(sizeof(u32
), sq_entries
);
2670 if (sq_array_size
== SIZE_MAX
)
2673 if (check_add_overflow(off
, sq_array_size
, &off
))
2679 static void io_req_caches_free(struct io_ring_ctx
*ctx
)
2681 struct io_kiocb
*req
;
2684 mutex_lock(&ctx
->uring_lock
);
2686 while (!io_req_cache_empty(ctx
)) {
2687 req
= io_extract_req(ctx
);
2688 kmem_cache_free(req_cachep
, req
);
2692 percpu_ref_put_many(&ctx
->refs
, nr
);
2693 mutex_unlock(&ctx
->uring_lock
);
2696 static __cold
void io_ring_ctx_free(struct io_ring_ctx
*ctx
)
2698 io_sq_thread_finish(ctx
);
2700 mutex_lock(&ctx
->uring_lock
);
2701 io_sqe_buffers_unregister(ctx
);
2702 io_sqe_files_unregister(ctx
);
2703 io_cqring_overflow_kill(ctx
);
2704 io_eventfd_unregister(ctx
);
2705 io_alloc_cache_free(&ctx
->apoll_cache
, kfree
);
2706 io_alloc_cache_free(&ctx
->netmsg_cache
, io_netmsg_cache_free
);
2707 io_alloc_cache_free(&ctx
->rw_cache
, io_rw_cache_free
);
2708 io_alloc_cache_free(&ctx
->uring_cache
, kfree
);
2709 io_alloc_cache_free(&ctx
->msg_cache
, io_msg_cache_free
);
2710 io_futex_cache_free(ctx
);
2711 io_destroy_buffers(ctx
);
2712 io_free_region(ctx
, &ctx
->param_region
);
2713 mutex_unlock(&ctx
->uring_lock
);
2715 put_cred(ctx
->sq_creds
);
2716 if (ctx
->submitter_task
)
2717 put_task_struct(ctx
->submitter_task
);
2719 WARN_ON_ONCE(!list_empty(&ctx
->ltimeout_list
));
2721 if (ctx
->mm_account
) {
2722 mmdrop(ctx
->mm_account
);
2723 ctx
->mm_account
= NULL
;
2727 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
2728 static_branch_dec(&io_key_has_sqarray
);
2730 percpu_ref_exit(&ctx
->refs
);
2731 free_uid(ctx
->user
);
2732 io_req_caches_free(ctx
);
2734 io_wq_put_hash(ctx
->hash_map
);
2736 kvfree(ctx
->cancel_table
.hbs
);
2737 xa_destroy(&ctx
->io_bl_xa
);
2741 static __cold
void io_activate_pollwq_cb(struct callback_head
*cb
)
2743 struct io_ring_ctx
*ctx
= container_of(cb
, struct io_ring_ctx
,
2746 mutex_lock(&ctx
->uring_lock
);
2747 ctx
->poll_activated
= true;
2748 mutex_unlock(&ctx
->uring_lock
);
2751 * Wake ups for some events between start of polling and activation
2752 * might've been lost due to loose synchronisation.
2754 wake_up_all(&ctx
->poll_wq
);
2755 percpu_ref_put(&ctx
->refs
);
2758 __cold
void io_activate_pollwq(struct io_ring_ctx
*ctx
)
2760 spin_lock(&ctx
->completion_lock
);
2761 /* already activated or in progress */
2762 if (ctx
->poll_activated
|| ctx
->poll_wq_task_work
.func
)
2764 if (WARN_ON_ONCE(!ctx
->task_complete
))
2766 if (!ctx
->submitter_task
)
2769 * with ->submitter_task only the submitter task completes requests, we
2770 * only need to sync with it, which is done by injecting a tw
2772 init_task_work(&ctx
->poll_wq_task_work
, io_activate_pollwq_cb
);
2773 percpu_ref_get(&ctx
->refs
);
2774 if (task_work_add(ctx
->submitter_task
, &ctx
->poll_wq_task_work
, TWA_SIGNAL
))
2775 percpu_ref_put(&ctx
->refs
);
2777 spin_unlock(&ctx
->completion_lock
);
2780 static __poll_t
io_uring_poll(struct file
*file
, poll_table
*wait
)
2782 struct io_ring_ctx
*ctx
= file
->private_data
;
2785 if (unlikely(!ctx
->poll_activated
))
2786 io_activate_pollwq(ctx
);
2788 poll_wait(file
, &ctx
->poll_wq
, wait
);
2790 * synchronizes with barrier from wq_has_sleeper call in
2794 if (!io_sqring_full(ctx
))
2795 mask
|= EPOLLOUT
| EPOLLWRNORM
;
2798 * Don't flush cqring overflow list here, just do a simple check.
2799 * Otherwise there could possible be ABBA deadlock:
2802 * lock(&ctx->uring_lock);
2804 * lock(&ctx->uring_lock);
2807 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2808 * pushes them to do the flush.
2811 if (__io_cqring_events_user(ctx
) || io_has_work(ctx
))
2812 mask
|= EPOLLIN
| EPOLLRDNORM
;
2817 struct io_tctx_exit
{
2818 struct callback_head task_work
;
2819 struct completion completion
;
2820 struct io_ring_ctx
*ctx
;
2823 static __cold
void io_tctx_exit_cb(struct callback_head
*cb
)
2825 struct io_uring_task
*tctx
= current
->io_uring
;
2826 struct io_tctx_exit
*work
;
2828 work
= container_of(cb
, struct io_tctx_exit
, task_work
);
2830 * When @in_cancel, we're in cancellation and it's racy to remove the
2831 * node. It'll be removed by the end of cancellation, just ignore it.
2832 * tctx can be NULL if the queueing of this task_work raced with
2833 * work cancelation off the exec path.
2835 if (tctx
&& !atomic_read(&tctx
->in_cancel
))
2836 io_uring_del_tctx_node((unsigned long)work
->ctx
);
2837 complete(&work
->completion
);
2840 static __cold
bool io_cancel_ctx_cb(struct io_wq_work
*work
, void *data
)
2842 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
2844 return req
->ctx
== data
;
2847 static __cold
void io_ring_exit_work(struct work_struct
*work
)
2849 struct io_ring_ctx
*ctx
= container_of(work
, struct io_ring_ctx
, exit_work
);
2850 unsigned long timeout
= jiffies
+ HZ
* 60 * 5;
2851 unsigned long interval
= HZ
/ 20;
2852 struct io_tctx_exit exit
;
2853 struct io_tctx_node
*node
;
2857 * If we're doing polled IO and end up having requests being
2858 * submitted async (out-of-line), then completions can come in while
2859 * we're waiting for refs to drop. We need to reap these manually,
2860 * as nobody else will be looking for them.
2863 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
)) {
2864 mutex_lock(&ctx
->uring_lock
);
2865 io_cqring_overflow_kill(ctx
);
2866 mutex_unlock(&ctx
->uring_lock
);
2869 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
2870 io_move_task_work_from_local(ctx
);
2872 while (io_uring_try_cancel_requests(ctx
, NULL
, true))
2876 struct io_sq_data
*sqd
= ctx
->sq_data
;
2877 struct task_struct
*tsk
;
2879 io_sq_thread_park(sqd
);
2881 if (tsk
&& tsk
->io_uring
&& tsk
->io_uring
->io_wq
)
2882 io_wq_cancel_cb(tsk
->io_uring
->io_wq
,
2883 io_cancel_ctx_cb
, ctx
, true);
2884 io_sq_thread_unpark(sqd
);
2887 io_req_caches_free(ctx
);
2889 if (WARN_ON_ONCE(time_after(jiffies
, timeout
))) {
2890 /* there is little hope left, don't run it too often */
2894 * This is really an uninterruptible wait, as it has to be
2895 * complete. But it's also run from a kworker, which doesn't
2896 * take signals, so it's fine to make it interruptible. This
2897 * avoids scenarios where we knowingly can wait much longer
2898 * on completions, for example if someone does a SIGSTOP on
2899 * a task that needs to finish task_work to make this loop
2900 * complete. That's a synthetic situation that should not
2901 * cause a stuck task backtrace, and hence a potential panic
2902 * on stuck tasks if that is enabled.
2904 } while (!wait_for_completion_interruptible_timeout(&ctx
->ref_comp
, interval
));
2906 init_completion(&exit
.completion
);
2907 init_task_work(&exit
.task_work
, io_tctx_exit_cb
);
2910 mutex_lock(&ctx
->uring_lock
);
2911 while (!list_empty(&ctx
->tctx_list
)) {
2912 WARN_ON_ONCE(time_after(jiffies
, timeout
));
2914 node
= list_first_entry(&ctx
->tctx_list
, struct io_tctx_node
,
2916 /* don't spin on a single task if cancellation failed */
2917 list_rotate_left(&ctx
->tctx_list
);
2918 ret
= task_work_add(node
->task
, &exit
.task_work
, TWA_SIGNAL
);
2919 if (WARN_ON_ONCE(ret
))
2922 mutex_unlock(&ctx
->uring_lock
);
2924 * See comment above for
2925 * wait_for_completion_interruptible_timeout() on why this
2926 * wait is marked as interruptible.
2928 wait_for_completion_interruptible(&exit
.completion
);
2929 mutex_lock(&ctx
->uring_lock
);
2931 mutex_unlock(&ctx
->uring_lock
);
2932 spin_lock(&ctx
->completion_lock
);
2933 spin_unlock(&ctx
->completion_lock
);
2935 /* pairs with RCU read section in io_req_local_work_add() */
2936 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
2939 io_ring_ctx_free(ctx
);
2942 static __cold
void io_ring_ctx_wait_and_kill(struct io_ring_ctx
*ctx
)
2944 unsigned long index
;
2945 struct creds
*creds
;
2947 mutex_lock(&ctx
->uring_lock
);
2948 percpu_ref_kill(&ctx
->refs
);
2949 xa_for_each(&ctx
->personalities
, index
, creds
)
2950 io_unregister_personality(ctx
, index
);
2951 mutex_unlock(&ctx
->uring_lock
);
2953 flush_delayed_work(&ctx
->fallback_work
);
2955 INIT_WORK(&ctx
->exit_work
, io_ring_exit_work
);
2957 * Use system_unbound_wq to avoid spawning tons of event kworkers
2958 * if we're exiting a ton of rings at the same time. It just adds
2959 * noise and overhead, there's no discernable change in runtime
2960 * over using system_wq.
2962 queue_work(iou_wq
, &ctx
->exit_work
);
2965 static int io_uring_release(struct inode
*inode
, struct file
*file
)
2967 struct io_ring_ctx
*ctx
= file
->private_data
;
2969 file
->private_data
= NULL
;
2970 io_ring_ctx_wait_and_kill(ctx
);
2974 struct io_task_cancel
{
2975 struct io_uring_task
*tctx
;
2979 static bool io_cancel_task_cb(struct io_wq_work
*work
, void *data
)
2981 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
2982 struct io_task_cancel
*cancel
= data
;
2984 return io_match_task_safe(req
, cancel
->tctx
, cancel
->all
);
2987 static __cold
bool io_cancel_defer_files(struct io_ring_ctx
*ctx
,
2988 struct io_uring_task
*tctx
,
2991 struct io_defer_entry
*de
;
2994 spin_lock(&ctx
->completion_lock
);
2995 list_for_each_entry_reverse(de
, &ctx
->defer_list
, list
) {
2996 if (io_match_task_safe(de
->req
, tctx
, cancel_all
)) {
2997 list_cut_position(&list
, &ctx
->defer_list
, &de
->list
);
3001 spin_unlock(&ctx
->completion_lock
);
3002 if (list_empty(&list
))
3005 while (!list_empty(&list
)) {
3006 de
= list_first_entry(&list
, struct io_defer_entry
, list
);
3007 list_del_init(&de
->list
);
3008 io_req_task_queue_fail(de
->req
, -ECANCELED
);
3014 static __cold
bool io_uring_try_cancel_iowq(struct io_ring_ctx
*ctx
)
3016 struct io_tctx_node
*node
;
3017 enum io_wq_cancel cret
;
3020 mutex_lock(&ctx
->uring_lock
);
3021 list_for_each_entry(node
, &ctx
->tctx_list
, ctx_node
) {
3022 struct io_uring_task
*tctx
= node
->task
->io_uring
;
3025 * io_wq will stay alive while we hold uring_lock, because it's
3026 * killed after ctx nodes, which requires to take the lock.
3028 if (!tctx
|| !tctx
->io_wq
)
3030 cret
= io_wq_cancel_cb(tctx
->io_wq
, io_cancel_ctx_cb
, ctx
, true);
3031 ret
|= (cret
!= IO_WQ_CANCEL_NOTFOUND
);
3033 mutex_unlock(&ctx
->uring_lock
);
3038 static __cold
bool io_uring_try_cancel_requests(struct io_ring_ctx
*ctx
,
3039 struct io_uring_task
*tctx
,
3042 struct io_task_cancel cancel
= { .tctx
= tctx
, .all
= cancel_all
, };
3043 enum io_wq_cancel cret
;
3046 /* set it so io_req_local_work_add() would wake us up */
3047 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
3048 atomic_set(&ctx
->cq_wait_nr
, 1);
3052 /* failed during ring init, it couldn't have issued any requests */
3057 ret
|= io_uring_try_cancel_iowq(ctx
);
3058 } else if (tctx
->io_wq
) {
3060 * Cancels requests of all rings, not only @ctx, but
3061 * it's fine as the task is in exit/exec.
3063 cret
= io_wq_cancel_cb(tctx
->io_wq
, io_cancel_task_cb
,
3065 ret
|= (cret
!= IO_WQ_CANCEL_NOTFOUND
);
3068 /* SQPOLL thread does its own polling */
3069 if ((!(ctx
->flags
& IORING_SETUP_SQPOLL
) && cancel_all
) ||
3070 (ctx
->sq_data
&& ctx
->sq_data
->thread
== current
)) {
3071 while (!wq_list_empty(&ctx
->iopoll_list
)) {
3072 io_iopoll_try_reap_events(ctx
);
3078 if ((ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) &&
3079 io_allowed_defer_tw_run(ctx
))
3080 ret
|= io_run_local_work(ctx
, INT_MAX
) > 0;
3081 ret
|= io_cancel_defer_files(ctx
, tctx
, cancel_all
);
3082 mutex_lock(&ctx
->uring_lock
);
3083 ret
|= io_poll_remove_all(ctx
, tctx
, cancel_all
);
3084 ret
|= io_waitid_remove_all(ctx
, tctx
, cancel_all
);
3085 ret
|= io_futex_remove_all(ctx
, tctx
, cancel_all
);
3086 ret
|= io_uring_try_cancel_uring_cmd(ctx
, tctx
, cancel_all
);
3087 mutex_unlock(&ctx
->uring_lock
);
3088 ret
|= io_kill_timeouts(ctx
, tctx
, cancel_all
);
3090 ret
|= io_run_task_work() > 0;
3092 ret
|= flush_delayed_work(&ctx
->fallback_work
);
3096 static s64
tctx_inflight(struct io_uring_task
*tctx
, bool tracked
)
3099 return atomic_read(&tctx
->inflight_tracked
);
3100 return percpu_counter_sum(&tctx
->inflight
);
3104 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3105 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3107 __cold
void io_uring_cancel_generic(bool cancel_all
, struct io_sq_data
*sqd
)
3109 struct io_uring_task
*tctx
= current
->io_uring
;
3110 struct io_ring_ctx
*ctx
;
3111 struct io_tctx_node
*node
;
3112 unsigned long index
;
3116 WARN_ON_ONCE(sqd
&& sqd
->thread
!= current
);
3118 if (!current
->io_uring
)
3121 io_wq_exit_start(tctx
->io_wq
);
3123 atomic_inc(&tctx
->in_cancel
);
3127 io_uring_drop_tctx_refs(current
);
3128 if (!tctx_inflight(tctx
, !cancel_all
))
3131 /* read completions before cancelations */
3132 inflight
= tctx_inflight(tctx
, false);
3137 xa_for_each(&tctx
->xa
, index
, node
) {
3138 /* sqpoll task will cancel all its requests */
3139 if (node
->ctx
->sq_data
)
3141 loop
|= io_uring_try_cancel_requests(node
->ctx
,
3146 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
)
3147 loop
|= io_uring_try_cancel_requests(ctx
,
3157 prepare_to_wait(&tctx
->wait
, &wait
, TASK_INTERRUPTIBLE
);
3159 io_uring_drop_tctx_refs(current
);
3160 xa_for_each(&tctx
->xa
, index
, node
) {
3161 if (!llist_empty(&node
->ctx
->work_llist
)) {
3162 WARN_ON_ONCE(node
->ctx
->submitter_task
&&
3163 node
->ctx
->submitter_task
!= current
);
3168 * If we've seen completions, retry without waiting. This
3169 * avoids a race where a completion comes in before we did
3170 * prepare_to_wait().
3172 if (inflight
== tctx_inflight(tctx
, !cancel_all
))
3175 finish_wait(&tctx
->wait
, &wait
);
3178 io_uring_clean_tctx(tctx
);
3181 * We shouldn't run task_works after cancel, so just leave
3182 * ->in_cancel set for normal exit.
3184 atomic_dec(&tctx
->in_cancel
);
3185 /* for exec all current's requests should be gone, kill tctx */
3186 __io_uring_free(current
);
3190 void __io_uring_cancel(bool cancel_all
)
3192 io_uring_cancel_generic(cancel_all
, NULL
);
3195 static struct io_uring_reg_wait
*io_get_ext_arg_reg(struct io_ring_ctx
*ctx
,
3196 const struct io_uring_getevents_arg __user
*uarg
)
3198 unsigned long size
= sizeof(struct io_uring_reg_wait
);
3199 unsigned long offset
= (uintptr_t)uarg
;
3202 if (unlikely(offset
% sizeof(long)))
3203 return ERR_PTR(-EFAULT
);
3205 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3206 if (unlikely(check_add_overflow(offset
, size
, &end
) ||
3207 end
> ctx
->cq_wait_size
))
3208 return ERR_PTR(-EFAULT
);
3210 return ctx
->cq_wait_arg
+ offset
;
3213 static int io_validate_ext_arg(struct io_ring_ctx
*ctx
, unsigned flags
,
3214 const void __user
*argp
, size_t argsz
)
3216 struct io_uring_getevents_arg arg
;
3218 if (!(flags
& IORING_ENTER_EXT_ARG
))
3220 if (flags
& IORING_ENTER_EXT_ARG_REG
)
3222 if (argsz
!= sizeof(arg
))
3224 if (copy_from_user(&arg
, argp
, sizeof(arg
)))
3229 static int io_get_ext_arg(struct io_ring_ctx
*ctx
, unsigned flags
,
3230 const void __user
*argp
, struct ext_arg
*ext_arg
)
3232 const struct io_uring_getevents_arg __user
*uarg
= argp
;
3233 struct io_uring_getevents_arg arg
;
3236 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3237 * is just a pointer to the sigset_t.
3239 if (!(flags
& IORING_ENTER_EXT_ARG
)) {
3240 ext_arg
->sig
= (const sigset_t __user
*) argp
;
3244 if (flags
& IORING_ENTER_EXT_ARG_REG
) {
3245 struct io_uring_reg_wait
*w
;
3247 if (ext_arg
->argsz
!= sizeof(struct io_uring_reg_wait
))
3249 w
= io_get_ext_arg_reg(ctx
, argp
);
3253 if (w
->flags
& ~IORING_REG_WAIT_TS
)
3255 ext_arg
->min_time
= READ_ONCE(w
->min_wait_usec
) * NSEC_PER_USEC
;
3256 ext_arg
->sig
= u64_to_user_ptr(READ_ONCE(w
->sigmask
));
3257 ext_arg
->argsz
= READ_ONCE(w
->sigmask_sz
);
3258 if (w
->flags
& IORING_REG_WAIT_TS
) {
3259 ext_arg
->ts
.tv_sec
= READ_ONCE(w
->ts
.tv_sec
);
3260 ext_arg
->ts
.tv_nsec
= READ_ONCE(w
->ts
.tv_nsec
);
3261 ext_arg
->ts_set
= true;
3267 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3268 * timespec and sigset_t pointers if good.
3270 if (ext_arg
->argsz
!= sizeof(arg
))
3273 if (!user_access_begin(uarg
, sizeof(*uarg
)))
3275 unsafe_get_user(arg
.sigmask
, &uarg
->sigmask
, uaccess_end
);
3276 unsafe_get_user(arg
.sigmask_sz
, &uarg
->sigmask_sz
, uaccess_end
);
3277 unsafe_get_user(arg
.min_wait_usec
, &uarg
->min_wait_usec
, uaccess_end
);
3278 unsafe_get_user(arg
.ts
, &uarg
->ts
, uaccess_end
);
3281 if (copy_from_user(&arg
, uarg
, sizeof(arg
)))
3284 ext_arg
->min_time
= arg
.min_wait_usec
* NSEC_PER_USEC
;
3285 ext_arg
->sig
= u64_to_user_ptr(arg
.sigmask
);
3286 ext_arg
->argsz
= arg
.sigmask_sz
;
3288 if (get_timespec64(&ext_arg
->ts
, u64_to_user_ptr(arg
.ts
)))
3290 ext_arg
->ts_set
= true;
3300 SYSCALL_DEFINE6(io_uring_enter
, unsigned int, fd
, u32
, to_submit
,
3301 u32
, min_complete
, u32
, flags
, const void __user
*, argp
,
3304 struct io_ring_ctx
*ctx
;
3308 if (unlikely(flags
& ~(IORING_ENTER_GETEVENTS
| IORING_ENTER_SQ_WAKEUP
|
3309 IORING_ENTER_SQ_WAIT
| IORING_ENTER_EXT_ARG
|
3310 IORING_ENTER_REGISTERED_RING
|
3311 IORING_ENTER_ABS_TIMER
|
3312 IORING_ENTER_EXT_ARG_REG
)))
3316 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3317 * need only dereference our task private array to find it.
3319 if (flags
& IORING_ENTER_REGISTERED_RING
) {
3320 struct io_uring_task
*tctx
= current
->io_uring
;
3322 if (unlikely(!tctx
|| fd
>= IO_RINGFD_REG_MAX
))
3324 fd
= array_index_nospec(fd
, IO_RINGFD_REG_MAX
);
3325 file
= tctx
->registered_rings
[fd
];
3326 if (unlikely(!file
))
3330 if (unlikely(!file
))
3333 if (unlikely(!io_is_uring_fops(file
)))
3337 ctx
= file
->private_data
;
3339 if (unlikely(ctx
->flags
& IORING_SETUP_R_DISABLED
))
3343 * For SQ polling, the thread will do all submissions and completions.
3344 * Just return the requested submit count, and wake the thread if
3348 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
3349 if (unlikely(ctx
->sq_data
->thread
== NULL
)) {
3353 if (flags
& IORING_ENTER_SQ_WAKEUP
)
3354 wake_up(&ctx
->sq_data
->wait
);
3355 if (flags
& IORING_ENTER_SQ_WAIT
)
3356 io_sqpoll_wait_sq(ctx
);
3359 } else if (to_submit
) {
3360 ret
= io_uring_add_tctx_node(ctx
);
3364 mutex_lock(&ctx
->uring_lock
);
3365 ret
= io_submit_sqes(ctx
, to_submit
);
3366 if (ret
!= to_submit
) {
3367 mutex_unlock(&ctx
->uring_lock
);
3370 if (flags
& IORING_ENTER_GETEVENTS
) {
3371 if (ctx
->syscall_iopoll
)
3374 * Ignore errors, we'll soon call io_cqring_wait() and
3375 * it should handle ownership problems if any.
3377 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
3378 (void)io_run_local_work_locked(ctx
, min_complete
);
3380 mutex_unlock(&ctx
->uring_lock
);
3383 if (flags
& IORING_ENTER_GETEVENTS
) {
3386 if (ctx
->syscall_iopoll
) {
3388 * We disallow the app entering submit/complete with
3389 * polling, but we still need to lock the ring to
3390 * prevent racing with polled issue that got punted to
3393 mutex_lock(&ctx
->uring_lock
);
3395 ret2
= io_validate_ext_arg(ctx
, flags
, argp
, argsz
);
3396 if (likely(!ret2
)) {
3397 min_complete
= min(min_complete
,
3399 ret2
= io_iopoll_check(ctx
, min_complete
);
3401 mutex_unlock(&ctx
->uring_lock
);
3403 struct ext_arg ext_arg
= { .argsz
= argsz
};
3405 ret2
= io_get_ext_arg(ctx
, flags
, argp
, &ext_arg
);
3406 if (likely(!ret2
)) {
3407 min_complete
= min(min_complete
,
3409 ret2
= io_cqring_wait(ctx
, min_complete
, flags
,
3418 * EBADR indicates that one or more CQE were dropped.
3419 * Once the user has been informed we can clear the bit
3420 * as they are obviously ok with those drops.
3422 if (unlikely(ret2
== -EBADR
))
3423 clear_bit(IO_CHECK_CQ_DROPPED_BIT
,
3428 if (!(flags
& IORING_ENTER_REGISTERED_RING
))
3433 static const struct file_operations io_uring_fops
= {
3434 .release
= io_uring_release
,
3435 .mmap
= io_uring_mmap
,
3436 .get_unmapped_area
= io_uring_get_unmapped_area
,
3438 .mmap_capabilities
= io_uring_nommu_mmap_capabilities
,
3440 .poll
= io_uring_poll
,
3441 #ifdef CONFIG_PROC_FS
3442 .show_fdinfo
= io_uring_show_fdinfo
,
3446 bool io_is_uring_fops(struct file
*file
)
3448 return file
->f_op
== &io_uring_fops
;
3451 static __cold
int io_allocate_scq_urings(struct io_ring_ctx
*ctx
,
3452 struct io_uring_params
*p
)
3454 struct io_rings
*rings
;
3455 size_t size
, sq_array_offset
;
3458 /* make sure these are sane, as we already accounted them */
3459 ctx
->sq_entries
= p
->sq_entries
;
3460 ctx
->cq_entries
= p
->cq_entries
;
3462 size
= rings_size(ctx
->flags
, p
->sq_entries
, p
->cq_entries
,
3464 if (size
== SIZE_MAX
)
3467 if (!(ctx
->flags
& IORING_SETUP_NO_MMAP
))
3468 rings
= io_pages_map(&ctx
->ring_pages
, &ctx
->n_ring_pages
, size
);
3470 rings
= io_rings_map(ctx
, p
->cq_off
.user_addr
, size
);
3473 return PTR_ERR(rings
);
3476 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
3477 ctx
->sq_array
= (u32
*)((char *)rings
+ sq_array_offset
);
3478 rings
->sq_ring_mask
= p
->sq_entries
- 1;
3479 rings
->cq_ring_mask
= p
->cq_entries
- 1;
3480 rings
->sq_ring_entries
= p
->sq_entries
;
3481 rings
->cq_ring_entries
= p
->cq_entries
;
3483 if (p
->flags
& IORING_SETUP_SQE128
)
3484 size
= array_size(2 * sizeof(struct io_uring_sqe
), p
->sq_entries
);
3486 size
= array_size(sizeof(struct io_uring_sqe
), p
->sq_entries
);
3487 if (size
== SIZE_MAX
) {
3492 if (!(ctx
->flags
& IORING_SETUP_NO_MMAP
))
3493 ptr
= io_pages_map(&ctx
->sqe_pages
, &ctx
->n_sqe_pages
, size
);
3495 ptr
= io_sqes_map(ctx
, p
->sq_off
.user_addr
, size
);
3499 return PTR_ERR(ptr
);
3506 static int io_uring_install_fd(struct file
*file
)
3510 fd
= get_unused_fd_flags(O_RDWR
| O_CLOEXEC
);
3513 fd_install(fd
, file
);
3518 * Allocate an anonymous fd, this is what constitutes the application
3519 * visible backing of an io_uring instance. The application mmaps this
3520 * fd to gain access to the SQ/CQ ring details.
3522 static struct file
*io_uring_get_file(struct io_ring_ctx
*ctx
)
3524 /* Create a new inode so that the LSM can block the creation. */
3525 return anon_inode_create_getfile("[io_uring]", &io_uring_fops
, ctx
,
3526 O_RDWR
| O_CLOEXEC
, NULL
);
3529 int io_uring_fill_params(unsigned entries
, struct io_uring_params
*p
)
3533 if (entries
> IORING_MAX_ENTRIES
) {
3534 if (!(p
->flags
& IORING_SETUP_CLAMP
))
3536 entries
= IORING_MAX_ENTRIES
;
3539 if ((p
->flags
& IORING_SETUP_REGISTERED_FD_ONLY
)
3540 && !(p
->flags
& IORING_SETUP_NO_MMAP
))
3544 * Use twice as many entries for the CQ ring. It's possible for the
3545 * application to drive a higher depth than the size of the SQ ring,
3546 * since the sqes are only used at submission time. This allows for
3547 * some flexibility in overcommitting a bit. If the application has
3548 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3549 * of CQ ring entries manually.
3551 p
->sq_entries
= roundup_pow_of_two(entries
);
3552 if (p
->flags
& IORING_SETUP_CQSIZE
) {
3554 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3555 * to a power-of-two, if it isn't already. We do NOT impose
3556 * any cq vs sq ring sizing.
3560 if (p
->cq_entries
> IORING_MAX_CQ_ENTRIES
) {
3561 if (!(p
->flags
& IORING_SETUP_CLAMP
))
3563 p
->cq_entries
= IORING_MAX_CQ_ENTRIES
;
3565 p
->cq_entries
= roundup_pow_of_two(p
->cq_entries
);
3566 if (p
->cq_entries
< p
->sq_entries
)
3569 p
->cq_entries
= 2 * p
->sq_entries
;
3572 p
->sq_off
.head
= offsetof(struct io_rings
, sq
.head
);
3573 p
->sq_off
.tail
= offsetof(struct io_rings
, sq
.tail
);
3574 p
->sq_off
.ring_mask
= offsetof(struct io_rings
, sq_ring_mask
);
3575 p
->sq_off
.ring_entries
= offsetof(struct io_rings
, sq_ring_entries
);
3576 p
->sq_off
.flags
= offsetof(struct io_rings
, sq_flags
);
3577 p
->sq_off
.dropped
= offsetof(struct io_rings
, sq_dropped
);
3578 p
->sq_off
.resv1
= 0;
3579 if (!(p
->flags
& IORING_SETUP_NO_MMAP
))
3580 p
->sq_off
.user_addr
= 0;
3582 p
->cq_off
.head
= offsetof(struct io_rings
, cq
.head
);
3583 p
->cq_off
.tail
= offsetof(struct io_rings
, cq
.tail
);
3584 p
->cq_off
.ring_mask
= offsetof(struct io_rings
, cq_ring_mask
);
3585 p
->cq_off
.ring_entries
= offsetof(struct io_rings
, cq_ring_entries
);
3586 p
->cq_off
.overflow
= offsetof(struct io_rings
, cq_overflow
);
3587 p
->cq_off
.cqes
= offsetof(struct io_rings
, cqes
);
3588 p
->cq_off
.flags
= offsetof(struct io_rings
, cq_flags
);
3589 p
->cq_off
.resv1
= 0;
3590 if (!(p
->flags
& IORING_SETUP_NO_MMAP
))
3591 p
->cq_off
.user_addr
= 0;
3596 static __cold
int io_uring_create(unsigned entries
, struct io_uring_params
*p
,
3597 struct io_uring_params __user
*params
)
3599 struct io_ring_ctx
*ctx
;
3600 struct io_uring_task
*tctx
;
3604 ret
= io_uring_fill_params(entries
, p
);
3608 ctx
= io_ring_ctx_alloc(p
);
3612 ctx
->clockid
= CLOCK_MONOTONIC
;
3613 ctx
->clock_offset
= 0;
3615 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
3616 static_branch_inc(&io_key_has_sqarray
);
3618 if ((ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) &&
3619 !(ctx
->flags
& IORING_SETUP_IOPOLL
) &&
3620 !(ctx
->flags
& IORING_SETUP_SQPOLL
))
3621 ctx
->task_complete
= true;
3623 if (ctx
->task_complete
|| (ctx
->flags
& IORING_SETUP_IOPOLL
))
3624 ctx
->lockless_cq
= true;
3627 * lazy poll_wq activation relies on ->task_complete for synchronisation
3628 * purposes, see io_activate_pollwq()
3630 if (!ctx
->task_complete
)
3631 ctx
->poll_activated
= true;
3634 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3635 * space applications don't need to do io completion events
3636 * polling again, they can rely on io_sq_thread to do polling
3637 * work, which can reduce cpu usage and uring_lock contention.
3639 if (ctx
->flags
& IORING_SETUP_IOPOLL
&&
3640 !(ctx
->flags
& IORING_SETUP_SQPOLL
))
3641 ctx
->syscall_iopoll
= 1;
3643 ctx
->compat
= in_compat_syscall();
3644 if (!ns_capable_noaudit(&init_user_ns
, CAP_IPC_LOCK
))
3645 ctx
->user
= get_uid(current_user());
3648 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3649 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3652 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
3653 /* IPI related flags don't make sense with SQPOLL */
3654 if (ctx
->flags
& (IORING_SETUP_COOP_TASKRUN
|
3655 IORING_SETUP_TASKRUN_FLAG
|
3656 IORING_SETUP_DEFER_TASKRUN
))
3658 ctx
->notify_method
= TWA_SIGNAL_NO_IPI
;
3659 } else if (ctx
->flags
& IORING_SETUP_COOP_TASKRUN
) {
3660 ctx
->notify_method
= TWA_SIGNAL_NO_IPI
;
3662 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
&&
3663 !(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
))
3665 ctx
->notify_method
= TWA_SIGNAL
;
3668 /* HYBRID_IOPOLL only valid with IOPOLL */
3669 if ((ctx
->flags
& (IORING_SETUP_IOPOLL
|IORING_SETUP_HYBRID_IOPOLL
)) ==
3670 IORING_SETUP_HYBRID_IOPOLL
)
3674 * For DEFER_TASKRUN we require the completion task to be the same as the
3675 * submission task. This implies that there is only one submitter, so enforce
3678 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
&&
3679 !(ctx
->flags
& IORING_SETUP_SINGLE_ISSUER
)) {
3684 * This is just grabbed for accounting purposes. When a process exits,
3685 * the mm is exited and dropped before the files, hence we need to hang
3686 * on to this mm purely for the purposes of being able to unaccount
3687 * memory (locked/pinned vm). It's not used for anything else.
3689 mmgrab(current
->mm
);
3690 ctx
->mm_account
= current
->mm
;
3692 ret
= io_allocate_scq_urings(ctx
, p
);
3696 if (!(p
->flags
& IORING_SETUP_NO_SQARRAY
))
3697 p
->sq_off
.array
= (char *)ctx
->sq_array
- (char *)ctx
->rings
;
3699 ret
= io_sq_offload_create(ctx
, p
);
3703 p
->features
= IORING_FEAT_SINGLE_MMAP
| IORING_FEAT_NODROP
|
3704 IORING_FEAT_SUBMIT_STABLE
| IORING_FEAT_RW_CUR_POS
|
3705 IORING_FEAT_CUR_PERSONALITY
| IORING_FEAT_FAST_POLL
|
3706 IORING_FEAT_POLL_32BITS
| IORING_FEAT_SQPOLL_NONFIXED
|
3707 IORING_FEAT_EXT_ARG
| IORING_FEAT_NATIVE_WORKERS
|
3708 IORING_FEAT_RSRC_TAGS
| IORING_FEAT_CQE_SKIP
|
3709 IORING_FEAT_LINKED_FILE
| IORING_FEAT_REG_REG_RING
|
3710 IORING_FEAT_RECVSEND_BUNDLE
| IORING_FEAT_MIN_TIMEOUT
;
3712 if (copy_to_user(params
, p
, sizeof(*p
))) {
3717 if (ctx
->flags
& IORING_SETUP_SINGLE_ISSUER
3718 && !(ctx
->flags
& IORING_SETUP_R_DISABLED
))
3719 WRITE_ONCE(ctx
->submitter_task
, get_task_struct(current
));
3721 file
= io_uring_get_file(ctx
);
3723 ret
= PTR_ERR(file
);
3727 ret
= __io_uring_add_tctx_node(ctx
);
3730 tctx
= current
->io_uring
;
3733 * Install ring fd as the very last thing, so we don't risk someone
3734 * having closed it before we finish setup
3736 if (p
->flags
& IORING_SETUP_REGISTERED_FD_ONLY
)
3737 ret
= io_ring_add_registered_file(tctx
, file
, 0, IO_RINGFD_REG_MAX
);
3739 ret
= io_uring_install_fd(file
);
3743 trace_io_uring_create(ret
, ctx
, p
->sq_entries
, p
->cq_entries
, p
->flags
);
3746 io_ring_ctx_wait_and_kill(ctx
);
3754 * Sets up an aio uring context, and returns the fd. Applications asks for a
3755 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3756 * params structure passed in.
3758 static long io_uring_setup(u32 entries
, struct io_uring_params __user
*params
)
3760 struct io_uring_params p
;
3763 if (copy_from_user(&p
, params
, sizeof(p
)))
3765 for (i
= 0; i
< ARRAY_SIZE(p
.resv
); i
++) {
3770 if (p
.flags
& ~(IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
|
3771 IORING_SETUP_SQ_AFF
| IORING_SETUP_CQSIZE
|
3772 IORING_SETUP_CLAMP
| IORING_SETUP_ATTACH_WQ
|
3773 IORING_SETUP_R_DISABLED
| IORING_SETUP_SUBMIT_ALL
|
3774 IORING_SETUP_COOP_TASKRUN
| IORING_SETUP_TASKRUN_FLAG
|
3775 IORING_SETUP_SQE128
| IORING_SETUP_CQE32
|
3776 IORING_SETUP_SINGLE_ISSUER
| IORING_SETUP_DEFER_TASKRUN
|
3777 IORING_SETUP_NO_MMAP
| IORING_SETUP_REGISTERED_FD_ONLY
|
3778 IORING_SETUP_NO_SQARRAY
| IORING_SETUP_HYBRID_IOPOLL
))
3781 return io_uring_create(entries
, &p
, params
);
3784 static inline bool io_uring_allowed(void)
3786 int disabled
= READ_ONCE(sysctl_io_uring_disabled
);
3787 kgid_t io_uring_group
;
3792 if (disabled
== 0 || capable(CAP_SYS_ADMIN
))
3795 io_uring_group
= make_kgid(&init_user_ns
, sysctl_io_uring_group
);
3796 if (!gid_valid(io_uring_group
))
3799 return in_group_p(io_uring_group
);
3802 SYSCALL_DEFINE2(io_uring_setup
, u32
, entries
,
3803 struct io_uring_params __user
*, params
)
3805 if (!io_uring_allowed())
3808 return io_uring_setup(entries
, params
);
3811 static int __init
io_uring_init(void)
3813 struct kmem_cache_args kmem_args
= {
3814 .useroffset
= offsetof(struct io_kiocb
, cmd
.data
),
3815 .usersize
= sizeof_field(struct io_kiocb
, cmd
.data
),
3816 .freeptr_offset
= offsetof(struct io_kiocb
, work
),
3817 .use_freeptr_offset
= true,
3820 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3821 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3822 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3825 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3826 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3827 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3828 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3829 BUILD_BUG_ON(sizeof(struct io_uring_sqe
) != 64);
3830 BUILD_BUG_SQE_ELEM(0, __u8
, opcode
);
3831 BUILD_BUG_SQE_ELEM(1, __u8
, flags
);
3832 BUILD_BUG_SQE_ELEM(2, __u16
, ioprio
);
3833 BUILD_BUG_SQE_ELEM(4, __s32
, fd
);
3834 BUILD_BUG_SQE_ELEM(8, __u64
, off
);
3835 BUILD_BUG_SQE_ELEM(8, __u64
, addr2
);
3836 BUILD_BUG_SQE_ELEM(8, __u32
, cmd_op
);
3837 BUILD_BUG_SQE_ELEM(12, __u32
, __pad1
);
3838 BUILD_BUG_SQE_ELEM(16, __u64
, addr
);
3839 BUILD_BUG_SQE_ELEM(16, __u64
, splice_off_in
);
3840 BUILD_BUG_SQE_ELEM(24, __u32
, len
);
3841 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t
, rw_flags
);
3842 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags
);
3843 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32
, rw_flags
);
3844 BUILD_BUG_SQE_ELEM(28, __u32
, fsync_flags
);
3845 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16
, poll_events
);
3846 BUILD_BUG_SQE_ELEM(28, __u32
, poll32_events
);
3847 BUILD_BUG_SQE_ELEM(28, __u32
, sync_range_flags
);
3848 BUILD_BUG_SQE_ELEM(28, __u32
, msg_flags
);
3849 BUILD_BUG_SQE_ELEM(28, __u32
, timeout_flags
);
3850 BUILD_BUG_SQE_ELEM(28, __u32
, accept_flags
);
3851 BUILD_BUG_SQE_ELEM(28, __u32
, cancel_flags
);
3852 BUILD_BUG_SQE_ELEM(28, __u32
, open_flags
);
3853 BUILD_BUG_SQE_ELEM(28, __u32
, statx_flags
);
3854 BUILD_BUG_SQE_ELEM(28, __u32
, fadvise_advice
);
3855 BUILD_BUG_SQE_ELEM(28, __u32
, splice_flags
);
3856 BUILD_BUG_SQE_ELEM(28, __u32
, rename_flags
);
3857 BUILD_BUG_SQE_ELEM(28, __u32
, unlink_flags
);
3858 BUILD_BUG_SQE_ELEM(28, __u32
, hardlink_flags
);
3859 BUILD_BUG_SQE_ELEM(28, __u32
, xattr_flags
);
3860 BUILD_BUG_SQE_ELEM(28, __u32
, msg_ring_flags
);
3861 BUILD_BUG_SQE_ELEM(32, __u64
, user_data
);
3862 BUILD_BUG_SQE_ELEM(40, __u16
, buf_index
);
3863 BUILD_BUG_SQE_ELEM(40, __u16
, buf_group
);
3864 BUILD_BUG_SQE_ELEM(42, __u16
, personality
);
3865 BUILD_BUG_SQE_ELEM(44, __s32
, splice_fd_in
);
3866 BUILD_BUG_SQE_ELEM(44, __u32
, file_index
);
3867 BUILD_BUG_SQE_ELEM(44, __u16
, addr_len
);
3868 BUILD_BUG_SQE_ELEM(46, __u16
, __pad3
[0]);
3869 BUILD_BUG_SQE_ELEM(48, __u64
, addr3
);
3870 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd
);
3871 BUILD_BUG_SQE_ELEM(56, __u64
, __pad2
);
3873 BUILD_BUG_ON(sizeof(struct io_uring_files_update
) !=
3874 sizeof(struct io_uring_rsrc_update
));
3875 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update
) >
3876 sizeof(struct io_uring_rsrc_update2
));
3878 /* ->buf_index is u16 */
3879 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring
, bufs
) != 0);
3880 BUILD_BUG_ON(offsetof(struct io_uring_buf
, resv
) !=
3881 offsetof(struct io_uring_buf_ring
, tail
));
3883 /* should fit into one byte */
3884 BUILD_BUG_ON(SQE_VALID_FLAGS
>= (1 << 8));
3885 BUILD_BUG_ON(SQE_COMMON_FLAGS
>= (1 << 8));
3886 BUILD_BUG_ON((SQE_VALID_FLAGS
| SQE_COMMON_FLAGS
) != SQE_VALID_FLAGS
);
3888 BUILD_BUG_ON(__REQ_F_LAST_BIT
> 8 * sizeof_field(struct io_kiocb
, flags
));
3890 BUILD_BUG_ON(sizeof(atomic_t
) != sizeof(u32
));
3892 /* top 8bits are for internal use */
3893 BUILD_BUG_ON((IORING_URING_CMD_MASK
& 0xff000000) != 0);
3895 io_uring_optable_init();
3898 * Allow user copy in the per-command field, which starts after the
3899 * file in io_kiocb and until the opcode field. The openat2 handling
3900 * requires copying in user memory into the io_kiocb object in that
3901 * range, and HARDENED_USERCOPY will complain if we haven't
3902 * correctly annotated this range.
3904 req_cachep
= kmem_cache_create("io_kiocb", sizeof(struct io_kiocb
), &kmem_args
,
3905 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
|
3906 SLAB_TYPESAFE_BY_RCU
);
3907 io_buf_cachep
= KMEM_CACHE(io_buffer
,
3908 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
);
3910 iou_wq
= alloc_workqueue("iou_exit", WQ_UNBOUND
, 64);
3912 #ifdef CONFIG_SYSCTL
3913 register_sysctl_init("kernel", kernel_io_uring_disabled_table
);
3918 __initcall(io_uring_init
);