printf: Remove unused 'bprintf'
[drm/drm-misc.git] / kernel / module / main.c
blob5399c182b3cbed2dbeea0291f717f30358d8e7fc
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
8 #define INCLUDE_VERMAGIC
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
69 * Mutex protects:
70 * 1) List of modules (also safely readable with preempt_disable),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const s32 *crcs;
90 enum mod_license license;
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
118 static void mod_update_bounds(struct module *mod)
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
137 int register_module_notifier(struct notifier_block *nb)
139 return blocking_notifier_chain_register(&module_notify_list, nb);
141 EXPORT_SYMBOL(register_module_notifier);
143 int unregister_module_notifier(struct notifier_block *nb)
145 return blocking_notifier_chain_unregister(&module_notify_list, nb);
147 EXPORT_SYMBOL(unregister_module_notifier);
150 * We require a truly strong try_module_get(): 0 means success.
151 * Otherwise an error is returned due to ongoing or failed
152 * initialization etc.
154 static inline int strong_try_module_get(struct module *mod)
156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 if (mod && mod->state == MODULE_STATE_COMING)
158 return -EBUSY;
159 if (try_module_get(mod))
160 return 0;
161 else
162 return -ENOENT;
165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 enum lockdep_ok lockdep_ok)
168 add_taint(flag, lockdep_ok);
169 set_bit(flag, &mod->taints);
173 * A thread that wants to hold a reference to a module only while it
174 * is running can call this to safely exit.
176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
178 module_put(mod);
179 kthread_exit(code);
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
183 /* Find a module section: 0 means not found. */
184 static unsigned int find_sec(const struct load_info *info, const char *name)
186 unsigned int i;
188 for (i = 1; i < info->hdr->e_shnum; i++) {
189 Elf_Shdr *shdr = &info->sechdrs[i];
190 /* Alloc bit cleared means "ignore it." */
191 if ((shdr->sh_flags & SHF_ALLOC)
192 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 return i;
195 return 0;
199 * find_any_unique_sec() - Find a unique section index by name
200 * @info: Load info for the module to scan
201 * @name: Name of the section we're looking for
203 * Locates a unique section by name. Ignores SHF_ALLOC.
205 * Return: Section index if found uniquely, zero if absent, negative count
206 * of total instances if multiple were found.
208 static int find_any_unique_sec(const struct load_info *info, const char *name)
210 unsigned int idx;
211 unsigned int count = 0;
212 int i;
214 for (i = 1; i < info->hdr->e_shnum; i++) {
215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 name) == 0) {
217 count++;
218 idx = i;
221 if (count == 1) {
222 return idx;
223 } else if (count == 0) {
224 return 0;
225 } else {
226 return -count;
230 /* Find a module section, or NULL. */
231 static void *section_addr(const struct load_info *info, const char *name)
233 /* Section 0 has sh_addr 0. */
234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
237 /* Find a module section, or NULL. Fill in number of "objects" in section. */
238 static void *section_objs(const struct load_info *info,
239 const char *name,
240 size_t object_size,
241 unsigned int *num)
243 unsigned int sec = find_sec(info, name);
245 /* Section 0 has sh_addr 0 and sh_size 0. */
246 *num = info->sechdrs[sec].sh_size / object_size;
247 return (void *)info->sechdrs[sec].sh_addr;
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
253 unsigned int i;
255 for (i = 1; i < info->hdr->e_shnum; i++) {
256 Elf_Shdr *shdr = &info->sechdrs[i];
257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 return i;
260 return 0;
264 * Find a module section, or NULL. Fill in number of "objects" in section.
265 * Ignores SHF_ALLOC flag.
267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 const char *name,
269 size_t object_size,
270 unsigned int *num)
272 unsigned int sec = find_any_sec(info, name);
274 /* Section 0 has sh_addr 0 and sh_size 0. */
275 *num = info->sechdrs[sec].sh_size / object_size;
276 return (void *)info->sechdrs[sec].sh_addr;
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 return offset_to_ptr(&sym->name_offset);
289 #else
290 return sym->name;
291 #endif
294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 if (!sym->namespace_offset)
298 return NULL;
299 return offset_to_ptr(&sym->namespace_offset);
300 #else
301 return sym->namespace;
302 #endif
305 int cmp_name(const void *name, const void *sym)
307 return strcmp(name, kernel_symbol_name(sym));
310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 struct module *owner,
312 struct find_symbol_arg *fsa)
314 struct kernel_symbol *sym;
316 if (!fsa->gplok && syms->license == GPL_ONLY)
317 return false;
319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 sizeof(struct kernel_symbol), cmp_name);
321 if (!sym)
322 return false;
324 fsa->owner = owner;
325 fsa->crc = symversion(syms->crcs, sym - syms->start);
326 fsa->sym = sym;
327 fsa->license = syms->license;
329 return true;
333 * Find an exported symbol and return it, along with, (optional) crc and
334 * (optional) module which owns it. Needs preempt disabled or module_mutex.
336 bool find_symbol(struct find_symbol_arg *fsa)
338 static const struct symsearch arr[] = {
339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 NOT_GPL_ONLY },
341 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 __start___kcrctab_gpl,
343 GPL_ONLY },
345 struct module *mod;
346 unsigned int i;
348 module_assert_mutex_or_preempt();
350 for (i = 0; i < ARRAY_SIZE(arr); i++)
351 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
352 return true;
354 list_for_each_entry_rcu(mod, &modules, list,
355 lockdep_is_held(&module_mutex)) {
356 struct symsearch arr[] = {
357 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
358 NOT_GPL_ONLY },
359 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
360 mod->gpl_crcs,
361 GPL_ONLY },
364 if (mod->state == MODULE_STATE_UNFORMED)
365 continue;
367 for (i = 0; i < ARRAY_SIZE(arr); i++)
368 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
369 return true;
372 pr_debug("Failed to find symbol %s\n", fsa->name);
373 return false;
377 * Search for module by name: must hold module_mutex (or preempt disabled
378 * for read-only access).
380 struct module *find_module_all(const char *name, size_t len,
381 bool even_unformed)
383 struct module *mod;
385 module_assert_mutex_or_preempt();
387 list_for_each_entry_rcu(mod, &modules, list,
388 lockdep_is_held(&module_mutex)) {
389 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
390 continue;
391 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
392 return mod;
394 return NULL;
397 struct module *find_module(const char *name)
399 return find_module_all(name, strlen(name), false);
402 #ifdef CONFIG_SMP
404 static inline void __percpu *mod_percpu(struct module *mod)
406 return mod->percpu;
409 static int percpu_modalloc(struct module *mod, struct load_info *info)
411 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
412 unsigned long align = pcpusec->sh_addralign;
414 if (!pcpusec->sh_size)
415 return 0;
417 if (align > PAGE_SIZE) {
418 pr_warn("%s: per-cpu alignment %li > %li\n",
419 mod->name, align, PAGE_SIZE);
420 align = PAGE_SIZE;
423 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
424 if (!mod->percpu) {
425 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
426 mod->name, (unsigned long)pcpusec->sh_size);
427 return -ENOMEM;
429 mod->percpu_size = pcpusec->sh_size;
430 return 0;
433 static void percpu_modfree(struct module *mod)
435 free_percpu(mod->percpu);
438 static unsigned int find_pcpusec(struct load_info *info)
440 return find_sec(info, ".data..percpu");
443 static void percpu_modcopy(struct module *mod,
444 const void *from, unsigned long size)
446 int cpu;
448 for_each_possible_cpu(cpu)
449 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
454 struct module *mod;
455 unsigned int cpu;
457 preempt_disable();
459 list_for_each_entry_rcu(mod, &modules, list) {
460 if (mod->state == MODULE_STATE_UNFORMED)
461 continue;
462 if (!mod->percpu_size)
463 continue;
464 for_each_possible_cpu(cpu) {
465 void *start = per_cpu_ptr(mod->percpu, cpu);
466 void *va = (void *)addr;
468 if (va >= start && va < start + mod->percpu_size) {
469 if (can_addr) {
470 *can_addr = (unsigned long) (va - start);
471 *can_addr += (unsigned long)
472 per_cpu_ptr(mod->percpu,
473 get_boot_cpu_id());
475 preempt_enable();
476 return true;
481 preempt_enable();
482 return false;
486 * is_module_percpu_address() - test whether address is from module static percpu
487 * @addr: address to test
489 * Test whether @addr belongs to module static percpu area.
491 * Return: %true if @addr is from module static percpu area
493 bool is_module_percpu_address(unsigned long addr)
495 return __is_module_percpu_address(addr, NULL);
498 #else /* ... !CONFIG_SMP */
500 static inline void __percpu *mod_percpu(struct module *mod)
502 return NULL;
504 static int percpu_modalloc(struct module *mod, struct load_info *info)
506 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
507 if (info->sechdrs[info->index.pcpu].sh_size != 0)
508 return -ENOMEM;
509 return 0;
511 static inline void percpu_modfree(struct module *mod)
514 static unsigned int find_pcpusec(struct load_info *info)
516 return 0;
518 static inline void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
521 /* pcpusec should be 0, and size of that section should be 0. */
522 BUG_ON(size != 0);
524 bool is_module_percpu_address(unsigned long addr)
526 return false;
529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
531 return false;
534 #endif /* CONFIG_SMP */
536 #define MODINFO_ATTR(field) \
537 static void setup_modinfo_##field(struct module *mod, const char *s) \
539 mod->field = kstrdup(s, GFP_KERNEL); \
541 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
542 struct module_kobject *mk, char *buffer) \
544 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
546 static int modinfo_##field##_exists(struct module *mod) \
548 return mod->field != NULL; \
550 static void free_modinfo_##field(struct module *mod) \
552 kfree(mod->field); \
553 mod->field = NULL; \
555 static struct module_attribute modinfo_##field = { \
556 .attr = { .name = __stringify(field), .mode = 0444 }, \
557 .show = show_modinfo_##field, \
558 .setup = setup_modinfo_##field, \
559 .test = modinfo_##field##_exists, \
560 .free = free_modinfo_##field, \
563 MODINFO_ATTR(version);
564 MODINFO_ATTR(srcversion);
566 static struct {
567 char name[MODULE_NAME_LEN + 1];
568 char taints[MODULE_FLAGS_BUF_SIZE];
569 } last_unloaded_module;
571 #ifdef CONFIG_MODULE_UNLOAD
573 EXPORT_TRACEPOINT_SYMBOL(module_get);
575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
576 #define MODULE_REF_BASE 1
578 /* Init the unload section of the module. */
579 static int module_unload_init(struct module *mod)
582 * Initialize reference counter to MODULE_REF_BASE.
583 * refcnt == 0 means module is going.
585 atomic_set(&mod->refcnt, MODULE_REF_BASE);
587 INIT_LIST_HEAD(&mod->source_list);
588 INIT_LIST_HEAD(&mod->target_list);
590 /* Hold reference count during initialization. */
591 atomic_inc(&mod->refcnt);
593 return 0;
596 /* Does a already use b? */
597 static int already_uses(struct module *a, struct module *b)
599 struct module_use *use;
601 list_for_each_entry(use, &b->source_list, source_list) {
602 if (use->source == a)
603 return 1;
605 pr_debug("%s does not use %s!\n", a->name, b->name);
606 return 0;
610 * Module a uses b
611 * - we add 'a' as a "source", 'b' as a "target" of module use
612 * - the module_use is added to the list of 'b' sources (so
613 * 'b' can walk the list to see who sourced them), and of 'a'
614 * targets (so 'a' can see what modules it targets).
616 static int add_module_usage(struct module *a, struct module *b)
618 struct module_use *use;
620 pr_debug("Allocating new usage for %s.\n", a->name);
621 use = kmalloc(sizeof(*use), GFP_ATOMIC);
622 if (!use)
623 return -ENOMEM;
625 use->source = a;
626 use->target = b;
627 list_add(&use->source_list, &b->source_list);
628 list_add(&use->target_list, &a->target_list);
629 return 0;
632 /* Module a uses b: caller needs module_mutex() */
633 static int ref_module(struct module *a, struct module *b)
635 int err;
637 if (b == NULL || already_uses(a, b))
638 return 0;
640 /* If module isn't available, we fail. */
641 err = strong_try_module_get(b);
642 if (err)
643 return err;
645 err = add_module_usage(a, b);
646 if (err) {
647 module_put(b);
648 return err;
650 return 0;
653 /* Clear the unload stuff of the module. */
654 static void module_unload_free(struct module *mod)
656 struct module_use *use, *tmp;
658 mutex_lock(&module_mutex);
659 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
660 struct module *i = use->target;
661 pr_debug("%s unusing %s\n", mod->name, i->name);
662 module_put(i);
663 list_del(&use->source_list);
664 list_del(&use->target_list);
665 kfree(use);
667 mutex_unlock(&module_mutex);
670 #ifdef CONFIG_MODULE_FORCE_UNLOAD
671 static inline int try_force_unload(unsigned int flags)
673 int ret = (flags & O_TRUNC);
674 if (ret)
675 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
676 return ret;
678 #else
679 static inline int try_force_unload(unsigned int flags)
681 return 0;
683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
685 /* Try to release refcount of module, 0 means success. */
686 static int try_release_module_ref(struct module *mod)
688 int ret;
690 /* Try to decrement refcnt which we set at loading */
691 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
692 BUG_ON(ret < 0);
693 if (ret)
694 /* Someone can put this right now, recover with checking */
695 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
697 return ret;
700 static int try_stop_module(struct module *mod, int flags, int *forced)
702 /* If it's not unused, quit unless we're forcing. */
703 if (try_release_module_ref(mod) != 0) {
704 *forced = try_force_unload(flags);
705 if (!(*forced))
706 return -EWOULDBLOCK;
709 /* Mark it as dying. */
710 mod->state = MODULE_STATE_GOING;
712 return 0;
716 * module_refcount() - return the refcount or -1 if unloading
717 * @mod: the module we're checking
719 * Return:
720 * -1 if the module is in the process of unloading
721 * otherwise the number of references in the kernel to the module
723 int module_refcount(struct module *mod)
725 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
727 EXPORT_SYMBOL(module_refcount);
729 /* This exists whether we can unload or not */
730 static void free_module(struct module *mod);
732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
733 unsigned int, flags)
735 struct module *mod;
736 char name[MODULE_NAME_LEN];
737 char buf[MODULE_FLAGS_BUF_SIZE];
738 int ret, forced = 0;
740 if (!capable(CAP_SYS_MODULE) || modules_disabled)
741 return -EPERM;
743 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
744 return -EFAULT;
745 name[MODULE_NAME_LEN-1] = '\0';
747 audit_log_kern_module(name);
749 if (mutex_lock_interruptible(&module_mutex) != 0)
750 return -EINTR;
752 mod = find_module(name);
753 if (!mod) {
754 ret = -ENOENT;
755 goto out;
758 if (!list_empty(&mod->source_list)) {
759 /* Other modules depend on us: get rid of them first. */
760 ret = -EWOULDBLOCK;
761 goto out;
764 /* Doing init or already dying? */
765 if (mod->state != MODULE_STATE_LIVE) {
766 /* FIXME: if (force), slam module count damn the torpedoes */
767 pr_debug("%s already dying\n", mod->name);
768 ret = -EBUSY;
769 goto out;
772 /* If it has an init func, it must have an exit func to unload */
773 if (mod->init && !mod->exit) {
774 forced = try_force_unload(flags);
775 if (!forced) {
776 /* This module can't be removed */
777 ret = -EBUSY;
778 goto out;
782 ret = try_stop_module(mod, flags, &forced);
783 if (ret != 0)
784 goto out;
786 mutex_unlock(&module_mutex);
787 /* Final destruction now no one is using it. */
788 if (mod->exit != NULL)
789 mod->exit();
790 blocking_notifier_call_chain(&module_notify_list,
791 MODULE_STATE_GOING, mod);
792 klp_module_going(mod);
793 ftrace_release_mod(mod);
795 async_synchronize_full();
797 /* Store the name and taints of the last unloaded module for diagnostic purposes */
798 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
799 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
801 free_module(mod);
802 /* someone could wait for the module in add_unformed_module() */
803 wake_up_all(&module_wq);
804 return 0;
805 out:
806 mutex_unlock(&module_mutex);
807 return ret;
810 void __symbol_put(const char *symbol)
812 struct find_symbol_arg fsa = {
813 .name = symbol,
814 .gplok = true,
817 preempt_disable();
818 BUG_ON(!find_symbol(&fsa));
819 module_put(fsa.owner);
820 preempt_enable();
822 EXPORT_SYMBOL(__symbol_put);
824 /* Note this assumes addr is a function, which it currently always is. */
825 void symbol_put_addr(void *addr)
827 struct module *modaddr;
828 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
830 if (core_kernel_text(a))
831 return;
834 * Even though we hold a reference on the module; we still need to
835 * disable preemption in order to safely traverse the data structure.
837 preempt_disable();
838 modaddr = __module_text_address(a);
839 BUG_ON(!modaddr);
840 module_put(modaddr);
841 preempt_enable();
843 EXPORT_SYMBOL_GPL(symbol_put_addr);
845 static ssize_t show_refcnt(struct module_attribute *mattr,
846 struct module_kobject *mk, char *buffer)
848 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
851 static struct module_attribute modinfo_refcnt =
852 __ATTR(refcnt, 0444, show_refcnt, NULL);
854 void __module_get(struct module *module)
856 if (module) {
857 atomic_inc(&module->refcnt);
858 trace_module_get(module, _RET_IP_);
861 EXPORT_SYMBOL(__module_get);
863 bool try_module_get(struct module *module)
865 bool ret = true;
867 if (module) {
868 /* Note: here, we can fail to get a reference */
869 if (likely(module_is_live(module) &&
870 atomic_inc_not_zero(&module->refcnt) != 0))
871 trace_module_get(module, _RET_IP_);
872 else
873 ret = false;
875 return ret;
877 EXPORT_SYMBOL(try_module_get);
879 void module_put(struct module *module)
881 int ret;
883 if (module) {
884 ret = atomic_dec_if_positive(&module->refcnt);
885 WARN_ON(ret < 0); /* Failed to put refcount */
886 trace_module_put(module, _RET_IP_);
889 EXPORT_SYMBOL(module_put);
891 #else /* !CONFIG_MODULE_UNLOAD */
892 static inline void module_unload_free(struct module *mod)
896 static int ref_module(struct module *a, struct module *b)
898 return strong_try_module_get(b);
901 static inline int module_unload_init(struct module *mod)
903 return 0;
905 #endif /* CONFIG_MODULE_UNLOAD */
907 size_t module_flags_taint(unsigned long taints, char *buf)
909 size_t l = 0;
910 int i;
912 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
913 if (taint_flags[i].module && test_bit(i, &taints))
914 buf[l++] = taint_flags[i].c_true;
917 return l;
920 static ssize_t show_initstate(struct module_attribute *mattr,
921 struct module_kobject *mk, char *buffer)
923 const char *state = "unknown";
925 switch (mk->mod->state) {
926 case MODULE_STATE_LIVE:
927 state = "live";
928 break;
929 case MODULE_STATE_COMING:
930 state = "coming";
931 break;
932 case MODULE_STATE_GOING:
933 state = "going";
934 break;
935 default:
936 BUG();
938 return sprintf(buffer, "%s\n", state);
941 static struct module_attribute modinfo_initstate =
942 __ATTR(initstate, 0444, show_initstate, NULL);
944 static ssize_t store_uevent(struct module_attribute *mattr,
945 struct module_kobject *mk,
946 const char *buffer, size_t count)
948 int rc;
950 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
951 return rc ? rc : count;
954 struct module_attribute module_uevent =
955 __ATTR(uevent, 0200, NULL, store_uevent);
957 static ssize_t show_coresize(struct module_attribute *mattr,
958 struct module_kobject *mk, char *buffer)
960 unsigned int size = mk->mod->mem[MOD_TEXT].size;
962 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
963 for_class_mod_mem_type(type, core_data)
964 size += mk->mod->mem[type].size;
966 return sprintf(buffer, "%u\n", size);
969 static struct module_attribute modinfo_coresize =
970 __ATTR(coresize, 0444, show_coresize, NULL);
972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
973 static ssize_t show_datasize(struct module_attribute *mattr,
974 struct module_kobject *mk, char *buffer)
976 unsigned int size = 0;
978 for_class_mod_mem_type(type, core_data)
979 size += mk->mod->mem[type].size;
980 return sprintf(buffer, "%u\n", size);
983 static struct module_attribute modinfo_datasize =
984 __ATTR(datasize, 0444, show_datasize, NULL);
985 #endif
987 static ssize_t show_initsize(struct module_attribute *mattr,
988 struct module_kobject *mk, char *buffer)
990 unsigned int size = 0;
992 for_class_mod_mem_type(type, init)
993 size += mk->mod->mem[type].size;
994 return sprintf(buffer, "%u\n", size);
997 static struct module_attribute modinfo_initsize =
998 __ATTR(initsize, 0444, show_initsize, NULL);
1000 static ssize_t show_taint(struct module_attribute *mattr,
1001 struct module_kobject *mk, char *buffer)
1003 size_t l;
1005 l = module_flags_taint(mk->mod->taints, buffer);
1006 buffer[l++] = '\n';
1007 return l;
1010 static struct module_attribute modinfo_taint =
1011 __ATTR(taint, 0444, show_taint, NULL);
1013 struct module_attribute *modinfo_attrs[] = {
1014 &module_uevent,
1015 &modinfo_version,
1016 &modinfo_srcversion,
1017 &modinfo_initstate,
1018 &modinfo_coresize,
1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1020 &modinfo_datasize,
1021 #endif
1022 &modinfo_initsize,
1023 &modinfo_taint,
1024 #ifdef CONFIG_MODULE_UNLOAD
1025 &modinfo_refcnt,
1026 #endif
1027 NULL,
1030 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1032 static const char vermagic[] = VERMAGIC_STRING;
1034 int try_to_force_load(struct module *mod, const char *reason)
1036 #ifdef CONFIG_MODULE_FORCE_LOAD
1037 if (!test_taint(TAINT_FORCED_MODULE))
1038 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1039 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1040 return 0;
1041 #else
1042 return -ENOEXEC;
1043 #endif
1046 /* Parse tag=value strings from .modinfo section */
1047 char *module_next_tag_pair(char *string, unsigned long *secsize)
1049 /* Skip non-zero chars */
1050 while (string[0]) {
1051 string++;
1052 if ((*secsize)-- <= 1)
1053 return NULL;
1056 /* Skip any zero padding. */
1057 while (!string[0]) {
1058 string++;
1059 if ((*secsize)-- <= 1)
1060 return NULL;
1062 return string;
1065 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1066 char *prev)
1068 char *p;
1069 unsigned int taglen = strlen(tag);
1070 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1071 unsigned long size = infosec->sh_size;
1074 * get_modinfo() calls made before rewrite_section_headers()
1075 * must use sh_offset, as sh_addr isn't set!
1077 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1079 if (prev) {
1080 size -= prev - modinfo;
1081 modinfo = module_next_tag_pair(prev, &size);
1084 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1085 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1086 return p + taglen + 1;
1088 return NULL;
1091 static char *get_modinfo(const struct load_info *info, const char *tag)
1093 return get_next_modinfo(info, tag, NULL);
1096 static int verify_namespace_is_imported(const struct load_info *info,
1097 const struct kernel_symbol *sym,
1098 struct module *mod)
1100 const char *namespace;
1101 char *imported_namespace;
1103 namespace = kernel_symbol_namespace(sym);
1104 if (namespace && namespace[0]) {
1105 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1106 if (strcmp(namespace, imported_namespace) == 0)
1107 return 0;
1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1110 pr_warn(
1111 #else
1112 pr_err(
1113 #endif
1114 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1115 mod->name, kernel_symbol_name(sym), namespace);
1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1117 return -EINVAL;
1118 #endif
1120 return 0;
1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1125 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1126 return true;
1128 if (mod->using_gplonly_symbols) {
1129 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1130 mod->name, name, owner->name);
1131 return false;
1134 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1135 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1136 mod->name, name, owner->name);
1137 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1139 return true;
1142 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1143 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1144 const struct load_info *info,
1145 const char *name,
1146 char ownername[])
1148 struct find_symbol_arg fsa = {
1149 .name = name,
1150 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1151 .warn = true,
1153 int err;
1156 * The module_mutex should not be a heavily contended lock;
1157 * if we get the occasional sleep here, we'll go an extra iteration
1158 * in the wait_event_interruptible(), which is harmless.
1160 sched_annotate_sleep();
1161 mutex_lock(&module_mutex);
1162 if (!find_symbol(&fsa))
1163 goto unlock;
1165 if (fsa.license == GPL_ONLY)
1166 mod->using_gplonly_symbols = true;
1168 if (!inherit_taint(mod, fsa.owner, name)) {
1169 fsa.sym = NULL;
1170 goto getname;
1173 if (!check_version(info, name, mod, fsa.crc)) {
1174 fsa.sym = ERR_PTR(-EINVAL);
1175 goto getname;
1178 err = verify_namespace_is_imported(info, fsa.sym, mod);
1179 if (err) {
1180 fsa.sym = ERR_PTR(err);
1181 goto getname;
1184 err = ref_module(mod, fsa.owner);
1185 if (err) {
1186 fsa.sym = ERR_PTR(err);
1187 goto getname;
1190 getname:
1191 /* We must make copy under the lock if we failed to get ref. */
1192 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1193 unlock:
1194 mutex_unlock(&module_mutex);
1195 return fsa.sym;
1198 static const struct kernel_symbol *
1199 resolve_symbol_wait(struct module *mod,
1200 const struct load_info *info,
1201 const char *name)
1203 const struct kernel_symbol *ksym;
1204 char owner[MODULE_NAME_LEN];
1206 if (wait_event_interruptible_timeout(module_wq,
1207 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1208 || PTR_ERR(ksym) != -EBUSY,
1209 30 * HZ) <= 0) {
1210 pr_warn("%s: gave up waiting for init of module %s.\n",
1211 mod->name, owner);
1213 return ksym;
1216 void __weak module_arch_cleanup(struct module *mod)
1220 void __weak module_arch_freeing_init(struct module *mod)
1224 void *__module_writable_address(struct module *mod, void *loc)
1226 for_class_mod_mem_type(type, text) {
1227 struct module_memory *mem = &mod->mem[type];
1229 if (loc >= mem->base && loc < mem->base + mem->size)
1230 return loc + (mem->rw_copy - mem->base);
1233 return loc;
1236 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1238 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1239 enum execmem_type execmem_type;
1240 void *ptr;
1242 mod->mem[type].size = size;
1244 if (mod_mem_type_is_data(type))
1245 execmem_type = EXECMEM_MODULE_DATA;
1246 else
1247 execmem_type = EXECMEM_MODULE_TEXT;
1249 ptr = execmem_alloc(execmem_type, size);
1250 if (!ptr)
1251 return -ENOMEM;
1253 mod->mem[type].base = ptr;
1255 if (execmem_is_rox(execmem_type)) {
1256 ptr = vzalloc(size);
1258 if (!ptr) {
1259 execmem_free(mod->mem[type].base);
1260 return -ENOMEM;
1263 mod->mem[type].rw_copy = ptr;
1264 mod->mem[type].is_rox = true;
1265 } else {
1266 mod->mem[type].rw_copy = mod->mem[type].base;
1267 memset(mod->mem[type].base, 0, size);
1271 * The pointer to these blocks of memory are stored on the module
1272 * structure and we keep that around so long as the module is
1273 * around. We only free that memory when we unload the module.
1274 * Just mark them as not being a leak then. The .init* ELF
1275 * sections *do* get freed after boot so we *could* treat them
1276 * slightly differently with kmemleak_ignore() and only grey
1277 * them out as they work as typical memory allocations which
1278 * *do* eventually get freed, but let's just keep things simple
1279 * and avoid *any* false positives.
1281 kmemleak_not_leak(ptr);
1283 return 0;
1286 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1288 struct module_memory *mem = &mod->mem[type];
1290 if (mem->is_rox)
1291 vfree(mem->rw_copy);
1293 execmem_free(mem->base);
1296 static void free_mod_mem(struct module *mod)
1298 for_each_mod_mem_type(type) {
1299 struct module_memory *mod_mem = &mod->mem[type];
1301 if (type == MOD_DATA)
1302 continue;
1304 /* Free lock-classes; relies on the preceding sync_rcu(). */
1305 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1306 if (mod_mem->size)
1307 module_memory_free(mod, type);
1310 /* MOD_DATA hosts mod, so free it at last */
1311 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1312 module_memory_free(mod, MOD_DATA);
1315 /* Free a module, remove from lists, etc. */
1316 static void free_module(struct module *mod)
1318 trace_module_free(mod);
1320 codetag_unload_module(mod);
1322 mod_sysfs_teardown(mod);
1325 * We leave it in list to prevent duplicate loads, but make sure
1326 * that noone uses it while it's being deconstructed.
1328 mutex_lock(&module_mutex);
1329 mod->state = MODULE_STATE_UNFORMED;
1330 mutex_unlock(&module_mutex);
1332 /* Arch-specific cleanup. */
1333 module_arch_cleanup(mod);
1335 /* Module unload stuff */
1336 module_unload_free(mod);
1338 /* Free any allocated parameters. */
1339 destroy_params(mod->kp, mod->num_kp);
1341 if (is_livepatch_module(mod))
1342 free_module_elf(mod);
1344 /* Now we can delete it from the lists */
1345 mutex_lock(&module_mutex);
1346 /* Unlink carefully: kallsyms could be walking list. */
1347 list_del_rcu(&mod->list);
1348 mod_tree_remove(mod);
1349 /* Remove this module from bug list, this uses list_del_rcu */
1350 module_bug_cleanup(mod);
1351 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1352 synchronize_rcu();
1353 if (try_add_tainted_module(mod))
1354 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1355 mod->name);
1356 mutex_unlock(&module_mutex);
1358 /* This may be empty, but that's OK */
1359 module_arch_freeing_init(mod);
1360 kfree(mod->args);
1361 percpu_modfree(mod);
1363 free_mod_mem(mod);
1366 void *__symbol_get(const char *symbol)
1368 struct find_symbol_arg fsa = {
1369 .name = symbol,
1370 .gplok = true,
1371 .warn = true,
1374 preempt_disable();
1375 if (!find_symbol(&fsa))
1376 goto fail;
1377 if (fsa.license != GPL_ONLY) {
1378 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1379 symbol);
1380 goto fail;
1382 if (strong_try_module_get(fsa.owner))
1383 goto fail;
1384 preempt_enable();
1385 return (void *)kernel_symbol_value(fsa.sym);
1386 fail:
1387 preempt_enable();
1388 return NULL;
1390 EXPORT_SYMBOL_GPL(__symbol_get);
1393 * Ensure that an exported symbol [global namespace] does not already exist
1394 * in the kernel or in some other module's exported symbol table.
1396 * You must hold the module_mutex.
1398 static int verify_exported_symbols(struct module *mod)
1400 unsigned int i;
1401 const struct kernel_symbol *s;
1402 struct {
1403 const struct kernel_symbol *sym;
1404 unsigned int num;
1405 } arr[] = {
1406 { mod->syms, mod->num_syms },
1407 { mod->gpl_syms, mod->num_gpl_syms },
1410 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1411 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1412 struct find_symbol_arg fsa = {
1413 .name = kernel_symbol_name(s),
1414 .gplok = true,
1416 if (find_symbol(&fsa)) {
1417 pr_err("%s: exports duplicate symbol %s"
1418 " (owned by %s)\n",
1419 mod->name, kernel_symbol_name(s),
1420 module_name(fsa.owner));
1421 return -ENOEXEC;
1425 return 0;
1428 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1431 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1432 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1433 * i386 has a similar problem but may not deserve a fix.
1435 * If we ever have to ignore many symbols, consider refactoring the code to
1436 * only warn if referenced by a relocation.
1438 if (emachine == EM_386 || emachine == EM_X86_64)
1439 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1440 return false;
1443 /* Change all symbols so that st_value encodes the pointer directly. */
1444 static int simplify_symbols(struct module *mod, const struct load_info *info)
1446 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1447 Elf_Sym *sym = (void *)symsec->sh_addr;
1448 unsigned long secbase;
1449 unsigned int i;
1450 int ret = 0;
1451 const struct kernel_symbol *ksym;
1453 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1454 const char *name = info->strtab + sym[i].st_name;
1456 switch (sym[i].st_shndx) {
1457 case SHN_COMMON:
1458 /* Ignore common symbols */
1459 if (!strncmp(name, "__gnu_lto", 9))
1460 break;
1463 * We compiled with -fno-common. These are not
1464 * supposed to happen.
1466 pr_debug("Common symbol: %s\n", name);
1467 pr_warn("%s: please compile with -fno-common\n",
1468 mod->name);
1469 ret = -ENOEXEC;
1470 break;
1472 case SHN_ABS:
1473 /* Don't need to do anything */
1474 pr_debug("Absolute symbol: 0x%08lx %s\n",
1475 (long)sym[i].st_value, name);
1476 break;
1478 case SHN_LIVEPATCH:
1479 /* Livepatch symbols are resolved by livepatch */
1480 break;
1482 case SHN_UNDEF:
1483 ksym = resolve_symbol_wait(mod, info, name);
1484 /* Ok if resolved. */
1485 if (ksym && !IS_ERR(ksym)) {
1486 sym[i].st_value = kernel_symbol_value(ksym);
1487 break;
1490 /* Ok if weak or ignored. */
1491 if (!ksym &&
1492 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1493 ignore_undef_symbol(info->hdr->e_machine, name)))
1494 break;
1496 ret = PTR_ERR(ksym) ?: -ENOENT;
1497 pr_warn("%s: Unknown symbol %s (err %d)\n",
1498 mod->name, name, ret);
1499 break;
1501 default:
1502 /* Divert to percpu allocation if a percpu var. */
1503 if (sym[i].st_shndx == info->index.pcpu)
1504 secbase = (unsigned long)mod_percpu(mod);
1505 else
1506 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1507 sym[i].st_value += secbase;
1508 break;
1512 return ret;
1515 static int apply_relocations(struct module *mod, const struct load_info *info)
1517 unsigned int i;
1518 int err = 0;
1520 /* Now do relocations. */
1521 for (i = 1; i < info->hdr->e_shnum; i++) {
1522 unsigned int infosec = info->sechdrs[i].sh_info;
1524 /* Not a valid relocation section? */
1525 if (infosec >= info->hdr->e_shnum)
1526 continue;
1528 /* Don't bother with non-allocated sections */
1529 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1530 continue;
1532 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1533 err = klp_apply_section_relocs(mod, info->sechdrs,
1534 info->secstrings,
1535 info->strtab,
1536 info->index.sym, i,
1537 NULL);
1538 else if (info->sechdrs[i].sh_type == SHT_REL)
1539 err = apply_relocate(info->sechdrs, info->strtab,
1540 info->index.sym, i, mod);
1541 else if (info->sechdrs[i].sh_type == SHT_RELA)
1542 err = apply_relocate_add(info->sechdrs, info->strtab,
1543 info->index.sym, i, mod);
1544 if (err < 0)
1545 break;
1547 return err;
1550 /* Additional bytes needed by arch in front of individual sections */
1551 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1552 unsigned int section)
1554 /* default implementation just returns zero */
1555 return 0;
1558 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1559 Elf_Shdr *sechdr, unsigned int section)
1561 long offset;
1562 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1564 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1565 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1566 mod->mem[type].size = offset + sechdr->sh_size;
1568 WARN_ON_ONCE(offset & mask);
1569 return offset | mask;
1572 bool module_init_layout_section(const char *sname)
1574 #ifndef CONFIG_MODULE_UNLOAD
1575 if (module_exit_section(sname))
1576 return true;
1577 #endif
1578 return module_init_section(sname);
1581 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1583 unsigned int m, i;
1585 static const unsigned long masks[][2] = {
1587 * NOTE: all executable code must be the first section
1588 * in this array; otherwise modify the text_size
1589 * finder in the two loops below
1591 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1592 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1593 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1594 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1595 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1597 static const int core_m_to_mem_type[] = {
1598 MOD_TEXT,
1599 MOD_RODATA,
1600 MOD_RO_AFTER_INIT,
1601 MOD_DATA,
1602 MOD_DATA,
1604 static const int init_m_to_mem_type[] = {
1605 MOD_INIT_TEXT,
1606 MOD_INIT_RODATA,
1607 MOD_INVALID,
1608 MOD_INIT_DATA,
1609 MOD_INIT_DATA,
1612 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1613 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1615 for (i = 0; i < info->hdr->e_shnum; ++i) {
1616 Elf_Shdr *s = &info->sechdrs[i];
1617 const char *sname = info->secstrings + s->sh_name;
1619 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1620 || (s->sh_flags & masks[m][1])
1621 || s->sh_entsize != ~0UL
1622 || is_init != module_init_layout_section(sname))
1623 continue;
1625 if (WARN_ON_ONCE(type == MOD_INVALID))
1626 continue;
1629 * Do not allocate codetag memory as we load it into
1630 * preallocated contiguous memory.
1632 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1634 * s->sh_entsize won't be used but populate the
1635 * type field to avoid confusion.
1637 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1638 << SH_ENTSIZE_TYPE_SHIFT;
1639 continue;
1642 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1643 pr_debug("\t%s\n", sname);
1649 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1650 * might -- code, read-only data, read-write data, small data. Tally
1651 * sizes, and place the offsets into sh_entsize fields: high bit means it
1652 * belongs in init.
1654 static void layout_sections(struct module *mod, struct load_info *info)
1656 unsigned int i;
1658 for (i = 0; i < info->hdr->e_shnum; i++)
1659 info->sechdrs[i].sh_entsize = ~0UL;
1661 pr_debug("Core section allocation order for %s:\n", mod->name);
1662 __layout_sections(mod, info, false);
1664 pr_debug("Init section allocation order for %s:\n", mod->name);
1665 __layout_sections(mod, info, true);
1668 static void module_license_taint_check(struct module *mod, const char *license)
1670 if (!license)
1671 license = "unspecified";
1673 if (!license_is_gpl_compatible(license)) {
1674 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1675 pr_warn("%s: module license '%s' taints kernel.\n",
1676 mod->name, license);
1677 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1678 LOCKDEP_NOW_UNRELIABLE);
1682 static void setup_modinfo(struct module *mod, struct load_info *info)
1684 struct module_attribute *attr;
1685 int i;
1687 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1688 if (attr->setup)
1689 attr->setup(mod, get_modinfo(info, attr->attr.name));
1693 static void free_modinfo(struct module *mod)
1695 struct module_attribute *attr;
1696 int i;
1698 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1699 if (attr->free)
1700 attr->free(mod);
1704 bool __weak module_init_section(const char *name)
1706 return strstarts(name, ".init");
1709 bool __weak module_exit_section(const char *name)
1711 return strstarts(name, ".exit");
1714 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1716 #if defined(CONFIG_64BIT)
1717 unsigned long long secend;
1718 #else
1719 unsigned long secend;
1720 #endif
1723 * Check for both overflow and offset/size being
1724 * too large.
1726 secend = shdr->sh_offset + shdr->sh_size;
1727 if (secend < shdr->sh_offset || secend > info->len)
1728 return -ENOEXEC;
1730 return 0;
1734 * elf_validity_ehdr() - Checks an ELF header for module validity
1735 * @info: Load info containing the ELF header to check
1737 * Checks whether an ELF header could belong to a valid module. Checks:
1739 * * ELF header is within the data the user provided
1740 * * ELF magic is present
1741 * * It is relocatable (not final linked, not core file, etc.)
1742 * * The header's machine type matches what the architecture expects.
1743 * * Optional arch-specific hook for other properties
1744 * - module_elf_check_arch() is currently only used by PPC to check
1745 * ELF ABI version, but may be used by others in the future.
1747 * Return: %0 if valid, %-ENOEXEC on failure.
1749 static int elf_validity_ehdr(const struct load_info *info)
1751 if (info->len < sizeof(*(info->hdr))) {
1752 pr_err("Invalid ELF header len %lu\n", info->len);
1753 return -ENOEXEC;
1755 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1756 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1757 return -ENOEXEC;
1759 if (info->hdr->e_type != ET_REL) {
1760 pr_err("Invalid ELF header type: %u != %u\n",
1761 info->hdr->e_type, ET_REL);
1762 return -ENOEXEC;
1764 if (!elf_check_arch(info->hdr)) {
1765 pr_err("Invalid architecture in ELF header: %u\n",
1766 info->hdr->e_machine);
1767 return -ENOEXEC;
1769 if (!module_elf_check_arch(info->hdr)) {
1770 pr_err("Invalid module architecture in ELF header: %u\n",
1771 info->hdr->e_machine);
1772 return -ENOEXEC;
1774 return 0;
1778 * elf_validity_cache_sechdrs() - Cache section headers if valid
1779 * @info: Load info to compute section headers from
1781 * Checks:
1783 * * ELF header is valid (see elf_validity_ehdr())
1784 * * Section headers are the size we expect
1785 * * Section array fits in the user provided data
1786 * * Section index 0 is NULL
1787 * * Section contents are inbounds
1789 * Then updates @info with a &load_info->sechdrs pointer if valid.
1791 * Return: %0 if valid, negative error code if validation failed.
1793 static int elf_validity_cache_sechdrs(struct load_info *info)
1795 Elf_Shdr *sechdrs;
1796 Elf_Shdr *shdr;
1797 int i;
1798 int err;
1800 err = elf_validity_ehdr(info);
1801 if (err < 0)
1802 return err;
1804 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1805 pr_err("Invalid ELF section header size\n");
1806 return -ENOEXEC;
1810 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1811 * known and small. So e_shnum * sizeof(Elf_Shdr)
1812 * will not overflow unsigned long on any platform.
1814 if (info->hdr->e_shoff >= info->len
1815 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1816 info->len - info->hdr->e_shoff)) {
1817 pr_err("Invalid ELF section header overflow\n");
1818 return -ENOEXEC;
1821 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1824 * The code assumes that section 0 has a length of zero and
1825 * an addr of zero, so check for it.
1827 if (sechdrs[0].sh_type != SHT_NULL
1828 || sechdrs[0].sh_size != 0
1829 || sechdrs[0].sh_addr != 0) {
1830 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1831 sechdrs[0].sh_type);
1832 return -ENOEXEC;
1835 /* Validate contents are inbounds */
1836 for (i = 1; i < info->hdr->e_shnum; i++) {
1837 shdr = &sechdrs[i];
1838 switch (shdr->sh_type) {
1839 case SHT_NULL:
1840 case SHT_NOBITS:
1841 /* No contents, offset/size don't mean anything */
1842 continue;
1843 default:
1844 err = validate_section_offset(info, shdr);
1845 if (err < 0) {
1846 pr_err("Invalid ELF section in module (section %u type %u)\n",
1847 i, shdr->sh_type);
1848 return err;
1853 info->sechdrs = sechdrs;
1855 return 0;
1859 * elf_validity_cache_secstrings() - Caches section names if valid
1860 * @info: Load info to cache section names from. Must have valid sechdrs.
1862 * Specifically checks:
1864 * * Section name table index is inbounds of section headers
1865 * * Section name table is not empty
1866 * * Section name table is NUL terminated
1867 * * All section name offsets are inbounds of the section
1869 * Then updates @info with a &load_info->secstrings pointer if valid.
1871 * Return: %0 if valid, negative error code if validation failed.
1873 static int elf_validity_cache_secstrings(struct load_info *info)
1875 Elf_Shdr *strhdr, *shdr;
1876 char *secstrings;
1877 int i;
1880 * Verify if the section name table index is valid.
1882 if (info->hdr->e_shstrndx == SHN_UNDEF
1883 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1884 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1885 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1886 info->hdr->e_shnum);
1887 return -ENOEXEC;
1890 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1893 * The section name table must be NUL-terminated, as required
1894 * by the spec. This makes strcmp and pr_* calls that access
1895 * strings in the section safe.
1897 secstrings = (void *)info->hdr + strhdr->sh_offset;
1898 if (strhdr->sh_size == 0) {
1899 pr_err("empty section name table\n");
1900 return -ENOEXEC;
1902 if (secstrings[strhdr->sh_size - 1] != '\0') {
1903 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1904 return -ENOEXEC;
1907 for (i = 0; i < info->hdr->e_shnum; i++) {
1908 shdr = &info->sechdrs[i];
1909 /* SHT_NULL means sh_name has an undefined value */
1910 if (shdr->sh_type == SHT_NULL)
1911 continue;
1912 if (shdr->sh_name >= strhdr->sh_size) {
1913 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1914 i, shdr->sh_type);
1915 return -ENOEXEC;
1919 info->secstrings = secstrings;
1920 return 0;
1924 * elf_validity_cache_index_info() - Validate and cache modinfo section
1925 * @info: Load info to populate the modinfo index on.
1926 * Must have &load_info->sechdrs and &load_info->secstrings populated
1928 * Checks that if there is a .modinfo section, it is unique.
1929 * Then, it caches its index in &load_info->index.info.
1930 * Finally, it tries to populate the name to improve error messages.
1932 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1934 static int elf_validity_cache_index_info(struct load_info *info)
1936 int info_idx;
1938 info_idx = find_any_unique_sec(info, ".modinfo");
1940 if (info_idx == 0)
1941 /* Early return, no .modinfo */
1942 return 0;
1944 if (info_idx < 0) {
1945 pr_err("Only one .modinfo section must exist.\n");
1946 return -ENOEXEC;
1949 info->index.info = info_idx;
1950 /* Try to find a name early so we can log errors with a module name */
1951 info->name = get_modinfo(info, "name");
1953 return 0;
1957 * elf_validity_cache_index_mod() - Validates and caches this_module section
1958 * @info: Load info to cache this_module on.
1959 * Must have &load_info->sechdrs and &load_info->secstrings populated
1961 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1962 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1963 * to &__this_module properly. The kernel's modpost declares it on each
1964 * modules's *.mod.c file. If the struct module of the kernel changes a full
1965 * kernel rebuild is required.
1967 * We have a few expectations for this special section, this function
1968 * validates all this for us:
1970 * * The section has contents
1971 * * The section is unique
1972 * * We expect the kernel to always have to allocate it: SHF_ALLOC
1973 * * The section size must match the kernel's run time's struct module
1974 * size
1976 * If all checks pass, the index will be cached in &load_info->index.mod
1978 * Return: %0 on validation success, %-ENOEXEC on failure
1980 static int elf_validity_cache_index_mod(struct load_info *info)
1982 Elf_Shdr *shdr;
1983 int mod_idx;
1985 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1986 if (mod_idx <= 0) {
1987 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1988 info->name ?: "(missing .modinfo section or name field)");
1989 return -ENOEXEC;
1992 shdr = &info->sechdrs[mod_idx];
1994 if (shdr->sh_type == SHT_NOBITS) {
1995 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1996 info->name ?: "(missing .modinfo section or name field)");
1997 return -ENOEXEC;
2000 if (!(shdr->sh_flags & SHF_ALLOC)) {
2001 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2002 info->name ?: "(missing .modinfo section or name field)");
2003 return -ENOEXEC;
2006 if (shdr->sh_size != sizeof(struct module)) {
2007 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2008 info->name ?: "(missing .modinfo section or name field)");
2009 return -ENOEXEC;
2012 info->index.mod = mod_idx;
2014 return 0;
2018 * elf_validity_cache_index_sym() - Validate and cache symtab index
2019 * @info: Load info to cache symtab index in.
2020 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2022 * Checks that there is exactly one symbol table, then caches its index in
2023 * &load_info->index.sym.
2025 * Return: %0 if valid, %-ENOEXEC on failure.
2027 static int elf_validity_cache_index_sym(struct load_info *info)
2029 unsigned int sym_idx;
2030 unsigned int num_sym_secs = 0;
2031 int i;
2033 for (i = 1; i < info->hdr->e_shnum; i++) {
2034 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2035 num_sym_secs++;
2036 sym_idx = i;
2040 if (num_sym_secs != 1) {
2041 pr_warn("%s: module has no symbols (stripped?)\n",
2042 info->name ?: "(missing .modinfo section or name field)");
2043 return -ENOEXEC;
2046 info->index.sym = sym_idx;
2048 return 0;
2052 * elf_validity_cache_index_str() - Validate and cache strtab index
2053 * @info: Load info to cache strtab index in.
2054 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2055 * Must have &load_info->index.sym populated.
2057 * Looks at the symbol table's associated string table, makes sure it is
2058 * in-bounds, and caches it.
2060 * Return: %0 if valid, %-ENOEXEC on failure.
2062 static int elf_validity_cache_index_str(struct load_info *info)
2064 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2066 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2067 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2068 str_idx, str_idx, info->hdr->e_shnum);
2069 return -ENOEXEC;
2072 info->index.str = str_idx;
2073 return 0;
2077 * elf_validity_cache_index() - Resolve, validate, cache section indices
2078 * @info: Load info to read from and update.
2079 * &load_info->sechdrs and &load_info->secstrings must be populated.
2080 * @flags: Load flags, relevant to suppress version loading, see
2081 * uapi/linux/module.h
2083 * Populates &load_info->index, validating as it goes.
2084 * See child functions for per-field validation:
2086 * * elf_validity_cache_index_info()
2087 * * elf_validity_cache_index_mod()
2088 * * elf_validity_cache_index_sym()
2089 * * elf_validity_cache_index_str()
2091 * If versioning is not suppressed via flags, load the version index from
2092 * a section called "__versions" with no validation.
2094 * If CONFIG_SMP is enabled, load the percpu section by name with no
2095 * validation.
2097 * Return: 0 on success, negative error code if an index failed validation.
2099 static int elf_validity_cache_index(struct load_info *info, int flags)
2101 int err;
2103 err = elf_validity_cache_index_info(info);
2104 if (err < 0)
2105 return err;
2106 err = elf_validity_cache_index_mod(info);
2107 if (err < 0)
2108 return err;
2109 err = elf_validity_cache_index_sym(info);
2110 if (err < 0)
2111 return err;
2112 err = elf_validity_cache_index_str(info);
2113 if (err < 0)
2114 return err;
2116 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2117 info->index.vers = 0; /* Pretend no __versions section! */
2118 else
2119 info->index.vers = find_sec(info, "__versions");
2121 info->index.pcpu = find_pcpusec(info);
2123 return 0;
2127 * elf_validity_cache_strtab() - Validate and cache symbol string table
2128 * @info: Load info to read from and update.
2129 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2130 * Must have &load_info->index populated.
2132 * Checks:
2134 * * The string table is not empty.
2135 * * The string table starts and ends with NUL (required by ELF spec).
2136 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2137 * string table.
2139 * And caches the pointer as &load_info->strtab in @info.
2141 * Return: 0 on success, negative error code if a check failed.
2143 static int elf_validity_cache_strtab(struct load_info *info)
2145 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2146 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2147 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2148 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2149 int i;
2151 if (str_shdr->sh_size == 0) {
2152 pr_err("empty symbol string table\n");
2153 return -ENOEXEC;
2155 if (strtab[0] != '\0') {
2156 pr_err("symbol string table missing leading NUL\n");
2157 return -ENOEXEC;
2159 if (strtab[str_shdr->sh_size - 1] != '\0') {
2160 pr_err("symbol string table isn't NUL terminated\n");
2161 return -ENOEXEC;
2165 * Now that we know strtab is correctly structured, check symbol
2166 * starts are inbounds before they're used later.
2168 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2169 if (syms[i].st_name >= str_shdr->sh_size) {
2170 pr_err("symbol name out of bounds in string table");
2171 return -ENOEXEC;
2175 info->strtab = strtab;
2176 return 0;
2180 * Check userspace passed ELF module against our expectations, and cache
2181 * useful variables for further processing as we go.
2183 * This does basic validity checks against section offsets and sizes, the
2184 * section name string table, and the indices used for it (sh_name).
2186 * As a last step, since we're already checking the ELF sections we cache
2187 * useful variables which will be used later for our convenience:
2189 * o pointers to section headers
2190 * o cache the modinfo symbol section
2191 * o cache the string symbol section
2192 * o cache the module section
2194 * As a last step we set info->mod to the temporary copy of the module in
2195 * info->hdr. The final one will be allocated in move_module(). Any
2196 * modifications we make to our copy of the module will be carried over
2197 * to the final minted module.
2199 static int elf_validity_cache_copy(struct load_info *info, int flags)
2201 int err;
2203 err = elf_validity_cache_sechdrs(info);
2204 if (err < 0)
2205 return err;
2206 err = elf_validity_cache_secstrings(info);
2207 if (err < 0)
2208 return err;
2209 err = elf_validity_cache_index(info, flags);
2210 if (err < 0)
2211 return err;
2212 err = elf_validity_cache_strtab(info);
2213 if (err < 0)
2214 return err;
2216 /* This is temporary: point mod into copy of data. */
2217 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2220 * If we didn't load the .modinfo 'name' field earlier, fall back to
2221 * on-disk struct mod 'name' field.
2223 if (!info->name)
2224 info->name = info->mod->name;
2226 return 0;
2229 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2231 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2233 do {
2234 unsigned long n = min(len, COPY_CHUNK_SIZE);
2236 if (copy_from_user(dst, usrc, n) != 0)
2237 return -EFAULT;
2238 cond_resched();
2239 dst += n;
2240 usrc += n;
2241 len -= n;
2242 } while (len);
2243 return 0;
2246 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2248 if (!get_modinfo(info, "livepatch"))
2249 /* Nothing more to do */
2250 return 0;
2252 if (set_livepatch_module(mod))
2253 return 0;
2255 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2256 mod->name);
2257 return -ENOEXEC;
2260 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2262 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2263 return;
2265 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2266 mod->name);
2269 /* Sets info->hdr and info->len. */
2270 static int copy_module_from_user(const void __user *umod, unsigned long len,
2271 struct load_info *info)
2273 int err;
2275 info->len = len;
2276 if (info->len < sizeof(*(info->hdr)))
2277 return -ENOEXEC;
2279 err = security_kernel_load_data(LOADING_MODULE, true);
2280 if (err)
2281 return err;
2283 /* Suck in entire file: we'll want most of it. */
2284 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2285 if (!info->hdr)
2286 return -ENOMEM;
2288 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2289 err = -EFAULT;
2290 goto out;
2293 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2294 LOADING_MODULE, "init_module");
2295 out:
2296 if (err)
2297 vfree(info->hdr);
2299 return err;
2302 static void free_copy(struct load_info *info, int flags)
2304 if (flags & MODULE_INIT_COMPRESSED_FILE)
2305 module_decompress_cleanup(info);
2306 else
2307 vfree(info->hdr);
2310 static int rewrite_section_headers(struct load_info *info, int flags)
2312 unsigned int i;
2314 /* This should always be true, but let's be sure. */
2315 info->sechdrs[0].sh_addr = 0;
2317 for (i = 1; i < info->hdr->e_shnum; i++) {
2318 Elf_Shdr *shdr = &info->sechdrs[i];
2321 * Mark all sections sh_addr with their address in the
2322 * temporary image.
2324 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2328 /* Track but don't keep modinfo and version sections. */
2329 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2330 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2332 return 0;
2336 * These calls taint the kernel depending certain module circumstances */
2337 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2339 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2341 if (!get_modinfo(info, "intree")) {
2342 if (!test_taint(TAINT_OOT_MODULE))
2343 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2344 mod->name);
2345 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2348 check_modinfo_retpoline(mod, info);
2350 if (get_modinfo(info, "staging")) {
2351 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2352 pr_warn("%s: module is from the staging directory, the quality "
2353 "is unknown, you have been warned.\n", mod->name);
2356 if (is_livepatch_module(mod)) {
2357 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2358 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2359 mod->name);
2362 module_license_taint_check(mod, get_modinfo(info, "license"));
2364 if (get_modinfo(info, "test")) {
2365 if (!test_taint(TAINT_TEST))
2366 pr_warn("%s: loading test module taints kernel.\n",
2367 mod->name);
2368 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2370 #ifdef CONFIG_MODULE_SIG
2371 mod->sig_ok = info->sig_ok;
2372 if (!mod->sig_ok) {
2373 pr_notice_once("%s: module verification failed: signature "
2374 "and/or required key missing - tainting "
2375 "kernel\n", mod->name);
2376 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2378 #endif
2381 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2382 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2383 * using GPL-only symbols it needs.
2385 if (strcmp(mod->name, "ndiswrapper") == 0)
2386 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2388 /* driverloader was caught wrongly pretending to be under GPL */
2389 if (strcmp(mod->name, "driverloader") == 0)
2390 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2391 LOCKDEP_NOW_UNRELIABLE);
2393 /* lve claims to be GPL but upstream won't provide source */
2394 if (strcmp(mod->name, "lve") == 0)
2395 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2396 LOCKDEP_NOW_UNRELIABLE);
2398 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2399 pr_warn("%s: module license taints kernel.\n", mod->name);
2403 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2405 const char *modmagic = get_modinfo(info, "vermagic");
2406 int err;
2408 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2409 modmagic = NULL;
2411 /* This is allowed: modprobe --force will invalidate it. */
2412 if (!modmagic) {
2413 err = try_to_force_load(mod, "bad vermagic");
2414 if (err)
2415 return err;
2416 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2417 pr_err("%s: version magic '%s' should be '%s'\n",
2418 info->name, modmagic, vermagic);
2419 return -ENOEXEC;
2422 err = check_modinfo_livepatch(mod, info);
2423 if (err)
2424 return err;
2426 return 0;
2429 static int find_module_sections(struct module *mod, struct load_info *info)
2431 mod->kp = section_objs(info, "__param",
2432 sizeof(*mod->kp), &mod->num_kp);
2433 mod->syms = section_objs(info, "__ksymtab",
2434 sizeof(*mod->syms), &mod->num_syms);
2435 mod->crcs = section_addr(info, "__kcrctab");
2436 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2437 sizeof(*mod->gpl_syms),
2438 &mod->num_gpl_syms);
2439 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2441 #ifdef CONFIG_CONSTRUCTORS
2442 mod->ctors = section_objs(info, ".ctors",
2443 sizeof(*mod->ctors), &mod->num_ctors);
2444 if (!mod->ctors)
2445 mod->ctors = section_objs(info, ".init_array",
2446 sizeof(*mod->ctors), &mod->num_ctors);
2447 else if (find_sec(info, ".init_array")) {
2449 * This shouldn't happen with same compiler and binutils
2450 * building all parts of the module.
2452 pr_warn("%s: has both .ctors and .init_array.\n",
2453 mod->name);
2454 return -EINVAL;
2456 #endif
2458 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2459 &mod->noinstr_text_size);
2461 #ifdef CONFIG_TRACEPOINTS
2462 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2463 sizeof(*mod->tracepoints_ptrs),
2464 &mod->num_tracepoints);
2465 #endif
2466 #ifdef CONFIG_TREE_SRCU
2467 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2468 sizeof(*mod->srcu_struct_ptrs),
2469 &mod->num_srcu_structs);
2470 #endif
2471 #ifdef CONFIG_BPF_EVENTS
2472 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2473 sizeof(*mod->bpf_raw_events),
2474 &mod->num_bpf_raw_events);
2475 #endif
2476 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2477 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2478 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2479 &mod->btf_base_data_size);
2480 #endif
2481 #ifdef CONFIG_JUMP_LABEL
2482 mod->jump_entries = section_objs(info, "__jump_table",
2483 sizeof(*mod->jump_entries),
2484 &mod->num_jump_entries);
2485 #endif
2486 #ifdef CONFIG_EVENT_TRACING
2487 mod->trace_events = section_objs(info, "_ftrace_events",
2488 sizeof(*mod->trace_events),
2489 &mod->num_trace_events);
2490 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2491 sizeof(*mod->trace_evals),
2492 &mod->num_trace_evals);
2493 #endif
2494 #ifdef CONFIG_TRACING
2495 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2496 sizeof(*mod->trace_bprintk_fmt_start),
2497 &mod->num_trace_bprintk_fmt);
2498 #endif
2499 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2500 /* sechdrs[0].sh_size is always zero */
2501 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2502 sizeof(*mod->ftrace_callsites),
2503 &mod->num_ftrace_callsites);
2504 #endif
2505 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2506 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2507 sizeof(*mod->ei_funcs),
2508 &mod->num_ei_funcs);
2509 #endif
2510 #ifdef CONFIG_KPROBES
2511 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2512 &mod->kprobes_text_size);
2513 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2514 sizeof(unsigned long),
2515 &mod->num_kprobe_blacklist);
2516 #endif
2517 #ifdef CONFIG_PRINTK_INDEX
2518 mod->printk_index_start = section_objs(info, ".printk_index",
2519 sizeof(*mod->printk_index_start),
2520 &mod->printk_index_size);
2521 #endif
2522 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2523 mod->static_call_sites = section_objs(info, ".static_call_sites",
2524 sizeof(*mod->static_call_sites),
2525 &mod->num_static_call_sites);
2526 #endif
2527 #if IS_ENABLED(CONFIG_KUNIT)
2528 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2529 sizeof(*mod->kunit_suites),
2530 &mod->num_kunit_suites);
2531 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2532 sizeof(*mod->kunit_init_suites),
2533 &mod->num_kunit_init_suites);
2534 #endif
2536 mod->extable = section_objs(info, "__ex_table",
2537 sizeof(*mod->extable), &mod->num_exentries);
2539 if (section_addr(info, "__obsparm"))
2540 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2542 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2543 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2544 sizeof(*mod->dyndbg_info.descs),
2545 &mod->dyndbg_info.num_descs);
2546 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2547 sizeof(*mod->dyndbg_info.classes),
2548 &mod->dyndbg_info.num_classes);
2549 #endif
2551 return 0;
2554 static int move_module(struct module *mod, struct load_info *info)
2556 int i;
2557 enum mod_mem_type t = 0;
2558 int ret = -ENOMEM;
2559 bool codetag_section_found = false;
2561 for_each_mod_mem_type(type) {
2562 if (!mod->mem[type].size) {
2563 mod->mem[type].base = NULL;
2564 mod->mem[type].rw_copy = NULL;
2565 continue;
2568 ret = module_memory_alloc(mod, type);
2569 if (ret) {
2570 t = type;
2571 goto out_err;
2575 /* Transfer each section which specifies SHF_ALLOC */
2576 pr_debug("Final section addresses for %s:\n", mod->name);
2577 for (i = 0; i < info->hdr->e_shnum; i++) {
2578 void *dest;
2579 Elf_Shdr *shdr = &info->sechdrs[i];
2580 const char *sname;
2581 unsigned long addr;
2583 if (!(shdr->sh_flags & SHF_ALLOC))
2584 continue;
2586 sname = info->secstrings + shdr->sh_name;
2588 * Load codetag sections separately as they might still be used
2589 * after module unload.
2591 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2592 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2593 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2594 if (WARN_ON(!dest)) {
2595 ret = -EINVAL;
2596 goto out_err;
2598 if (IS_ERR(dest)) {
2599 ret = PTR_ERR(dest);
2600 goto out_err;
2602 addr = (unsigned long)dest;
2603 codetag_section_found = true;
2604 } else {
2605 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2606 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2608 addr = (unsigned long)mod->mem[type].base + offset;
2609 dest = mod->mem[type].rw_copy + offset;
2612 if (shdr->sh_type != SHT_NOBITS) {
2614 * Our ELF checker already validated this, but let's
2615 * be pedantic and make the goal clearer. We actually
2616 * end up copying over all modifications made to the
2617 * userspace copy of the entire struct module.
2619 if (i == info->index.mod &&
2620 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2621 ret = -ENOEXEC;
2622 goto out_err;
2624 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2627 * Update the userspace copy's ELF section address to point to
2628 * our newly allocated memory as a pure convenience so that
2629 * users of info can keep taking advantage and using the newly
2630 * minted official memory area.
2632 shdr->sh_addr = addr;
2633 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2634 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2637 return 0;
2638 out_err:
2639 for (t--; t >= 0; t--)
2640 module_memory_free(mod, t);
2641 if (codetag_section_found)
2642 codetag_free_module_sections(mod);
2644 return ret;
2647 static int check_export_symbol_versions(struct module *mod)
2649 #ifdef CONFIG_MODVERSIONS
2650 if ((mod->num_syms && !mod->crcs) ||
2651 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2652 return try_to_force_load(mod,
2653 "no versions for exported symbols");
2655 #endif
2656 return 0;
2659 static void flush_module_icache(const struct module *mod)
2662 * Flush the instruction cache, since we've played with text.
2663 * Do it before processing of module parameters, so the module
2664 * can provide parameter accessor functions of its own.
2666 for_each_mod_mem_type(type) {
2667 const struct module_memory *mod_mem = &mod->mem[type];
2669 if (mod_mem->size) {
2670 flush_icache_range((unsigned long)mod_mem->base,
2671 (unsigned long)mod_mem->base + mod_mem->size);
2676 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2678 return true;
2681 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2682 Elf_Shdr *sechdrs,
2683 char *secstrings,
2684 struct module *mod)
2686 return 0;
2689 /* module_blacklist is a comma-separated list of module names */
2690 static char *module_blacklist;
2691 static bool blacklisted(const char *module_name)
2693 const char *p;
2694 size_t len;
2696 if (!module_blacklist)
2697 return false;
2699 for (p = module_blacklist; *p; p += len) {
2700 len = strcspn(p, ",");
2701 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2702 return true;
2703 if (p[len] == ',')
2704 len++;
2706 return false;
2708 core_param(module_blacklist, module_blacklist, charp, 0400);
2710 static struct module *layout_and_allocate(struct load_info *info, int flags)
2712 struct module *mod;
2713 unsigned int ndx;
2714 int err;
2716 /* Allow arches to frob section contents and sizes. */
2717 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2718 info->secstrings, info->mod);
2719 if (err < 0)
2720 return ERR_PTR(err);
2722 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2723 info->secstrings, info->mod);
2724 if (err < 0)
2725 return ERR_PTR(err);
2727 /* We will do a special allocation for per-cpu sections later. */
2728 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2731 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2732 * layout_sections() can put it in the right place.
2733 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2735 ndx = find_sec(info, ".data..ro_after_init");
2736 if (ndx)
2737 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2739 * Mark the __jump_table section as ro_after_init as well: these data
2740 * structures are never modified, with the exception of entries that
2741 * refer to code in the __init section, which are annotated as such
2742 * at module load time.
2744 ndx = find_sec(info, "__jump_table");
2745 if (ndx)
2746 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2749 * Determine total sizes, and put offsets in sh_entsize. For now
2750 * this is done generically; there doesn't appear to be any
2751 * special cases for the architectures.
2753 layout_sections(info->mod, info);
2754 layout_symtab(info->mod, info);
2756 /* Allocate and move to the final place */
2757 err = move_module(info->mod, info);
2758 if (err)
2759 return ERR_PTR(err);
2761 /* Module has been copied to its final place now: return it. */
2762 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2763 kmemleak_load_module(mod, info);
2764 codetag_module_replaced(info->mod, mod);
2766 return mod;
2769 /* mod is no longer valid after this! */
2770 static void module_deallocate(struct module *mod, struct load_info *info)
2772 percpu_modfree(mod);
2773 module_arch_freeing_init(mod);
2775 free_mod_mem(mod);
2778 int __weak module_finalize(const Elf_Ehdr *hdr,
2779 const Elf_Shdr *sechdrs,
2780 struct module *me)
2782 return 0;
2785 int __weak module_post_finalize(const Elf_Ehdr *hdr,
2786 const Elf_Shdr *sechdrs,
2787 struct module *me)
2789 return 0;
2792 static int post_relocation(struct module *mod, const struct load_info *info)
2794 int ret;
2796 /* Sort exception table now relocations are done. */
2797 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2799 /* Copy relocated percpu area over. */
2800 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2801 info->sechdrs[info->index.pcpu].sh_size);
2803 /* Setup kallsyms-specific fields. */
2804 add_kallsyms(mod, info);
2806 /* Arch-specific module finalizing. */
2807 ret = module_finalize(info->hdr, info->sechdrs, mod);
2808 if (ret)
2809 return ret;
2811 for_each_mod_mem_type(type) {
2812 struct module_memory *mem = &mod->mem[type];
2814 if (mem->is_rox) {
2815 if (!execmem_update_copy(mem->base, mem->rw_copy,
2816 mem->size))
2817 return -ENOMEM;
2819 vfree(mem->rw_copy);
2820 mem->rw_copy = NULL;
2824 return module_post_finalize(info->hdr, info->sechdrs, mod);
2827 /* Call module constructors. */
2828 static void do_mod_ctors(struct module *mod)
2830 #ifdef CONFIG_CONSTRUCTORS
2831 unsigned long i;
2833 for (i = 0; i < mod->num_ctors; i++)
2834 mod->ctors[i]();
2835 #endif
2838 /* For freeing module_init on success, in case kallsyms traversing */
2839 struct mod_initfree {
2840 struct llist_node node;
2841 void *init_text;
2842 void *init_data;
2843 void *init_rodata;
2846 static void do_free_init(struct work_struct *w)
2848 struct llist_node *pos, *n, *list;
2849 struct mod_initfree *initfree;
2851 list = llist_del_all(&init_free_list);
2853 synchronize_rcu();
2855 llist_for_each_safe(pos, n, list) {
2856 initfree = container_of(pos, struct mod_initfree, node);
2857 execmem_free(initfree->init_text);
2858 execmem_free(initfree->init_data);
2859 execmem_free(initfree->init_rodata);
2860 kfree(initfree);
2864 void flush_module_init_free_work(void)
2866 flush_work(&init_free_wq);
2869 #undef MODULE_PARAM_PREFIX
2870 #define MODULE_PARAM_PREFIX "module."
2871 /* Default value for module->async_probe_requested */
2872 static bool async_probe;
2873 module_param(async_probe, bool, 0644);
2876 * This is where the real work happens.
2878 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2879 * helper command 'lx-symbols'.
2881 static noinline int do_init_module(struct module *mod)
2883 int ret = 0;
2884 struct mod_initfree *freeinit;
2885 #if defined(CONFIG_MODULE_STATS)
2886 unsigned int text_size = 0, total_size = 0;
2888 for_each_mod_mem_type(type) {
2889 const struct module_memory *mod_mem = &mod->mem[type];
2890 if (mod_mem->size) {
2891 total_size += mod_mem->size;
2892 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2893 text_size += mod_mem->size;
2896 #endif
2898 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2899 if (!freeinit) {
2900 ret = -ENOMEM;
2901 goto fail;
2903 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2904 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2905 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2907 do_mod_ctors(mod);
2908 /* Start the module */
2909 if (mod->init != NULL)
2910 ret = do_one_initcall(mod->init);
2911 if (ret < 0) {
2912 goto fail_free_freeinit;
2914 if (ret > 0) {
2915 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2916 "follow 0/-E convention\n"
2917 "%s: loading module anyway...\n",
2918 __func__, mod->name, ret, __func__);
2919 dump_stack();
2922 /* Now it's a first class citizen! */
2923 mod->state = MODULE_STATE_LIVE;
2924 blocking_notifier_call_chain(&module_notify_list,
2925 MODULE_STATE_LIVE, mod);
2927 /* Delay uevent until module has finished its init routine */
2928 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2931 * We need to finish all async code before the module init sequence
2932 * is done. This has potential to deadlock if synchronous module
2933 * loading is requested from async (which is not allowed!).
2935 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2936 * request_module() from async workers") for more details.
2938 if (!mod->async_probe_requested)
2939 async_synchronize_full();
2941 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2942 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2943 mutex_lock(&module_mutex);
2944 /* Drop initial reference. */
2945 module_put(mod);
2946 trim_init_extable(mod);
2947 #ifdef CONFIG_KALLSYMS
2948 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2949 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2950 #endif
2951 ret = module_enable_rodata_ro(mod, true);
2952 if (ret)
2953 goto fail_mutex_unlock;
2954 mod_tree_remove_init(mod);
2955 module_arch_freeing_init(mod);
2956 for_class_mod_mem_type(type, init) {
2957 mod->mem[type].base = NULL;
2958 mod->mem[type].size = 0;
2961 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2962 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
2963 mod->btf_data = NULL;
2964 mod->btf_base_data = NULL;
2965 #endif
2967 * We want to free module_init, but be aware that kallsyms may be
2968 * walking this with preempt disabled. In all the failure paths, we
2969 * call synchronize_rcu(), but we don't want to slow down the success
2970 * path. execmem_free() cannot be called in an interrupt, so do the
2971 * work and call synchronize_rcu() in a work queue.
2973 * Note that execmem_alloc() on most architectures creates W+X page
2974 * mappings which won't be cleaned up until do_free_init() runs. Any
2975 * code such as mark_rodata_ro() which depends on those mappings to
2976 * be cleaned up needs to sync with the queued work by invoking
2977 * flush_module_init_free_work().
2979 if (llist_add(&freeinit->node, &init_free_list))
2980 schedule_work(&init_free_wq);
2982 mutex_unlock(&module_mutex);
2983 wake_up_all(&module_wq);
2985 mod_stat_add_long(text_size, &total_text_size);
2986 mod_stat_add_long(total_size, &total_mod_size);
2988 mod_stat_inc(&modcount);
2990 return 0;
2992 fail_mutex_unlock:
2993 mutex_unlock(&module_mutex);
2994 fail_free_freeinit:
2995 kfree(freeinit);
2996 fail:
2997 /* Try to protect us from buggy refcounters. */
2998 mod->state = MODULE_STATE_GOING;
2999 synchronize_rcu();
3000 module_put(mod);
3001 blocking_notifier_call_chain(&module_notify_list,
3002 MODULE_STATE_GOING, mod);
3003 klp_module_going(mod);
3004 ftrace_release_mod(mod);
3005 free_module(mod);
3006 wake_up_all(&module_wq);
3008 return ret;
3011 static int may_init_module(void)
3013 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3014 return -EPERM;
3016 return 0;
3019 /* Is this module of this name done loading? No locks held. */
3020 static bool finished_loading(const char *name)
3022 struct module *mod;
3023 bool ret;
3026 * The module_mutex should not be a heavily contended lock;
3027 * if we get the occasional sleep here, we'll go an extra iteration
3028 * in the wait_event_interruptible(), which is harmless.
3030 sched_annotate_sleep();
3031 mutex_lock(&module_mutex);
3032 mod = find_module_all(name, strlen(name), true);
3033 ret = !mod || mod->state == MODULE_STATE_LIVE
3034 || mod->state == MODULE_STATE_GOING;
3035 mutex_unlock(&module_mutex);
3037 return ret;
3040 /* Must be called with module_mutex held */
3041 static int module_patient_check_exists(const char *name,
3042 enum fail_dup_mod_reason reason)
3044 struct module *old;
3045 int err = 0;
3047 old = find_module_all(name, strlen(name), true);
3048 if (old == NULL)
3049 return 0;
3051 if (old->state == MODULE_STATE_COMING ||
3052 old->state == MODULE_STATE_UNFORMED) {
3053 /* Wait in case it fails to load. */
3054 mutex_unlock(&module_mutex);
3055 err = wait_event_interruptible(module_wq,
3056 finished_loading(name));
3057 mutex_lock(&module_mutex);
3058 if (err)
3059 return err;
3061 /* The module might have gone in the meantime. */
3062 old = find_module_all(name, strlen(name), true);
3065 if (try_add_failed_module(name, reason))
3066 pr_warn("Could not add fail-tracking for module: %s\n", name);
3069 * We are here only when the same module was being loaded. Do
3070 * not try to load it again right now. It prevents long delays
3071 * caused by serialized module load failures. It might happen
3072 * when more devices of the same type trigger load of
3073 * a particular module.
3075 if (old && old->state == MODULE_STATE_LIVE)
3076 return -EEXIST;
3077 return -EBUSY;
3081 * We try to place it in the list now to make sure it's unique before
3082 * we dedicate too many resources. In particular, temporary percpu
3083 * memory exhaustion.
3085 static int add_unformed_module(struct module *mod)
3087 int err;
3089 mod->state = MODULE_STATE_UNFORMED;
3091 mutex_lock(&module_mutex);
3092 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3093 if (err)
3094 goto out;
3096 mod_update_bounds(mod);
3097 list_add_rcu(&mod->list, &modules);
3098 mod_tree_insert(mod);
3099 err = 0;
3101 out:
3102 mutex_unlock(&module_mutex);
3103 return err;
3106 static int complete_formation(struct module *mod, struct load_info *info)
3108 int err;
3110 mutex_lock(&module_mutex);
3112 /* Find duplicate symbols (must be called under lock). */
3113 err = verify_exported_symbols(mod);
3114 if (err < 0)
3115 goto out;
3117 /* These rely on module_mutex for list integrity. */
3118 module_bug_finalize(info->hdr, info->sechdrs, mod);
3119 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3121 err = module_enable_rodata_ro(mod, false);
3122 if (err)
3123 goto out_strict_rwx;
3124 err = module_enable_data_nx(mod);
3125 if (err)
3126 goto out_strict_rwx;
3127 err = module_enable_text_rox(mod);
3128 if (err)
3129 goto out_strict_rwx;
3132 * Mark state as coming so strong_try_module_get() ignores us,
3133 * but kallsyms etc. can see us.
3135 mod->state = MODULE_STATE_COMING;
3136 mutex_unlock(&module_mutex);
3138 return 0;
3140 out_strict_rwx:
3141 module_bug_cleanup(mod);
3142 out:
3143 mutex_unlock(&module_mutex);
3144 return err;
3147 static int prepare_coming_module(struct module *mod)
3149 int err;
3151 ftrace_module_enable(mod);
3152 err = klp_module_coming(mod);
3153 if (err)
3154 return err;
3156 err = blocking_notifier_call_chain_robust(&module_notify_list,
3157 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3158 err = notifier_to_errno(err);
3159 if (err)
3160 klp_module_going(mod);
3162 return err;
3165 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3166 void *arg)
3168 struct module *mod = arg;
3169 int ret;
3171 if (strcmp(param, "async_probe") == 0) {
3172 if (kstrtobool(val, &mod->async_probe_requested))
3173 mod->async_probe_requested = true;
3174 return 0;
3177 /* Check for magic 'dyndbg' arg */
3178 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3179 if (ret != 0)
3180 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3181 return 0;
3184 /* Module within temporary copy, this doesn't do any allocation */
3185 static int early_mod_check(struct load_info *info, int flags)
3187 int err;
3190 * Now that we know we have the correct module name, check
3191 * if it's blacklisted.
3193 if (blacklisted(info->name)) {
3194 pr_err("Module %s is blacklisted\n", info->name);
3195 return -EPERM;
3198 err = rewrite_section_headers(info, flags);
3199 if (err)
3200 return err;
3202 /* Check module struct version now, before we try to use module. */
3203 if (!check_modstruct_version(info, info->mod))
3204 return -ENOEXEC;
3206 err = check_modinfo(info->mod, info, flags);
3207 if (err)
3208 return err;
3210 mutex_lock(&module_mutex);
3211 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3212 mutex_unlock(&module_mutex);
3214 return err;
3218 * Allocate and load the module: note that size of section 0 is always
3219 * zero, and we rely on this for optional sections.
3221 static int load_module(struct load_info *info, const char __user *uargs,
3222 int flags)
3224 struct module *mod;
3225 bool module_allocated = false;
3226 long err = 0;
3227 char *after_dashes;
3230 * Do the signature check (if any) first. All that
3231 * the signature check needs is info->len, it does
3232 * not need any of the section info. That can be
3233 * set up later. This will minimize the chances
3234 * of a corrupt module causing problems before
3235 * we even get to the signature check.
3237 * The check will also adjust info->len by stripping
3238 * off the sig length at the end of the module, making
3239 * checks against info->len more correct.
3241 err = module_sig_check(info, flags);
3242 if (err)
3243 goto free_copy;
3246 * Do basic sanity checks against the ELF header and
3247 * sections. Cache useful sections and set the
3248 * info->mod to the userspace passed struct module.
3250 err = elf_validity_cache_copy(info, flags);
3251 if (err)
3252 goto free_copy;
3254 err = early_mod_check(info, flags);
3255 if (err)
3256 goto free_copy;
3258 /* Figure out module layout, and allocate all the memory. */
3259 mod = layout_and_allocate(info, flags);
3260 if (IS_ERR(mod)) {
3261 err = PTR_ERR(mod);
3262 goto free_copy;
3265 module_allocated = true;
3267 audit_log_kern_module(mod->name);
3269 /* Reserve our place in the list. */
3270 err = add_unformed_module(mod);
3271 if (err)
3272 goto free_module;
3275 * We are tainting your kernel if your module gets into
3276 * the modules linked list somehow.
3278 module_augment_kernel_taints(mod, info);
3280 /* To avoid stressing percpu allocator, do this once we're unique. */
3281 err = percpu_modalloc(mod, info);
3282 if (err)
3283 goto unlink_mod;
3285 /* Now module is in final location, initialize linked lists, etc. */
3286 err = module_unload_init(mod);
3287 if (err)
3288 goto unlink_mod;
3290 init_param_lock(mod);
3293 * Now we've got everything in the final locations, we can
3294 * find optional sections.
3296 err = find_module_sections(mod, info);
3297 if (err)
3298 goto free_unload;
3300 err = check_export_symbol_versions(mod);
3301 if (err)
3302 goto free_unload;
3304 /* Set up MODINFO_ATTR fields */
3305 setup_modinfo(mod, info);
3307 /* Fix up syms, so that st_value is a pointer to location. */
3308 err = simplify_symbols(mod, info);
3309 if (err < 0)
3310 goto free_modinfo;
3312 err = apply_relocations(mod, info);
3313 if (err < 0)
3314 goto free_modinfo;
3316 err = post_relocation(mod, info);
3317 if (err < 0)
3318 goto free_modinfo;
3320 flush_module_icache(mod);
3322 /* Now copy in args */
3323 mod->args = strndup_user(uargs, ~0UL >> 1);
3324 if (IS_ERR(mod->args)) {
3325 err = PTR_ERR(mod->args);
3326 goto free_arch_cleanup;
3329 init_build_id(mod, info);
3331 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3332 ftrace_module_init(mod);
3334 /* Finally it's fully formed, ready to start executing. */
3335 err = complete_formation(mod, info);
3336 if (err)
3337 goto ddebug_cleanup;
3339 err = prepare_coming_module(mod);
3340 if (err)
3341 goto bug_cleanup;
3343 mod->async_probe_requested = async_probe;
3345 /* Module is ready to execute: parsing args may do that. */
3346 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3347 -32768, 32767, mod,
3348 unknown_module_param_cb);
3349 if (IS_ERR(after_dashes)) {
3350 err = PTR_ERR(after_dashes);
3351 goto coming_cleanup;
3352 } else if (after_dashes) {
3353 pr_warn("%s: parameters '%s' after `--' ignored\n",
3354 mod->name, after_dashes);
3357 /* Link in to sysfs. */
3358 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3359 if (err < 0)
3360 goto coming_cleanup;
3362 if (is_livepatch_module(mod)) {
3363 err = copy_module_elf(mod, info);
3364 if (err < 0)
3365 goto sysfs_cleanup;
3368 /* Get rid of temporary copy. */
3369 free_copy(info, flags);
3371 codetag_load_module(mod);
3373 /* Done! */
3374 trace_module_load(mod);
3376 return do_init_module(mod);
3378 sysfs_cleanup:
3379 mod_sysfs_teardown(mod);
3380 coming_cleanup:
3381 mod->state = MODULE_STATE_GOING;
3382 destroy_params(mod->kp, mod->num_kp);
3383 blocking_notifier_call_chain(&module_notify_list,
3384 MODULE_STATE_GOING, mod);
3385 klp_module_going(mod);
3386 bug_cleanup:
3387 mod->state = MODULE_STATE_GOING;
3388 /* module_bug_cleanup needs module_mutex protection */
3389 mutex_lock(&module_mutex);
3390 module_bug_cleanup(mod);
3391 mutex_unlock(&module_mutex);
3393 ddebug_cleanup:
3394 ftrace_release_mod(mod);
3395 synchronize_rcu();
3396 kfree(mod->args);
3397 free_arch_cleanup:
3398 module_arch_cleanup(mod);
3399 free_modinfo:
3400 free_modinfo(mod);
3401 free_unload:
3402 module_unload_free(mod);
3403 unlink_mod:
3404 mutex_lock(&module_mutex);
3405 /* Unlink carefully: kallsyms could be walking list. */
3406 list_del_rcu(&mod->list);
3407 mod_tree_remove(mod);
3408 wake_up_all(&module_wq);
3409 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3410 synchronize_rcu();
3411 mutex_unlock(&module_mutex);
3412 free_module:
3413 mod_stat_bump_invalid(info, flags);
3414 /* Free lock-classes; relies on the preceding sync_rcu() */
3415 for_class_mod_mem_type(type, core_data) {
3416 lockdep_free_key_range(mod->mem[type].base,
3417 mod->mem[type].size);
3420 module_deallocate(mod, info);
3421 free_copy:
3423 * The info->len is always set. We distinguish between
3424 * failures once the proper module was allocated and
3425 * before that.
3427 if (!module_allocated)
3428 mod_stat_bump_becoming(info, flags);
3429 free_copy(info, flags);
3430 return err;
3433 SYSCALL_DEFINE3(init_module, void __user *, umod,
3434 unsigned long, len, const char __user *, uargs)
3436 int err;
3437 struct load_info info = { };
3439 err = may_init_module();
3440 if (err)
3441 return err;
3443 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3444 umod, len, uargs);
3446 err = copy_module_from_user(umod, len, &info);
3447 if (err) {
3448 mod_stat_inc(&failed_kreads);
3449 mod_stat_add_long(len, &invalid_kread_bytes);
3450 return err;
3453 return load_module(&info, uargs, 0);
3456 struct idempotent {
3457 const void *cookie;
3458 struct hlist_node entry;
3459 struct completion complete;
3460 int ret;
3463 #define IDEM_HASH_BITS 8
3464 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3465 static DEFINE_SPINLOCK(idem_lock);
3467 static bool idempotent(struct idempotent *u, const void *cookie)
3469 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3470 struct hlist_head *head = idem_hash + hash;
3471 struct idempotent *existing;
3472 bool first;
3474 u->ret = -EINTR;
3475 u->cookie = cookie;
3476 init_completion(&u->complete);
3478 spin_lock(&idem_lock);
3479 first = true;
3480 hlist_for_each_entry(existing, head, entry) {
3481 if (existing->cookie != cookie)
3482 continue;
3483 first = false;
3484 break;
3486 hlist_add_head(&u->entry, idem_hash + hash);
3487 spin_unlock(&idem_lock);
3489 return !first;
3493 * We were the first one with 'cookie' on the list, and we ended
3494 * up completing the operation. We now need to walk the list,
3495 * remove everybody - which includes ourselves - fill in the return
3496 * value, and then complete the operation.
3498 static int idempotent_complete(struct idempotent *u, int ret)
3500 const void *cookie = u->cookie;
3501 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3502 struct hlist_head *head = idem_hash + hash;
3503 struct hlist_node *next;
3504 struct idempotent *pos;
3506 spin_lock(&idem_lock);
3507 hlist_for_each_entry_safe(pos, next, head, entry) {
3508 if (pos->cookie != cookie)
3509 continue;
3510 hlist_del_init(&pos->entry);
3511 pos->ret = ret;
3512 complete(&pos->complete);
3514 spin_unlock(&idem_lock);
3515 return ret;
3519 * Wait for the idempotent worker.
3521 * If we get interrupted, we need to remove ourselves from the
3522 * the idempotent list, and the completion may still come in.
3524 * The 'idem_lock' protects against the race, and 'idem.ret' was
3525 * initialized to -EINTR and is thus always the right return
3526 * value even if the idempotent work then completes between
3527 * the wait_for_completion and the cleanup.
3529 static int idempotent_wait_for_completion(struct idempotent *u)
3531 if (wait_for_completion_interruptible(&u->complete)) {
3532 spin_lock(&idem_lock);
3533 if (!hlist_unhashed(&u->entry))
3534 hlist_del(&u->entry);
3535 spin_unlock(&idem_lock);
3537 return u->ret;
3540 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3542 struct load_info info = { };
3543 void *buf = NULL;
3544 int len;
3546 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3547 if (len < 0) {
3548 mod_stat_inc(&failed_kreads);
3549 return len;
3552 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3553 int err = module_decompress(&info, buf, len);
3554 vfree(buf); /* compressed data is no longer needed */
3555 if (err) {
3556 mod_stat_inc(&failed_decompress);
3557 mod_stat_add_long(len, &invalid_decompress_bytes);
3558 return err;
3560 } else {
3561 info.hdr = buf;
3562 info.len = len;
3565 return load_module(&info, uargs, flags);
3568 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3570 struct idempotent idem;
3572 if (!(f->f_mode & FMODE_READ))
3573 return -EBADF;
3575 /* Are we the winners of the race and get to do this? */
3576 if (!idempotent(&idem, file_inode(f))) {
3577 int ret = init_module_from_file(f, uargs, flags);
3578 return idempotent_complete(&idem, ret);
3582 * Somebody else won the race and is loading the module.
3584 return idempotent_wait_for_completion(&idem);
3587 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3589 int err = may_init_module();
3590 if (err)
3591 return err;
3593 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3595 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3596 |MODULE_INIT_IGNORE_VERMAGIC
3597 |MODULE_INIT_COMPRESSED_FILE))
3598 return -EINVAL;
3600 CLASS(fd, f)(fd);
3601 if (fd_empty(f))
3602 return -EBADF;
3603 return idempotent_init_module(fd_file(f), uargs, flags);
3606 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3607 char *module_flags(struct module *mod, char *buf, bool show_state)
3609 int bx = 0;
3611 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3612 if (!mod->taints && !show_state)
3613 goto out;
3614 if (mod->taints ||
3615 mod->state == MODULE_STATE_GOING ||
3616 mod->state == MODULE_STATE_COMING) {
3617 buf[bx++] = '(';
3618 bx += module_flags_taint(mod->taints, buf + bx);
3619 /* Show a - for module-is-being-unloaded */
3620 if (mod->state == MODULE_STATE_GOING && show_state)
3621 buf[bx++] = '-';
3622 /* Show a + for module-is-being-loaded */
3623 if (mod->state == MODULE_STATE_COMING && show_state)
3624 buf[bx++] = '+';
3625 buf[bx++] = ')';
3627 out:
3628 buf[bx] = '\0';
3630 return buf;
3633 /* Given an address, look for it in the module exception tables. */
3634 const struct exception_table_entry *search_module_extables(unsigned long addr)
3636 const struct exception_table_entry *e = NULL;
3637 struct module *mod;
3639 preempt_disable();
3640 mod = __module_address(addr);
3641 if (!mod)
3642 goto out;
3644 if (!mod->num_exentries)
3645 goto out;
3647 e = search_extable(mod->extable,
3648 mod->num_exentries,
3649 addr);
3650 out:
3651 preempt_enable();
3654 * Now, if we found one, we are running inside it now, hence
3655 * we cannot unload the module, hence no refcnt needed.
3657 return e;
3661 * is_module_address() - is this address inside a module?
3662 * @addr: the address to check.
3664 * See is_module_text_address() if you simply want to see if the address
3665 * is code (not data).
3667 bool is_module_address(unsigned long addr)
3669 bool ret;
3671 preempt_disable();
3672 ret = __module_address(addr) != NULL;
3673 preempt_enable();
3675 return ret;
3679 * __module_address() - get the module which contains an address.
3680 * @addr: the address.
3682 * Must be called with preempt disabled or module mutex held so that
3683 * module doesn't get freed during this.
3685 struct module *__module_address(unsigned long addr)
3687 struct module *mod;
3689 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3690 goto lookup;
3692 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3693 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3694 goto lookup;
3695 #endif
3697 return NULL;
3699 lookup:
3700 module_assert_mutex_or_preempt();
3702 mod = mod_find(addr, &mod_tree);
3703 if (mod) {
3704 BUG_ON(!within_module(addr, mod));
3705 if (mod->state == MODULE_STATE_UNFORMED)
3706 mod = NULL;
3708 return mod;
3712 * is_module_text_address() - is this address inside module code?
3713 * @addr: the address to check.
3715 * See is_module_address() if you simply want to see if the address is
3716 * anywhere in a module. See kernel_text_address() for testing if an
3717 * address corresponds to kernel or module code.
3719 bool is_module_text_address(unsigned long addr)
3721 bool ret;
3723 preempt_disable();
3724 ret = __module_text_address(addr) != NULL;
3725 preempt_enable();
3727 return ret;
3731 * __module_text_address() - get the module whose code contains an address.
3732 * @addr: the address.
3734 * Must be called with preempt disabled or module mutex held so that
3735 * module doesn't get freed during this.
3737 struct module *__module_text_address(unsigned long addr)
3739 struct module *mod = __module_address(addr);
3740 if (mod) {
3741 /* Make sure it's within the text section. */
3742 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3743 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3744 mod = NULL;
3746 return mod;
3749 /* Don't grab lock, we're oopsing. */
3750 void print_modules(void)
3752 struct module *mod;
3753 char buf[MODULE_FLAGS_BUF_SIZE];
3755 printk(KERN_DEFAULT "Modules linked in:");
3756 /* Most callers should already have preempt disabled, but make sure */
3757 preempt_disable();
3758 list_for_each_entry_rcu(mod, &modules, list) {
3759 if (mod->state == MODULE_STATE_UNFORMED)
3760 continue;
3761 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3764 print_unloaded_tainted_modules();
3765 preempt_enable();
3766 if (last_unloaded_module.name[0])
3767 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3768 last_unloaded_module.taints);
3769 pr_cont("\n");
3772 #ifdef CONFIG_MODULE_DEBUGFS
3773 struct dentry *mod_debugfs_root;
3775 static int module_debugfs_init(void)
3777 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3778 return 0;
3780 module_init(module_debugfs_init);
3781 #endif