printf: Remove unused 'bprintf'
[drm/drm-misc.git] / kernel / fork.c
blob1450b461d196a1efee0e120780467a96f6c7d491
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
115 #include <trace/events/sched.h>
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
120 #include <kunit/visibility.h>
123 * Minimum number of threads to boot the kernel
125 #define MIN_THREADS 20
128 * Maximum number of threads
130 #define MAX_THREADS FUTEX_TID_MASK
133 * Protected counters by write_lock_irq(&tasklist_lock)
135 unsigned long total_forks; /* Handle normal Linux uptimes. */
136 int nr_threads; /* The idle threads do not count.. */
138 static int max_threads; /* tunable limit on nr_threads */
140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
142 static const char * const resident_page_types[] = {
143 NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
156 return lockdep_is_held(&tasklist_lock);
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
161 int nr_processes(void)
163 int cpu;
164 int total = 0;
166 for_each_possible_cpu(cpu)
167 total += per_cpu(process_counts, cpu);
169 return total;
172 void __weak arch_release_task_struct(struct task_struct *tsk)
176 static struct kmem_cache *task_struct_cachep;
178 static inline struct task_struct *alloc_task_struct_node(int node)
180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
183 static inline void free_task_struct(struct task_struct *tsk)
185 kmem_cache_free(task_struct_cachep, tsk);
189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190 * kmemcache based allocator.
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
194 # ifdef CONFIG_VMAP_STACK
196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197 * flush. Try to minimize the number of calls by caching stacks.
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
202 struct vm_stack {
203 struct rcu_head rcu;
204 struct vm_struct *stack_vm_area;
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
209 unsigned int i;
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *tmp = NULL;
214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 return true;
217 return false;
220 static void thread_stack_free_rcu(struct rcu_head *rh)
222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 return;
227 vfree(vm_stack);
230 static void thread_stack_delayed_free(struct task_struct *tsk)
232 struct vm_stack *vm_stack = tsk->stack;
234 vm_stack->stack_vm_area = tsk->stack_vm_area;
235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
238 static int free_vm_stack_cache(unsigned int cpu)
240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 int i;
243 for (i = 0; i < NR_CACHED_STACKS; i++) {
244 struct vm_struct *vm_stack = cached_vm_stacks[i];
246 if (!vm_stack)
247 continue;
249 vfree(vm_stack->addr);
250 cached_vm_stacks[i] = NULL;
253 return 0;
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
258 int i;
259 int ret;
260 int nr_charged = 0;
262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 if (ret)
267 goto err;
268 nr_charged++;
270 return 0;
271 err:
272 for (i = 0; i < nr_charged; i++)
273 memcg_kmem_uncharge_page(vm->pages[i], 0);
274 return ret;
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
279 struct vm_struct *vm;
280 void *stack;
281 int i;
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 struct vm_struct *s;
286 s = this_cpu_xchg(cached_stacks[i], NULL);
288 if (!s)
289 continue;
291 /* Reset stack metadata. */
292 kasan_unpoison_range(s->addr, THREAD_SIZE);
294 stack = kasan_reset_tag(s->addr);
296 /* Clear stale pointers from reused stack. */
297 memset(stack, 0, THREAD_SIZE);
299 if (memcg_charge_kernel_stack(s)) {
300 vfree(s->addr);
301 return -ENOMEM;
304 tsk->stack_vm_area = s;
305 tsk->stack = stack;
306 return 0;
310 * Allocated stacks are cached and later reused by new threads,
311 * so memcg accounting is performed manually on assigning/releasing
312 * stacks to tasks. Drop __GFP_ACCOUNT.
314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 VMALLOC_START, VMALLOC_END,
316 THREADINFO_GFP & ~__GFP_ACCOUNT,
317 PAGE_KERNEL,
318 0, node, __builtin_return_address(0));
319 if (!stack)
320 return -ENOMEM;
322 vm = find_vm_area(stack);
323 if (memcg_charge_kernel_stack(vm)) {
324 vfree(stack);
325 return -ENOMEM;
328 * We can't call find_vm_area() in interrupt context, and
329 * free_thread_stack() can be called in interrupt context,
330 * so cache the vm_struct.
332 tsk->stack_vm_area = vm;
333 stack = kasan_reset_tag(stack);
334 tsk->stack = stack;
335 return 0;
338 static void free_thread_stack(struct task_struct *tsk)
340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 thread_stack_delayed_free(tsk);
343 tsk->stack = NULL;
344 tsk->stack_vm_area = NULL;
347 # else /* !CONFIG_VMAP_STACK */
349 static void thread_stack_free_rcu(struct rcu_head *rh)
351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
354 static void thread_stack_delayed_free(struct task_struct *tsk)
356 struct rcu_head *rh = tsk->stack;
358 call_rcu(rh, thread_stack_free_rcu);
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 THREAD_SIZE_ORDER);
366 if (likely(page)) {
367 tsk->stack = kasan_reset_tag(page_address(page));
368 return 0;
370 return -ENOMEM;
373 static void free_thread_stack(struct task_struct *tsk)
375 thread_stack_delayed_free(tsk);
376 tsk->stack = NULL;
379 # endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
382 static struct kmem_cache *thread_stack_cache;
384 static void thread_stack_free_rcu(struct rcu_head *rh)
386 kmem_cache_free(thread_stack_cache, rh);
389 static void thread_stack_delayed_free(struct task_struct *tsk)
391 struct rcu_head *rh = tsk->stack;
393 call_rcu(rh, thread_stack_free_rcu);
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
398 unsigned long *stack;
399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 stack = kasan_reset_tag(stack);
401 tsk->stack = stack;
402 return stack ? 0 : -ENOMEM;
405 static void free_thread_stack(struct task_struct *tsk)
407 thread_stack_delayed_free(tsk);
408 tsk->stack = NULL;
411 void thread_stack_cache_init(void)
413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 THREAD_SIZE, THREAD_SIZE, 0, 0,
415 THREAD_SIZE, NULL);
416 BUG_ON(thread_stack_cache == NULL);
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
439 #ifdef CONFIG_PER_VMA_LOCK
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447 if (!vma->vm_lock)
448 return false;
450 init_rwsem(&vma->vm_lock->lock);
451 vma->vm_lock_seq = -1;
453 return true;
456 static inline void vma_lock_free(struct vm_area_struct *vma)
458 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
461 #else /* CONFIG_PER_VMA_LOCK */
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
466 #endif /* CONFIG_PER_VMA_LOCK */
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
470 struct vm_area_struct *vma;
472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473 if (!vma)
474 return NULL;
476 vma_init(vma, mm);
477 if (!vma_lock_alloc(vma)) {
478 kmem_cache_free(vm_area_cachep, vma);
479 return NULL;
482 return vma;
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
489 if (!new)
490 return NULL;
492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
495 * orig->shared.rb may be modified concurrently, but the clone
496 * will be reinitialized.
498 data_race(memcpy(new, orig, sizeof(*new)));
499 if (!vma_lock_alloc(new)) {
500 kmem_cache_free(vm_area_cachep, new);
501 return NULL;
503 INIT_LIST_HEAD(&new->anon_vma_chain);
504 vma_numab_state_init(new);
505 dup_anon_vma_name(orig, new);
507 return new;
510 void __vm_area_free(struct vm_area_struct *vma)
512 vma_numab_state_free(vma);
513 free_anon_vma_name(vma);
514 vma_lock_free(vma);
515 kmem_cache_free(vm_area_cachep, vma);
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522 vm_rcu);
524 /* The vma should not be locked while being destroyed. */
525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526 __vm_area_free(vma);
528 #endif
530 void vm_area_free(struct vm_area_struct *vma)
532 #ifdef CONFIG_PER_VMA_LOCK
533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535 __vm_area_free(vma);
536 #endif
539 static void account_kernel_stack(struct task_struct *tsk, int account)
541 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542 struct vm_struct *vm = task_stack_vm_area(tsk);
543 int i;
545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547 account * (PAGE_SIZE / 1024));
548 } else {
549 void *stack = task_stack_page(tsk);
551 /* All stack pages are in the same node. */
552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553 account * (THREAD_SIZE / 1024));
557 void exit_task_stack_account(struct task_struct *tsk)
559 account_kernel_stack(tsk, -1);
561 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 struct vm_struct *vm;
563 int i;
565 vm = task_stack_vm_area(tsk);
566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567 memcg_kmem_uncharge_page(vm->pages[i], 0);
571 static void release_task_stack(struct task_struct *tsk)
573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574 return; /* Better to leak the stack than to free prematurely */
576 free_thread_stack(tsk);
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
582 if (refcount_dec_and_test(&tsk->stack_refcount))
583 release_task_stack(tsk);
585 #endif
587 void free_task(struct task_struct *tsk)
589 #ifdef CONFIG_SECCOMP
590 WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592 release_user_cpus_ptr(tsk);
593 scs_release(tsk);
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
597 * The task is finally done with both the stack and thread_info,
598 * so free both.
600 release_task_stack(tsk);
601 #else
603 * If the task had a separate stack allocation, it should be gone
604 * by now.
606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608 rt_mutex_debug_task_free(tsk);
609 ftrace_graph_exit_task(tsk);
610 arch_release_task_struct(tsk);
611 if (tsk->flags & PF_KTHREAD)
612 free_kthread_struct(tsk);
613 bpf_task_storage_free(tsk);
614 free_task_struct(tsk);
616 EXPORT_SYMBOL(free_task);
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
620 struct file *exe_file;
622 exe_file = get_mm_exe_file(oldmm);
623 RCU_INIT_POINTER(mm->exe_file, exe_file);
625 * We depend on the oldmm having properly denied write access to the
626 * exe_file already.
628 if (exe_file && deny_write_access(exe_file))
629 pr_warn_once("deny_write_access() failed in %s\n", __func__);
632 #ifdef CONFIG_MMU
633 static __latent_entropy int dup_mmap(struct mm_struct *mm,
634 struct mm_struct *oldmm)
636 struct vm_area_struct *mpnt, *tmp;
637 int retval;
638 unsigned long charge = 0;
639 LIST_HEAD(uf);
640 VMA_ITERATOR(vmi, mm, 0);
642 uprobe_start_dup_mmap();
643 if (mmap_write_lock_killable(oldmm)) {
644 retval = -EINTR;
645 goto fail_uprobe_end;
647 flush_cache_dup_mm(oldmm);
648 uprobe_dup_mmap(oldmm, mm);
650 * Not linked in yet - no deadlock potential:
652 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
654 /* No ordering required: file already has been exposed. */
655 dup_mm_exe_file(mm, oldmm);
657 mm->total_vm = oldmm->total_vm;
658 mm->data_vm = oldmm->data_vm;
659 mm->exec_vm = oldmm->exec_vm;
660 mm->stack_vm = oldmm->stack_vm;
662 /* Use __mt_dup() to efficiently build an identical maple tree. */
663 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
664 if (unlikely(retval))
665 goto out;
667 mt_clear_in_rcu(vmi.mas.tree);
668 for_each_vma(vmi, mpnt) {
669 struct file *file;
671 vma_start_write(mpnt);
672 if (mpnt->vm_flags & VM_DONTCOPY) {
673 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
674 mpnt->vm_end, GFP_KERNEL);
675 if (retval)
676 goto loop_out;
678 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679 continue;
681 charge = 0;
683 * Don't duplicate many vmas if we've been oom-killed (for
684 * example)
686 if (fatal_signal_pending(current)) {
687 retval = -EINTR;
688 goto loop_out;
690 if (mpnt->vm_flags & VM_ACCOUNT) {
691 unsigned long len = vma_pages(mpnt);
693 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694 goto fail_nomem;
695 charge = len;
697 tmp = vm_area_dup(mpnt);
698 if (!tmp)
699 goto fail_nomem;
700 retval = vma_dup_policy(mpnt, tmp);
701 if (retval)
702 goto fail_nomem_policy;
703 tmp->vm_mm = mm;
704 retval = dup_userfaultfd(tmp, &uf);
705 if (retval)
706 goto fail_nomem_anon_vma_fork;
707 if (tmp->vm_flags & VM_WIPEONFORK) {
709 * VM_WIPEONFORK gets a clean slate in the child.
710 * Don't prepare anon_vma until fault since we don't
711 * copy page for current vma.
713 tmp->anon_vma = NULL;
714 } else if (anon_vma_fork(tmp, mpnt))
715 goto fail_nomem_anon_vma_fork;
716 vm_flags_clear(tmp, VM_LOCKED_MASK);
718 * Copy/update hugetlb private vma information.
720 if (is_vm_hugetlb_page(tmp))
721 hugetlb_dup_vma_private(tmp);
724 * Link the vma into the MT. After using __mt_dup(), memory
725 * allocation is not necessary here, so it cannot fail.
727 vma_iter_bulk_store(&vmi, tmp);
729 mm->map_count++;
731 if (tmp->vm_ops && tmp->vm_ops->open)
732 tmp->vm_ops->open(tmp);
734 file = tmp->vm_file;
735 if (file) {
736 struct address_space *mapping = file->f_mapping;
738 get_file(file);
739 i_mmap_lock_write(mapping);
740 if (vma_is_shared_maywrite(tmp))
741 mapping_allow_writable(mapping);
742 flush_dcache_mmap_lock(mapping);
743 /* insert tmp into the share list, just after mpnt */
744 vma_interval_tree_insert_after(tmp, mpnt,
745 &mapping->i_mmap);
746 flush_dcache_mmap_unlock(mapping);
747 i_mmap_unlock_write(mapping);
750 if (!(tmp->vm_flags & VM_WIPEONFORK))
751 retval = copy_page_range(tmp, mpnt);
753 if (retval) {
754 mpnt = vma_next(&vmi);
755 goto loop_out;
758 /* a new mm has just been created */
759 retval = arch_dup_mmap(oldmm, mm);
760 loop_out:
761 vma_iter_free(&vmi);
762 if (!retval) {
763 mt_set_in_rcu(vmi.mas.tree);
764 ksm_fork(mm, oldmm);
765 khugepaged_fork(mm, oldmm);
766 } else if (mpnt) {
768 * The entire maple tree has already been duplicated. If the
769 * mmap duplication fails, mark the failure point with
770 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
771 * stop releasing VMAs that have not been duplicated after this
772 * point.
774 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
775 mas_store(&vmi.mas, XA_ZERO_ENTRY);
777 out:
778 mmap_write_unlock(mm);
779 flush_tlb_mm(oldmm);
780 mmap_write_unlock(oldmm);
781 if (!retval)
782 dup_userfaultfd_complete(&uf);
783 else
784 dup_userfaultfd_fail(&uf);
785 fail_uprobe_end:
786 uprobe_end_dup_mmap();
787 return retval;
789 fail_nomem_anon_vma_fork:
790 mpol_put(vma_policy(tmp));
791 fail_nomem_policy:
792 vm_area_free(tmp);
793 fail_nomem:
794 retval = -ENOMEM;
795 vm_unacct_memory(charge);
796 goto loop_out;
799 static inline int mm_alloc_pgd(struct mm_struct *mm)
801 mm->pgd = pgd_alloc(mm);
802 if (unlikely(!mm->pgd))
803 return -ENOMEM;
804 return 0;
807 static inline void mm_free_pgd(struct mm_struct *mm)
809 pgd_free(mm, mm->pgd);
811 #else
812 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
814 mmap_write_lock(oldmm);
815 dup_mm_exe_file(mm, oldmm);
816 mmap_write_unlock(oldmm);
817 return 0;
819 #define mm_alloc_pgd(mm) (0)
820 #define mm_free_pgd(mm)
821 #endif /* CONFIG_MMU */
823 static void check_mm(struct mm_struct *mm)
825 int i;
827 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
828 "Please make sure 'struct resident_page_types[]' is updated as well");
830 for (i = 0; i < NR_MM_COUNTERS; i++) {
831 long x = percpu_counter_sum(&mm->rss_stat[i]);
833 if (unlikely(x))
834 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
835 mm, resident_page_types[i], x);
838 if (mm_pgtables_bytes(mm))
839 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
840 mm_pgtables_bytes(mm));
842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
843 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
844 #endif
847 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
848 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
850 static void do_check_lazy_tlb(void *arg)
852 struct mm_struct *mm = arg;
854 WARN_ON_ONCE(current->active_mm == mm);
857 static void do_shoot_lazy_tlb(void *arg)
859 struct mm_struct *mm = arg;
861 if (current->active_mm == mm) {
862 WARN_ON_ONCE(current->mm);
863 current->active_mm = &init_mm;
864 switch_mm(mm, &init_mm, current);
868 static void cleanup_lazy_tlbs(struct mm_struct *mm)
870 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
872 * In this case, lazy tlb mms are refounted and would not reach
873 * __mmdrop until all CPUs have switched away and mmdrop()ed.
875 return;
879 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
880 * requires lazy mm users to switch to another mm when the refcount
881 * drops to zero, before the mm is freed. This requires IPIs here to
882 * switch kernel threads to init_mm.
884 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
885 * switch with the final userspace teardown TLB flush which leaves the
886 * mm lazy on this CPU but no others, reducing the need for additional
887 * IPIs here. There are cases where a final IPI is still required here,
888 * such as the final mmdrop being performed on a different CPU than the
889 * one exiting, or kernel threads using the mm when userspace exits.
891 * IPI overheads have not found to be expensive, but they could be
892 * reduced in a number of possible ways, for example (roughly
893 * increasing order of complexity):
894 * - The last lazy reference created by exit_mm() could instead switch
895 * to init_mm, however it's probable this will run on the same CPU
896 * immediately afterwards, so this may not reduce IPIs much.
897 * - A batch of mms requiring IPIs could be gathered and freed at once.
898 * - CPUs store active_mm where it can be remotely checked without a
899 * lock, to filter out false-positives in the cpumask.
900 * - After mm_users or mm_count reaches zero, switching away from the
901 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
902 * with some batching or delaying of the final IPIs.
903 * - A delayed freeing and RCU-like quiescing sequence based on mm
904 * switching to avoid IPIs completely.
906 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
907 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
908 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
912 * Called when the last reference to the mm
913 * is dropped: either by a lazy thread or by
914 * mmput. Free the page directory and the mm.
916 void __mmdrop(struct mm_struct *mm)
918 BUG_ON(mm == &init_mm);
919 WARN_ON_ONCE(mm == current->mm);
921 /* Ensure no CPUs are using this as their lazy tlb mm */
922 cleanup_lazy_tlbs(mm);
924 WARN_ON_ONCE(mm == current->active_mm);
925 mm_free_pgd(mm);
926 destroy_context(mm);
927 mmu_notifier_subscriptions_destroy(mm);
928 check_mm(mm);
929 put_user_ns(mm->user_ns);
930 mm_pasid_drop(mm);
931 mm_destroy_cid(mm);
932 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
934 free_mm(mm);
936 EXPORT_SYMBOL_GPL(__mmdrop);
938 static void mmdrop_async_fn(struct work_struct *work)
940 struct mm_struct *mm;
942 mm = container_of(work, struct mm_struct, async_put_work);
943 __mmdrop(mm);
946 static void mmdrop_async(struct mm_struct *mm)
948 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
949 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
950 schedule_work(&mm->async_put_work);
954 static inline void free_signal_struct(struct signal_struct *sig)
956 taskstats_tgid_free(sig);
957 sched_autogroup_exit(sig);
959 * __mmdrop is not safe to call from softirq context on x86 due to
960 * pgd_dtor so postpone it to the async context
962 if (sig->oom_mm)
963 mmdrop_async(sig->oom_mm);
964 kmem_cache_free(signal_cachep, sig);
967 static inline void put_signal_struct(struct signal_struct *sig)
969 if (refcount_dec_and_test(&sig->sigcnt))
970 free_signal_struct(sig);
973 void __put_task_struct(struct task_struct *tsk)
975 WARN_ON(!tsk->exit_state);
976 WARN_ON(refcount_read(&tsk->usage));
977 WARN_ON(tsk == current);
979 sched_ext_free(tsk);
980 io_uring_free(tsk);
981 cgroup_free(tsk);
982 task_numa_free(tsk, true);
983 security_task_free(tsk);
984 exit_creds(tsk);
985 delayacct_tsk_free(tsk);
986 put_signal_struct(tsk->signal);
987 sched_core_free(tsk);
988 free_task(tsk);
990 EXPORT_SYMBOL_GPL(__put_task_struct);
992 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
994 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
996 __put_task_struct(task);
998 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1000 void __init __weak arch_task_cache_init(void) { }
1003 * set_max_threads
1005 static void __init set_max_threads(unsigned int max_threads_suggested)
1007 u64 threads;
1008 unsigned long nr_pages = memblock_estimated_nr_free_pages();
1011 * The number of threads shall be limited such that the thread
1012 * structures may only consume a small part of the available memory.
1014 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1015 threads = MAX_THREADS;
1016 else
1017 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1018 (u64) THREAD_SIZE * 8UL);
1020 if (threads > max_threads_suggested)
1021 threads = max_threads_suggested;
1023 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1026 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1027 /* Initialized by the architecture: */
1028 int arch_task_struct_size __read_mostly;
1029 #endif
1031 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1033 /* Fetch thread_struct whitelist for the architecture. */
1034 arch_thread_struct_whitelist(offset, size);
1037 * Handle zero-sized whitelist or empty thread_struct, otherwise
1038 * adjust offset to position of thread_struct in task_struct.
1040 if (unlikely(*size == 0))
1041 *offset = 0;
1042 else
1043 *offset += offsetof(struct task_struct, thread);
1046 void __init fork_init(void)
1048 int i;
1049 #ifndef ARCH_MIN_TASKALIGN
1050 #define ARCH_MIN_TASKALIGN 0
1051 #endif
1052 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1053 unsigned long useroffset, usersize;
1055 /* create a slab on which task_structs can be allocated */
1056 task_struct_whitelist(&useroffset, &usersize);
1057 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1058 arch_task_struct_size, align,
1059 SLAB_PANIC|SLAB_ACCOUNT,
1060 useroffset, usersize, NULL);
1062 /* do the arch specific task caches init */
1063 arch_task_cache_init();
1065 set_max_threads(MAX_THREADS);
1067 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1068 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1069 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1070 init_task.signal->rlim[RLIMIT_NPROC];
1072 for (i = 0; i < UCOUNT_COUNTS; i++)
1073 init_user_ns.ucount_max[i] = max_threads/2;
1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1076 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1077 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1078 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1080 #ifdef CONFIG_VMAP_STACK
1081 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1082 NULL, free_vm_stack_cache);
1083 #endif
1085 scs_init();
1087 lockdep_init_task(&init_task);
1088 uprobes_init();
1091 int __weak arch_dup_task_struct(struct task_struct *dst,
1092 struct task_struct *src)
1094 *dst = *src;
1095 return 0;
1098 void set_task_stack_end_magic(struct task_struct *tsk)
1100 unsigned long *stackend;
1102 stackend = end_of_stack(tsk);
1103 *stackend = STACK_END_MAGIC; /* for overflow detection */
1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1108 struct task_struct *tsk;
1109 int err;
1111 if (node == NUMA_NO_NODE)
1112 node = tsk_fork_get_node(orig);
1113 tsk = alloc_task_struct_node(node);
1114 if (!tsk)
1115 return NULL;
1117 err = arch_dup_task_struct(tsk, orig);
1118 if (err)
1119 goto free_tsk;
1121 err = alloc_thread_stack_node(tsk, node);
1122 if (err)
1123 goto free_tsk;
1125 #ifdef CONFIG_THREAD_INFO_IN_TASK
1126 refcount_set(&tsk->stack_refcount, 1);
1127 #endif
1128 account_kernel_stack(tsk, 1);
1130 err = scs_prepare(tsk, node);
1131 if (err)
1132 goto free_stack;
1134 #ifdef CONFIG_SECCOMP
1136 * We must handle setting up seccomp filters once we're under
1137 * the sighand lock in case orig has changed between now and
1138 * then. Until then, filter must be NULL to avoid messing up
1139 * the usage counts on the error path calling free_task.
1141 tsk->seccomp.filter = NULL;
1142 #endif
1144 setup_thread_stack(tsk, orig);
1145 clear_user_return_notifier(tsk);
1146 clear_tsk_need_resched(tsk);
1147 set_task_stack_end_magic(tsk);
1148 clear_syscall_work_syscall_user_dispatch(tsk);
1150 #ifdef CONFIG_STACKPROTECTOR
1151 tsk->stack_canary = get_random_canary();
1152 #endif
1153 if (orig->cpus_ptr == &orig->cpus_mask)
1154 tsk->cpus_ptr = &tsk->cpus_mask;
1155 dup_user_cpus_ptr(tsk, orig, node);
1158 * One for the user space visible state that goes away when reaped.
1159 * One for the scheduler.
1161 refcount_set(&tsk->rcu_users, 2);
1162 /* One for the rcu users */
1163 refcount_set(&tsk->usage, 1);
1164 #ifdef CONFIG_BLK_DEV_IO_TRACE
1165 tsk->btrace_seq = 0;
1166 #endif
1167 tsk->splice_pipe = NULL;
1168 tsk->task_frag.page = NULL;
1169 tsk->wake_q.next = NULL;
1170 tsk->worker_private = NULL;
1172 kcov_task_init(tsk);
1173 kmsan_task_create(tsk);
1174 kmap_local_fork(tsk);
1176 #ifdef CONFIG_FAULT_INJECTION
1177 tsk->fail_nth = 0;
1178 #endif
1180 #ifdef CONFIG_BLK_CGROUP
1181 tsk->throttle_disk = NULL;
1182 tsk->use_memdelay = 0;
1183 #endif
1185 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1186 tsk->pasid_activated = 0;
1187 #endif
1189 #ifdef CONFIG_MEMCG
1190 tsk->active_memcg = NULL;
1191 #endif
1193 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1194 tsk->reported_split_lock = 0;
1195 #endif
1197 #ifdef CONFIG_SCHED_MM_CID
1198 tsk->mm_cid = -1;
1199 tsk->last_mm_cid = -1;
1200 tsk->mm_cid_active = 0;
1201 tsk->migrate_from_cpu = -1;
1202 #endif
1203 return tsk;
1205 free_stack:
1206 exit_task_stack_account(tsk);
1207 free_thread_stack(tsk);
1208 free_tsk:
1209 free_task_struct(tsk);
1210 return NULL;
1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1217 static int __init coredump_filter_setup(char *s)
1219 default_dump_filter =
1220 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1221 MMF_DUMP_FILTER_MASK;
1222 return 1;
1225 __setup("coredump_filter=", coredump_filter_setup);
1227 #include <linux/init_task.h>
1229 static void mm_init_aio(struct mm_struct *mm)
1231 #ifdef CONFIG_AIO
1232 spin_lock_init(&mm->ioctx_lock);
1233 mm->ioctx_table = NULL;
1234 #endif
1237 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1238 struct task_struct *p)
1240 #ifdef CONFIG_MEMCG
1241 if (mm->owner == p)
1242 WRITE_ONCE(mm->owner, NULL);
1243 #endif
1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1248 #ifdef CONFIG_MEMCG
1249 mm->owner = p;
1250 #endif
1253 static void mm_init_uprobes_state(struct mm_struct *mm)
1255 #ifdef CONFIG_UPROBES
1256 mm->uprobes_state.xol_area = NULL;
1257 #endif
1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1261 struct user_namespace *user_ns)
1263 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1264 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1265 atomic_set(&mm->mm_users, 1);
1266 atomic_set(&mm->mm_count, 1);
1267 seqcount_init(&mm->write_protect_seq);
1268 mmap_init_lock(mm);
1269 INIT_LIST_HEAD(&mm->mmlist);
1270 #ifdef CONFIG_PER_VMA_LOCK
1271 mm->mm_lock_seq = 0;
1272 #endif
1273 mm_pgtables_bytes_init(mm);
1274 mm->map_count = 0;
1275 mm->locked_vm = 0;
1276 atomic64_set(&mm->pinned_vm, 0);
1277 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1278 spin_lock_init(&mm->page_table_lock);
1279 spin_lock_init(&mm->arg_lock);
1280 mm_init_cpumask(mm);
1281 mm_init_aio(mm);
1282 mm_init_owner(mm, p);
1283 mm_pasid_init(mm);
1284 RCU_INIT_POINTER(mm->exe_file, NULL);
1285 mmu_notifier_subscriptions_init(mm);
1286 init_tlb_flush_pending(mm);
1287 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1288 mm->pmd_huge_pte = NULL;
1289 #endif
1290 mm_init_uprobes_state(mm);
1291 hugetlb_count_init(mm);
1293 if (current->mm) {
1294 mm->flags = mmf_init_flags(current->mm->flags);
1295 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1296 } else {
1297 mm->flags = default_dump_filter;
1298 mm->def_flags = 0;
1301 if (mm_alloc_pgd(mm))
1302 goto fail_nopgd;
1304 if (init_new_context(p, mm))
1305 goto fail_nocontext;
1307 if (mm_alloc_cid(mm, p))
1308 goto fail_cid;
1310 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1311 NR_MM_COUNTERS))
1312 goto fail_pcpu;
1314 mm->user_ns = get_user_ns(user_ns);
1315 lru_gen_init_mm(mm);
1316 return mm;
1318 fail_pcpu:
1319 mm_destroy_cid(mm);
1320 fail_cid:
1321 destroy_context(mm);
1322 fail_nocontext:
1323 mm_free_pgd(mm);
1324 fail_nopgd:
1325 free_mm(mm);
1326 return NULL;
1330 * Allocate and initialize an mm_struct.
1332 struct mm_struct *mm_alloc(void)
1334 struct mm_struct *mm;
1336 mm = allocate_mm();
1337 if (!mm)
1338 return NULL;
1340 memset(mm, 0, sizeof(*mm));
1341 return mm_init(mm, current, current_user_ns());
1343 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1345 static inline void __mmput(struct mm_struct *mm)
1347 VM_BUG_ON(atomic_read(&mm->mm_users));
1349 uprobe_clear_state(mm);
1350 exit_aio(mm);
1351 ksm_exit(mm);
1352 khugepaged_exit(mm); /* must run before exit_mmap */
1353 exit_mmap(mm);
1354 mm_put_huge_zero_folio(mm);
1355 set_mm_exe_file(mm, NULL);
1356 if (!list_empty(&mm->mmlist)) {
1357 spin_lock(&mmlist_lock);
1358 list_del(&mm->mmlist);
1359 spin_unlock(&mmlist_lock);
1361 if (mm->binfmt)
1362 module_put(mm->binfmt->module);
1363 lru_gen_del_mm(mm);
1364 mmdrop(mm);
1368 * Decrement the use count and release all resources for an mm.
1370 void mmput(struct mm_struct *mm)
1372 might_sleep();
1374 if (atomic_dec_and_test(&mm->mm_users))
1375 __mmput(mm);
1377 EXPORT_SYMBOL_GPL(mmput);
1379 #ifdef CONFIG_MMU
1380 static void mmput_async_fn(struct work_struct *work)
1382 struct mm_struct *mm = container_of(work, struct mm_struct,
1383 async_put_work);
1385 __mmput(mm);
1388 void mmput_async(struct mm_struct *mm)
1390 if (atomic_dec_and_test(&mm->mm_users)) {
1391 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1392 schedule_work(&mm->async_put_work);
1395 EXPORT_SYMBOL_GPL(mmput_async);
1396 #endif
1399 * set_mm_exe_file - change a reference to the mm's executable file
1400 * @mm: The mm to change.
1401 * @new_exe_file: The new file to use.
1403 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1405 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1406 * invocations: in mmput() nobody alive left, in execve it happens before
1407 * the new mm is made visible to anyone.
1409 * Can only fail if new_exe_file != NULL.
1411 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1413 struct file *old_exe_file;
1416 * It is safe to dereference the exe_file without RCU as
1417 * this function is only called if nobody else can access
1418 * this mm -- see comment above for justification.
1420 old_exe_file = rcu_dereference_raw(mm->exe_file);
1422 if (new_exe_file) {
1424 * We expect the caller (i.e., sys_execve) to already denied
1425 * write access, so this is unlikely to fail.
1427 if (unlikely(deny_write_access(new_exe_file)))
1428 return -EACCES;
1429 get_file(new_exe_file);
1431 rcu_assign_pointer(mm->exe_file, new_exe_file);
1432 if (old_exe_file) {
1433 allow_write_access(old_exe_file);
1434 fput(old_exe_file);
1436 return 0;
1440 * replace_mm_exe_file - replace a reference to the mm's executable file
1441 * @mm: The mm to change.
1442 * @new_exe_file: The new file to use.
1444 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1446 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1448 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1450 struct vm_area_struct *vma;
1451 struct file *old_exe_file;
1452 int ret = 0;
1454 /* Forbid mm->exe_file change if old file still mapped. */
1455 old_exe_file = get_mm_exe_file(mm);
1456 if (old_exe_file) {
1457 VMA_ITERATOR(vmi, mm, 0);
1458 mmap_read_lock(mm);
1459 for_each_vma(vmi, vma) {
1460 if (!vma->vm_file)
1461 continue;
1462 if (path_equal(&vma->vm_file->f_path,
1463 &old_exe_file->f_path)) {
1464 ret = -EBUSY;
1465 break;
1468 mmap_read_unlock(mm);
1469 fput(old_exe_file);
1470 if (ret)
1471 return ret;
1474 ret = deny_write_access(new_exe_file);
1475 if (ret)
1476 return -EACCES;
1477 get_file(new_exe_file);
1479 /* set the new file */
1480 mmap_write_lock(mm);
1481 old_exe_file = rcu_dereference_raw(mm->exe_file);
1482 rcu_assign_pointer(mm->exe_file, new_exe_file);
1483 mmap_write_unlock(mm);
1485 if (old_exe_file) {
1486 allow_write_access(old_exe_file);
1487 fput(old_exe_file);
1489 return 0;
1493 * get_mm_exe_file - acquire a reference to the mm's executable file
1494 * @mm: The mm of interest.
1496 * Returns %NULL if mm has no associated executable file.
1497 * User must release file via fput().
1499 struct file *get_mm_exe_file(struct mm_struct *mm)
1501 struct file *exe_file;
1503 rcu_read_lock();
1504 exe_file = get_file_rcu(&mm->exe_file);
1505 rcu_read_unlock();
1506 return exe_file;
1510 * get_task_exe_file - acquire a reference to the task's executable file
1511 * @task: The task.
1513 * Returns %NULL if task's mm (if any) has no associated executable file or
1514 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1515 * User must release file via fput().
1517 struct file *get_task_exe_file(struct task_struct *task)
1519 struct file *exe_file = NULL;
1520 struct mm_struct *mm;
1522 task_lock(task);
1523 mm = task->mm;
1524 if (mm) {
1525 if (!(task->flags & PF_KTHREAD))
1526 exe_file = get_mm_exe_file(mm);
1528 task_unlock(task);
1529 return exe_file;
1533 * get_task_mm - acquire a reference to the task's mm
1534 * @task: The task.
1536 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1537 * this kernel workthread has transiently adopted a user mm with use_mm,
1538 * to do its AIO) is not set and if so returns a reference to it, after
1539 * bumping up the use count. User must release the mm via mmput()
1540 * after use. Typically used by /proc and ptrace.
1542 struct mm_struct *get_task_mm(struct task_struct *task)
1544 struct mm_struct *mm;
1546 if (task->flags & PF_KTHREAD)
1547 return NULL;
1549 task_lock(task);
1550 mm = task->mm;
1551 if (mm)
1552 mmget(mm);
1553 task_unlock(task);
1554 return mm;
1556 EXPORT_SYMBOL_GPL(get_task_mm);
1558 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1560 struct mm_struct *mm;
1561 int err;
1563 err = down_read_killable(&task->signal->exec_update_lock);
1564 if (err)
1565 return ERR_PTR(err);
1567 mm = get_task_mm(task);
1568 if (!mm) {
1569 mm = ERR_PTR(-ESRCH);
1570 } else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1571 mmput(mm);
1572 mm = ERR_PTR(-EACCES);
1574 up_read(&task->signal->exec_update_lock);
1576 return mm;
1579 static void complete_vfork_done(struct task_struct *tsk)
1581 struct completion *vfork;
1583 task_lock(tsk);
1584 vfork = tsk->vfork_done;
1585 if (likely(vfork)) {
1586 tsk->vfork_done = NULL;
1587 complete(vfork);
1589 task_unlock(tsk);
1592 static int wait_for_vfork_done(struct task_struct *child,
1593 struct completion *vfork)
1595 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1596 int killed;
1598 cgroup_enter_frozen();
1599 killed = wait_for_completion_state(vfork, state);
1600 cgroup_leave_frozen(false);
1602 if (killed) {
1603 task_lock(child);
1604 child->vfork_done = NULL;
1605 task_unlock(child);
1608 put_task_struct(child);
1609 return killed;
1612 /* Please note the differences between mmput and mm_release.
1613 * mmput is called whenever we stop holding onto a mm_struct,
1614 * error success whatever.
1616 * mm_release is called after a mm_struct has been removed
1617 * from the current process.
1619 * This difference is important for error handling, when we
1620 * only half set up a mm_struct for a new process and need to restore
1621 * the old one. Because we mmput the new mm_struct before
1622 * restoring the old one. . .
1623 * Eric Biederman 10 January 1998
1625 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1627 uprobe_free_utask(tsk);
1629 /* Get rid of any cached register state */
1630 deactivate_mm(tsk, mm);
1633 * Signal userspace if we're not exiting with a core dump
1634 * because we want to leave the value intact for debugging
1635 * purposes.
1637 if (tsk->clear_child_tid) {
1638 if (atomic_read(&mm->mm_users) > 1) {
1640 * We don't check the error code - if userspace has
1641 * not set up a proper pointer then tough luck.
1643 put_user(0, tsk->clear_child_tid);
1644 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1645 1, NULL, NULL, 0, 0);
1647 tsk->clear_child_tid = NULL;
1651 * All done, finally we can wake up parent and return this mm to him.
1652 * Also kthread_stop() uses this completion for synchronization.
1654 if (tsk->vfork_done)
1655 complete_vfork_done(tsk);
1658 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1660 futex_exit_release(tsk);
1661 mm_release(tsk, mm);
1664 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1666 futex_exec_release(tsk);
1667 mm_release(tsk, mm);
1671 * dup_mm() - duplicates an existing mm structure
1672 * @tsk: the task_struct with which the new mm will be associated.
1673 * @oldmm: the mm to duplicate.
1675 * Allocates a new mm structure and duplicates the provided @oldmm structure
1676 * content into it.
1678 * Return: the duplicated mm or NULL on failure.
1680 static struct mm_struct *dup_mm(struct task_struct *tsk,
1681 struct mm_struct *oldmm)
1683 struct mm_struct *mm;
1684 int err;
1686 mm = allocate_mm();
1687 if (!mm)
1688 goto fail_nomem;
1690 memcpy(mm, oldmm, sizeof(*mm));
1692 if (!mm_init(mm, tsk, mm->user_ns))
1693 goto fail_nomem;
1695 err = dup_mmap(mm, oldmm);
1696 if (err)
1697 goto free_pt;
1699 mm->hiwater_rss = get_mm_rss(mm);
1700 mm->hiwater_vm = mm->total_vm;
1702 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1703 goto free_pt;
1705 return mm;
1707 free_pt:
1708 /* don't put binfmt in mmput, we haven't got module yet */
1709 mm->binfmt = NULL;
1710 mm_init_owner(mm, NULL);
1711 mmput(mm);
1713 fail_nomem:
1714 return NULL;
1717 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1719 struct mm_struct *mm, *oldmm;
1721 tsk->min_flt = tsk->maj_flt = 0;
1722 tsk->nvcsw = tsk->nivcsw = 0;
1723 #ifdef CONFIG_DETECT_HUNG_TASK
1724 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1725 tsk->last_switch_time = 0;
1726 #endif
1728 tsk->mm = NULL;
1729 tsk->active_mm = NULL;
1732 * Are we cloning a kernel thread?
1734 * We need to steal a active VM for that..
1736 oldmm = current->mm;
1737 if (!oldmm)
1738 return 0;
1740 if (clone_flags & CLONE_VM) {
1741 mmget(oldmm);
1742 mm = oldmm;
1743 } else {
1744 mm = dup_mm(tsk, current->mm);
1745 if (!mm)
1746 return -ENOMEM;
1749 tsk->mm = mm;
1750 tsk->active_mm = mm;
1751 sched_mm_cid_fork(tsk);
1752 return 0;
1755 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1757 struct fs_struct *fs = current->fs;
1758 if (clone_flags & CLONE_FS) {
1759 /* tsk->fs is already what we want */
1760 spin_lock(&fs->lock);
1761 /* "users" and "in_exec" locked for check_unsafe_exec() */
1762 if (fs->in_exec) {
1763 spin_unlock(&fs->lock);
1764 return -EAGAIN;
1766 fs->users++;
1767 spin_unlock(&fs->lock);
1768 return 0;
1770 tsk->fs = copy_fs_struct(fs);
1771 if (!tsk->fs)
1772 return -ENOMEM;
1773 return 0;
1776 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1777 int no_files)
1779 struct files_struct *oldf, *newf;
1782 * A background process may not have any files ...
1784 oldf = current->files;
1785 if (!oldf)
1786 return 0;
1788 if (no_files) {
1789 tsk->files = NULL;
1790 return 0;
1793 if (clone_flags & CLONE_FILES) {
1794 atomic_inc(&oldf->count);
1795 return 0;
1798 newf = dup_fd(oldf, NULL);
1799 if (IS_ERR(newf))
1800 return PTR_ERR(newf);
1802 tsk->files = newf;
1803 return 0;
1806 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1808 struct sighand_struct *sig;
1810 if (clone_flags & CLONE_SIGHAND) {
1811 refcount_inc(&current->sighand->count);
1812 return 0;
1814 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1815 RCU_INIT_POINTER(tsk->sighand, sig);
1816 if (!sig)
1817 return -ENOMEM;
1819 refcount_set(&sig->count, 1);
1820 spin_lock_irq(&current->sighand->siglock);
1821 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1822 spin_unlock_irq(&current->sighand->siglock);
1824 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1825 if (clone_flags & CLONE_CLEAR_SIGHAND)
1826 flush_signal_handlers(tsk, 0);
1828 return 0;
1831 void __cleanup_sighand(struct sighand_struct *sighand)
1833 if (refcount_dec_and_test(&sighand->count)) {
1834 signalfd_cleanup(sighand);
1836 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1837 * without an RCU grace period, see __lock_task_sighand().
1839 kmem_cache_free(sighand_cachep, sighand);
1844 * Initialize POSIX timer handling for a thread group.
1846 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1848 struct posix_cputimers *pct = &sig->posix_cputimers;
1849 unsigned long cpu_limit;
1851 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1852 posix_cputimers_group_init(pct, cpu_limit);
1855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1857 struct signal_struct *sig;
1859 if (clone_flags & CLONE_THREAD)
1860 return 0;
1862 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1863 tsk->signal = sig;
1864 if (!sig)
1865 return -ENOMEM;
1867 sig->nr_threads = 1;
1868 sig->quick_threads = 1;
1869 atomic_set(&sig->live, 1);
1870 refcount_set(&sig->sigcnt, 1);
1872 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1873 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1874 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1876 init_waitqueue_head(&sig->wait_chldexit);
1877 sig->curr_target = tsk;
1878 init_sigpending(&sig->shared_pending);
1879 INIT_HLIST_HEAD(&sig->multiprocess);
1880 seqlock_init(&sig->stats_lock);
1881 prev_cputime_init(&sig->prev_cputime);
1883 #ifdef CONFIG_POSIX_TIMERS
1884 INIT_HLIST_HEAD(&sig->posix_timers);
1885 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1886 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1887 sig->real_timer.function = it_real_fn;
1888 #endif
1890 task_lock(current->group_leader);
1891 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1892 task_unlock(current->group_leader);
1894 posix_cpu_timers_init_group(sig);
1896 tty_audit_fork(sig);
1897 sched_autogroup_fork(sig);
1899 sig->oom_score_adj = current->signal->oom_score_adj;
1900 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1902 mutex_init(&sig->cred_guard_mutex);
1903 init_rwsem(&sig->exec_update_lock);
1905 return 0;
1908 static void copy_seccomp(struct task_struct *p)
1910 #ifdef CONFIG_SECCOMP
1912 * Must be called with sighand->lock held, which is common to
1913 * all threads in the group. Holding cred_guard_mutex is not
1914 * needed because this new task is not yet running and cannot
1915 * be racing exec.
1917 assert_spin_locked(&current->sighand->siglock);
1919 /* Ref-count the new filter user, and assign it. */
1920 get_seccomp_filter(current);
1921 p->seccomp = current->seccomp;
1924 * Explicitly enable no_new_privs here in case it got set
1925 * between the task_struct being duplicated and holding the
1926 * sighand lock. The seccomp state and nnp must be in sync.
1928 if (task_no_new_privs(current))
1929 task_set_no_new_privs(p);
1932 * If the parent gained a seccomp mode after copying thread
1933 * flags and between before we held the sighand lock, we have
1934 * to manually enable the seccomp thread flag here.
1936 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1937 set_task_syscall_work(p, SECCOMP);
1938 #endif
1941 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1943 current->clear_child_tid = tidptr;
1945 return task_pid_vnr(current);
1948 static void rt_mutex_init_task(struct task_struct *p)
1950 raw_spin_lock_init(&p->pi_lock);
1951 #ifdef CONFIG_RT_MUTEXES
1952 p->pi_waiters = RB_ROOT_CACHED;
1953 p->pi_top_task = NULL;
1954 p->pi_blocked_on = NULL;
1955 #endif
1958 static inline void init_task_pid_links(struct task_struct *task)
1960 enum pid_type type;
1962 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1963 INIT_HLIST_NODE(&task->pid_links[type]);
1966 static inline void
1967 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1969 if (type == PIDTYPE_PID)
1970 task->thread_pid = pid;
1971 else
1972 task->signal->pids[type] = pid;
1975 static inline void rcu_copy_process(struct task_struct *p)
1977 #ifdef CONFIG_PREEMPT_RCU
1978 p->rcu_read_lock_nesting = 0;
1979 p->rcu_read_unlock_special.s = 0;
1980 p->rcu_blocked_node = NULL;
1981 INIT_LIST_HEAD(&p->rcu_node_entry);
1982 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1983 #ifdef CONFIG_TASKS_RCU
1984 p->rcu_tasks_holdout = false;
1985 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1986 p->rcu_tasks_idle_cpu = -1;
1987 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1988 #endif /* #ifdef CONFIG_TASKS_RCU */
1989 #ifdef CONFIG_TASKS_TRACE_RCU
1990 p->trc_reader_nesting = 0;
1991 p->trc_reader_special.s = 0;
1992 INIT_LIST_HEAD(&p->trc_holdout_list);
1993 INIT_LIST_HEAD(&p->trc_blkd_node);
1994 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1998 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1999 * @pid: the struct pid for which to create a pidfd
2000 * @flags: flags of the new @pidfd
2001 * @ret: Where to return the file for the pidfd.
2003 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2004 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2006 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2007 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2008 * pidfd file are prepared.
2010 * If this function returns successfully the caller is responsible to either
2011 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2012 * order to install the pidfd into its file descriptor table or they must use
2013 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2014 * respectively.
2016 * This function is useful when a pidfd must already be reserved but there
2017 * might still be points of failure afterwards and the caller wants to ensure
2018 * that no pidfd is leaked into its file descriptor table.
2020 * Return: On success, a reserved pidfd is returned from the function and a new
2021 * pidfd file is returned in the last argument to the function. On
2022 * error, a negative error code is returned from the function and the
2023 * last argument remains unchanged.
2025 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2027 int pidfd;
2028 struct file *pidfd_file;
2030 pidfd = get_unused_fd_flags(O_CLOEXEC);
2031 if (pidfd < 0)
2032 return pidfd;
2034 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2035 if (IS_ERR(pidfd_file)) {
2036 put_unused_fd(pidfd);
2037 return PTR_ERR(pidfd_file);
2040 * anon_inode_getfile() ignores everything outside of the
2041 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2043 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2044 *ret = pidfd_file;
2045 return pidfd;
2049 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2050 * @pid: the struct pid for which to create a pidfd
2051 * @flags: flags of the new @pidfd
2052 * @ret: Where to return the pidfd.
2054 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2055 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2057 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2058 * task identified by @pid must be a thread-group leader.
2060 * If this function returns successfully the caller is responsible to either
2061 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2062 * order to install the pidfd into its file descriptor table or they must use
2063 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2064 * respectively.
2066 * This function is useful when a pidfd must already be reserved but there
2067 * might still be points of failure afterwards and the caller wants to ensure
2068 * that no pidfd is leaked into its file descriptor table.
2070 * Return: On success, a reserved pidfd is returned from the function and a new
2071 * pidfd file is returned in the last argument to the function. On
2072 * error, a negative error code is returned from the function and the
2073 * last argument remains unchanged.
2075 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2077 bool thread = flags & PIDFD_THREAD;
2079 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2080 return -EINVAL;
2082 return __pidfd_prepare(pid, flags, ret);
2085 static void __delayed_free_task(struct rcu_head *rhp)
2087 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2089 free_task(tsk);
2092 static __always_inline void delayed_free_task(struct task_struct *tsk)
2094 if (IS_ENABLED(CONFIG_MEMCG))
2095 call_rcu(&tsk->rcu, __delayed_free_task);
2096 else
2097 free_task(tsk);
2100 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2102 /* Skip if kernel thread */
2103 if (!tsk->mm)
2104 return;
2106 /* Skip if spawning a thread or using vfork */
2107 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2108 return;
2110 /* We need to synchronize with __set_oom_adj */
2111 mutex_lock(&oom_adj_mutex);
2112 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2113 /* Update the values in case they were changed after copy_signal */
2114 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2115 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2116 mutex_unlock(&oom_adj_mutex);
2119 #ifdef CONFIG_RV
2120 static void rv_task_fork(struct task_struct *p)
2122 int i;
2124 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2125 p->rv[i].da_mon.monitoring = false;
2127 #else
2128 #define rv_task_fork(p) do {} while (0)
2129 #endif
2132 * This creates a new process as a copy of the old one,
2133 * but does not actually start it yet.
2135 * It copies the registers, and all the appropriate
2136 * parts of the process environment (as per the clone
2137 * flags). The actual kick-off is left to the caller.
2139 __latent_entropy struct task_struct *copy_process(
2140 struct pid *pid,
2141 int trace,
2142 int node,
2143 struct kernel_clone_args *args)
2145 int pidfd = -1, retval;
2146 struct task_struct *p;
2147 struct multiprocess_signals delayed;
2148 struct file *pidfile = NULL;
2149 const u64 clone_flags = args->flags;
2150 struct nsproxy *nsp = current->nsproxy;
2153 * Don't allow sharing the root directory with processes in a different
2154 * namespace
2156 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2157 return ERR_PTR(-EINVAL);
2159 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2160 return ERR_PTR(-EINVAL);
2163 * Thread groups must share signals as well, and detached threads
2164 * can only be started up within the thread group.
2166 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2167 return ERR_PTR(-EINVAL);
2170 * Shared signal handlers imply shared VM. By way of the above,
2171 * thread groups also imply shared VM. Blocking this case allows
2172 * for various simplifications in other code.
2174 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2175 return ERR_PTR(-EINVAL);
2178 * Siblings of global init remain as zombies on exit since they are
2179 * not reaped by their parent (swapper). To solve this and to avoid
2180 * multi-rooted process trees, prevent global and container-inits
2181 * from creating siblings.
2183 if ((clone_flags & CLONE_PARENT) &&
2184 current->signal->flags & SIGNAL_UNKILLABLE)
2185 return ERR_PTR(-EINVAL);
2188 * If the new process will be in a different pid or user namespace
2189 * do not allow it to share a thread group with the forking task.
2191 if (clone_flags & CLONE_THREAD) {
2192 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2193 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2194 return ERR_PTR(-EINVAL);
2197 if (clone_flags & CLONE_PIDFD) {
2199 * - CLONE_DETACHED is blocked so that we can potentially
2200 * reuse it later for CLONE_PIDFD.
2202 if (clone_flags & CLONE_DETACHED)
2203 return ERR_PTR(-EINVAL);
2207 * Force any signals received before this point to be delivered
2208 * before the fork happens. Collect up signals sent to multiple
2209 * processes that happen during the fork and delay them so that
2210 * they appear to happen after the fork.
2212 sigemptyset(&delayed.signal);
2213 INIT_HLIST_NODE(&delayed.node);
2215 spin_lock_irq(&current->sighand->siglock);
2216 if (!(clone_flags & CLONE_THREAD))
2217 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2218 recalc_sigpending();
2219 spin_unlock_irq(&current->sighand->siglock);
2220 retval = -ERESTARTNOINTR;
2221 if (task_sigpending(current))
2222 goto fork_out;
2224 retval = -ENOMEM;
2225 p = dup_task_struct(current, node);
2226 if (!p)
2227 goto fork_out;
2228 p->flags &= ~PF_KTHREAD;
2229 if (args->kthread)
2230 p->flags |= PF_KTHREAD;
2231 if (args->user_worker) {
2233 * Mark us a user worker, and block any signal that isn't
2234 * fatal or STOP
2236 p->flags |= PF_USER_WORKER;
2237 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2239 if (args->io_thread)
2240 p->flags |= PF_IO_WORKER;
2242 if (args->name)
2243 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2245 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2247 * Clear TID on mm_release()?
2249 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2251 ftrace_graph_init_task(p);
2253 rt_mutex_init_task(p);
2255 lockdep_assert_irqs_enabled();
2256 #ifdef CONFIG_PROVE_LOCKING
2257 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2258 #endif
2259 retval = copy_creds(p, clone_flags);
2260 if (retval < 0)
2261 goto bad_fork_free;
2263 retval = -EAGAIN;
2264 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2265 if (p->real_cred->user != INIT_USER &&
2266 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2267 goto bad_fork_cleanup_count;
2269 current->flags &= ~PF_NPROC_EXCEEDED;
2272 * If multiple threads are within copy_process(), then this check
2273 * triggers too late. This doesn't hurt, the check is only there
2274 * to stop root fork bombs.
2276 retval = -EAGAIN;
2277 if (data_race(nr_threads >= max_threads))
2278 goto bad_fork_cleanup_count;
2280 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2281 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2282 p->flags |= PF_FORKNOEXEC;
2283 INIT_LIST_HEAD(&p->children);
2284 INIT_LIST_HEAD(&p->sibling);
2285 rcu_copy_process(p);
2286 p->vfork_done = NULL;
2287 spin_lock_init(&p->alloc_lock);
2289 init_sigpending(&p->pending);
2291 p->utime = p->stime = p->gtime = 0;
2292 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2293 p->utimescaled = p->stimescaled = 0;
2294 #endif
2295 prev_cputime_init(&p->prev_cputime);
2297 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2298 seqcount_init(&p->vtime.seqcount);
2299 p->vtime.starttime = 0;
2300 p->vtime.state = VTIME_INACTIVE;
2301 #endif
2303 #ifdef CONFIG_IO_URING
2304 p->io_uring = NULL;
2305 #endif
2307 p->default_timer_slack_ns = current->timer_slack_ns;
2309 #ifdef CONFIG_PSI
2310 p->psi_flags = 0;
2311 #endif
2313 task_io_accounting_init(&p->ioac);
2314 acct_clear_integrals(p);
2316 posix_cputimers_init(&p->posix_cputimers);
2317 tick_dep_init_task(p);
2319 p->io_context = NULL;
2320 audit_set_context(p, NULL);
2321 cgroup_fork(p);
2322 if (args->kthread) {
2323 if (!set_kthread_struct(p))
2324 goto bad_fork_cleanup_delayacct;
2326 #ifdef CONFIG_NUMA
2327 p->mempolicy = mpol_dup(p->mempolicy);
2328 if (IS_ERR(p->mempolicy)) {
2329 retval = PTR_ERR(p->mempolicy);
2330 p->mempolicy = NULL;
2331 goto bad_fork_cleanup_delayacct;
2333 #endif
2334 #ifdef CONFIG_CPUSETS
2335 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2336 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2337 #endif
2338 #ifdef CONFIG_TRACE_IRQFLAGS
2339 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2340 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2341 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2342 p->softirqs_enabled = 1;
2343 p->softirq_context = 0;
2344 #endif
2346 p->pagefault_disabled = 0;
2348 #ifdef CONFIG_LOCKDEP
2349 lockdep_init_task(p);
2350 #endif
2352 #ifdef CONFIG_DEBUG_MUTEXES
2353 p->blocked_on = NULL; /* not blocked yet */
2354 #endif
2355 #ifdef CONFIG_BCACHE
2356 p->sequential_io = 0;
2357 p->sequential_io_avg = 0;
2358 #endif
2359 #ifdef CONFIG_BPF_SYSCALL
2360 RCU_INIT_POINTER(p->bpf_storage, NULL);
2361 p->bpf_ctx = NULL;
2362 #endif
2364 /* Perform scheduler related setup. Assign this task to a CPU. */
2365 retval = sched_fork(clone_flags, p);
2366 if (retval)
2367 goto bad_fork_cleanup_policy;
2369 retval = perf_event_init_task(p, clone_flags);
2370 if (retval)
2371 goto bad_fork_sched_cancel_fork;
2372 retval = audit_alloc(p);
2373 if (retval)
2374 goto bad_fork_cleanup_perf;
2375 /* copy all the process information */
2376 shm_init_task(p);
2377 retval = security_task_alloc(p, clone_flags);
2378 if (retval)
2379 goto bad_fork_cleanup_audit;
2380 retval = copy_semundo(clone_flags, p);
2381 if (retval)
2382 goto bad_fork_cleanup_security;
2383 retval = copy_files(clone_flags, p, args->no_files);
2384 if (retval)
2385 goto bad_fork_cleanup_semundo;
2386 retval = copy_fs(clone_flags, p);
2387 if (retval)
2388 goto bad_fork_cleanup_files;
2389 retval = copy_sighand(clone_flags, p);
2390 if (retval)
2391 goto bad_fork_cleanup_fs;
2392 retval = copy_signal(clone_flags, p);
2393 if (retval)
2394 goto bad_fork_cleanup_sighand;
2395 retval = copy_mm(clone_flags, p);
2396 if (retval)
2397 goto bad_fork_cleanup_signal;
2398 retval = copy_namespaces(clone_flags, p);
2399 if (retval)
2400 goto bad_fork_cleanup_mm;
2401 retval = copy_io(clone_flags, p);
2402 if (retval)
2403 goto bad_fork_cleanup_namespaces;
2404 retval = copy_thread(p, args);
2405 if (retval)
2406 goto bad_fork_cleanup_io;
2408 stackleak_task_init(p);
2410 if (pid != &init_struct_pid) {
2411 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2412 args->set_tid_size);
2413 if (IS_ERR(pid)) {
2414 retval = PTR_ERR(pid);
2415 goto bad_fork_cleanup_thread;
2420 * This has to happen after we've potentially unshared the file
2421 * descriptor table (so that the pidfd doesn't leak into the child
2422 * if the fd table isn't shared).
2424 if (clone_flags & CLONE_PIDFD) {
2425 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2427 /* Note that no task has been attached to @pid yet. */
2428 retval = __pidfd_prepare(pid, flags, &pidfile);
2429 if (retval < 0)
2430 goto bad_fork_free_pid;
2431 pidfd = retval;
2433 retval = put_user(pidfd, args->pidfd);
2434 if (retval)
2435 goto bad_fork_put_pidfd;
2438 #ifdef CONFIG_BLOCK
2439 p->plug = NULL;
2440 #endif
2441 futex_init_task(p);
2444 * sigaltstack should be cleared when sharing the same VM
2446 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2447 sas_ss_reset(p);
2450 * Syscall tracing and stepping should be turned off in the
2451 * child regardless of CLONE_PTRACE.
2453 user_disable_single_step(p);
2454 clear_task_syscall_work(p, SYSCALL_TRACE);
2455 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2456 clear_task_syscall_work(p, SYSCALL_EMU);
2457 #endif
2458 clear_tsk_latency_tracing(p);
2460 /* ok, now we should be set up.. */
2461 p->pid = pid_nr(pid);
2462 if (clone_flags & CLONE_THREAD) {
2463 p->group_leader = current->group_leader;
2464 p->tgid = current->tgid;
2465 } else {
2466 p->group_leader = p;
2467 p->tgid = p->pid;
2470 p->nr_dirtied = 0;
2471 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2472 p->dirty_paused_when = 0;
2474 p->pdeath_signal = 0;
2475 p->task_works = NULL;
2476 clear_posix_cputimers_work(p);
2478 #ifdef CONFIG_KRETPROBES
2479 p->kretprobe_instances.first = NULL;
2480 #endif
2481 #ifdef CONFIG_RETHOOK
2482 p->rethooks.first = NULL;
2483 #endif
2486 * Ensure that the cgroup subsystem policies allow the new process to be
2487 * forked. It should be noted that the new process's css_set can be changed
2488 * between here and cgroup_post_fork() if an organisation operation is in
2489 * progress.
2491 retval = cgroup_can_fork(p, args);
2492 if (retval)
2493 goto bad_fork_put_pidfd;
2496 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2497 * the new task on the correct runqueue. All this *before* the task
2498 * becomes visible.
2500 * This isn't part of ->can_fork() because while the re-cloning is
2501 * cgroup specific, it unconditionally needs to place the task on a
2502 * runqueue.
2504 retval = sched_cgroup_fork(p, args);
2505 if (retval)
2506 goto bad_fork_cancel_cgroup;
2509 * From this point on we must avoid any synchronous user-space
2510 * communication until we take the tasklist-lock. In particular, we do
2511 * not want user-space to be able to predict the process start-time by
2512 * stalling fork(2) after we recorded the start_time but before it is
2513 * visible to the system.
2516 p->start_time = ktime_get_ns();
2517 p->start_boottime = ktime_get_boottime_ns();
2520 * Make it visible to the rest of the system, but dont wake it up yet.
2521 * Need tasklist lock for parent etc handling!
2523 write_lock_irq(&tasklist_lock);
2525 /* CLONE_PARENT re-uses the old parent */
2526 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2527 p->real_parent = current->real_parent;
2528 p->parent_exec_id = current->parent_exec_id;
2529 if (clone_flags & CLONE_THREAD)
2530 p->exit_signal = -1;
2531 else
2532 p->exit_signal = current->group_leader->exit_signal;
2533 } else {
2534 p->real_parent = current;
2535 p->parent_exec_id = current->self_exec_id;
2536 p->exit_signal = args->exit_signal;
2539 klp_copy_process(p);
2541 sched_core_fork(p);
2543 spin_lock(&current->sighand->siglock);
2545 rv_task_fork(p);
2547 rseq_fork(p, clone_flags);
2549 /* Don't start children in a dying pid namespace */
2550 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2551 retval = -ENOMEM;
2552 goto bad_fork_core_free;
2555 /* Let kill terminate clone/fork in the middle */
2556 if (fatal_signal_pending(current)) {
2557 retval = -EINTR;
2558 goto bad_fork_core_free;
2561 /* No more failure paths after this point. */
2564 * Copy seccomp details explicitly here, in case they were changed
2565 * before holding sighand lock.
2567 copy_seccomp(p);
2569 init_task_pid_links(p);
2570 if (likely(p->pid)) {
2571 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2573 init_task_pid(p, PIDTYPE_PID, pid);
2574 if (thread_group_leader(p)) {
2575 init_task_pid(p, PIDTYPE_TGID, pid);
2576 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2577 init_task_pid(p, PIDTYPE_SID, task_session(current));
2579 if (is_child_reaper(pid)) {
2580 ns_of_pid(pid)->child_reaper = p;
2581 p->signal->flags |= SIGNAL_UNKILLABLE;
2583 p->signal->shared_pending.signal = delayed.signal;
2584 p->signal->tty = tty_kref_get(current->signal->tty);
2586 * Inherit has_child_subreaper flag under the same
2587 * tasklist_lock with adding child to the process tree
2588 * for propagate_has_child_subreaper optimization.
2590 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2591 p->real_parent->signal->is_child_subreaper;
2592 list_add_tail(&p->sibling, &p->real_parent->children);
2593 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2594 attach_pid(p, PIDTYPE_TGID);
2595 attach_pid(p, PIDTYPE_PGID);
2596 attach_pid(p, PIDTYPE_SID);
2597 __this_cpu_inc(process_counts);
2598 } else {
2599 current->signal->nr_threads++;
2600 current->signal->quick_threads++;
2601 atomic_inc(&current->signal->live);
2602 refcount_inc(&current->signal->sigcnt);
2603 task_join_group_stop(p);
2604 list_add_tail_rcu(&p->thread_node,
2605 &p->signal->thread_head);
2607 attach_pid(p, PIDTYPE_PID);
2608 nr_threads++;
2610 total_forks++;
2611 hlist_del_init(&delayed.node);
2612 spin_unlock(&current->sighand->siglock);
2613 syscall_tracepoint_update(p);
2614 write_unlock_irq(&tasklist_lock);
2616 if (pidfile)
2617 fd_install(pidfd, pidfile);
2619 proc_fork_connector(p);
2620 sched_post_fork(p);
2621 cgroup_post_fork(p, args);
2622 perf_event_fork(p);
2624 trace_task_newtask(p, clone_flags);
2625 uprobe_copy_process(p, clone_flags);
2626 user_events_fork(p, clone_flags);
2628 copy_oom_score_adj(clone_flags, p);
2630 return p;
2632 bad_fork_core_free:
2633 sched_core_free(p);
2634 spin_unlock(&current->sighand->siglock);
2635 write_unlock_irq(&tasklist_lock);
2636 bad_fork_cancel_cgroup:
2637 cgroup_cancel_fork(p, args);
2638 bad_fork_put_pidfd:
2639 if (clone_flags & CLONE_PIDFD) {
2640 fput(pidfile);
2641 put_unused_fd(pidfd);
2643 bad_fork_free_pid:
2644 if (pid != &init_struct_pid)
2645 free_pid(pid);
2646 bad_fork_cleanup_thread:
2647 exit_thread(p);
2648 bad_fork_cleanup_io:
2649 if (p->io_context)
2650 exit_io_context(p);
2651 bad_fork_cleanup_namespaces:
2652 exit_task_namespaces(p);
2653 bad_fork_cleanup_mm:
2654 if (p->mm) {
2655 mm_clear_owner(p->mm, p);
2656 mmput(p->mm);
2658 bad_fork_cleanup_signal:
2659 if (!(clone_flags & CLONE_THREAD))
2660 free_signal_struct(p->signal);
2661 bad_fork_cleanup_sighand:
2662 __cleanup_sighand(p->sighand);
2663 bad_fork_cleanup_fs:
2664 exit_fs(p); /* blocking */
2665 bad_fork_cleanup_files:
2666 exit_files(p); /* blocking */
2667 bad_fork_cleanup_semundo:
2668 exit_sem(p);
2669 bad_fork_cleanup_security:
2670 security_task_free(p);
2671 bad_fork_cleanup_audit:
2672 audit_free(p);
2673 bad_fork_cleanup_perf:
2674 perf_event_free_task(p);
2675 bad_fork_sched_cancel_fork:
2676 sched_cancel_fork(p);
2677 bad_fork_cleanup_policy:
2678 lockdep_free_task(p);
2679 #ifdef CONFIG_NUMA
2680 mpol_put(p->mempolicy);
2681 #endif
2682 bad_fork_cleanup_delayacct:
2683 delayacct_tsk_free(p);
2684 bad_fork_cleanup_count:
2685 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2686 exit_creds(p);
2687 bad_fork_free:
2688 WRITE_ONCE(p->__state, TASK_DEAD);
2689 exit_task_stack_account(p);
2690 put_task_stack(p);
2691 delayed_free_task(p);
2692 fork_out:
2693 spin_lock_irq(&current->sighand->siglock);
2694 hlist_del_init(&delayed.node);
2695 spin_unlock_irq(&current->sighand->siglock);
2696 return ERR_PTR(retval);
2699 static inline void init_idle_pids(struct task_struct *idle)
2701 enum pid_type type;
2703 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2704 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2705 init_task_pid(idle, type, &init_struct_pid);
2709 static int idle_dummy(void *dummy)
2711 /* This function is never called */
2712 return 0;
2715 struct task_struct * __init fork_idle(int cpu)
2717 struct task_struct *task;
2718 struct kernel_clone_args args = {
2719 .flags = CLONE_VM,
2720 .fn = &idle_dummy,
2721 .fn_arg = NULL,
2722 .kthread = 1,
2723 .idle = 1,
2726 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2727 if (!IS_ERR(task)) {
2728 init_idle_pids(task);
2729 init_idle(task, cpu);
2732 return task;
2736 * This is like kernel_clone(), but shaved down and tailored to just
2737 * creating io_uring workers. It returns a created task, or an error pointer.
2738 * The returned task is inactive, and the caller must fire it up through
2739 * wake_up_new_task(p). All signals are blocked in the created task.
2741 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2743 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2744 CLONE_IO;
2745 struct kernel_clone_args args = {
2746 .flags = ((lower_32_bits(flags) | CLONE_VM |
2747 CLONE_UNTRACED) & ~CSIGNAL),
2748 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2749 .fn = fn,
2750 .fn_arg = arg,
2751 .io_thread = 1,
2752 .user_worker = 1,
2755 return copy_process(NULL, 0, node, &args);
2759 * Ok, this is the main fork-routine.
2761 * It copies the process, and if successful kick-starts
2762 * it and waits for it to finish using the VM if required.
2764 * args->exit_signal is expected to be checked for sanity by the caller.
2766 pid_t kernel_clone(struct kernel_clone_args *args)
2768 u64 clone_flags = args->flags;
2769 struct completion vfork;
2770 struct pid *pid;
2771 struct task_struct *p;
2772 int trace = 0;
2773 pid_t nr;
2776 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2777 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2778 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2779 * field in struct clone_args and it still doesn't make sense to have
2780 * them both point at the same memory location. Performing this check
2781 * here has the advantage that we don't need to have a separate helper
2782 * to check for legacy clone().
2784 if ((clone_flags & CLONE_PIDFD) &&
2785 (clone_flags & CLONE_PARENT_SETTID) &&
2786 (args->pidfd == args->parent_tid))
2787 return -EINVAL;
2790 * Determine whether and which event to report to ptracer. When
2791 * called from kernel_thread or CLONE_UNTRACED is explicitly
2792 * requested, no event is reported; otherwise, report if the event
2793 * for the type of forking is enabled.
2795 if (!(clone_flags & CLONE_UNTRACED)) {
2796 if (clone_flags & CLONE_VFORK)
2797 trace = PTRACE_EVENT_VFORK;
2798 else if (args->exit_signal != SIGCHLD)
2799 trace = PTRACE_EVENT_CLONE;
2800 else
2801 trace = PTRACE_EVENT_FORK;
2803 if (likely(!ptrace_event_enabled(current, trace)))
2804 trace = 0;
2807 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2808 add_latent_entropy();
2810 if (IS_ERR(p))
2811 return PTR_ERR(p);
2814 * Do this prior waking up the new thread - the thread pointer
2815 * might get invalid after that point, if the thread exits quickly.
2817 trace_sched_process_fork(current, p);
2819 pid = get_task_pid(p, PIDTYPE_PID);
2820 nr = pid_vnr(pid);
2822 if (clone_flags & CLONE_PARENT_SETTID)
2823 put_user(nr, args->parent_tid);
2825 if (clone_flags & CLONE_VFORK) {
2826 p->vfork_done = &vfork;
2827 init_completion(&vfork);
2828 get_task_struct(p);
2831 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2832 /* lock the task to synchronize with memcg migration */
2833 task_lock(p);
2834 lru_gen_add_mm(p->mm);
2835 task_unlock(p);
2838 wake_up_new_task(p);
2840 /* forking complete and child started to run, tell ptracer */
2841 if (unlikely(trace))
2842 ptrace_event_pid(trace, pid);
2844 if (clone_flags & CLONE_VFORK) {
2845 if (!wait_for_vfork_done(p, &vfork))
2846 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2849 put_pid(pid);
2850 return nr;
2854 * Create a kernel thread.
2856 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2857 unsigned long flags)
2859 struct kernel_clone_args args = {
2860 .flags = ((lower_32_bits(flags) | CLONE_VM |
2861 CLONE_UNTRACED) & ~CSIGNAL),
2862 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2863 .fn = fn,
2864 .fn_arg = arg,
2865 .name = name,
2866 .kthread = 1,
2869 return kernel_clone(&args);
2873 * Create a user mode thread.
2875 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2877 struct kernel_clone_args args = {
2878 .flags = ((lower_32_bits(flags) | CLONE_VM |
2879 CLONE_UNTRACED) & ~CSIGNAL),
2880 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2881 .fn = fn,
2882 .fn_arg = arg,
2885 return kernel_clone(&args);
2888 #ifdef __ARCH_WANT_SYS_FORK
2889 SYSCALL_DEFINE0(fork)
2891 #ifdef CONFIG_MMU
2892 struct kernel_clone_args args = {
2893 .exit_signal = SIGCHLD,
2896 return kernel_clone(&args);
2897 #else
2898 /* can not support in nommu mode */
2899 return -EINVAL;
2900 #endif
2902 #endif
2904 #ifdef __ARCH_WANT_SYS_VFORK
2905 SYSCALL_DEFINE0(vfork)
2907 struct kernel_clone_args args = {
2908 .flags = CLONE_VFORK | CLONE_VM,
2909 .exit_signal = SIGCHLD,
2912 return kernel_clone(&args);
2914 #endif
2916 #ifdef __ARCH_WANT_SYS_CLONE
2917 #ifdef CONFIG_CLONE_BACKWARDS
2918 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2919 int __user *, parent_tidptr,
2920 unsigned long, tls,
2921 int __user *, child_tidptr)
2922 #elif defined(CONFIG_CLONE_BACKWARDS2)
2923 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2924 int __user *, parent_tidptr,
2925 int __user *, child_tidptr,
2926 unsigned long, tls)
2927 #elif defined(CONFIG_CLONE_BACKWARDS3)
2928 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2929 int, stack_size,
2930 int __user *, parent_tidptr,
2931 int __user *, child_tidptr,
2932 unsigned long, tls)
2933 #else
2934 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2935 int __user *, parent_tidptr,
2936 int __user *, child_tidptr,
2937 unsigned long, tls)
2938 #endif
2940 struct kernel_clone_args args = {
2941 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2942 .pidfd = parent_tidptr,
2943 .child_tid = child_tidptr,
2944 .parent_tid = parent_tidptr,
2945 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2946 .stack = newsp,
2947 .tls = tls,
2950 return kernel_clone(&args);
2952 #endif
2954 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2955 struct clone_args __user *uargs,
2956 size_t usize)
2958 int err;
2959 struct clone_args args;
2960 pid_t *kset_tid = kargs->set_tid;
2962 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2963 CLONE_ARGS_SIZE_VER0);
2964 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2965 CLONE_ARGS_SIZE_VER1);
2966 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2967 CLONE_ARGS_SIZE_VER2);
2968 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2970 if (unlikely(usize > PAGE_SIZE))
2971 return -E2BIG;
2972 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2973 return -EINVAL;
2975 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2976 if (err)
2977 return err;
2979 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2980 return -EINVAL;
2982 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2983 return -EINVAL;
2985 if (unlikely(args.set_tid && args.set_tid_size == 0))
2986 return -EINVAL;
2989 * Verify that higher 32bits of exit_signal are unset and that
2990 * it is a valid signal
2992 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2993 !valid_signal(args.exit_signal)))
2994 return -EINVAL;
2996 if ((args.flags & CLONE_INTO_CGROUP) &&
2997 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2998 return -EINVAL;
3000 *kargs = (struct kernel_clone_args){
3001 .flags = args.flags,
3002 .pidfd = u64_to_user_ptr(args.pidfd),
3003 .child_tid = u64_to_user_ptr(args.child_tid),
3004 .parent_tid = u64_to_user_ptr(args.parent_tid),
3005 .exit_signal = args.exit_signal,
3006 .stack = args.stack,
3007 .stack_size = args.stack_size,
3008 .tls = args.tls,
3009 .set_tid_size = args.set_tid_size,
3010 .cgroup = args.cgroup,
3013 if (args.set_tid &&
3014 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3015 (kargs->set_tid_size * sizeof(pid_t))))
3016 return -EFAULT;
3018 kargs->set_tid = kset_tid;
3020 return 0;
3024 * clone3_stack_valid - check and prepare stack
3025 * @kargs: kernel clone args
3027 * Verify that the stack arguments userspace gave us are sane.
3028 * In addition, set the stack direction for userspace since it's easy for us to
3029 * determine.
3031 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3033 if (kargs->stack == 0) {
3034 if (kargs->stack_size > 0)
3035 return false;
3036 } else {
3037 if (kargs->stack_size == 0)
3038 return false;
3040 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3041 return false;
3043 #if !defined(CONFIG_STACK_GROWSUP)
3044 kargs->stack += kargs->stack_size;
3045 #endif
3048 return true;
3051 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3053 /* Verify that no unknown flags are passed along. */
3054 if (kargs->flags &
3055 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3056 return false;
3059 * - make the CLONE_DETACHED bit reusable for clone3
3060 * - make the CSIGNAL bits reusable for clone3
3062 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3063 return false;
3065 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3066 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3067 return false;
3069 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3070 kargs->exit_signal)
3071 return false;
3073 if (!clone3_stack_valid(kargs))
3074 return false;
3076 return true;
3080 * sys_clone3 - create a new process with specific properties
3081 * @uargs: argument structure
3082 * @size: size of @uargs
3084 * clone3() is the extensible successor to clone()/clone2().
3085 * It takes a struct as argument that is versioned by its size.
3087 * Return: On success, a positive PID for the child process.
3088 * On error, a negative errno number.
3090 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3092 int err;
3094 struct kernel_clone_args kargs;
3095 pid_t set_tid[MAX_PID_NS_LEVEL];
3097 #ifdef __ARCH_BROKEN_SYS_CLONE3
3098 #warning clone3() entry point is missing, please fix
3099 return -ENOSYS;
3100 #endif
3102 kargs.set_tid = set_tid;
3104 err = copy_clone_args_from_user(&kargs, uargs, size);
3105 if (err)
3106 return err;
3108 if (!clone3_args_valid(&kargs))
3109 return -EINVAL;
3111 return kernel_clone(&kargs);
3114 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3116 struct task_struct *leader, *parent, *child;
3117 int res;
3119 read_lock(&tasklist_lock);
3120 leader = top = top->group_leader;
3121 down:
3122 for_each_thread(leader, parent) {
3123 list_for_each_entry(child, &parent->children, sibling) {
3124 res = visitor(child, data);
3125 if (res) {
3126 if (res < 0)
3127 goto out;
3128 leader = child;
3129 goto down;
3136 if (leader != top) {
3137 child = leader;
3138 parent = child->real_parent;
3139 leader = parent->group_leader;
3140 goto up;
3142 out:
3143 read_unlock(&tasklist_lock);
3146 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3147 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3148 #endif
3150 static void sighand_ctor(void *data)
3152 struct sighand_struct *sighand = data;
3154 spin_lock_init(&sighand->siglock);
3155 init_waitqueue_head(&sighand->signalfd_wqh);
3158 void __init mm_cache_init(void)
3160 unsigned int mm_size;
3163 * The mm_cpumask is located at the end of mm_struct, and is
3164 * dynamically sized based on the maximum CPU number this system
3165 * can have, taking hotplug into account (nr_cpu_ids).
3167 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3169 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3170 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3171 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3172 offsetof(struct mm_struct, saved_auxv),
3173 sizeof_field(struct mm_struct, saved_auxv),
3174 NULL);
3177 void __init proc_caches_init(void)
3179 sighand_cachep = kmem_cache_create("sighand_cache",
3180 sizeof(struct sighand_struct), 0,
3181 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3182 SLAB_ACCOUNT, sighand_ctor);
3183 signal_cachep = kmem_cache_create("signal_cache",
3184 sizeof(struct signal_struct), 0,
3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3186 NULL);
3187 files_cachep = kmem_cache_create("files_cache",
3188 sizeof(struct files_struct), 0,
3189 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3190 NULL);
3191 fs_cachep = kmem_cache_create("fs_cache",
3192 sizeof(struct fs_struct), 0,
3193 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3194 NULL);
3196 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3197 #ifdef CONFIG_PER_VMA_LOCK
3198 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3199 #endif
3200 mmap_init();
3201 nsproxy_cache_init();
3205 * Check constraints on flags passed to the unshare system call.
3207 static int check_unshare_flags(unsigned long unshare_flags)
3209 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3210 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3211 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3212 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3213 CLONE_NEWTIME))
3214 return -EINVAL;
3216 * Not implemented, but pretend it works if there is nothing
3217 * to unshare. Note that unsharing the address space or the
3218 * signal handlers also need to unshare the signal queues (aka
3219 * CLONE_THREAD).
3221 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3222 if (!thread_group_empty(current))
3223 return -EINVAL;
3225 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3226 if (refcount_read(&current->sighand->count) > 1)
3227 return -EINVAL;
3229 if (unshare_flags & CLONE_VM) {
3230 if (!current_is_single_threaded())
3231 return -EINVAL;
3234 return 0;
3238 * Unshare the filesystem structure if it is being shared
3240 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3242 struct fs_struct *fs = current->fs;
3244 if (!(unshare_flags & CLONE_FS) || !fs)
3245 return 0;
3247 /* don't need lock here; in the worst case we'll do useless copy */
3248 if (fs->users == 1)
3249 return 0;
3251 *new_fsp = copy_fs_struct(fs);
3252 if (!*new_fsp)
3253 return -ENOMEM;
3255 return 0;
3259 * Unshare file descriptor table if it is being shared
3261 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3263 struct files_struct *fd = current->files;
3265 if ((unshare_flags & CLONE_FILES) &&
3266 (fd && atomic_read(&fd->count) > 1)) {
3267 fd = dup_fd(fd, NULL);
3268 if (IS_ERR(fd))
3269 return PTR_ERR(fd);
3270 *new_fdp = fd;
3273 return 0;
3277 * unshare allows a process to 'unshare' part of the process
3278 * context which was originally shared using clone. copy_*
3279 * functions used by kernel_clone() cannot be used here directly
3280 * because they modify an inactive task_struct that is being
3281 * constructed. Here we are modifying the current, active,
3282 * task_struct.
3284 int ksys_unshare(unsigned long unshare_flags)
3286 struct fs_struct *fs, *new_fs = NULL;
3287 struct files_struct *new_fd = NULL;
3288 struct cred *new_cred = NULL;
3289 struct nsproxy *new_nsproxy = NULL;
3290 int do_sysvsem = 0;
3291 int err;
3294 * If unsharing a user namespace must also unshare the thread group
3295 * and unshare the filesystem root and working directories.
3297 if (unshare_flags & CLONE_NEWUSER)
3298 unshare_flags |= CLONE_THREAD | CLONE_FS;
3300 * If unsharing vm, must also unshare signal handlers.
3302 if (unshare_flags & CLONE_VM)
3303 unshare_flags |= CLONE_SIGHAND;
3305 * If unsharing a signal handlers, must also unshare the signal queues.
3307 if (unshare_flags & CLONE_SIGHAND)
3308 unshare_flags |= CLONE_THREAD;
3310 * If unsharing namespace, must also unshare filesystem information.
3312 if (unshare_flags & CLONE_NEWNS)
3313 unshare_flags |= CLONE_FS;
3315 err = check_unshare_flags(unshare_flags);
3316 if (err)
3317 goto bad_unshare_out;
3319 * CLONE_NEWIPC must also detach from the undolist: after switching
3320 * to a new ipc namespace, the semaphore arrays from the old
3321 * namespace are unreachable.
3323 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3324 do_sysvsem = 1;
3325 err = unshare_fs(unshare_flags, &new_fs);
3326 if (err)
3327 goto bad_unshare_out;
3328 err = unshare_fd(unshare_flags, &new_fd);
3329 if (err)
3330 goto bad_unshare_cleanup_fs;
3331 err = unshare_userns(unshare_flags, &new_cred);
3332 if (err)
3333 goto bad_unshare_cleanup_fd;
3334 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3335 new_cred, new_fs);
3336 if (err)
3337 goto bad_unshare_cleanup_cred;
3339 if (new_cred) {
3340 err = set_cred_ucounts(new_cred);
3341 if (err)
3342 goto bad_unshare_cleanup_cred;
3345 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3346 if (do_sysvsem) {
3348 * CLONE_SYSVSEM is equivalent to sys_exit().
3350 exit_sem(current);
3352 if (unshare_flags & CLONE_NEWIPC) {
3353 /* Orphan segments in old ns (see sem above). */
3354 exit_shm(current);
3355 shm_init_task(current);
3358 if (new_nsproxy)
3359 switch_task_namespaces(current, new_nsproxy);
3361 task_lock(current);
3363 if (new_fs) {
3364 fs = current->fs;
3365 spin_lock(&fs->lock);
3366 current->fs = new_fs;
3367 if (--fs->users)
3368 new_fs = NULL;
3369 else
3370 new_fs = fs;
3371 spin_unlock(&fs->lock);
3374 if (new_fd)
3375 swap(current->files, new_fd);
3377 task_unlock(current);
3379 if (new_cred) {
3380 /* Install the new user namespace */
3381 commit_creds(new_cred);
3382 new_cred = NULL;
3386 perf_event_namespaces(current);
3388 bad_unshare_cleanup_cred:
3389 if (new_cred)
3390 put_cred(new_cred);
3391 bad_unshare_cleanup_fd:
3392 if (new_fd)
3393 put_files_struct(new_fd);
3395 bad_unshare_cleanup_fs:
3396 if (new_fs)
3397 free_fs_struct(new_fs);
3399 bad_unshare_out:
3400 return err;
3403 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3405 return ksys_unshare(unshare_flags);
3409 * Helper to unshare the files of the current task.
3410 * We don't want to expose copy_files internals to
3411 * the exec layer of the kernel.
3414 int unshare_files(void)
3416 struct task_struct *task = current;
3417 struct files_struct *old, *copy = NULL;
3418 int error;
3420 error = unshare_fd(CLONE_FILES, &copy);
3421 if (error || !copy)
3422 return error;
3424 old = task->files;
3425 task_lock(task);
3426 task->files = copy;
3427 task_unlock(task);
3428 put_files_struct(old);
3429 return 0;
3432 int sysctl_max_threads(const struct ctl_table *table, int write,
3433 void *buffer, size_t *lenp, loff_t *ppos)
3435 struct ctl_table t;
3436 int ret;
3437 int threads = max_threads;
3438 int min = 1;
3439 int max = MAX_THREADS;
3441 t = *table;
3442 t.data = &threads;
3443 t.extra1 = &min;
3444 t.extra2 = &max;
3446 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3447 if (ret || !write)
3448 return ret;
3450 max_threads = threads;
3452 return 0;