1 /* SPDX-License-Identifier: GPL-2.0 */
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
12 SCX_DSP_DFL_MAX_BATCH
= 32,
13 SCX_DSP_MAX_LOOPS
= 32,
14 SCX_WATCHDOG_MAX_TIMEOUT
= 30 * HZ
,
17 SCX_EXIT_MSG_LEN
= 1024,
18 SCX_EXIT_DUMP_DFL_LEN
= 32768,
20 SCX_CPUPERF_ONE
= SCHED_CAPACITY_SCALE
,
23 * Iterating all tasks may take a while. Periodically drop
24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
26 SCX_OPS_TASK_ITER_BATCH
= 32,
33 SCX_EXIT_UNREG
= 64, /* user-space initiated unregistration */
34 SCX_EXIT_UNREG_BPF
, /* BPF-initiated unregistration */
35 SCX_EXIT_UNREG_KERN
, /* kernel-initiated unregistration */
36 SCX_EXIT_SYSRQ
, /* requested by 'S' sysrq */
38 SCX_EXIT_ERROR
= 1024, /* runtime error, error msg contains details */
39 SCX_EXIT_ERROR_BPF
, /* ERROR but triggered through scx_bpf_error() */
40 SCX_EXIT_ERROR_STALL
, /* watchdog detected stalled runnable tasks */
44 * An exit code can be specified when exiting with scx_bpf_exit() or
45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46 * respectively. The codes are 64bit of the format:
48 * Bits: [63 .. 48 47 .. 32 31 .. 0]
49 * [ SYS ACT ] [ SYS RSN ] [ USR ]
51 * SYS ACT: System-defined exit actions
52 * SYS RSN: System-defined exit reasons
53 * USR : User-defined exit codes and reasons
55 * Using the above, users may communicate intention and context by ORing system
56 * actions and/or system reasons with a user-defined exit code.
60 SCX_ECODE_RSN_HOTPLUG
= 1LLU << 32,
63 SCX_ECODE_ACT_RESTART
= 1LLU << 48,
67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
70 struct scx_exit_info
{
71 /* %SCX_EXIT_* - broad category of the exit reason */
72 enum scx_exit_kind kind
;
74 /* exit code if gracefully exiting */
77 /* textual representation of the above */
80 /* backtrace if exiting due to an error */
84 /* informational message */
91 /* sched_ext_ops.flags */
94 * Keep built-in idle tracking even if ops.update_idle() is implemented.
96 SCX_OPS_KEEP_BUILTIN_IDLE
= 1LLU << 0,
99 * By default, if there are no other task to run on the CPU, ext core
100 * keeps running the current task even after its slice expires. If this
101 * flag is specified, such tasks are passed to ops.enqueue() with
102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
104 SCX_OPS_ENQ_LAST
= 1LLU << 1,
107 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 * scheduler depends on pid lookup for dispatching, the task will be
110 * lost leading to various issues including RCU grace period stalls.
112 * To mask this problem, by default, unhashed tasks are automatically
113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 * depend on pid lookups and wants to handle these tasks directly, the
115 * following flag can be used.
117 SCX_OPS_ENQ_EXITING
= 1LLU << 2,
120 * If set, only tasks with policy set to SCHED_EXT are attached to
121 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
123 SCX_OPS_SWITCH_PARTIAL
= 1LLU << 3,
126 * CPU cgroup support flags
128 SCX_OPS_HAS_CGROUP_WEIGHT
= 1LLU << 16, /* cpu.weight */
130 SCX_OPS_ALL_FLAGS
= SCX_OPS_KEEP_BUILTIN_IDLE
|
132 SCX_OPS_ENQ_EXITING
|
133 SCX_OPS_SWITCH_PARTIAL
|
134 SCX_OPS_HAS_CGROUP_WEIGHT
,
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args
{
140 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 * to the scheduler transition path.
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 /* the cgroup the task is joining */
146 struct cgroup
*cgroup
;
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args
{
152 /* Whether the task exited before running on sched_ext. */
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args
{
158 /* the weight of the cgroup [1..10000] */
162 enum scx_cpu_preempt_reason
{
163 /* next task is being scheduled by &sched_class_rt */
165 /* next task is being scheduled by &sched_class_dl */
167 /* next task is being scheduled by &sched_class_stop */
168 SCX_CPU_PREEMPT_STOP
,
169 /* unknown reason for SCX being preempted */
170 SCX_CPU_PREEMPT_UNKNOWN
,
174 * Argument container for ops->cpu_acquire(). Currently empty, but may be
175 * expanded in the future.
177 struct scx_cpu_acquire_args
{};
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args
{
181 /* the reason the CPU was preempted */
182 enum scx_cpu_preempt_reason reason
;
184 /* the task that's going to be scheduled on the CPU */
185 struct task_struct
*task
;
189 * Informational context provided to dump operations.
191 struct scx_dump_ctx
{
192 enum scx_exit_kind kind
;
200 * struct sched_ext_ops - Operation table for BPF scheduler implementation
202 * A BPF scheduler can implement an arbitrary scheduling policy by
203 * implementing and loading operations in this table. Note that a userland
204 * scheduling policy can also be implemented using the BPF scheduler
207 struct sched_ext_ops
{
209 * select_cpu - Pick the target CPU for a task which is being woken up
210 * @p: task being woken up
211 * @prev_cpu: the cpu @p was on before sleeping
212 * @wake_flags: SCX_WAKE_*
214 * Decision made here isn't final. @p may be moved to any CPU while it
215 * is getting dispatched for execution later. However, as @p is not on
216 * the rq at this point, getting the eventual execution CPU right here
217 * saves a small bit of overhead down the line.
219 * If an idle CPU is returned, the CPU is kicked and will try to
220 * dispatch. While an explicit custom mechanism can be added,
221 * select_cpu() serves as the default way to wake up idle CPUs.
223 * @p may be inserted into a DSQ directly by calling
224 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
225 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
226 * of the CPU returned by this operation.
228 * Note that select_cpu() is never called for tasks that can only run
229 * on a single CPU or tasks with migration disabled, as they don't have
230 * the option to select a different CPU. See select_task_rq() for
233 s32 (*select_cpu
)(struct task_struct
*p
, s32 prev_cpu
, u64 wake_flags
);
236 * enqueue - Enqueue a task on the BPF scheduler
237 * @p: task being enqueued
238 * @enq_flags: %SCX_ENQ_*
240 * @p is ready to run. Insert directly into a DSQ by calling
241 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
242 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
243 * the task will stall.
245 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
248 void (*enqueue
)(struct task_struct
*p
, u64 enq_flags
);
251 * dequeue - Remove a task from the BPF scheduler
252 * @p: task being dequeued
253 * @deq_flags: %SCX_DEQ_*
255 * Remove @p from the BPF scheduler. This is usually called to isolate
256 * the task while updating its scheduling properties (e.g. priority).
258 * The ext core keeps track of whether the BPF side owns a given task or
259 * not and can gracefully ignore spurious dispatches from BPF side,
260 * which makes it safe to not implement this method. However, depending
261 * on the scheduling logic, this can lead to confusing behaviors - e.g.
262 * scheduling position not being updated across a priority change.
264 void (*dequeue
)(struct task_struct
*p
, u64 deq_flags
);
267 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
268 * @cpu: CPU to dispatch tasks for
269 * @prev: previous task being switched out
271 * Called when a CPU's local dsq is empty. The operation should dispatch
272 * one or more tasks from the BPF scheduler into the DSQs using
273 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
274 * using scx_bpf_dsq_move_to_local().
276 * The maximum number of times scx_bpf_dsq_insert() can be called
277 * without an intervening scx_bpf_dsq_move_to_local() is specified by
278 * ops.dispatch_max_batch. See the comments on top of the two functions
281 * When not %NULL, @prev is an SCX task with its slice depleted. If
282 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
283 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
284 * ops.dispatch() returns. To keep executing @prev, return without
285 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
287 void (*dispatch
)(s32 cpu
, struct task_struct
*prev
);
290 * tick - Periodic tick
291 * @p: task running currently
293 * This operation is called every 1/HZ seconds on CPUs which are
294 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
295 * immediate dispatch cycle on the CPU.
297 void (*tick
)(struct task_struct
*p
);
300 * runnable - A task is becoming runnable on its associated CPU
301 * @p: task becoming runnable
302 * @enq_flags: %SCX_ENQ_*
304 * This and the following three functions can be used to track a task's
305 * execution state transitions. A task becomes ->runnable() on a CPU,
306 * and then goes through one or more ->running() and ->stopping() pairs
307 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
308 * done running on the CPU.
310 * @p is becoming runnable on the CPU because it's
312 * - waking up (%SCX_ENQ_WAKEUP)
313 * - being moved from another CPU
314 * - being restored after temporarily taken off the queue for an
317 * This and ->enqueue() are related but not coupled. This operation
318 * notifies @p's state transition and may not be followed by ->enqueue()
319 * e.g. when @p is being dispatched to a remote CPU, or when @p is
320 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
321 * task may be ->enqueue()'d without being preceded by this operation
322 * e.g. after exhausting its slice.
324 void (*runnable
)(struct task_struct
*p
, u64 enq_flags
);
327 * running - A task is starting to run on its associated CPU
328 * @p: task starting to run
330 * See ->runnable() for explanation on the task state notifiers.
332 void (*running
)(struct task_struct
*p
);
335 * stopping - A task is stopping execution
336 * @p: task stopping to run
337 * @runnable: is task @p still runnable?
339 * See ->runnable() for explanation on the task state notifiers. If
340 * !@runnable, ->quiescent() will be invoked after this operation
343 void (*stopping
)(struct task_struct
*p
, bool runnable
);
346 * quiescent - A task is becoming not runnable on its associated CPU
347 * @p: task becoming not runnable
348 * @deq_flags: %SCX_DEQ_*
350 * See ->runnable() for explanation on the task state notifiers.
352 * @p is becoming quiescent on the CPU because it's
354 * - sleeping (%SCX_DEQ_SLEEP)
355 * - being moved to another CPU
356 * - being temporarily taken off the queue for an attribute change
359 * This and ->dequeue() are related but not coupled. This operation
360 * notifies @p's state transition and may not be preceded by ->dequeue()
361 * e.g. when @p is being dispatched to a remote CPU.
363 void (*quiescent
)(struct task_struct
*p
, u64 deq_flags
);
367 * @from: yielding task
368 * @to: optional yield target task
370 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
371 * The BPF scheduler should ensure that other available tasks are
372 * dispatched before the yielding task. Return value is ignored in this
375 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
376 * scheduler can implement the request, return %true; otherwise, %false.
378 bool (*yield
)(struct task_struct
*from
, struct task_struct
*to
);
381 * core_sched_before - Task ordering for core-sched
385 * Used by core-sched to determine the ordering between two tasks. See
386 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
389 * Both @a and @b are runnable and may or may not currently be queued on
390 * the BPF scheduler. Should return %true if @a should run before @b.
391 * %false if there's no required ordering or @b should run before @a.
393 * If not specified, the default is ordering them according to when they
396 bool (*core_sched_before
)(struct task_struct
*a
, struct task_struct
*b
);
399 * set_weight - Set task weight
400 * @p: task to set weight for
401 * @weight: new weight [1..10000]
403 * Update @p's weight to @weight.
405 void (*set_weight
)(struct task_struct
*p
, u32 weight
);
408 * set_cpumask - Set CPU affinity
409 * @p: task to set CPU affinity for
410 * @cpumask: cpumask of cpus that @p can run on
412 * Update @p's CPU affinity to @cpumask.
414 void (*set_cpumask
)(struct task_struct
*p
,
415 const struct cpumask
*cpumask
);
418 * update_idle - Update the idle state of a CPU
419 * @cpu: CPU to udpate the idle state for
420 * @idle: whether entering or exiting the idle state
422 * This operation is called when @rq's CPU goes or leaves the idle
423 * state. By default, implementing this operation disables the built-in
424 * idle CPU tracking and the following helpers become unavailable:
426 * - scx_bpf_select_cpu_dfl()
427 * - scx_bpf_test_and_clear_cpu_idle()
428 * - scx_bpf_pick_idle_cpu()
430 * The user also must implement ops.select_cpu() as the default
431 * implementation relies on scx_bpf_select_cpu_dfl().
433 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
436 void (*update_idle
)(s32 cpu
, bool idle
);
439 * cpu_acquire - A CPU is becoming available to the BPF scheduler
440 * @cpu: The CPU being acquired by the BPF scheduler.
441 * @args: Acquire arguments, see the struct definition.
443 * A CPU that was previously released from the BPF scheduler is now once
444 * again under its control.
446 void (*cpu_acquire
)(s32 cpu
, struct scx_cpu_acquire_args
*args
);
449 * cpu_release - A CPU is taken away from the BPF scheduler
450 * @cpu: The CPU being released by the BPF scheduler.
451 * @args: Release arguments, see the struct definition.
453 * The specified CPU is no longer under the control of the BPF
454 * scheduler. This could be because it was preempted by a higher
455 * priority sched_class, though there may be other reasons as well. The
456 * caller should consult @args->reason to determine the cause.
458 void (*cpu_release
)(s32 cpu
, struct scx_cpu_release_args
*args
);
461 * init_task - Initialize a task to run in a BPF scheduler
462 * @p: task to initialize for BPF scheduling
463 * @args: init arguments, see the struct definition
465 * Either we're loading a BPF scheduler or a new task is being forked.
466 * Initialize @p for BPF scheduling. This operation may block and can
467 * be used for allocations, and is called exactly once for a task.
469 * Return 0 for success, -errno for failure. An error return while
470 * loading will abort loading of the BPF scheduler. During a fork, it
471 * will abort that specific fork.
473 s32 (*init_task
)(struct task_struct
*p
, struct scx_init_task_args
*args
);
476 * exit_task - Exit a previously-running task from the system
479 * @p is exiting or the BPF scheduler is being unloaded. Perform any
480 * necessary cleanup for @p.
482 void (*exit_task
)(struct task_struct
*p
, struct scx_exit_task_args
*args
);
485 * enable - Enable BPF scheduling for a task
486 * @p: task to enable BPF scheduling for
488 * Enable @p for BPF scheduling. enable() is called on @p any time it
489 * enters SCX, and is always paired with a matching disable().
491 void (*enable
)(struct task_struct
*p
);
494 * disable - Disable BPF scheduling for a task
495 * @p: task to disable BPF scheduling for
497 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
498 * Disable BPF scheduling for @p. A disable() call is always matched
499 * with a prior enable() call.
501 void (*disable
)(struct task_struct
*p
);
504 * dump - Dump BPF scheduler state on error
505 * @ctx: debug dump context
507 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
509 void (*dump
)(struct scx_dump_ctx
*ctx
);
512 * dump_cpu - Dump BPF scheduler state for a CPU on error
513 * @ctx: debug dump context
514 * @cpu: CPU to generate debug dump for
515 * @idle: @cpu is currently idle without any runnable tasks
517 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
518 * @cpu. If @idle is %true and this operation doesn't produce any
519 * output, @cpu is skipped for dump.
521 void (*dump_cpu
)(struct scx_dump_ctx
*ctx
, s32 cpu
, bool idle
);
524 * dump_task - Dump BPF scheduler state for a runnable task on error
525 * @ctx: debug dump context
526 * @p: runnable task to generate debug dump for
528 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
531 void (*dump_task
)(struct scx_dump_ctx
*ctx
, struct task_struct
*p
);
533 #ifdef CONFIG_EXT_GROUP_SCHED
535 * cgroup_init - Initialize a cgroup
536 * @cgrp: cgroup being initialized
537 * @args: init arguments, see the struct definition
539 * Either the BPF scheduler is being loaded or @cgrp created, initialize
540 * @cgrp for sched_ext. This operation may block.
542 * Return 0 for success, -errno for failure. An error return while
543 * loading will abort loading of the BPF scheduler. During cgroup
544 * creation, it will abort the specific cgroup creation.
546 s32 (*cgroup_init
)(struct cgroup
*cgrp
,
547 struct scx_cgroup_init_args
*args
);
550 * cgroup_exit - Exit a cgroup
551 * @cgrp: cgroup being exited
553 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
554 * @cgrp for sched_ext. This operation my block.
556 void (*cgroup_exit
)(struct cgroup
*cgrp
);
559 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
560 * @p: task being moved
561 * @from: cgroup @p is being moved from
562 * @to: cgroup @p is being moved to
564 * Prepare @p for move from cgroup @from to @to. This operation may
565 * block and can be used for allocations.
567 * Return 0 for success, -errno for failure. An error return aborts the
570 s32 (*cgroup_prep_move
)(struct task_struct
*p
,
571 struct cgroup
*from
, struct cgroup
*to
);
574 * cgroup_move - Commit cgroup move
575 * @p: task being moved
576 * @from: cgroup @p is being moved from
577 * @to: cgroup @p is being moved to
579 * Commit the move. @p is dequeued during this operation.
581 void (*cgroup_move
)(struct task_struct
*p
,
582 struct cgroup
*from
, struct cgroup
*to
);
585 * cgroup_cancel_move - Cancel cgroup move
586 * @p: task whose cgroup move is being canceled
587 * @from: cgroup @p was being moved from
588 * @to: cgroup @p was being moved to
590 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
591 * Undo the preparation.
593 void (*cgroup_cancel_move
)(struct task_struct
*p
,
594 struct cgroup
*from
, struct cgroup
*to
);
597 * cgroup_set_weight - A cgroup's weight is being changed
598 * @cgrp: cgroup whose weight is being updated
599 * @weight: new weight [1..10000]
601 * Update @tg's weight to @weight.
603 void (*cgroup_set_weight
)(struct cgroup
*cgrp
, u32 weight
);
604 #endif /* CONFIG_EXT_GROUP_SCHED */
607 * All online ops must come before ops.cpu_online().
611 * cpu_online - A CPU became online
612 * @cpu: CPU which just came up
614 * @cpu just came online. @cpu will not call ops.enqueue() or
615 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
617 void (*cpu_online
)(s32 cpu
);
620 * cpu_offline - A CPU is going offline
621 * @cpu: CPU which is going offline
623 * @cpu is going offline. @cpu will not call ops.enqueue() or
624 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
626 void (*cpu_offline
)(s32 cpu
);
629 * All CPU hotplug ops must come before ops.init().
633 * init - Initialize the BPF scheduler
638 * exit - Clean up after the BPF scheduler
641 * ops.exit() is also called on ops.init() failure, which is a bit
642 * unusual. This is to allow rich reporting through @info on how
645 void (*exit
)(struct scx_exit_info
*info
);
648 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
650 u32 dispatch_max_batch
;
653 * flags - %SCX_OPS_* flags
658 * timeout_ms - The maximum amount of time, in milliseconds, that a
659 * runnable task should be able to wait before being scheduled. The
660 * maximum timeout may not exceed the default timeout of 30 seconds.
662 * Defaults to the maximum allowed timeout value of 30 seconds.
667 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
668 * value of 32768 is used.
673 * hotplug_seq - A sequence number that may be set by the scheduler to
674 * detect when a hotplug event has occurred during the loading process.
675 * If 0, no detection occurs. Otherwise, the scheduler will fail to
676 * load if the sequence number does not match @scx_hotplug_seq on the
682 * name - BPF scheduler's name
684 * Must be a non-zero valid BPF object name including only isalnum(),
685 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
686 * BPF scheduler is enabled.
688 char name
[SCX_OPS_NAME_LEN
];
693 SCX_OPI_NORMAL_BEGIN
= 0,
694 SCX_OPI_NORMAL_END
= SCX_OP_IDX(cpu_online
),
695 SCX_OPI_CPU_HOTPLUG_BEGIN
= SCX_OP_IDX(cpu_online
),
696 SCX_OPI_CPU_HOTPLUG_END
= SCX_OP_IDX(init
),
697 SCX_OPI_END
= SCX_OP_IDX(init
),
700 enum scx_wake_flags
{
701 /* expose select WF_* flags as enums */
702 SCX_WAKE_FORK
= WF_FORK
,
703 SCX_WAKE_TTWU
= WF_TTWU
,
704 SCX_WAKE_SYNC
= WF_SYNC
,
708 /* expose select ENQUEUE_* flags as enums */
709 SCX_ENQ_WAKEUP
= ENQUEUE_WAKEUP
,
710 SCX_ENQ_HEAD
= ENQUEUE_HEAD
,
711 SCX_ENQ_CPU_SELECTED
= ENQUEUE_RQ_SELECTED
,
713 /* high 32bits are SCX specific */
716 * Set the following to trigger preemption when calling
717 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
718 * current task is cleared to zero and the CPU is kicked into the
719 * scheduling path. Implies %SCX_ENQ_HEAD.
721 SCX_ENQ_PREEMPT
= 1LLU << 32,
724 * The task being enqueued was previously enqueued on the current CPU's
725 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
726 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
727 * invoked in a ->cpu_release() callback, and the task is again
728 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
729 * task will not be scheduled on the CPU until at least the next invocation
730 * of the ->cpu_acquire() callback.
732 SCX_ENQ_REENQ
= 1LLU << 40,
735 * The task being enqueued is the only task available for the cpu. By
736 * default, ext core keeps executing such tasks but when
737 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
738 * %SCX_ENQ_LAST flag set.
740 * The BPF scheduler is responsible for triggering a follow-up
741 * scheduling event. Otherwise, Execution may stall.
743 SCX_ENQ_LAST
= 1LLU << 41,
745 /* high 8 bits are internal */
746 __SCX_ENQ_INTERNAL_MASK
= 0xffLLU
<< 56,
748 SCX_ENQ_CLEAR_OPSS
= 1LLU << 56,
749 SCX_ENQ_DSQ_PRIQ
= 1LLU << 57,
753 /* expose select DEQUEUE_* flags as enums */
754 SCX_DEQ_SLEEP
= DEQUEUE_SLEEP
,
756 /* high 32bits are SCX specific */
759 * The generic core-sched layer decided to execute the task even though
760 * it hasn't been dispatched yet. Dequeue from the BPF side.
762 SCX_DEQ_CORE_SCHED_EXEC
= 1LLU << 32,
765 enum scx_pick_idle_cpu_flags
{
766 SCX_PICK_IDLE_CORE
= 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
769 enum scx_kick_flags
{
771 * Kick the target CPU if idle. Guarantees that the target CPU goes
772 * through at least one full scheduling cycle before going idle. If the
773 * target CPU can be determined to be currently not idle and going to go
774 * through a scheduling cycle before going idle, noop.
776 SCX_KICK_IDLE
= 1LLU << 0,
779 * Preempt the current task and execute the dispatch path. If the
780 * current task of the target CPU is an SCX task, its ->scx.slice is
781 * cleared to zero before the scheduling path is invoked so that the
782 * task expires and the dispatch path is invoked.
784 SCX_KICK_PREEMPT
= 1LLU << 1,
787 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
788 * return after the target CPU finishes picking the next task.
790 SCX_KICK_WAIT
= 1LLU << 2,
794 SCX_TG_ONLINE
= 1U << 0,
795 SCX_TG_INITED
= 1U << 1,
798 enum scx_ops_enable_state
{
805 static const char *scx_ops_enable_state_str
[] = {
806 [SCX_OPS_ENABLING
] = "enabling",
807 [SCX_OPS_ENABLED
] = "enabled",
808 [SCX_OPS_DISABLING
] = "disabling",
809 [SCX_OPS_DISABLED
] = "disabled",
813 * sched_ext_entity->ops_state
815 * Used to track the task ownership between the SCX core and the BPF scheduler.
816 * State transitions look as follows:
818 * NONE -> QUEUEING -> QUEUED -> DISPATCHING
821 * \-------------------------------/
823 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
824 * sites for explanations on the conditions being waited upon and why they are
825 * safe. Transitions out of them into NONE or QUEUED must store_release and the
826 * waiters should load_acquire.
828 * Tracking scx_ops_state enables sched_ext core to reliably determine whether
829 * any given task can be dispatched by the BPF scheduler at all times and thus
830 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
831 * to try to dispatch any task anytime regardless of its state as the SCX core
832 * can safely reject invalid dispatches.
835 SCX_OPSS_NONE
, /* owned by the SCX core */
836 SCX_OPSS_QUEUEING
, /* in transit to the BPF scheduler */
837 SCX_OPSS_QUEUED
, /* owned by the BPF scheduler */
838 SCX_OPSS_DISPATCHING
, /* in transit back to the SCX core */
841 * QSEQ brands each QUEUED instance so that, when dispatch races
842 * dequeue/requeue, the dispatcher can tell whether it still has a claim
843 * on the task being dispatched.
845 * As some 32bit archs can't do 64bit store_release/load_acquire,
846 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
847 * 32bit machines. The dispatch race window QSEQ protects is very narrow
848 * and runs with IRQ disabled. 30 bits should be sufficient.
850 SCX_OPSS_QSEQ_SHIFT
= 2,
853 /* Use macros to ensure that the type is unsigned long for the masks */
854 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
855 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
858 * During exit, a task may schedule after losing its PIDs. When disabling the
859 * BPF scheduler, we need to be able to iterate tasks in every state to
860 * guarantee system safety. Maintain a dedicated task list which contains every
861 * task between its fork and eventual free.
863 static DEFINE_SPINLOCK(scx_tasks_lock
);
864 static LIST_HEAD(scx_tasks
);
866 /* ops enable/disable */
867 static struct kthread_worker
*scx_ops_helper
;
868 static DEFINE_MUTEX(scx_ops_enable_mutex
);
869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled
);
870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem
);
871 static atomic_t scx_ops_enable_state_var
= ATOMIC_INIT(SCX_OPS_DISABLED
);
872 static unsigned long scx_in_softlockup
;
873 static atomic_t scx_ops_breather_depth
= ATOMIC_INIT(0);
874 static int scx_ops_bypass_depth
;
875 static bool scx_ops_init_task_enabled
;
876 static bool scx_switching_all
;
877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all
);
879 static struct sched_ext_ops scx_ops
;
880 static bool scx_warned_zero_slice
;
882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last
);
883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting
);
884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt
);
885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled
);
888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc
);
889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa
);
892 static struct static_key_false scx_has_op
[SCX_OPI_END
] =
893 { [0 ... SCX_OPI_END
-1] = STATIC_KEY_FALSE_INIT
};
895 static atomic_t scx_exit_kind
= ATOMIC_INIT(SCX_EXIT_DONE
);
896 static struct scx_exit_info
*scx_exit_info
;
898 static atomic_long_t scx_nr_rejected
= ATOMIC_LONG_INIT(0);
899 static atomic_long_t scx_hotplug_seq
= ATOMIC_LONG_INIT(0);
902 * A monotically increasing sequence number that is incremented every time a
903 * scheduler is enabled. This can be used by to check if any custom sched_ext
904 * scheduler has ever been used in the system.
906 static atomic_long_t scx_enable_seq
= ATOMIC_LONG_INIT(0);
909 * The maximum amount of time in jiffies that a task may be runnable without
910 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
913 static unsigned long scx_watchdog_timeout
;
916 * The last time the delayed work was run. This delayed work relies on
917 * ksoftirqd being able to run to service timer interrupts, so it's possible
918 * that this work itself could get wedged. To account for this, we check that
919 * it's not stalled in the timer tick, and trigger an error if it is.
921 static unsigned long scx_watchdog_timestamp
= INITIAL_JIFFIES
;
923 static struct delayed_work scx_watchdog_work
;
927 #ifdef CONFIG_CPUMASK_OFFSTACK
928 #define CL_ALIGNED_IF_ONSTACK
930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
936 } idle_masks CL_ALIGNED_IF_ONSTACK
;
938 #endif /* CONFIG_SMP */
940 /* for %SCX_KICK_WAIT */
941 static unsigned long __percpu
*scx_kick_cpus_pnt_seqs
;
944 * Direct dispatch marker.
946 * Non-NULL values are used for direct dispatch from enqueue path. A valid
947 * pointer points to the task currently being enqueued. An ERR_PTR value is used
948 * to indicate that direct dispatch has already happened.
950 static DEFINE_PER_CPU(struct task_struct
*, direct_dispatch_task
);
955 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
956 * to avoid live-locking in bypass mode where all tasks are dispatched to
957 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
958 * sufficient, it can be further split.
960 static struct scx_dispatch_q
**global_dsqs
;
962 static const struct rhashtable_params dsq_hash_params
= {
964 .key_offset
= offsetof(struct scx_dispatch_q
, id
),
965 .head_offset
= offsetof(struct scx_dispatch_q
, hash_node
),
968 static struct rhashtable dsq_hash
;
969 static LLIST_HEAD(dsqs_to_free
);
972 struct scx_dsp_buf_ent
{
973 struct task_struct
*task
;
979 static u32 scx_dsp_max_batch
;
985 struct scx_dsp_buf_ent buf
[];
988 static struct scx_dsp_ctx __percpu
*scx_dsp_ctx
;
990 /* string formatting from BPF */
991 struct scx_bstr_buf
{
992 u64 data
[MAX_BPRINTF_VARARGS
];
993 char line
[SCX_EXIT_MSG_LEN
];
996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock
);
997 static struct scx_bstr_buf scx_exit_bstr_buf
;
1000 struct scx_dump_data
{
1006 struct scx_bstr_buf buf
;
1009 static struct scx_dump_data scx_dump_data
= {
1013 /* /sys/kernel/sched_ext interface */
1014 static struct kset
*scx_kset
;
1015 static struct kobject
*scx_root_kobj
;
1017 #define CREATE_TRACE_POINTS
1018 #include <trace/events/sched_ext.h>
1020 static void process_ddsp_deferred_locals(struct rq
*rq
);
1021 static void scx_bpf_kick_cpu(s32 cpu
, u64 flags
);
1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind
,
1024 const char *fmt
, ...);
1026 #define scx_ops_error_kind(err, fmt, args...) \
1027 scx_ops_exit_kind((err), 0, fmt, ##args)
1029 #define scx_ops_exit(code, fmt, args...) \
1030 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1032 #define scx_ops_error(fmt, args...) \
1033 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1035 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1037 static long jiffies_delta_msecs(unsigned long at
, unsigned long now
)
1039 if (time_after(at
, now
))
1040 return jiffies_to_msecs(at
- now
);
1042 return -(long)jiffies_to_msecs(now
- at
);
1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1046 static u32
higher_bits(u32 flags
)
1048 return ~((1 << fls(flags
)) - 1);
1051 /* return the mask with only the highest bit set */
1052 static u32
highest_bit(u32 flags
)
1054 int bit
= fls(flags
);
1055 return ((u64
)1 << bit
) >> 1;
1058 static bool u32_before(u32 a
, u32 b
)
1060 return (s32
)(a
- b
) < 0;
1063 static struct scx_dispatch_q
*find_global_dsq(struct task_struct
*p
)
1065 return global_dsqs
[cpu_to_node(task_cpu(p
))];
1068 static struct scx_dispatch_q
*find_user_dsq(u64 dsq_id
)
1070 return rhashtable_lookup_fast(&dsq_hash
, &dsq_id
, dsq_hash_params
);
1074 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1075 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1076 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1077 * whether it's running from an allowed context.
1079 * @mask is constant, always inline to cull the mask calculations.
1081 static __always_inline
void scx_kf_allow(u32 mask
)
1083 /* nesting is allowed only in increasing scx_kf_mask order */
1084 WARN_ONCE((mask
| higher_bits(mask
)) & current
->scx
.kf_mask
,
1085 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1086 current
->scx
.kf_mask
, mask
);
1087 current
->scx
.kf_mask
|= mask
;
1091 static void scx_kf_disallow(u32 mask
)
1094 current
->scx
.kf_mask
&= ~mask
;
1097 #define SCX_CALL_OP(mask, op, args...) \
1100 scx_kf_allow(mask); \
1102 scx_kf_disallow(mask); \
1108 #define SCX_CALL_OP_RET(mask, op, args...) \
1110 __typeof__(scx_ops.op(args)) __ret; \
1112 scx_kf_allow(mask); \
1113 __ret = scx_ops.op(args); \
1114 scx_kf_disallow(mask); \
1116 __ret = scx_ops.op(args); \
1122 * Some kfuncs are allowed only on the tasks that are subjects of the
1123 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1124 * restrictions, the following SCX_CALL_OP_*() variants should be used when
1125 * invoking scx_ops operations that take task arguments. These can only be used
1126 * for non-nesting operations due to the way the tasks are tracked.
1128 * kfuncs which can only operate on such tasks can in turn use
1129 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1130 * the specific task.
1132 #define SCX_CALL_OP_TASK(mask, op, task, args...) \
1134 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1135 current->scx.kf_tasks[0] = task; \
1136 SCX_CALL_OP(mask, op, task, ##args); \
1137 current->scx.kf_tasks[0] = NULL; \
1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
1142 __typeof__(scx_ops.op(task, ##args)) __ret; \
1143 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1144 current->scx.kf_tasks[0] = task; \
1145 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
1146 current->scx.kf_tasks[0] = NULL; \
1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
1152 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
1153 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1154 current->scx.kf_tasks[0] = task0; \
1155 current->scx.kf_tasks[1] = task1; \
1156 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
1157 current->scx.kf_tasks[0] = NULL; \
1158 current->scx.kf_tasks[1] = NULL; \
1162 /* @mask is constant, always inline to cull unnecessary branches */
1163 static __always_inline
bool scx_kf_allowed(u32 mask
)
1165 if (unlikely(!(current
->scx
.kf_mask
& mask
))) {
1166 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1167 mask
, current
->scx
.kf_mask
);
1172 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1173 * DISPATCH must not be called if we're running DEQUEUE which is nested
1174 * inside ops.dispatch(). We don't need to check boundaries for any
1175 * blocking kfuncs as the verifier ensures they're only called from
1178 if (unlikely(highest_bit(mask
) == SCX_KF_CPU_RELEASE
&&
1179 (current
->scx
.kf_mask
& higher_bits(SCX_KF_CPU_RELEASE
)))) {
1180 scx_ops_error("cpu_release kfunc called from a nested operation");
1184 if (unlikely(highest_bit(mask
) == SCX_KF_DISPATCH
&&
1185 (current
->scx
.kf_mask
& higher_bits(SCX_KF_DISPATCH
)))) {
1186 scx_ops_error("dispatch kfunc called from a nested operation");
1193 /* see SCX_CALL_OP_TASK() */
1194 static __always_inline
bool scx_kf_allowed_on_arg_tasks(u32 mask
,
1195 struct task_struct
*p
)
1197 if (!scx_kf_allowed(mask
))
1200 if (unlikely((p
!= current
->scx
.kf_tasks
[0] &&
1201 p
!= current
->scx
.kf_tasks
[1]))) {
1202 scx_ops_error("called on a task not being operated on");
1209 static bool scx_kf_allowed_if_unlocked(void)
1211 return !current
->scx
.kf_mask
;
1215 * nldsq_next_task - Iterate to the next task in a non-local DSQ
1216 * @dsq: user dsq being interated
1217 * @cur: current position, %NULL to start iteration
1218 * @rev: walk backwards
1220 * Returns %NULL when iteration is finished.
1222 static struct task_struct
*nldsq_next_task(struct scx_dispatch_q
*dsq
,
1223 struct task_struct
*cur
, bool rev
)
1225 struct list_head
*list_node
;
1226 struct scx_dsq_list_node
*dsq_lnode
;
1228 lockdep_assert_held(&dsq
->lock
);
1231 list_node
= &cur
->scx
.dsq_list
.node
;
1233 list_node
= &dsq
->list
;
1235 /* find the next task, need to skip BPF iteration cursors */
1238 list_node
= list_node
->prev
;
1240 list_node
= list_node
->next
;
1242 if (list_node
== &dsq
->list
)
1245 dsq_lnode
= container_of(list_node
, struct scx_dsq_list_node
,
1247 } while (dsq_lnode
->flags
& SCX_DSQ_LNODE_ITER_CURSOR
);
1249 return container_of(dsq_lnode
, struct task_struct
, scx
.dsq_list
);
1252 #define nldsq_for_each_task(p, dsq) \
1253 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
1254 (p) = nldsq_next_task((dsq), (p), false))
1258 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1259 * dispatch order. BPF-visible iterator is opaque and larger to allow future
1260 * changes without breaking backward compatibility. Can be used with
1261 * bpf_for_each(). See bpf_iter_scx_dsq_*().
1263 enum scx_dsq_iter_flags
{
1264 /* iterate in the reverse dispatch order */
1265 SCX_DSQ_ITER_REV
= 1U << 16,
1267 __SCX_DSQ_ITER_HAS_SLICE
= 1U << 30,
1268 __SCX_DSQ_ITER_HAS_VTIME
= 1U << 31,
1270 __SCX_DSQ_ITER_USER_FLAGS
= SCX_DSQ_ITER_REV
,
1271 __SCX_DSQ_ITER_ALL_FLAGS
= __SCX_DSQ_ITER_USER_FLAGS
|
1272 __SCX_DSQ_ITER_HAS_SLICE
|
1273 __SCX_DSQ_ITER_HAS_VTIME
,
1276 struct bpf_iter_scx_dsq_kern
{
1277 struct scx_dsq_list_node cursor
;
1278 struct scx_dispatch_q
*dsq
;
1281 } __attribute__((aligned(8)));
1283 struct bpf_iter_scx_dsq
{
1285 } __attribute__((aligned(8)));
1289 * SCX task iterator.
1291 struct scx_task_iter
{
1292 struct sched_ext_entity cursor
;
1293 struct task_struct
*locked
;
1300 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1301 * @iter: iterator to init
1303 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1304 * must eventually be stopped with scx_task_iter_stop().
1306 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1307 * between this and the first next() call or between any two next() calls. If
1308 * the locks are released between two next() calls, the caller is responsible
1309 * for ensuring that the task being iterated remains accessible either through
1310 * RCU read lock or obtaining a reference count.
1312 * All tasks which existed when the iteration started are guaranteed to be
1313 * visited as long as they still exist.
1315 static void scx_task_iter_start(struct scx_task_iter
*iter
)
1317 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS
&
1318 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT
) - 1));
1320 spin_lock_irq(&scx_tasks_lock
);
1322 iter
->cursor
= (struct sched_ext_entity
){ .flags
= SCX_TASK_CURSOR
};
1323 list_add(&iter
->cursor
.tasks_node
, &scx_tasks
);
1324 iter
->locked
= NULL
;
1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter
*iter
)
1331 task_rq_unlock(iter
->rq
, iter
->locked
, &iter
->rf
);
1332 iter
->locked
= NULL
;
1337 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1338 * @iter: iterator to unlock
1340 * If @iter is in the middle of a locked iteration, it may be locking the rq of
1341 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1342 * This function can be safely called anytime during an iteration.
1344 static void scx_task_iter_unlock(struct scx_task_iter
*iter
)
1346 __scx_task_iter_rq_unlock(iter
);
1347 spin_unlock_irq(&scx_tasks_lock
);
1351 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1352 * @iter: iterator to re-lock
1354 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1355 * doesn't re-lock the rq lock. Must be called before other iterator operations.
1357 static void scx_task_iter_relock(struct scx_task_iter
*iter
)
1359 spin_lock_irq(&scx_tasks_lock
);
1363 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1364 * @iter: iterator to exit
1366 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1367 * which is released on return. If the iterator holds a task's rq lock, that rq
1368 * lock is also released. See scx_task_iter_start() for details.
1370 static void scx_task_iter_stop(struct scx_task_iter
*iter
)
1372 list_del_init(&iter
->cursor
.tasks_node
);
1373 scx_task_iter_unlock(iter
);
1377 * scx_task_iter_next - Next task
1378 * @iter: iterator to walk
1380 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1381 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1382 * stalls by holding scx_tasks_lock for too long.
1384 static struct task_struct
*scx_task_iter_next(struct scx_task_iter
*iter
)
1386 struct list_head
*cursor
= &iter
->cursor
.tasks_node
;
1387 struct sched_ext_entity
*pos
;
1389 if (!(++iter
->cnt
% SCX_OPS_TASK_ITER_BATCH
)) {
1390 scx_task_iter_unlock(iter
);
1392 scx_task_iter_relock(iter
);
1395 list_for_each_entry(pos
, cursor
, tasks_node
) {
1396 if (&pos
->tasks_node
== &scx_tasks
)
1398 if (!(pos
->flags
& SCX_TASK_CURSOR
)) {
1399 list_move(cursor
, &pos
->tasks_node
);
1400 return container_of(pos
, struct task_struct
, scx
);
1404 /* can't happen, should always terminate at scx_tasks above */
1409 * scx_task_iter_next_locked - Next non-idle task with its rq locked
1410 * @iter: iterator to walk
1411 * @include_dead: Whether we should include dead tasks in the iteration
1413 * Visit the non-idle task with its rq lock held. Allows callers to specify
1414 * whether they would like to filter out dead tasks. See scx_task_iter_start()
1417 static struct task_struct
*scx_task_iter_next_locked(struct scx_task_iter
*iter
)
1419 struct task_struct
*p
;
1421 __scx_task_iter_rq_unlock(iter
);
1423 while ((p
= scx_task_iter_next(iter
))) {
1425 * scx_task_iter is used to prepare and move tasks into SCX
1426 * while loading the BPF scheduler and vice-versa while
1427 * unloading. The init_tasks ("swappers") should be excluded
1428 * from the iteration because:
1430 * - It's unsafe to use __setschduler_prio() on an init_task to
1431 * determine the sched_class to use as it won't preserve its
1434 * - ops.init/exit_task() can easily be confused if called with
1435 * init_tasks as they, e.g., share PID 0.
1437 * As init_tasks are never scheduled through SCX, they can be
1438 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1439 * doesn't work here:
1441 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1444 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1445 * play_idle_precise() used by CONFIG_IDLE_INJECT.
1447 * Test for idle_sched_class as only init_tasks are on it.
1449 if (p
->sched_class
!= &idle_sched_class
)
1455 iter
->rq
= task_rq_lock(p
, &iter
->rf
);
1461 static enum scx_ops_enable_state
scx_ops_enable_state(void)
1463 return atomic_read(&scx_ops_enable_state_var
);
1466 static enum scx_ops_enable_state
1467 scx_ops_set_enable_state(enum scx_ops_enable_state to
)
1469 return atomic_xchg(&scx_ops_enable_state_var
, to
);
1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to
,
1473 enum scx_ops_enable_state from
)
1477 return atomic_try_cmpxchg(&scx_ops_enable_state_var
, &from_v
, to
);
1480 static bool scx_rq_bypassing(struct rq
*rq
)
1482 return unlikely(rq
->scx
.flags
& SCX_RQ_BYPASSING
);
1486 * wait_ops_state - Busy-wait the specified ops state to end
1488 * @opss: state to wait the end of
1490 * Busy-wait for @p to transition out of @opss. This can only be used when the
1491 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1492 * has load_acquire semantics to ensure that the caller can see the updates made
1493 * in the enqueueing and dispatching paths.
1495 static void wait_ops_state(struct task_struct
*p
, unsigned long opss
)
1499 } while (atomic_long_read_acquire(&p
->scx
.ops_state
) == opss
);
1503 * ops_cpu_valid - Verify a cpu number
1504 * @cpu: cpu number which came from a BPF ops
1505 * @where: extra information reported on error
1507 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1508 * Verify that it is in range and one of the possible cpus. If invalid, trigger
1511 static bool ops_cpu_valid(s32 cpu
, const char *where
)
1513 if (likely(cpu
>= 0 && cpu
< nr_cpu_ids
&& cpu_possible(cpu
))) {
1516 scx_ops_error("invalid CPU %d%s%s", cpu
,
1517 where
? " " : "", where
?: "");
1523 * ops_sanitize_err - Sanitize a -errno value
1524 * @ops_name: operation to blame on failure
1525 * @err: -errno value to sanitize
1527 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1528 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1529 * cause misbehaviors. For an example, a large negative return from
1530 * ops.init_task() triggers an oops when passed up the call chain because the
1531 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1532 * handled as a pointer.
1534 static int ops_sanitize_err(const char *ops_name
, s32 err
)
1536 if (err
< 0 && err
>= -MAX_ERRNO
)
1539 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name
, err
);
1543 static void run_deferred(struct rq
*rq
)
1545 process_ddsp_deferred_locals(rq
);
1549 static void deferred_bal_cb_workfn(struct rq
*rq
)
1555 static void deferred_irq_workfn(struct irq_work
*irq_work
)
1557 struct rq
*rq
= container_of(irq_work
, struct rq
, scx
.deferred_irq_work
);
1559 raw_spin_rq_lock(rq
);
1561 raw_spin_rq_unlock(rq
);
1565 * schedule_deferred - Schedule execution of deferred actions on an rq
1568 * Schedule execution of deferred actions on @rq. Must be called with @rq
1569 * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1570 * can unlock @rq to e.g. migrate tasks to other rqs.
1572 static void schedule_deferred(struct rq
*rq
)
1574 lockdep_assert_rq_held(rq
);
1578 * If in the middle of waking up a task, task_woken_scx() will be called
1579 * afterwards which will then run the deferred actions, no need to
1580 * schedule anything.
1582 if (rq
->scx
.flags
& SCX_RQ_IN_WAKEUP
)
1586 * If in balance, the balance callbacks will be called before rq lock is
1587 * released. Schedule one.
1589 if (rq
->scx
.flags
& SCX_RQ_IN_BALANCE
) {
1590 queue_balance_callback(rq
, &rq
->scx
.deferred_bal_cb
,
1591 deferred_bal_cb_workfn
);
1596 * No scheduler hooks available. Queue an irq work. They are executed on
1597 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1598 * The above WAKEUP and BALANCE paths should cover most of the cases and
1599 * the time to IRQ re-enable shouldn't be long.
1601 irq_work_queue(&rq
->scx
.deferred_irq_work
);
1605 * touch_core_sched - Update timestamp used for core-sched task ordering
1606 * @rq: rq to read clock from, must be locked
1607 * @p: task to update the timestamp for
1609 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1610 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1611 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1614 static void touch_core_sched(struct rq
*rq
, struct task_struct
*p
)
1616 lockdep_assert_rq_held(rq
);
1618 #ifdef CONFIG_SCHED_CORE
1620 * It's okay to update the timestamp spuriously. Use
1621 * sched_core_disabled() which is cheaper than enabled().
1623 * As this is used to determine ordering between tasks of sibling CPUs,
1624 * it may be better to use per-core dispatch sequence instead.
1626 if (!sched_core_disabled())
1627 p
->scx
.core_sched_at
= sched_clock_cpu(cpu_of(rq
));
1632 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1633 * @rq: rq to read clock from, must be locked
1634 * @p: task being dispatched
1636 * If the BPF scheduler implements custom core-sched ordering via
1637 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1638 * ordering within each local DSQ. This function is called from dispatch paths
1639 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1641 static void touch_core_sched_dispatch(struct rq
*rq
, struct task_struct
*p
)
1643 lockdep_assert_rq_held(rq
);
1645 #ifdef CONFIG_SCHED_CORE
1646 if (SCX_HAS_OP(core_sched_before
))
1647 touch_core_sched(rq
, p
);
1651 static void update_curr_scx(struct rq
*rq
)
1653 struct task_struct
*curr
= rq
->curr
;
1656 delta_exec
= update_curr_common(rq
);
1657 if (unlikely(delta_exec
<= 0))
1660 if (curr
->scx
.slice
!= SCX_SLICE_INF
) {
1661 curr
->scx
.slice
-= min_t(u64
, curr
->scx
.slice
, delta_exec
);
1662 if (!curr
->scx
.slice
)
1663 touch_core_sched(rq
, curr
);
1667 static bool scx_dsq_priq_less(struct rb_node
*node_a
,
1668 const struct rb_node
*node_b
)
1670 const struct task_struct
*a
=
1671 container_of(node_a
, struct task_struct
, scx
.dsq_priq
);
1672 const struct task_struct
*b
=
1673 container_of(node_b
, struct task_struct
, scx
.dsq_priq
);
1675 return time_before64(a
->scx
.dsq_vtime
, b
->scx
.dsq_vtime
);
1678 static void dsq_mod_nr(struct scx_dispatch_q
*dsq
, s32 delta
)
1680 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1681 WRITE_ONCE(dsq
->nr
, dsq
->nr
+ delta
);
1684 static void dispatch_enqueue(struct scx_dispatch_q
*dsq
, struct task_struct
*p
,
1687 bool is_local
= dsq
->id
== SCX_DSQ_LOCAL
;
1689 WARN_ON_ONCE(p
->scx
.dsq
|| !list_empty(&p
->scx
.dsq_list
.node
));
1690 WARN_ON_ONCE((p
->scx
.dsq_flags
& SCX_TASK_DSQ_ON_PRIQ
) ||
1691 !RB_EMPTY_NODE(&p
->scx
.dsq_priq
));
1694 raw_spin_lock(&dsq
->lock
);
1695 if (unlikely(dsq
->id
== SCX_DSQ_INVALID
)) {
1696 scx_ops_error("attempting to dispatch to a destroyed dsq");
1697 /* fall back to the global dsq */
1698 raw_spin_unlock(&dsq
->lock
);
1699 dsq
= find_global_dsq(p
);
1700 raw_spin_lock(&dsq
->lock
);
1704 if (unlikely((dsq
->id
& SCX_DSQ_FLAG_BUILTIN
) &&
1705 (enq_flags
& SCX_ENQ_DSQ_PRIQ
))) {
1707 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1708 * their FIFO queues. To avoid confusion and accidentally
1709 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1710 * disallow any internal DSQ from doing vtime ordering of
1713 scx_ops_error("cannot use vtime ordering for built-in DSQs");
1714 enq_flags
&= ~SCX_ENQ_DSQ_PRIQ
;
1717 if (enq_flags
& SCX_ENQ_DSQ_PRIQ
) {
1718 struct rb_node
*rbp
;
1721 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1722 * linked to both the rbtree and list on PRIQs, this can only be
1723 * tested easily when adding the first task.
1725 if (unlikely(RB_EMPTY_ROOT(&dsq
->priq
) &&
1726 nldsq_next_task(dsq
, NULL
, false)))
1727 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1730 p
->scx
.dsq_flags
|= SCX_TASK_DSQ_ON_PRIQ
;
1731 rb_add(&p
->scx
.dsq_priq
, &dsq
->priq
, scx_dsq_priq_less
);
1734 * Find the previous task and insert after it on the list so
1735 * that @dsq->list is vtime ordered.
1737 rbp
= rb_prev(&p
->scx
.dsq_priq
);
1739 struct task_struct
*prev
=
1740 container_of(rbp
, struct task_struct
,
1742 list_add(&p
->scx
.dsq_list
.node
, &prev
->scx
.dsq_list
.node
);
1744 list_add(&p
->scx
.dsq_list
.node
, &dsq
->list
);
1747 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1748 if (unlikely(!RB_EMPTY_ROOT(&dsq
->priq
)))
1749 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1752 if (enq_flags
& (SCX_ENQ_HEAD
| SCX_ENQ_PREEMPT
))
1753 list_add(&p
->scx
.dsq_list
.node
, &dsq
->list
);
1755 list_add_tail(&p
->scx
.dsq_list
.node
, &dsq
->list
);
1758 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1760 p
->scx
.dsq_seq
= dsq
->seq
;
1766 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1767 * direct dispatch path, but we clear them here because the direct
1768 * dispatch verdict may be overridden on the enqueue path during e.g.
1771 p
->scx
.ddsp_dsq_id
= SCX_DSQ_INVALID
;
1772 p
->scx
.ddsp_enq_flags
= 0;
1775 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1776 * match waiters' load_acquire.
1778 if (enq_flags
& SCX_ENQ_CLEAR_OPSS
)
1779 atomic_long_set_release(&p
->scx
.ops_state
, SCX_OPSS_NONE
);
1782 struct rq
*rq
= container_of(dsq
, struct rq
, scx
.local_dsq
);
1783 bool preempt
= false;
1785 if ((enq_flags
& SCX_ENQ_PREEMPT
) && p
!= rq
->curr
&&
1786 rq
->curr
->sched_class
== &ext_sched_class
) {
1787 rq
->curr
->scx
.slice
= 0;
1791 if (preempt
|| sched_class_above(&ext_sched_class
,
1792 rq
->curr
->sched_class
))
1795 raw_spin_unlock(&dsq
->lock
);
1799 static void task_unlink_from_dsq(struct task_struct
*p
,
1800 struct scx_dispatch_q
*dsq
)
1802 WARN_ON_ONCE(list_empty(&p
->scx
.dsq_list
.node
));
1804 if (p
->scx
.dsq_flags
& SCX_TASK_DSQ_ON_PRIQ
) {
1805 rb_erase(&p
->scx
.dsq_priq
, &dsq
->priq
);
1806 RB_CLEAR_NODE(&p
->scx
.dsq_priq
);
1807 p
->scx
.dsq_flags
&= ~SCX_TASK_DSQ_ON_PRIQ
;
1810 list_del_init(&p
->scx
.dsq_list
.node
);
1811 dsq_mod_nr(dsq
, -1);
1814 static void dispatch_dequeue(struct rq
*rq
, struct task_struct
*p
)
1816 struct scx_dispatch_q
*dsq
= p
->scx
.dsq
;
1817 bool is_local
= dsq
== &rq
->scx
.local_dsq
;
1821 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1822 * Unlinking is all that's needed to cancel.
1824 if (unlikely(!list_empty(&p
->scx
.dsq_list
.node
)))
1825 list_del_init(&p
->scx
.dsq_list
.node
);
1828 * When dispatching directly from the BPF scheduler to a local
1829 * DSQ, the task isn't associated with any DSQ but
1830 * @p->scx.holding_cpu may be set under the protection of
1831 * %SCX_OPSS_DISPATCHING.
1833 if (p
->scx
.holding_cpu
>= 0)
1834 p
->scx
.holding_cpu
= -1;
1840 raw_spin_lock(&dsq
->lock
);
1843 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1844 * change underneath us.
1846 if (p
->scx
.holding_cpu
< 0) {
1847 /* @p must still be on @dsq, dequeue */
1848 task_unlink_from_dsq(p
, dsq
);
1851 * We're racing against dispatch_to_local_dsq() which already
1852 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1853 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1856 WARN_ON_ONCE(!list_empty(&p
->scx
.dsq_list
.node
));
1857 p
->scx
.holding_cpu
= -1;
1862 raw_spin_unlock(&dsq
->lock
);
1865 static struct scx_dispatch_q
*find_dsq_for_dispatch(struct rq
*rq
, u64 dsq_id
,
1866 struct task_struct
*p
)
1868 struct scx_dispatch_q
*dsq
;
1870 if (dsq_id
== SCX_DSQ_LOCAL
)
1871 return &rq
->scx
.local_dsq
;
1873 if ((dsq_id
& SCX_DSQ_LOCAL_ON
) == SCX_DSQ_LOCAL_ON
) {
1874 s32 cpu
= dsq_id
& SCX_DSQ_LOCAL_CPU_MASK
;
1876 if (!ops_cpu_valid(cpu
, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1877 return find_global_dsq(p
);
1879 return &cpu_rq(cpu
)->scx
.local_dsq
;
1882 if (dsq_id
== SCX_DSQ_GLOBAL
)
1883 dsq
= find_global_dsq(p
);
1885 dsq
= find_user_dsq(dsq_id
);
1887 if (unlikely(!dsq
)) {
1888 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1889 dsq_id
, p
->comm
, p
->pid
);
1890 return find_global_dsq(p
);
1896 static void mark_direct_dispatch(struct task_struct
*ddsp_task
,
1897 struct task_struct
*p
, u64 dsq_id
,
1901 * Mark that dispatch already happened from ops.select_cpu() or
1902 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1903 * which can never match a valid task pointer.
1905 __this_cpu_write(direct_dispatch_task
, ERR_PTR(-ESRCH
));
1907 /* @p must match the task on the enqueue path */
1908 if (unlikely(p
!= ddsp_task
)) {
1909 if (IS_ERR(ddsp_task
))
1910 scx_ops_error("%s[%d] already direct-dispatched",
1913 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1914 ddsp_task
->comm
, ddsp_task
->pid
,
1919 WARN_ON_ONCE(p
->scx
.ddsp_dsq_id
!= SCX_DSQ_INVALID
);
1920 WARN_ON_ONCE(p
->scx
.ddsp_enq_flags
);
1922 p
->scx
.ddsp_dsq_id
= dsq_id
;
1923 p
->scx
.ddsp_enq_flags
= enq_flags
;
1926 static void direct_dispatch(struct task_struct
*p
, u64 enq_flags
)
1928 struct rq
*rq
= task_rq(p
);
1929 struct scx_dispatch_q
*dsq
=
1930 find_dsq_for_dispatch(rq
, p
->scx
.ddsp_dsq_id
, p
);
1932 touch_core_sched_dispatch(rq
, p
);
1934 p
->scx
.ddsp_enq_flags
|= enq_flags
;
1937 * We are in the enqueue path with @rq locked and pinned, and thus can't
1938 * double lock a remote rq and enqueue to its local DSQ. For
1939 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1940 * the enqueue so that it's executed when @rq can be unlocked.
1942 if (dsq
->id
== SCX_DSQ_LOCAL
&& dsq
!= &rq
->scx
.local_dsq
) {
1945 opss
= atomic_long_read(&p
->scx
.ops_state
) & SCX_OPSS_STATE_MASK
;
1947 switch (opss
& SCX_OPSS_STATE_MASK
) {
1950 case SCX_OPSS_QUEUEING
:
1952 * As @p was never passed to the BPF side, _release is
1953 * not strictly necessary. Still do it for consistency.
1955 atomic_long_set_release(&p
->scx
.ops_state
, SCX_OPSS_NONE
);
1958 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1959 p
->comm
, p
->pid
, opss
);
1960 atomic_long_set_release(&p
->scx
.ops_state
, SCX_OPSS_NONE
);
1964 WARN_ON_ONCE(p
->scx
.dsq
|| !list_empty(&p
->scx
.dsq_list
.node
));
1965 list_add_tail(&p
->scx
.dsq_list
.node
,
1966 &rq
->scx
.ddsp_deferred_locals
);
1967 schedule_deferred(rq
);
1971 dispatch_enqueue(dsq
, p
, p
->scx
.ddsp_enq_flags
| SCX_ENQ_CLEAR_OPSS
);
1974 static bool scx_rq_online(struct rq
*rq
)
1977 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1978 * the online state as seen from the BPF scheduler. cpu_active() test
1979 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1980 * stay set until the current scheduling operation is complete even if
1981 * we aren't locking @rq.
1983 return likely((rq
->scx
.flags
& SCX_RQ_ONLINE
) && cpu_active(cpu_of(rq
)));
1986 static void do_enqueue_task(struct rq
*rq
, struct task_struct
*p
, u64 enq_flags
,
1989 struct task_struct
**ddsp_taskp
;
1992 WARN_ON_ONCE(!(p
->scx
.flags
& SCX_TASK_QUEUED
));
1995 if (sticky_cpu
== cpu_of(rq
))
1996 goto local_norefill
;
1999 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
2000 * is offline and are just running the hotplug path. Don't bother the
2003 if (!scx_rq_online(rq
))
2006 if (scx_rq_bypassing(rq
))
2009 if (p
->scx
.ddsp_dsq_id
!= SCX_DSQ_INVALID
)
2012 /* see %SCX_OPS_ENQ_EXITING */
2013 if (!static_branch_unlikely(&scx_ops_enq_exiting
) &&
2014 unlikely(p
->flags
& PF_EXITING
))
2017 if (!SCX_HAS_OP(enqueue
))
2020 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2021 qseq
= rq
->scx
.ops_qseq
++ << SCX_OPSS_QSEQ_SHIFT
;
2023 WARN_ON_ONCE(atomic_long_read(&p
->scx
.ops_state
) != SCX_OPSS_NONE
);
2024 atomic_long_set(&p
->scx
.ops_state
, SCX_OPSS_QUEUEING
| qseq
);
2026 ddsp_taskp
= this_cpu_ptr(&direct_dispatch_task
);
2027 WARN_ON_ONCE(*ddsp_taskp
);
2030 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE
, enqueue
, p
, enq_flags
);
2033 if (p
->scx
.ddsp_dsq_id
!= SCX_DSQ_INVALID
)
2037 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2038 * dequeue may be waiting. The store_release matches their load_acquire.
2040 atomic_long_set_release(&p
->scx
.ops_state
, SCX_OPSS_QUEUED
| qseq
);
2044 direct_dispatch(p
, enq_flags
);
2049 * For task-ordering, slice refill must be treated as implying the end
2050 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2051 * higher priority it becomes from scx_prio_less()'s POV.
2053 touch_core_sched(rq
, p
);
2054 p
->scx
.slice
= SCX_SLICE_DFL
;
2056 dispatch_enqueue(&rq
->scx
.local_dsq
, p
, enq_flags
);
2060 touch_core_sched(rq
, p
); /* see the comment in local: */
2061 p
->scx
.slice
= SCX_SLICE_DFL
;
2062 dispatch_enqueue(find_global_dsq(p
), p
, enq_flags
);
2065 static bool task_runnable(const struct task_struct
*p
)
2067 return !list_empty(&p
->scx
.runnable_node
);
2070 static void set_task_runnable(struct rq
*rq
, struct task_struct
*p
)
2072 lockdep_assert_rq_held(rq
);
2074 if (p
->scx
.flags
& SCX_TASK_RESET_RUNNABLE_AT
) {
2075 p
->scx
.runnable_at
= jiffies
;
2076 p
->scx
.flags
&= ~SCX_TASK_RESET_RUNNABLE_AT
;
2080 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2081 * appened to the runnable_list.
2083 list_add_tail(&p
->scx
.runnable_node
, &rq
->scx
.runnable_list
);
2086 static void clr_task_runnable(struct task_struct
*p
, bool reset_runnable_at
)
2088 list_del_init(&p
->scx
.runnable_node
);
2089 if (reset_runnable_at
)
2090 p
->scx
.flags
|= SCX_TASK_RESET_RUNNABLE_AT
;
2093 static void enqueue_task_scx(struct rq
*rq
, struct task_struct
*p
, int enq_flags
)
2095 int sticky_cpu
= p
->scx
.sticky_cpu
;
2097 if (enq_flags
& ENQUEUE_WAKEUP
)
2098 rq
->scx
.flags
|= SCX_RQ_IN_WAKEUP
;
2100 enq_flags
|= rq
->scx
.extra_enq_flags
;
2102 if (sticky_cpu
>= 0)
2103 p
->scx
.sticky_cpu
= -1;
2106 * Restoring a running task will be immediately followed by
2107 * set_next_task_scx() which expects the task to not be on the BPF
2108 * scheduler as tasks can only start running through local DSQs. Force
2109 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2111 if (unlikely(enq_flags
& ENQUEUE_RESTORE
) && task_current(rq
, p
))
2112 sticky_cpu
= cpu_of(rq
);
2114 if (p
->scx
.flags
& SCX_TASK_QUEUED
) {
2115 WARN_ON_ONCE(!task_runnable(p
));
2119 set_task_runnable(rq
, p
);
2120 p
->scx
.flags
|= SCX_TASK_QUEUED
;
2121 rq
->scx
.nr_running
++;
2122 add_nr_running(rq
, 1);
2124 if (SCX_HAS_OP(runnable
) && !task_on_rq_migrating(p
))
2125 SCX_CALL_OP_TASK(SCX_KF_REST
, runnable
, p
, enq_flags
);
2127 if (enq_flags
& SCX_ENQ_WAKEUP
)
2128 touch_core_sched(rq
, p
);
2130 do_enqueue_task(rq
, p
, enq_flags
, sticky_cpu
);
2132 rq
->scx
.flags
&= ~SCX_RQ_IN_WAKEUP
;
2135 static void ops_dequeue(struct task_struct
*p
, u64 deq_flags
)
2139 /* dequeue is always temporary, don't reset runnable_at */
2140 clr_task_runnable(p
, false);
2142 /* acquire ensures that we see the preceding updates on QUEUED */
2143 opss
= atomic_long_read_acquire(&p
->scx
.ops_state
);
2145 switch (opss
& SCX_OPSS_STATE_MASK
) {
2148 case SCX_OPSS_QUEUEING
:
2150 * QUEUEING is started and finished while holding @p's rq lock.
2151 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2154 case SCX_OPSS_QUEUED
:
2155 if (SCX_HAS_OP(dequeue
))
2156 SCX_CALL_OP_TASK(SCX_KF_REST
, dequeue
, p
, deq_flags
);
2158 if (atomic_long_try_cmpxchg(&p
->scx
.ops_state
, &opss
,
2162 case SCX_OPSS_DISPATCHING
:
2164 * If @p is being dispatched from the BPF scheduler to a DSQ,
2165 * wait for the transfer to complete so that @p doesn't get
2166 * added to its DSQ after dequeueing is complete.
2168 * As we're waiting on DISPATCHING with the rq locked, the
2169 * dispatching side shouldn't try to lock the rq while
2170 * DISPATCHING is set. See dispatch_to_local_dsq().
2172 * DISPATCHING shouldn't have qseq set and control can reach
2173 * here with NONE @opss from the above QUEUED case block.
2174 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2176 wait_ops_state(p
, SCX_OPSS_DISPATCHING
);
2177 BUG_ON(atomic_long_read(&p
->scx
.ops_state
) != SCX_OPSS_NONE
);
2182 static bool dequeue_task_scx(struct rq
*rq
, struct task_struct
*p
, int deq_flags
)
2184 if (!(p
->scx
.flags
& SCX_TASK_QUEUED
)) {
2185 WARN_ON_ONCE(task_runnable(p
));
2189 ops_dequeue(p
, deq_flags
);
2192 * A currently running task which is going off @rq first gets dequeued
2193 * and then stops running. As we want running <-> stopping transitions
2194 * to be contained within runnable <-> quiescent transitions, trigger
2195 * ->stopping() early here instead of in put_prev_task_scx().
2197 * @p may go through multiple stopping <-> running transitions between
2198 * here and put_prev_task_scx() if task attribute changes occur while
2199 * balance_scx() leaves @rq unlocked. However, they don't contain any
2200 * information meaningful to the BPF scheduler and can be suppressed by
2201 * skipping the callbacks if the task is !QUEUED.
2203 if (SCX_HAS_OP(stopping
) && task_current(rq
, p
)) {
2204 update_curr_scx(rq
);
2205 SCX_CALL_OP_TASK(SCX_KF_REST
, stopping
, p
, false);
2208 if (SCX_HAS_OP(quiescent
) && !task_on_rq_migrating(p
))
2209 SCX_CALL_OP_TASK(SCX_KF_REST
, quiescent
, p
, deq_flags
);
2211 if (deq_flags
& SCX_DEQ_SLEEP
)
2212 p
->scx
.flags
|= SCX_TASK_DEQD_FOR_SLEEP
;
2214 p
->scx
.flags
&= ~SCX_TASK_DEQD_FOR_SLEEP
;
2216 p
->scx
.flags
&= ~SCX_TASK_QUEUED
;
2217 rq
->scx
.nr_running
--;
2218 sub_nr_running(rq
, 1);
2220 dispatch_dequeue(rq
, p
);
2224 static void yield_task_scx(struct rq
*rq
)
2226 struct task_struct
*p
= rq
->curr
;
2228 if (SCX_HAS_OP(yield
))
2229 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST
, yield
, p
, NULL
);
2234 static bool yield_to_task_scx(struct rq
*rq
, struct task_struct
*to
)
2236 struct task_struct
*from
= rq
->curr
;
2238 if (SCX_HAS_OP(yield
))
2239 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST
, yield
, from
, to
);
2244 static void move_local_task_to_local_dsq(struct task_struct
*p
, u64 enq_flags
,
2245 struct scx_dispatch_q
*src_dsq
,
2248 struct scx_dispatch_q
*dst_dsq
= &dst_rq
->scx
.local_dsq
;
2250 /* @dsq is locked and @p is on @dst_rq */
2251 lockdep_assert_held(&src_dsq
->lock
);
2252 lockdep_assert_rq_held(dst_rq
);
2254 WARN_ON_ONCE(p
->scx
.holding_cpu
>= 0);
2256 if (enq_flags
& (SCX_ENQ_HEAD
| SCX_ENQ_PREEMPT
))
2257 list_add(&p
->scx
.dsq_list
.node
, &dst_dsq
->list
);
2259 list_add_tail(&p
->scx
.dsq_list
.node
, &dst_dsq
->list
);
2261 dsq_mod_nr(dst_dsq
, 1);
2262 p
->scx
.dsq
= dst_dsq
;
2267 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2269 * @enq_flags: %SCX_ENQ_*
2270 * @src_rq: rq to move the task from, locked on entry, released on return
2271 * @dst_rq: rq to move the task into, locked on return
2273 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2275 static void move_remote_task_to_local_dsq(struct task_struct
*p
, u64 enq_flags
,
2276 struct rq
*src_rq
, struct rq
*dst_rq
)
2278 lockdep_assert_rq_held(src_rq
);
2280 /* the following marks @p MIGRATING which excludes dequeue */
2281 deactivate_task(src_rq
, p
, 0);
2282 set_task_cpu(p
, cpu_of(dst_rq
));
2283 p
->scx
.sticky_cpu
= cpu_of(dst_rq
);
2285 raw_spin_rq_unlock(src_rq
);
2286 raw_spin_rq_lock(dst_rq
);
2289 * We want to pass scx-specific enq_flags but activate_task() will
2290 * truncate the upper 32 bit. As we own @rq, we can pass them through
2291 * @rq->scx.extra_enq_flags instead.
2293 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq
), p
->cpus_ptr
));
2294 WARN_ON_ONCE(dst_rq
->scx
.extra_enq_flags
);
2295 dst_rq
->scx
.extra_enq_flags
= enq_flags
;
2296 activate_task(dst_rq
, p
, 0);
2297 dst_rq
->scx
.extra_enq_flags
= 0;
2301 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2304 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2305 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2308 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2309 * must be allowed to finish on the CPU that it's currently on regardless of
2310 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2311 * BPF scheduler shouldn't attempt to migrate a task which has migration
2314 * - The BPF scheduler is bypassed while the rq is offline and we can always say
2315 * no to the BPF scheduler initiated migrations while offline.
2317 static bool task_can_run_on_remote_rq(struct task_struct
*p
, struct rq
*rq
,
2320 int cpu
= cpu_of(rq
);
2323 * We don't require the BPF scheduler to avoid dispatching to offline
2324 * CPUs mostly for convenience but also because CPUs can go offline
2325 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
2326 * picked CPU is outside the allowed mask.
2328 if (!task_allowed_on_cpu(p
, cpu
)) {
2330 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2331 cpu_of(rq
), p
->comm
, p
->pid
);
2335 if (unlikely(is_migration_disabled(p
)))
2338 if (!scx_rq_online(rq
))
2345 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2347 * @dsq: locked DSQ @p is currently on
2348 * @src_rq: rq @p is currently on, stable with @dsq locked
2350 * Called with @dsq locked but no rq's locked. We want to move @p to a different
2351 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2352 * required when transferring into a local DSQ. Even when transferring into a
2353 * non-local DSQ, it's better to use the same mechanism to protect against
2354 * dequeues and maintain the invariant that @p->scx.dsq can only change while
2355 * @src_rq is locked, which e.g. scx_dump_task() depends on.
2357 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2358 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2359 * this may race with dequeue, which can't drop the rq lock or fail, do a little
2360 * dancing from our side.
2362 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2363 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2364 * would be cleared to -1. While other cpus may have updated it to different
2365 * values afterwards, as this operation can't be preempted or recurse, the
2366 * holding_cpu can never become this CPU again before we're done. Thus, we can
2367 * tell whether we lost to dequeue by testing whether the holding_cpu still
2368 * points to this CPU. See dispatch_dequeue() for the counterpart.
2370 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2371 * still valid. %false if lost to dequeue.
2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct
*p
,
2374 struct scx_dispatch_q
*dsq
,
2377 s32 cpu
= raw_smp_processor_id();
2379 lockdep_assert_held(&dsq
->lock
);
2381 WARN_ON_ONCE(p
->scx
.holding_cpu
>= 0);
2382 task_unlink_from_dsq(p
, dsq
);
2383 p
->scx
.holding_cpu
= cpu
;
2385 raw_spin_unlock(&dsq
->lock
);
2386 raw_spin_rq_lock(src_rq
);
2388 /* task_rq couldn't have changed if we're still the holding cpu */
2389 return likely(p
->scx
.holding_cpu
== cpu
) &&
2390 !WARN_ON_ONCE(src_rq
!= task_rq(p
));
2393 static bool consume_remote_task(struct rq
*this_rq
, struct task_struct
*p
,
2394 struct scx_dispatch_q
*dsq
, struct rq
*src_rq
)
2396 raw_spin_rq_unlock(this_rq
);
2398 if (unlink_dsq_and_lock_src_rq(p
, dsq
, src_rq
)) {
2399 move_remote_task_to_local_dsq(p
, 0, src_rq
, this_rq
);
2402 raw_spin_rq_unlock(src_rq
);
2403 raw_spin_rq_lock(this_rq
);
2407 #else /* CONFIG_SMP */
2408 static inline void move_remote_task_to_local_dsq(struct task_struct
*p
, u64 enq_flags
, struct rq
*src_rq
, struct rq
*dst_rq
) { WARN_ON_ONCE(1); }
2409 static inline bool task_can_run_on_remote_rq(struct task_struct
*p
, struct rq
*rq
, bool trigger_error
) { return false; }
2410 static inline bool consume_remote_task(struct rq
*this_rq
, struct task_struct
*p
, struct scx_dispatch_q
*dsq
, struct rq
*task_rq
) { return false; }
2411 #endif /* CONFIG_SMP */
2414 * move_task_between_dsqs() - Move a task from one DSQ to another
2416 * @enq_flags: %SCX_ENQ_*
2417 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
2418 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
2420 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
2421 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
2422 * will change. As @p's task_rq is locked, this function doesn't need to use the
2423 * holding_cpu mechanism.
2425 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
2426 * return value, is locked.
2428 static struct rq
*move_task_between_dsqs(struct task_struct
*p
, u64 enq_flags
,
2429 struct scx_dispatch_q
*src_dsq
,
2430 struct scx_dispatch_q
*dst_dsq
)
2432 struct rq
*src_rq
= task_rq(p
), *dst_rq
;
2434 BUG_ON(src_dsq
->id
== SCX_DSQ_LOCAL
);
2435 lockdep_assert_held(&src_dsq
->lock
);
2436 lockdep_assert_rq_held(src_rq
);
2438 if (dst_dsq
->id
== SCX_DSQ_LOCAL
) {
2439 dst_rq
= container_of(dst_dsq
, struct rq
, scx
.local_dsq
);
2440 if (!task_can_run_on_remote_rq(p
, dst_rq
, true)) {
2441 dst_dsq
= find_global_dsq(p
);
2445 /* no need to migrate if destination is a non-local DSQ */
2450 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
2451 * CPU, @p will be migrated.
2453 if (dst_dsq
->id
== SCX_DSQ_LOCAL
) {
2454 /* @p is going from a non-local DSQ to a local DSQ */
2455 if (src_rq
== dst_rq
) {
2456 task_unlink_from_dsq(p
, src_dsq
);
2457 move_local_task_to_local_dsq(p
, enq_flags
,
2459 raw_spin_unlock(&src_dsq
->lock
);
2461 raw_spin_unlock(&src_dsq
->lock
);
2462 move_remote_task_to_local_dsq(p
, enq_flags
,
2467 * @p is going from a non-local DSQ to a non-local DSQ. As
2468 * $src_dsq is already locked, do an abbreviated dequeue.
2470 task_unlink_from_dsq(p
, src_dsq
);
2472 raw_spin_unlock(&src_dsq
->lock
);
2474 dispatch_enqueue(dst_dsq
, p
, enq_flags
);
2481 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
2482 * banging on the same DSQ on a large NUMA system to the point where switching
2483 * to the bypass mode can take a long time. Inject artifical delays while the
2484 * bypass mode is switching to guarantee timely completion.
2486 static void scx_ops_breather(struct rq
*rq
)
2490 lockdep_assert_rq_held(rq
);
2492 if (likely(!atomic_read(&scx_ops_breather_depth
)))
2495 raw_spin_rq_unlock(rq
);
2497 until
= ktime_get_ns() + NSEC_PER_MSEC
;
2501 while (atomic_read(&scx_ops_breather_depth
) && --cnt
)
2503 } while (atomic_read(&scx_ops_breather_depth
) &&
2504 time_before64(ktime_get_ns(), until
));
2506 raw_spin_rq_lock(rq
);
2509 static bool consume_dispatch_q(struct rq
*rq
, struct scx_dispatch_q
*dsq
)
2511 struct task_struct
*p
;
2514 * This retry loop can repeatedly race against scx_ops_bypass()
2515 * dequeueing tasks from @dsq trying to put the system into the bypass
2516 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
2517 * live-lock the machine into soft lockups. Give a breather.
2519 scx_ops_breather(rq
);
2522 * The caller can't expect to successfully consume a task if the task's
2523 * addition to @dsq isn't guaranteed to be visible somehow. Test
2524 * @dsq->list without locking and skip if it seems empty.
2526 if (list_empty(&dsq
->list
))
2529 raw_spin_lock(&dsq
->lock
);
2531 nldsq_for_each_task(p
, dsq
) {
2532 struct rq
*task_rq
= task_rq(p
);
2534 if (rq
== task_rq
) {
2535 task_unlink_from_dsq(p
, dsq
);
2536 move_local_task_to_local_dsq(p
, 0, dsq
, rq
);
2537 raw_spin_unlock(&dsq
->lock
);
2541 if (task_can_run_on_remote_rq(p
, rq
, false)) {
2542 if (likely(consume_remote_task(rq
, p
, dsq
, task_rq
)))
2548 raw_spin_unlock(&dsq
->lock
);
2552 static bool consume_global_dsq(struct rq
*rq
)
2554 int node
= cpu_to_node(cpu_of(rq
));
2556 return consume_dispatch_q(rq
, global_dsqs
[node
]);
2560 * dispatch_to_local_dsq - Dispatch a task to a local dsq
2561 * @rq: current rq which is locked
2562 * @dst_dsq: destination DSQ
2563 * @p: task to dispatch
2564 * @enq_flags: %SCX_ENQ_*
2566 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2567 * DSQ. This function performs all the synchronization dancing needed because
2568 * local DSQs are protected with rq locks.
2570 * The caller must have exclusive ownership of @p (e.g. through
2571 * %SCX_OPSS_DISPATCHING).
2573 static void dispatch_to_local_dsq(struct rq
*rq
, struct scx_dispatch_q
*dst_dsq
,
2574 struct task_struct
*p
, u64 enq_flags
)
2576 struct rq
*src_rq
= task_rq(p
);
2577 struct rq
*dst_rq
= container_of(dst_dsq
, struct rq
, scx
.local_dsq
);
2580 * We're synchronized against dequeue through DISPATCHING. As @p can't
2581 * be dequeued, its task_rq and cpus_allowed are stable too.
2583 * If dispatching to @rq that @p is already on, no lock dancing needed.
2585 if (rq
== src_rq
&& rq
== dst_rq
) {
2586 dispatch_enqueue(dst_dsq
, p
, enq_flags
| SCX_ENQ_CLEAR_OPSS
);
2591 if (unlikely(!task_can_run_on_remote_rq(p
, dst_rq
, true))) {
2592 dispatch_enqueue(find_global_dsq(p
), p
,
2593 enq_flags
| SCX_ENQ_CLEAR_OPSS
);
2598 * @p is on a possibly remote @src_rq which we need to lock to move the
2599 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2600 * on DISPATCHING, so we can't grab @src_rq lock while holding
2603 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2604 * we're moving from a DSQ and use the same mechanism - mark the task
2605 * under transfer with holding_cpu, release DISPATCHING and then follow
2606 * the same protocol. See unlink_dsq_and_lock_src_rq().
2608 p
->scx
.holding_cpu
= raw_smp_processor_id();
2610 /* store_release ensures that dequeue sees the above */
2611 atomic_long_set_release(&p
->scx
.ops_state
, SCX_OPSS_NONE
);
2613 /* switch to @src_rq lock */
2615 raw_spin_rq_unlock(rq
);
2616 raw_spin_rq_lock(src_rq
);
2619 /* task_rq couldn't have changed if we're still the holding cpu */
2620 if (likely(p
->scx
.holding_cpu
== raw_smp_processor_id()) &&
2621 !WARN_ON_ONCE(src_rq
!= task_rq(p
))) {
2623 * If @p is staying on the same rq, there's no need to go
2624 * through the full deactivate/activate cycle. Optimize by
2625 * abbreviating move_remote_task_to_local_dsq().
2627 if (src_rq
== dst_rq
) {
2628 p
->scx
.holding_cpu
= -1;
2629 dispatch_enqueue(&dst_rq
->scx
.local_dsq
, p
, enq_flags
);
2631 move_remote_task_to_local_dsq(p
, enq_flags
,
2635 /* if the destination CPU is idle, wake it up */
2636 if (sched_class_above(p
->sched_class
, dst_rq
->curr
->sched_class
))
2637 resched_curr(dst_rq
);
2640 /* switch back to @rq lock */
2642 raw_spin_rq_unlock(dst_rq
);
2643 raw_spin_rq_lock(rq
);
2645 #else /* CONFIG_SMP */
2646 BUG(); /* control can not reach here on UP */
2647 #endif /* CONFIG_SMP */
2651 * finish_dispatch - Asynchronously finish dispatching a task
2652 * @rq: current rq which is locked
2653 * @p: task to finish dispatching
2654 * @qseq_at_dispatch: qseq when @p started getting dispatched
2655 * @dsq_id: destination DSQ ID
2656 * @enq_flags: %SCX_ENQ_*
2658 * Dispatching to local DSQs may need to wait for queueing to complete or
2659 * require rq lock dancing. As we don't wanna do either while inside
2660 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2661 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2662 * task and its qseq. Once ops.dispatch() returns, this function is called to
2665 * There is no guarantee that @p is still valid for dispatching or even that it
2666 * was valid in the first place. Make sure that the task is still owned by the
2667 * BPF scheduler and claim the ownership before dispatching.
2669 static void finish_dispatch(struct rq
*rq
, struct task_struct
*p
,
2670 unsigned long qseq_at_dispatch
,
2671 u64 dsq_id
, u64 enq_flags
)
2673 struct scx_dispatch_q
*dsq
;
2676 touch_core_sched_dispatch(rq
, p
);
2679 * No need for _acquire here. @p is accessed only after a successful
2680 * try_cmpxchg to DISPATCHING.
2682 opss
= atomic_long_read(&p
->scx
.ops_state
);
2684 switch (opss
& SCX_OPSS_STATE_MASK
) {
2685 case SCX_OPSS_DISPATCHING
:
2687 /* someone else already got to it */
2689 case SCX_OPSS_QUEUED
:
2691 * If qseq doesn't match, @p has gone through at least one
2692 * dispatch/dequeue and re-enqueue cycle between
2693 * scx_bpf_dsq_insert() and here and we have no claim on it.
2695 if ((opss
& SCX_OPSS_QSEQ_MASK
) != qseq_at_dispatch
)
2699 * While we know @p is accessible, we don't yet have a claim on
2700 * it - the BPF scheduler is allowed to dispatch tasks
2701 * spuriously and there can be a racing dequeue attempt. Let's
2702 * claim @p by atomically transitioning it from QUEUED to
2705 if (likely(atomic_long_try_cmpxchg(&p
->scx
.ops_state
, &opss
,
2706 SCX_OPSS_DISPATCHING
)))
2709 case SCX_OPSS_QUEUEING
:
2711 * do_enqueue_task() is in the process of transferring the task
2712 * to the BPF scheduler while holding @p's rq lock. As we aren't
2713 * holding any kernel or BPF resource that the enqueue path may
2714 * depend upon, it's safe to wait.
2716 wait_ops_state(p
, opss
);
2720 BUG_ON(!(p
->scx
.flags
& SCX_TASK_QUEUED
));
2722 dsq
= find_dsq_for_dispatch(this_rq(), dsq_id
, p
);
2724 if (dsq
->id
== SCX_DSQ_LOCAL
)
2725 dispatch_to_local_dsq(rq
, dsq
, p
, enq_flags
);
2727 dispatch_enqueue(dsq
, p
, enq_flags
| SCX_ENQ_CLEAR_OPSS
);
2730 static void flush_dispatch_buf(struct rq
*rq
)
2732 struct scx_dsp_ctx
*dspc
= this_cpu_ptr(scx_dsp_ctx
);
2735 for (u
= 0; u
< dspc
->cursor
; u
++) {
2736 struct scx_dsp_buf_ent
*ent
= &dspc
->buf
[u
];
2738 finish_dispatch(rq
, ent
->task
, ent
->qseq
, ent
->dsq_id
,
2742 dspc
->nr_tasks
+= dspc
->cursor
;
2746 static int balance_one(struct rq
*rq
, struct task_struct
*prev
)
2748 struct scx_dsp_ctx
*dspc
= this_cpu_ptr(scx_dsp_ctx
);
2749 bool prev_on_scx
= prev
->sched_class
== &ext_sched_class
;
2750 int nr_loops
= SCX_DSP_MAX_LOOPS
;
2752 lockdep_assert_rq_held(rq
);
2753 rq
->scx
.flags
|= SCX_RQ_IN_BALANCE
;
2754 rq
->scx
.flags
&= ~(SCX_RQ_BAL_PENDING
| SCX_RQ_BAL_KEEP
);
2756 if (static_branch_unlikely(&scx_ops_cpu_preempt
) &&
2757 unlikely(rq
->scx
.cpu_released
)) {
2759 * If the previous sched_class for the current CPU was not SCX,
2760 * notify the BPF scheduler that it again has control of the
2761 * core. This callback complements ->cpu_release(), which is
2762 * emitted in switch_class().
2764 if (SCX_HAS_OP(cpu_acquire
))
2765 SCX_CALL_OP(SCX_KF_REST
, cpu_acquire
, cpu_of(rq
), NULL
);
2766 rq
->scx
.cpu_released
= false;
2770 update_curr_scx(rq
);
2773 * If @prev is runnable & has slice left, it has priority and
2774 * fetching more just increases latency for the fetched tasks.
2775 * Tell pick_task_scx() to keep running @prev. If the BPF
2776 * scheduler wants to handle this explicitly, it should
2777 * implement ->cpu_release().
2779 * See scx_ops_disable_workfn() for the explanation on the
2782 if ((prev
->scx
.flags
& SCX_TASK_QUEUED
) &&
2783 prev
->scx
.slice
&& !scx_rq_bypassing(rq
)) {
2784 rq
->scx
.flags
|= SCX_RQ_BAL_KEEP
;
2789 /* if there already are tasks to run, nothing to do */
2790 if (rq
->scx
.local_dsq
.nr
)
2793 if (consume_global_dsq(rq
))
2796 if (!SCX_HAS_OP(dispatch
) || scx_rq_bypassing(rq
) || !scx_rq_online(rq
))
2802 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2803 * the local DSQ might still end up empty after a successful
2804 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2805 * produced some tasks, retry. The BPF scheduler may depend on this
2806 * looping behavior to simplify its implementation.
2811 SCX_CALL_OP(SCX_KF_DISPATCH
, dispatch
, cpu_of(rq
),
2812 prev_on_scx
? prev
: NULL
);
2814 flush_dispatch_buf(rq
);
2816 if (rq
->scx
.local_dsq
.nr
)
2818 if (consume_global_dsq(rq
))
2822 * ops.dispatch() can trap us in this loop by repeatedly
2823 * dispatching ineligible tasks. Break out once in a while to
2824 * allow the watchdog to run. As IRQ can't be enabled in
2825 * balance(), we want to complete this scheduling cycle and then
2826 * start a new one. IOW, we want to call resched_curr() on the
2827 * next, most likely idle, task, not the current one. Use
2828 * scx_bpf_kick_cpu() for deferred kicking.
2830 if (unlikely(!--nr_loops
)) {
2831 scx_bpf_kick_cpu(cpu_of(rq
), 0);
2834 } while (dspc
->nr_tasks
);
2838 * Didn't find another task to run. Keep running @prev unless
2839 * %SCX_OPS_ENQ_LAST is in effect.
2841 if ((prev
->scx
.flags
& SCX_TASK_QUEUED
) &&
2842 (!static_branch_unlikely(&scx_ops_enq_last
) ||
2843 scx_rq_bypassing(rq
))) {
2844 rq
->scx
.flags
|= SCX_RQ_BAL_KEEP
;
2847 rq
->scx
.flags
&= ~SCX_RQ_IN_BALANCE
;
2851 rq
->scx
.flags
&= ~SCX_RQ_IN_BALANCE
;
2855 static int balance_scx(struct rq
*rq
, struct task_struct
*prev
,
2856 struct rq_flags
*rf
)
2860 rq_unpin_lock(rq
, rf
);
2862 ret
= balance_one(rq
, prev
);
2864 #ifdef CONFIG_SCHED_SMT
2866 * When core-sched is enabled, this ops.balance() call will be followed
2867 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2870 if (sched_core_enabled(rq
)) {
2871 const struct cpumask
*smt_mask
= cpu_smt_mask(cpu_of(rq
));
2874 for_each_cpu_andnot(scpu
, smt_mask
, cpumask_of(cpu_of(rq
))) {
2875 struct rq
*srq
= cpu_rq(scpu
);
2876 struct task_struct
*sprev
= srq
->curr
;
2878 WARN_ON_ONCE(__rq_lockp(rq
) != __rq_lockp(srq
));
2879 update_rq_clock(srq
);
2880 balance_one(srq
, sprev
);
2884 rq_repin_lock(rq
, rf
);
2889 static void process_ddsp_deferred_locals(struct rq
*rq
)
2891 struct task_struct
*p
;
2893 lockdep_assert_rq_held(rq
);
2896 * Now that @rq can be unlocked, execute the deferred enqueueing of
2897 * tasks directly dispatched to the local DSQs of other CPUs. See
2898 * direct_dispatch(). Keep popping from the head instead of using
2899 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2902 while ((p
= list_first_entry_or_null(&rq
->scx
.ddsp_deferred_locals
,
2903 struct task_struct
, scx
.dsq_list
.node
))) {
2904 struct scx_dispatch_q
*dsq
;
2906 list_del_init(&p
->scx
.dsq_list
.node
);
2908 dsq
= find_dsq_for_dispatch(rq
, p
->scx
.ddsp_dsq_id
, p
);
2909 if (!WARN_ON_ONCE(dsq
->id
!= SCX_DSQ_LOCAL
))
2910 dispatch_to_local_dsq(rq
, dsq
, p
, p
->scx
.ddsp_enq_flags
);
2914 static void set_next_task_scx(struct rq
*rq
, struct task_struct
*p
, bool first
)
2916 if (p
->scx
.flags
& SCX_TASK_QUEUED
) {
2918 * Core-sched might decide to execute @p before it is
2919 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2921 ops_dequeue(p
, SCX_DEQ_CORE_SCHED_EXEC
);
2922 dispatch_dequeue(rq
, p
);
2925 p
->se
.exec_start
= rq_clock_task(rq
);
2927 /* see dequeue_task_scx() on why we skip when !QUEUED */
2928 if (SCX_HAS_OP(running
) && (p
->scx
.flags
& SCX_TASK_QUEUED
))
2929 SCX_CALL_OP_TASK(SCX_KF_REST
, running
, p
);
2931 clr_task_runnable(p
, true);
2934 * @p is getting newly scheduled or got kicked after someone updated its
2935 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2937 if ((p
->scx
.slice
== SCX_SLICE_INF
) !=
2938 (bool)(rq
->scx
.flags
& SCX_RQ_CAN_STOP_TICK
)) {
2939 if (p
->scx
.slice
== SCX_SLICE_INF
)
2940 rq
->scx
.flags
|= SCX_RQ_CAN_STOP_TICK
;
2942 rq
->scx
.flags
&= ~SCX_RQ_CAN_STOP_TICK
;
2944 sched_update_tick_dependency(rq
);
2947 * For now, let's refresh the load_avgs just when transitioning
2948 * in and out of nohz. In the future, we might want to add a
2949 * mechanism which calls the following periodically on
2950 * tick-stopped CPUs.
2952 update_other_load_avgs(rq
);
2956 static enum scx_cpu_preempt_reason
2957 preempt_reason_from_class(const struct sched_class
*class)
2960 if (class == &stop_sched_class
)
2961 return SCX_CPU_PREEMPT_STOP
;
2963 if (class == &dl_sched_class
)
2964 return SCX_CPU_PREEMPT_DL
;
2965 if (class == &rt_sched_class
)
2966 return SCX_CPU_PREEMPT_RT
;
2967 return SCX_CPU_PREEMPT_UNKNOWN
;
2970 static void switch_class(struct rq
*rq
, struct task_struct
*next
)
2972 const struct sched_class
*next_class
= next
->sched_class
;
2976 * Pairs with the smp_load_acquire() issued by a CPU in
2977 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2980 smp_store_release(&rq
->scx
.pnt_seq
, rq
->scx
.pnt_seq
+ 1);
2982 if (!static_branch_unlikely(&scx_ops_cpu_preempt
))
2986 * The callback is conceptually meant to convey that the CPU is no
2987 * longer under the control of SCX. Therefore, don't invoke the callback
2988 * if the next class is below SCX (in which case the BPF scheduler has
2989 * actively decided not to schedule any tasks on the CPU).
2991 if (sched_class_above(&ext_sched_class
, next_class
))
2995 * At this point we know that SCX was preempted by a higher priority
2996 * sched_class, so invoke the ->cpu_release() callback if we have not
2997 * done so already. We only send the callback once between SCX being
2998 * preempted, and it regaining control of the CPU.
3000 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
3001 * next time that balance_scx() is invoked.
3003 if (!rq
->scx
.cpu_released
) {
3004 if (SCX_HAS_OP(cpu_release
)) {
3005 struct scx_cpu_release_args args
= {
3006 .reason
= preempt_reason_from_class(next_class
),
3010 SCX_CALL_OP(SCX_KF_CPU_RELEASE
,
3011 cpu_release
, cpu_of(rq
), &args
);
3013 rq
->scx
.cpu_released
= true;
3017 static void put_prev_task_scx(struct rq
*rq
, struct task_struct
*p
,
3018 struct task_struct
*next
)
3020 update_curr_scx(rq
);
3022 /* see dequeue_task_scx() on why we skip when !QUEUED */
3023 if (SCX_HAS_OP(stopping
) && (p
->scx
.flags
& SCX_TASK_QUEUED
))
3024 SCX_CALL_OP_TASK(SCX_KF_REST
, stopping
, p
, true);
3026 if (p
->scx
.flags
& SCX_TASK_QUEUED
) {
3027 set_task_runnable(rq
, p
);
3030 * If @p has slice left and is being put, @p is getting
3031 * preempted by a higher priority scheduler class or core-sched
3032 * forcing a different task. Leave it at the head of the local
3035 if (p
->scx
.slice
&& !scx_rq_bypassing(rq
)) {
3036 dispatch_enqueue(&rq
->scx
.local_dsq
, p
, SCX_ENQ_HEAD
);
3041 * If @p is runnable but we're about to enter a lower
3042 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
3043 * ops.enqueue() that @p is the only one available for this cpu,
3044 * which should trigger an explicit follow-up scheduling event.
3046 if (sched_class_above(&ext_sched_class
, next
->sched_class
)) {
3047 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last
));
3048 do_enqueue_task(rq
, p
, SCX_ENQ_LAST
, -1);
3050 do_enqueue_task(rq
, p
, 0, -1);
3054 if (next
&& next
->sched_class
!= &ext_sched_class
)
3055 switch_class(rq
, next
);
3058 static struct task_struct
*first_local_task(struct rq
*rq
)
3060 return list_first_entry_or_null(&rq
->scx
.local_dsq
.list
,
3061 struct task_struct
, scx
.dsq_list
.node
);
3064 static struct task_struct
*pick_task_scx(struct rq
*rq
)
3066 struct task_struct
*prev
= rq
->curr
;
3067 struct task_struct
*p
;
3068 bool prev_on_scx
= prev
->sched_class
== &ext_sched_class
;
3069 bool keep_prev
= rq
->scx
.flags
& SCX_RQ_BAL_KEEP
;
3070 bool kick_idle
= false;
3075 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
3076 * have gone through balance_scx(). Unfortunately, there currently is a
3077 * bug where fair could say yes on balance() but no on pick_task(),
3078 * which then ends up calling pick_task_scx() without preceding
3081 * Keep running @prev if possible and avoid stalling from entering idle
3082 * without balancing.
3084 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
3085 * if pick_task_scx() is called without preceding balance_scx().
3087 if (unlikely(rq
->scx
.flags
& SCX_RQ_BAL_PENDING
)) {
3094 } else if (unlikely(keep_prev
&& !prev_on_scx
)) {
3095 /* only allowed during transitions */
3096 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED
);
3101 * If balance_scx() is telling us to keep running @prev, replenish slice
3102 * if necessary and keep running @prev. Otherwise, pop the first one
3103 * from the local DSQ.
3108 p
->scx
.slice
= SCX_SLICE_DFL
;
3110 p
= first_local_task(rq
);
3113 scx_bpf_kick_cpu(cpu_of(rq
), SCX_KICK_IDLE
);
3117 if (unlikely(!p
->scx
.slice
)) {
3118 if (!scx_rq_bypassing(rq
) && !scx_warned_zero_slice
) {
3119 printk_deferred(KERN_WARNING
"sched_ext: %s[%d] has zero slice in %s()\n",
3120 p
->comm
, p
->pid
, __func__
);
3121 scx_warned_zero_slice
= true;
3123 p
->scx
.slice
= SCX_SLICE_DFL
;
3130 #ifdef CONFIG_SCHED_CORE
3132 * scx_prio_less - Task ordering for core-sched
3136 * Core-sched is implemented as an additional scheduling layer on top of the
3137 * usual sched_class'es and needs to find out the expected task ordering. For
3138 * SCX, core-sched calls this function to interrogate the task ordering.
3140 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3141 * to implement the default task ordering. The older the timestamp, the higher
3142 * prority the task - the global FIFO ordering matching the default scheduling
3145 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3146 * implement FIFO ordering within each local DSQ. See pick_task_scx().
3148 bool scx_prio_less(const struct task_struct
*a
, const struct task_struct
*b
,
3152 * The const qualifiers are dropped from task_struct pointers when
3153 * calling ops.core_sched_before(). Accesses are controlled by the
3156 if (SCX_HAS_OP(core_sched_before
) && !scx_rq_bypassing(task_rq(a
)))
3157 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST
, core_sched_before
,
3158 (struct task_struct
*)a
,
3159 (struct task_struct
*)b
);
3161 return time_after64(a
->scx
.core_sched_at
, b
->scx
.core_sched_at
);
3163 #endif /* CONFIG_SCHED_CORE */
3167 static bool test_and_clear_cpu_idle(int cpu
)
3169 #ifdef CONFIG_SCHED_SMT
3171 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3172 * cluster is not wholly idle either way. This also prevents
3173 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3175 if (sched_smt_active()) {
3176 const struct cpumask
*smt
= cpu_smt_mask(cpu
);
3179 * If offline, @cpu is not its own sibling and
3180 * scx_pick_idle_cpu() can get caught in an infinite loop as
3181 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3182 * is eventually cleared.
3184 if (cpumask_intersects(smt
, idle_masks
.smt
))
3185 cpumask_andnot(idle_masks
.smt
, idle_masks
.smt
, smt
);
3186 else if (cpumask_test_cpu(cpu
, idle_masks
.smt
))
3187 __cpumask_clear_cpu(cpu
, idle_masks
.smt
);
3190 return cpumask_test_and_clear_cpu(cpu
, idle_masks
.cpu
);
3193 static s32
scx_pick_idle_cpu(const struct cpumask
*cpus_allowed
, u64 flags
)
3198 if (sched_smt_active()) {
3199 cpu
= cpumask_any_and_distribute(idle_masks
.smt
, cpus_allowed
);
3200 if (cpu
< nr_cpu_ids
)
3203 if (flags
& SCX_PICK_IDLE_CORE
)
3207 cpu
= cpumask_any_and_distribute(idle_masks
.cpu
, cpus_allowed
);
3208 if (cpu
>= nr_cpu_ids
)
3212 if (test_and_clear_cpu_idle(cpu
))
3219 * Return true if the LLC domains do not perfectly overlap with the NUMA
3220 * domains, false otherwise.
3222 static bool llc_numa_mismatch(void)
3227 * We need to scan all online CPUs to verify whether their scheduling
3230 * While it is rare to encounter architectures with asymmetric NUMA
3231 * topologies, CPU hotplugging or virtualized environments can result
3232 * in asymmetric configurations.
3237 * - LLC 0: cpu0..cpu7
3238 * - LLC 1: cpu8..cpu15 [offline]
3241 * - LLC 0: cpu16..cpu23
3242 * - LLC 1: cpu24..cpu31
3244 * In this case, if we only check the first online CPU (cpu0), we might
3245 * incorrectly assume that the LLC and NUMA domains are fully
3246 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
3249 for_each_online_cpu(cpu
) {
3250 const struct cpumask
*numa_cpus
;
3251 struct sched_domain
*sd
;
3253 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
3257 numa_cpus
= cpumask_of_node(cpu_to_node(cpu
));
3258 if (sd
->span_weight
!= cpumask_weight(numa_cpus
))
3266 * Initialize topology-aware scheduling.
3268 * Detect if the system has multiple LLC or multiple NUMA domains and enable
3269 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
3272 * Assumption: the kernel's internal topology representation assumes that each
3273 * CPU belongs to a single LLC domain, and that each LLC domain is entirely
3274 * contained within a single NUMA node.
3276 static void update_selcpu_topology(void)
3278 bool enable_llc
= false, enable_numa
= false;
3279 struct sched_domain
*sd
;
3280 const struct cpumask
*cpus
;
3281 s32 cpu
= cpumask_first(cpu_online_mask
);
3284 * Enable LLC domain optimization only when there are multiple LLC
3285 * domains among the online CPUs. If all online CPUs are part of a
3286 * single LLC domain, the idle CPU selection logic can choose any
3287 * online CPU without bias.
3289 * Note that it is sufficient to check the LLC domain of the first
3290 * online CPU to determine whether a single LLC domain includes all
3294 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
3296 if (sd
->span_weight
< num_online_cpus())
3301 * Enable NUMA optimization only when there are multiple NUMA domains
3302 * among the online CPUs and the NUMA domains don't perfectly overlaps
3303 * with the LLC domains.
3305 * If all CPUs belong to the same NUMA node and the same LLC domain,
3306 * enabling both NUMA and LLC optimizations is unnecessary, as checking
3307 * for an idle CPU in the same domain twice is redundant.
3309 cpus
= cpumask_of_node(cpu_to_node(cpu
));
3310 if ((cpumask_weight(cpus
) < num_online_cpus()) && llc_numa_mismatch())
3314 pr_debug("sched_ext: LLC idle selection %s\n",
3315 enable_llc
? "enabled" : "disabled");
3316 pr_debug("sched_ext: NUMA idle selection %s\n",
3317 enable_numa
? "enabled" : "disabled");
3320 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc
);
3322 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc
);
3324 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa
);
3326 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa
);
3330 * Built-in CPU idle selection policy:
3332 * 1. Prioritize full-idle cores:
3333 * - always prioritize CPUs from fully idle cores (both logical CPUs are
3334 * idle) to avoid interference caused by SMT.
3336 * 2. Reuse the same CPU:
3337 * - prefer the last used CPU to take advantage of cached data (L1, L2) and
3338 * branch prediction optimizations.
3340 * 3. Pick a CPU within the same LLC (Last-Level Cache):
3341 * - if the above conditions aren't met, pick a CPU that shares the same LLC
3342 * to maintain cache locality.
3344 * 4. Pick a CPU within the same NUMA node, if enabled:
3345 * - choose a CPU from the same NUMA node to reduce memory access latency.
3347 * Step 3 and 4 are performed only if the system has, respectively, multiple
3348 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
3349 * scx_selcpu_topo_numa).
3351 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
3352 * we never call ops.select_cpu() for them, see select_task_rq().
3354 static s32
scx_select_cpu_dfl(struct task_struct
*p
, s32 prev_cpu
,
3355 u64 wake_flags
, bool *found
)
3357 const struct cpumask
*llc_cpus
= NULL
;
3358 const struct cpumask
*numa_cpus
= NULL
;
3365 * This is necessary to protect llc_cpus.
3370 * Determine the scheduling domain only if the task is allowed to run
3373 * This is done primarily for efficiency, as it avoids the overhead of
3374 * updating a cpumask every time we need to select an idle CPU (which
3375 * can be costly in large SMP systems), but it also aligns logically:
3376 * if a task's scheduling domain is restricted by user-space (through
3377 * CPU affinity), the task will simply use the flat scheduling domain
3378 * defined by user-space.
3380 if (p
->nr_cpus_allowed
>= num_possible_cpus()) {
3381 if (static_branch_maybe(CONFIG_NUMA
, &scx_selcpu_topo_numa
))
3382 numa_cpus
= cpumask_of_node(cpu_to_node(prev_cpu
));
3384 if (static_branch_maybe(CONFIG_SCHED_MC
, &scx_selcpu_topo_llc
)) {
3385 struct sched_domain
*sd
;
3387 sd
= rcu_dereference(per_cpu(sd_llc
, prev_cpu
));
3389 llc_cpus
= sched_domain_span(sd
);
3394 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
3396 if (wake_flags
& SCX_WAKE_SYNC
) {
3397 cpu
= smp_processor_id();
3400 * If the waker's CPU is cache affine and prev_cpu is idle,
3401 * then avoid a migration.
3403 if (cpus_share_cache(cpu
, prev_cpu
) &&
3404 test_and_clear_cpu_idle(prev_cpu
)) {
3410 * If the waker's local DSQ is empty, and the system is under
3411 * utilized, try to wake up @p to the local DSQ of the waker.
3413 * Checking only for an empty local DSQ is insufficient as it
3414 * could give the wakee an unfair advantage when the system is
3417 * Checking only for the presence of idle CPUs is also
3418 * insufficient as the local DSQ of the waker could have tasks
3419 * piled up on it even if there is an idle core elsewhere on
3422 if (!cpumask_empty(idle_masks
.cpu
) &&
3423 !(current
->flags
& PF_EXITING
) &&
3424 cpu_rq(cpu
)->scx
.local_dsq
.nr
== 0) {
3425 if (cpumask_test_cpu(cpu
, p
->cpus_ptr
))
3431 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3432 * partially idle @prev_cpu.
3434 if (sched_smt_active()) {
3436 * Keep using @prev_cpu if it's part of a fully idle core.
3438 if (cpumask_test_cpu(prev_cpu
, idle_masks
.smt
) &&
3439 test_and_clear_cpu_idle(prev_cpu
)) {
3445 * Search for any fully idle core in the same LLC domain.
3448 cpu
= scx_pick_idle_cpu(llc_cpus
, SCX_PICK_IDLE_CORE
);
3454 * Search for any fully idle core in the same NUMA node.
3457 cpu
= scx_pick_idle_cpu(numa_cpus
, SCX_PICK_IDLE_CORE
);
3463 * Search for any full idle core usable by the task.
3465 cpu
= scx_pick_idle_cpu(p
->cpus_ptr
, SCX_PICK_IDLE_CORE
);
3471 * Use @prev_cpu if it's idle.
3473 if (test_and_clear_cpu_idle(prev_cpu
)) {
3479 * Search for any idle CPU in the same LLC domain.
3482 cpu
= scx_pick_idle_cpu(llc_cpus
, 0);
3488 * Search for any idle CPU in the same NUMA node.
3491 cpu
= scx_pick_idle_cpu(numa_cpus
, 0);
3497 * Search for any idle CPU usable by the task.
3499 cpu
= scx_pick_idle_cpu(p
->cpus_ptr
, 0);
3513 static int select_task_rq_scx(struct task_struct
*p
, int prev_cpu
, int wake_flags
)
3516 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3517 * can be a good migration opportunity with low cache and memory
3518 * footprint. Returning a CPU different than @prev_cpu triggers
3519 * immediate rq migration. However, for SCX, as the current rq
3520 * association doesn't dictate where the task is going to run, this
3521 * doesn't fit well. If necessary, we can later add a dedicated method
3522 * which can decide to preempt self to force it through the regular
3525 if (unlikely(wake_flags
& WF_EXEC
))
3528 if (SCX_HAS_OP(select_cpu
) && !scx_rq_bypassing(task_rq(p
))) {
3530 struct task_struct
**ddsp_taskp
;
3532 ddsp_taskp
= this_cpu_ptr(&direct_dispatch_task
);
3533 WARN_ON_ONCE(*ddsp_taskp
);
3536 cpu
= SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE
| SCX_KF_SELECT_CPU
,
3537 select_cpu
, p
, prev_cpu
, wake_flags
);
3539 if (ops_cpu_valid(cpu
, "from ops.select_cpu()"))
3547 cpu
= scx_select_cpu_dfl(p
, prev_cpu
, wake_flags
, &found
);
3549 p
->scx
.slice
= SCX_SLICE_DFL
;
3550 p
->scx
.ddsp_dsq_id
= SCX_DSQ_LOCAL
;
3556 static void task_woken_scx(struct rq
*rq
, struct task_struct
*p
)
3561 static void set_cpus_allowed_scx(struct task_struct
*p
,
3562 struct affinity_context
*ac
)
3564 set_cpus_allowed_common(p
, ac
);
3567 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3568 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3569 * scheduler the effective one.
3571 * Fine-grained memory write control is enforced by BPF making the const
3572 * designation pointless. Cast it away when calling the operation.
3574 if (SCX_HAS_OP(set_cpumask
))
3575 SCX_CALL_OP_TASK(SCX_KF_REST
, set_cpumask
, p
,
3576 (struct cpumask
*)p
->cpus_ptr
);
3579 static void reset_idle_masks(void)
3582 * Consider all online cpus idle. Should converge to the actual state
3585 cpumask_copy(idle_masks
.cpu
, cpu_online_mask
);
3586 cpumask_copy(idle_masks
.smt
, cpu_online_mask
);
3589 void __scx_update_idle(struct rq
*rq
, bool idle
)
3591 int cpu
= cpu_of(rq
);
3593 if (SCX_HAS_OP(update_idle
) && !scx_rq_bypassing(rq
)) {
3594 SCX_CALL_OP(SCX_KF_REST
, update_idle
, cpu_of(rq
), idle
);
3595 if (!static_branch_unlikely(&scx_builtin_idle_enabled
))
3600 cpumask_set_cpu(cpu
, idle_masks
.cpu
);
3602 cpumask_clear_cpu(cpu
, idle_masks
.cpu
);
3604 #ifdef CONFIG_SCHED_SMT
3605 if (sched_smt_active()) {
3606 const struct cpumask
*smt
= cpu_smt_mask(cpu
);
3610 * idle_masks.smt handling is racy but that's fine as
3611 * it's only for optimization and self-correcting.
3613 for_each_cpu(cpu
, smt
) {
3614 if (!cpumask_test_cpu(cpu
, idle_masks
.cpu
))
3617 cpumask_or(idle_masks
.smt
, idle_masks
.smt
, smt
);
3619 cpumask_andnot(idle_masks
.smt
, idle_masks
.smt
, smt
);
3625 static void handle_hotplug(struct rq
*rq
, bool online
)
3627 int cpu
= cpu_of(rq
);
3629 atomic_long_inc(&scx_hotplug_seq
);
3632 update_selcpu_topology();
3634 if (online
&& SCX_HAS_OP(cpu_online
))
3635 SCX_CALL_OP(SCX_KF_UNLOCKED
, cpu_online
, cpu
);
3636 else if (!online
&& SCX_HAS_OP(cpu_offline
))
3637 SCX_CALL_OP(SCX_KF_UNLOCKED
, cpu_offline
, cpu
);
3639 scx_ops_exit(SCX_ECODE_ACT_RESTART
| SCX_ECODE_RSN_HOTPLUG
,
3640 "cpu %d going %s, exiting scheduler", cpu
,
3641 online
? "online" : "offline");
3644 void scx_rq_activate(struct rq
*rq
)
3646 handle_hotplug(rq
, true);
3649 void scx_rq_deactivate(struct rq
*rq
)
3651 handle_hotplug(rq
, false);
3654 static void rq_online_scx(struct rq
*rq
)
3656 rq
->scx
.flags
|= SCX_RQ_ONLINE
;
3659 static void rq_offline_scx(struct rq
*rq
)
3661 rq
->scx
.flags
&= ~SCX_RQ_ONLINE
;
3664 #else /* CONFIG_SMP */
3666 static bool test_and_clear_cpu_idle(int cpu
) { return false; }
3667 static s32
scx_pick_idle_cpu(const struct cpumask
*cpus_allowed
, u64 flags
) { return -EBUSY
; }
3668 static void reset_idle_masks(void) {}
3670 #endif /* CONFIG_SMP */
3672 static bool check_rq_for_timeouts(struct rq
*rq
)
3674 struct task_struct
*p
;
3676 bool timed_out
= false;
3678 rq_lock_irqsave(rq
, &rf
);
3679 list_for_each_entry(p
, &rq
->scx
.runnable_list
, scx
.runnable_node
) {
3680 unsigned long last_runnable
= p
->scx
.runnable_at
;
3682 if (unlikely(time_after(jiffies
,
3683 last_runnable
+ scx_watchdog_timeout
))) {
3684 u32 dur_ms
= jiffies_to_msecs(jiffies
- last_runnable
);
3686 scx_ops_error_kind(SCX_EXIT_ERROR_STALL
,
3687 "%s[%d] failed to run for %u.%03us",
3689 dur_ms
/ 1000, dur_ms
% 1000);
3694 rq_unlock_irqrestore(rq
, &rf
);
3699 static void scx_watchdog_workfn(struct work_struct
*work
)
3703 WRITE_ONCE(scx_watchdog_timestamp
, jiffies
);
3705 for_each_online_cpu(cpu
) {
3706 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu
))))
3711 queue_delayed_work(system_unbound_wq
, to_delayed_work(work
),
3712 scx_watchdog_timeout
/ 2);
3715 void scx_tick(struct rq
*rq
)
3717 unsigned long last_check
;
3722 last_check
= READ_ONCE(scx_watchdog_timestamp
);
3723 if (unlikely(time_after(jiffies
,
3724 last_check
+ READ_ONCE(scx_watchdog_timeout
)))) {
3725 u32 dur_ms
= jiffies_to_msecs(jiffies
- last_check
);
3727 scx_ops_error_kind(SCX_EXIT_ERROR_STALL
,
3728 "watchdog failed to check in for %u.%03us",
3729 dur_ms
/ 1000, dur_ms
% 1000);
3732 update_other_load_avgs(rq
);
3735 static void task_tick_scx(struct rq
*rq
, struct task_struct
*curr
, int queued
)
3737 update_curr_scx(rq
);
3740 * While disabling, always resched and refresh core-sched timestamp as
3741 * we can't trust the slice management or ops.core_sched_before().
3743 if (scx_rq_bypassing(rq
)) {
3744 curr
->scx
.slice
= 0;
3745 touch_core_sched(rq
, curr
);
3746 } else if (SCX_HAS_OP(tick
)) {
3747 SCX_CALL_OP(SCX_KF_REST
, tick
, curr
);
3750 if (!curr
->scx
.slice
)
3754 #ifdef CONFIG_EXT_GROUP_SCHED
3755 static struct cgroup
*tg_cgrp(struct task_group
*tg
)
3758 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3759 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3762 if (tg
&& tg
->css
.cgroup
)
3763 return tg
->css
.cgroup
;
3765 return &cgrp_dfl_root
.cgrp
;
3768 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
3770 #else /* CONFIG_EXT_GROUP_SCHED */
3772 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3774 #endif /* CONFIG_EXT_GROUP_SCHED */
3776 static enum scx_task_state
scx_get_task_state(const struct task_struct
*p
)
3778 return (p
->scx
.flags
& SCX_TASK_STATE_MASK
) >> SCX_TASK_STATE_SHIFT
;
3781 static void scx_set_task_state(struct task_struct
*p
, enum scx_task_state state
)
3783 enum scx_task_state prev_state
= scx_get_task_state(p
);
3786 BUILD_BUG_ON(SCX_TASK_NR_STATES
> (1 << SCX_TASK_STATE_BITS
));
3792 warn
= prev_state
!= SCX_TASK_NONE
;
3794 case SCX_TASK_READY
:
3795 warn
= prev_state
== SCX_TASK_NONE
;
3797 case SCX_TASK_ENABLED
:
3798 warn
= prev_state
!= SCX_TASK_READY
;
3805 WARN_ONCE(warn
, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3806 prev_state
, state
, p
->comm
, p
->pid
);
3808 p
->scx
.flags
&= ~SCX_TASK_STATE_MASK
;
3809 p
->scx
.flags
|= state
<< SCX_TASK_STATE_SHIFT
;
3812 static int scx_ops_init_task(struct task_struct
*p
, struct task_group
*tg
, bool fork
)
3816 p
->scx
.disallow
= false;
3818 if (SCX_HAS_OP(init_task
)) {
3819 struct scx_init_task_args args
= {
3820 SCX_INIT_TASK_ARGS_CGROUP(tg
)
3824 ret
= SCX_CALL_OP_RET(SCX_KF_UNLOCKED
, init_task
, p
, &args
);
3825 if (unlikely(ret
)) {
3826 ret
= ops_sanitize_err("init_task", ret
);
3831 scx_set_task_state(p
, SCX_TASK_INIT
);
3833 if (p
->scx
.disallow
) {
3838 rq
= task_rq_lock(p
, &rf
);
3841 * We're in the load path and @p->policy will be applied
3842 * right after. Reverting @p->policy here and rejecting
3843 * %SCHED_EXT transitions from scx_check_setscheduler()
3844 * guarantees that if ops.init_task() sets @p->disallow,
3845 * @p can never be in SCX.
3847 if (p
->policy
== SCHED_EXT
) {
3848 p
->policy
= SCHED_NORMAL
;
3849 atomic_long_inc(&scx_nr_rejected
);
3852 task_rq_unlock(rq
, p
, &rf
);
3853 } else if (p
->policy
== SCHED_EXT
) {
3854 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3859 p
->scx
.flags
|= SCX_TASK_RESET_RUNNABLE_AT
;
3863 static void scx_ops_enable_task(struct task_struct
*p
)
3867 lockdep_assert_rq_held(task_rq(p
));
3870 * Set the weight before calling ops.enable() so that the scheduler
3871 * doesn't see a stale value if they inspect the task struct.
3873 if (task_has_idle_policy(p
))
3874 weight
= WEIGHT_IDLEPRIO
;
3876 weight
= sched_prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
3878 p
->scx
.weight
= sched_weight_to_cgroup(weight
);
3880 if (SCX_HAS_OP(enable
))
3881 SCX_CALL_OP_TASK(SCX_KF_REST
, enable
, p
);
3882 scx_set_task_state(p
, SCX_TASK_ENABLED
);
3884 if (SCX_HAS_OP(set_weight
))
3885 SCX_CALL_OP_TASK(SCX_KF_REST
, set_weight
, p
, p
->scx
.weight
);
3888 static void scx_ops_disable_task(struct task_struct
*p
)
3890 lockdep_assert_rq_held(task_rq(p
));
3891 WARN_ON_ONCE(scx_get_task_state(p
) != SCX_TASK_ENABLED
);
3893 if (SCX_HAS_OP(disable
))
3894 SCX_CALL_OP(SCX_KF_REST
, disable
, p
);
3895 scx_set_task_state(p
, SCX_TASK_READY
);
3898 static void scx_ops_exit_task(struct task_struct
*p
)
3900 struct scx_exit_task_args args
= {
3904 lockdep_assert_rq_held(task_rq(p
));
3906 switch (scx_get_task_state(p
)) {
3910 args
.cancelled
= true;
3912 case SCX_TASK_READY
:
3914 case SCX_TASK_ENABLED
:
3915 scx_ops_disable_task(p
);
3922 if (SCX_HAS_OP(exit_task
))
3923 SCX_CALL_OP(SCX_KF_REST
, exit_task
, p
, &args
);
3924 scx_set_task_state(p
, SCX_TASK_NONE
);
3927 void init_scx_entity(struct sched_ext_entity
*scx
)
3929 memset(scx
, 0, sizeof(*scx
));
3930 INIT_LIST_HEAD(&scx
->dsq_list
.node
);
3931 RB_CLEAR_NODE(&scx
->dsq_priq
);
3932 scx
->sticky_cpu
= -1;
3933 scx
->holding_cpu
= -1;
3934 INIT_LIST_HEAD(&scx
->runnable_node
);
3935 scx
->runnable_at
= jiffies
;
3936 scx
->ddsp_dsq_id
= SCX_DSQ_INVALID
;
3937 scx
->slice
= SCX_SLICE_DFL
;
3940 void scx_pre_fork(struct task_struct
*p
)
3943 * BPF scheduler enable/disable paths want to be able to iterate and
3944 * update all tasks which can become complex when racing forks. As
3945 * enable/disable are very cold paths, let's use a percpu_rwsem to
3948 percpu_down_read(&scx_fork_rwsem
);
3951 int scx_fork(struct task_struct
*p
)
3953 percpu_rwsem_assert_held(&scx_fork_rwsem
);
3955 if (scx_ops_init_task_enabled
)
3956 return scx_ops_init_task(p
, task_group(p
), true);
3961 void scx_post_fork(struct task_struct
*p
)
3963 if (scx_ops_init_task_enabled
) {
3964 scx_set_task_state(p
, SCX_TASK_READY
);
3967 * Enable the task immediately if it's running on sched_ext.
3968 * Otherwise, it'll be enabled in switching_to_scx() if and
3969 * when it's ever configured to run with a SCHED_EXT policy.
3971 if (p
->sched_class
== &ext_sched_class
) {
3975 rq
= task_rq_lock(p
, &rf
);
3976 scx_ops_enable_task(p
);
3977 task_rq_unlock(rq
, p
, &rf
);
3981 spin_lock_irq(&scx_tasks_lock
);
3982 list_add_tail(&p
->scx
.tasks_node
, &scx_tasks
);
3983 spin_unlock_irq(&scx_tasks_lock
);
3985 percpu_up_read(&scx_fork_rwsem
);
3988 void scx_cancel_fork(struct task_struct
*p
)
3990 if (scx_enabled()) {
3994 rq
= task_rq_lock(p
, &rf
);
3995 WARN_ON_ONCE(scx_get_task_state(p
) >= SCX_TASK_READY
);
3996 scx_ops_exit_task(p
);
3997 task_rq_unlock(rq
, p
, &rf
);
4000 percpu_up_read(&scx_fork_rwsem
);
4003 void sched_ext_free(struct task_struct
*p
)
4005 unsigned long flags
;
4007 spin_lock_irqsave(&scx_tasks_lock
, flags
);
4008 list_del_init(&p
->scx
.tasks_node
);
4009 spin_unlock_irqrestore(&scx_tasks_lock
, flags
);
4012 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
4013 * ENABLED transitions can't race us. Disable ops for @p.
4015 if (scx_get_task_state(p
) != SCX_TASK_NONE
) {
4019 rq
= task_rq_lock(p
, &rf
);
4020 scx_ops_exit_task(p
);
4021 task_rq_unlock(rq
, p
, &rf
);
4025 static void reweight_task_scx(struct rq
*rq
, struct task_struct
*p
,
4026 const struct load_weight
*lw
)
4028 lockdep_assert_rq_held(task_rq(p
));
4030 p
->scx
.weight
= sched_weight_to_cgroup(scale_load_down(lw
->weight
));
4031 if (SCX_HAS_OP(set_weight
))
4032 SCX_CALL_OP_TASK(SCX_KF_REST
, set_weight
, p
, p
->scx
.weight
);
4035 static void prio_changed_scx(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
4039 static void switching_to_scx(struct rq
*rq
, struct task_struct
*p
)
4041 scx_ops_enable_task(p
);
4044 * set_cpus_allowed_scx() is not called while @p is associated with a
4045 * different scheduler class. Keep the BPF scheduler up-to-date.
4047 if (SCX_HAS_OP(set_cpumask
))
4048 SCX_CALL_OP_TASK(SCX_KF_REST
, set_cpumask
, p
,
4049 (struct cpumask
*)p
->cpus_ptr
);
4052 static void switched_from_scx(struct rq
*rq
, struct task_struct
*p
)
4054 scx_ops_disable_task(p
);
4057 static void wakeup_preempt_scx(struct rq
*rq
, struct task_struct
*p
,int wake_flags
) {}
4058 static void switched_to_scx(struct rq
*rq
, struct task_struct
*p
) {}
4060 int scx_check_setscheduler(struct task_struct
*p
, int policy
)
4062 lockdep_assert_rq_held(task_rq(p
));
4064 /* if disallow, reject transitioning into SCX */
4065 if (scx_enabled() && READ_ONCE(p
->scx
.disallow
) &&
4066 p
->policy
!= policy
&& policy
== SCHED_EXT
)
4072 #ifdef CONFIG_NO_HZ_FULL
4073 bool scx_can_stop_tick(struct rq
*rq
)
4075 struct task_struct
*p
= rq
->curr
;
4077 if (scx_rq_bypassing(rq
))
4080 if (p
->sched_class
!= &ext_sched_class
)
4084 * @rq can dispatch from different DSQs, so we can't tell whether it
4085 * needs the tick or not by looking at nr_running. Allow stopping ticks
4086 * iff the BPF scheduler indicated so. See set_next_task_scx().
4088 return rq
->scx
.flags
& SCX_RQ_CAN_STOP_TICK
;
4092 #ifdef CONFIG_EXT_GROUP_SCHED
4094 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem
);
4095 static bool scx_cgroup_enabled
;
4096 static bool cgroup_warned_missing_weight
;
4097 static bool cgroup_warned_missing_idle
;
4099 static void scx_cgroup_warn_missing_weight(struct task_group
*tg
)
4101 if (scx_ops_enable_state() == SCX_OPS_DISABLED
||
4102 cgroup_warned_missing_weight
)
4105 if ((scx_ops
.flags
& SCX_OPS_HAS_CGROUP_WEIGHT
) || !tg
->css
.parent
)
4108 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
4110 cgroup_warned_missing_weight
= true;
4113 static void scx_cgroup_warn_missing_idle(struct task_group
*tg
)
4115 if (!scx_cgroup_enabled
|| cgroup_warned_missing_idle
)
4121 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
4123 cgroup_warned_missing_idle
= true;
4126 int scx_tg_online(struct task_group
*tg
)
4130 WARN_ON_ONCE(tg
->scx_flags
& (SCX_TG_ONLINE
| SCX_TG_INITED
));
4132 percpu_down_read(&scx_cgroup_rwsem
);
4134 scx_cgroup_warn_missing_weight(tg
);
4136 if (scx_cgroup_enabled
) {
4137 if (SCX_HAS_OP(cgroup_init
)) {
4138 struct scx_cgroup_init_args args
=
4139 { .weight
= tg
->scx_weight
};
4141 ret
= SCX_CALL_OP_RET(SCX_KF_UNLOCKED
, cgroup_init
,
4142 tg
->css
.cgroup
, &args
);
4144 ret
= ops_sanitize_err("cgroup_init", ret
);
4147 tg
->scx_flags
|= SCX_TG_ONLINE
| SCX_TG_INITED
;
4149 tg
->scx_flags
|= SCX_TG_ONLINE
;
4152 percpu_up_read(&scx_cgroup_rwsem
);
4156 void scx_tg_offline(struct task_group
*tg
)
4158 WARN_ON_ONCE(!(tg
->scx_flags
& SCX_TG_ONLINE
));
4160 percpu_down_read(&scx_cgroup_rwsem
);
4162 if (SCX_HAS_OP(cgroup_exit
) && (tg
->scx_flags
& SCX_TG_INITED
))
4163 SCX_CALL_OP(SCX_KF_UNLOCKED
, cgroup_exit
, tg
->css
.cgroup
);
4164 tg
->scx_flags
&= ~(SCX_TG_ONLINE
| SCX_TG_INITED
);
4166 percpu_up_read(&scx_cgroup_rwsem
);
4169 int scx_cgroup_can_attach(struct cgroup_taskset
*tset
)
4171 struct cgroup_subsys_state
*css
;
4172 struct task_struct
*p
;
4175 /* released in scx_finish/cancel_attach() */
4176 percpu_down_read(&scx_cgroup_rwsem
);
4178 if (!scx_cgroup_enabled
)
4181 cgroup_taskset_for_each(p
, css
, tset
) {
4182 struct cgroup
*from
= tg_cgrp(task_group(p
));
4183 struct cgroup
*to
= tg_cgrp(css_tg(css
));
4185 WARN_ON_ONCE(p
->scx
.cgrp_moving_from
);
4188 * sched_move_task() omits identity migrations. Let's match the
4189 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
4190 * always match one-to-one.
4195 if (SCX_HAS_OP(cgroup_prep_move
)) {
4196 ret
= SCX_CALL_OP_RET(SCX_KF_UNLOCKED
, cgroup_prep_move
,
4197 p
, from
, css
->cgroup
);
4202 p
->scx
.cgrp_moving_from
= from
;
4208 cgroup_taskset_for_each(p
, css
, tset
) {
4209 if (SCX_HAS_OP(cgroup_cancel_move
) && p
->scx
.cgrp_moving_from
)
4210 SCX_CALL_OP(SCX_KF_UNLOCKED
, cgroup_cancel_move
, p
,
4211 p
->scx
.cgrp_moving_from
, css
->cgroup
);
4212 p
->scx
.cgrp_moving_from
= NULL
;
4215 percpu_up_read(&scx_cgroup_rwsem
);
4216 return ops_sanitize_err("cgroup_prep_move", ret
);
4219 void scx_move_task(struct task_struct
*p
)
4221 if (!scx_cgroup_enabled
)
4225 * We're called from sched_move_task() which handles both cgroup and
4226 * autogroup moves. Ignore the latter.
4228 * Also ignore exiting tasks, because in the exit path tasks transition
4229 * from the autogroup to the root group, so task_group_is_autogroup()
4230 * alone isn't able to catch exiting autogroup tasks. This is safe for
4231 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
4234 if (task_group_is_autogroup(task_group(p
)) || (p
->flags
& PF_EXITING
))
4238 * @p must have ops.cgroup_prep_move() called on it and thus
4239 * cgrp_moving_from set.
4241 if (SCX_HAS_OP(cgroup_move
) && !WARN_ON_ONCE(!p
->scx
.cgrp_moving_from
))
4242 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED
, cgroup_move
, p
,
4243 p
->scx
.cgrp_moving_from
, tg_cgrp(task_group(p
)));
4244 p
->scx
.cgrp_moving_from
= NULL
;
4247 void scx_cgroup_finish_attach(void)
4249 percpu_up_read(&scx_cgroup_rwsem
);
4252 void scx_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4254 struct cgroup_subsys_state
*css
;
4255 struct task_struct
*p
;
4257 if (!scx_cgroup_enabled
)
4260 cgroup_taskset_for_each(p
, css
, tset
) {
4261 if (SCX_HAS_OP(cgroup_cancel_move
) && p
->scx
.cgrp_moving_from
)
4262 SCX_CALL_OP(SCX_KF_UNLOCKED
, cgroup_cancel_move
, p
,
4263 p
->scx
.cgrp_moving_from
, css
->cgroup
);
4264 p
->scx
.cgrp_moving_from
= NULL
;
4267 percpu_up_read(&scx_cgroup_rwsem
);
4270 void scx_group_set_weight(struct task_group
*tg
, unsigned long weight
)
4272 percpu_down_read(&scx_cgroup_rwsem
);
4274 if (scx_cgroup_enabled
&& tg
->scx_weight
!= weight
) {
4275 if (SCX_HAS_OP(cgroup_set_weight
))
4276 SCX_CALL_OP(SCX_KF_UNLOCKED
, cgroup_set_weight
,
4277 tg_cgrp(tg
), weight
);
4278 tg
->scx_weight
= weight
;
4281 percpu_up_read(&scx_cgroup_rwsem
);
4284 void scx_group_set_idle(struct task_group
*tg
, bool idle
)
4286 percpu_down_read(&scx_cgroup_rwsem
);
4287 scx_cgroup_warn_missing_idle(tg
);
4288 percpu_up_read(&scx_cgroup_rwsem
);
4291 static void scx_cgroup_lock(void)
4293 percpu_down_write(&scx_cgroup_rwsem
);
4296 static void scx_cgroup_unlock(void)
4298 percpu_up_write(&scx_cgroup_rwsem
);
4301 #else /* CONFIG_EXT_GROUP_SCHED */
4303 static inline void scx_cgroup_lock(void) {}
4304 static inline void scx_cgroup_unlock(void) {}
4306 #endif /* CONFIG_EXT_GROUP_SCHED */
4309 * Omitted operations:
4311 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
4312 * isn't tied to the CPU at that point. Preemption is implemented by resetting
4313 * the victim task's slice to 0 and triggering reschedule on the target CPU.
4315 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
4317 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
4318 * their current sched_class. Call them directly from sched core instead.
4320 DEFINE_SCHED_CLASS(ext
) = {
4321 .enqueue_task
= enqueue_task_scx
,
4322 .dequeue_task
= dequeue_task_scx
,
4323 .yield_task
= yield_task_scx
,
4324 .yield_to_task
= yield_to_task_scx
,
4326 .wakeup_preempt
= wakeup_preempt_scx
,
4328 .balance
= balance_scx
,
4329 .pick_task
= pick_task_scx
,
4331 .put_prev_task
= put_prev_task_scx
,
4332 .set_next_task
= set_next_task_scx
,
4335 .select_task_rq
= select_task_rq_scx
,
4336 .task_woken
= task_woken_scx
,
4337 .set_cpus_allowed
= set_cpus_allowed_scx
,
4339 .rq_online
= rq_online_scx
,
4340 .rq_offline
= rq_offline_scx
,
4343 .task_tick
= task_tick_scx
,
4345 .switching_to
= switching_to_scx
,
4346 .switched_from
= switched_from_scx
,
4347 .switched_to
= switched_to_scx
,
4348 .reweight_task
= reweight_task_scx
,
4349 .prio_changed
= prio_changed_scx
,
4351 .update_curr
= update_curr_scx
,
4353 #ifdef CONFIG_UCLAMP_TASK
4354 .uclamp_enabled
= 1,
4358 static void init_dsq(struct scx_dispatch_q
*dsq
, u64 dsq_id
)
4360 memset(dsq
, 0, sizeof(*dsq
));
4362 raw_spin_lock_init(&dsq
->lock
);
4363 INIT_LIST_HEAD(&dsq
->list
);
4367 static struct scx_dispatch_q
*create_dsq(u64 dsq_id
, int node
)
4369 struct scx_dispatch_q
*dsq
;
4372 if (dsq_id
& SCX_DSQ_FLAG_BUILTIN
)
4373 return ERR_PTR(-EINVAL
);
4375 dsq
= kmalloc_node(sizeof(*dsq
), GFP_KERNEL
, node
);
4377 return ERR_PTR(-ENOMEM
);
4379 init_dsq(dsq
, dsq_id
);
4381 ret
= rhashtable_insert_fast(&dsq_hash
, &dsq
->hash_node
,
4385 return ERR_PTR(ret
);
4390 static void free_dsq_irq_workfn(struct irq_work
*irq_work
)
4392 struct llist_node
*to_free
= llist_del_all(&dsqs_to_free
);
4393 struct scx_dispatch_q
*dsq
, *tmp_dsq
;
4395 llist_for_each_entry_safe(dsq
, tmp_dsq
, to_free
, free_node
)
4396 kfree_rcu(dsq
, rcu
);
4399 static DEFINE_IRQ_WORK(free_dsq_irq_work
, free_dsq_irq_workfn
);
4401 static void destroy_dsq(u64 dsq_id
)
4403 struct scx_dispatch_q
*dsq
;
4404 unsigned long flags
;
4408 dsq
= find_user_dsq(dsq_id
);
4410 goto out_unlock_rcu
;
4412 raw_spin_lock_irqsave(&dsq
->lock
, flags
);
4415 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4417 goto out_unlock_dsq
;
4420 if (rhashtable_remove_fast(&dsq_hash
, &dsq
->hash_node
, dsq_hash_params
))
4421 goto out_unlock_dsq
;
4424 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4425 * queueing more tasks. As this function can be called from anywhere,
4426 * freeing is bounced through an irq work to avoid nesting RCU
4427 * operations inside scheduler locks.
4429 dsq
->id
= SCX_DSQ_INVALID
;
4430 llist_add(&dsq
->free_node
, &dsqs_to_free
);
4431 irq_work_queue(&free_dsq_irq_work
);
4434 raw_spin_unlock_irqrestore(&dsq
->lock
, flags
);
4439 #ifdef CONFIG_EXT_GROUP_SCHED
4440 static void scx_cgroup_exit(void)
4442 struct cgroup_subsys_state
*css
;
4444 percpu_rwsem_assert_held(&scx_cgroup_rwsem
);
4446 scx_cgroup_enabled
= false;
4449 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4450 * cgroups and exit all the inited ones, all online cgroups are exited.
4453 css_for_each_descendant_post(css
, &root_task_group
.css
) {
4454 struct task_group
*tg
= css_tg(css
);
4456 if (!(tg
->scx_flags
& SCX_TG_INITED
))
4458 tg
->scx_flags
&= ~SCX_TG_INITED
;
4460 if (!scx_ops
.cgroup_exit
)
4463 if (WARN_ON_ONCE(!css_tryget(css
)))
4467 SCX_CALL_OP(SCX_KF_UNLOCKED
, cgroup_exit
, css
->cgroup
);
4475 static int scx_cgroup_init(void)
4477 struct cgroup_subsys_state
*css
;
4480 percpu_rwsem_assert_held(&scx_cgroup_rwsem
);
4482 cgroup_warned_missing_weight
= false;
4483 cgroup_warned_missing_idle
= false;
4486 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4487 * cgroups and init, all online cgroups are initialized.
4490 css_for_each_descendant_pre(css
, &root_task_group
.css
) {
4491 struct task_group
*tg
= css_tg(css
);
4492 struct scx_cgroup_init_args args
= { .weight
= tg
->scx_weight
};
4494 scx_cgroup_warn_missing_weight(tg
);
4495 scx_cgroup_warn_missing_idle(tg
);
4497 if ((tg
->scx_flags
&
4498 (SCX_TG_ONLINE
| SCX_TG_INITED
)) != SCX_TG_ONLINE
)
4501 if (!scx_ops
.cgroup_init
) {
4502 tg
->scx_flags
|= SCX_TG_INITED
;
4506 if (WARN_ON_ONCE(!css_tryget(css
)))
4510 ret
= SCX_CALL_OP_RET(SCX_KF_UNLOCKED
, cgroup_init
,
4511 css
->cgroup
, &args
);
4514 scx_ops_error("ops.cgroup_init() failed (%d)", ret
);
4517 tg
->scx_flags
|= SCX_TG_INITED
;
4524 WARN_ON_ONCE(scx_cgroup_enabled
);
4525 scx_cgroup_enabled
= true;
4531 static void scx_cgroup_exit(void) {}
4532 static int scx_cgroup_init(void) { return 0; }
4536 /********************************************************************************
4537 * Sysfs interface and ops enable/disable.
4540 #define SCX_ATTR(_name) \
4541 static struct kobj_attribute scx_attr_##_name = { \
4542 .attr = { .name = __stringify(_name), .mode = 0444 }, \
4543 .show = scx_attr_##_name##_show, \
4546 static ssize_t
scx_attr_state_show(struct kobject
*kobj
,
4547 struct kobj_attribute
*ka
, char *buf
)
4549 return sysfs_emit(buf
, "%s\n",
4550 scx_ops_enable_state_str
[scx_ops_enable_state()]);
4554 static ssize_t
scx_attr_switch_all_show(struct kobject
*kobj
,
4555 struct kobj_attribute
*ka
, char *buf
)
4557 return sysfs_emit(buf
, "%d\n", READ_ONCE(scx_switching_all
));
4559 SCX_ATTR(switch_all
);
4561 static ssize_t
scx_attr_nr_rejected_show(struct kobject
*kobj
,
4562 struct kobj_attribute
*ka
, char *buf
)
4564 return sysfs_emit(buf
, "%ld\n", atomic_long_read(&scx_nr_rejected
));
4566 SCX_ATTR(nr_rejected
);
4568 static ssize_t
scx_attr_hotplug_seq_show(struct kobject
*kobj
,
4569 struct kobj_attribute
*ka
, char *buf
)
4571 return sysfs_emit(buf
, "%ld\n", atomic_long_read(&scx_hotplug_seq
));
4573 SCX_ATTR(hotplug_seq
);
4575 static ssize_t
scx_attr_enable_seq_show(struct kobject
*kobj
,
4576 struct kobj_attribute
*ka
, char *buf
)
4578 return sysfs_emit(buf
, "%ld\n", atomic_long_read(&scx_enable_seq
));
4580 SCX_ATTR(enable_seq
);
4582 static struct attribute
*scx_global_attrs
[] = {
4583 &scx_attr_state
.attr
,
4584 &scx_attr_switch_all
.attr
,
4585 &scx_attr_nr_rejected
.attr
,
4586 &scx_attr_hotplug_seq
.attr
,
4587 &scx_attr_enable_seq
.attr
,
4591 static const struct attribute_group scx_global_attr_group
= {
4592 .attrs
= scx_global_attrs
,
4595 static void scx_kobj_release(struct kobject
*kobj
)
4600 static ssize_t
scx_attr_ops_show(struct kobject
*kobj
,
4601 struct kobj_attribute
*ka
, char *buf
)
4603 return sysfs_emit(buf
, "%s\n", scx_ops
.name
);
4607 static struct attribute
*scx_sched_attrs
[] = {
4611 ATTRIBUTE_GROUPS(scx_sched
);
4613 static const struct kobj_type scx_ktype
= {
4614 .release
= scx_kobj_release
,
4615 .sysfs_ops
= &kobj_sysfs_ops
,
4616 .default_groups
= scx_sched_groups
,
4619 static int scx_uevent(const struct kobject
*kobj
, struct kobj_uevent_env
*env
)
4621 return add_uevent_var(env
, "SCXOPS=%s", scx_ops
.name
);
4624 static const struct kset_uevent_ops scx_uevent_ops
= {
4625 .uevent
= scx_uevent
,
4629 * Used by sched_fork() and __setscheduler_prio() to pick the matching
4630 * sched_class. dl/rt are already handled.
4632 bool task_should_scx(int policy
)
4634 if (!scx_enabled() ||
4635 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING
))
4637 if (READ_ONCE(scx_switching_all
))
4639 return policy
== SCHED_EXT
;
4643 * scx_softlockup - sched_ext softlockup handler
4645 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
4646 * live-lock the system by making many CPUs target the same DSQ to the point
4647 * where soft-lockup detection triggers. This function is called from
4648 * soft-lockup watchdog when the triggering point is close and tries to unjam
4649 * the system by enabling the breather and aborting the BPF scheduler.
4651 void scx_softlockup(u32 dur_s
)
4653 switch (scx_ops_enable_state()) {
4654 case SCX_OPS_ENABLING
:
4655 case SCX_OPS_ENABLED
:
4661 /* allow only one instance, cleared at the end of scx_ops_bypass() */
4662 if (test_and_set_bit(0, &scx_in_softlockup
))
4665 printk_deferred(KERN_ERR
"sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
4666 smp_processor_id(), dur_s
, scx_ops
.name
);
4669 * Some CPUs may be trapped in the dispatch paths. Enable breather
4670 * immediately; otherwise, we might even be able to get to
4673 atomic_inc(&scx_ops_breather_depth
);
4675 scx_ops_error("soft lockup - CPU#%d stuck for %us",
4676 smp_processor_id(), dur_s
);
4679 static void scx_clear_softlockup(void)
4681 if (test_and_clear_bit(0, &scx_in_softlockup
))
4682 atomic_dec(&scx_ops_breather_depth
);
4686 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4688 * Bypassing guarantees that all runnable tasks make forward progress without
4689 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4690 * be held by tasks that the BPF scheduler is forgetting to run, which
4691 * unfortunately also excludes toggling the static branches.
4693 * Let's work around by overriding a couple ops and modifying behaviors based on
4694 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4695 * to force global FIFO scheduling.
4697 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4699 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4700 * %SCX_OPS_ENQ_LAST is also ignored.
4702 * - ops.dispatch() is ignored.
4704 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4705 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4706 * the tail of the queue with core_sched_at touched.
4708 * - pick_next_task() suppresses zero slice warning.
4710 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4713 * - scx_prio_less() reverts to the default core_sched_at order.
4715 static void scx_ops_bypass(bool bypass
)
4717 static DEFINE_RAW_SPINLOCK(bypass_lock
);
4719 unsigned long flags
;
4721 raw_spin_lock_irqsave(&bypass_lock
, flags
);
4723 scx_ops_bypass_depth
++;
4724 WARN_ON_ONCE(scx_ops_bypass_depth
<= 0);
4725 if (scx_ops_bypass_depth
!= 1)
4728 scx_ops_bypass_depth
--;
4729 WARN_ON_ONCE(scx_ops_bypass_depth
< 0);
4730 if (scx_ops_bypass_depth
!= 0)
4734 atomic_inc(&scx_ops_breather_depth
);
4737 * No task property is changing. We just need to make sure all currently
4738 * queued tasks are re-queued according to the new scx_rq_bypassing()
4739 * state. As an optimization, walk each rq's runnable_list instead of
4740 * the scx_tasks list.
4742 * This function can't trust the scheduler and thus can't use
4743 * cpus_read_lock(). Walk all possible CPUs instead of online.
4745 for_each_possible_cpu(cpu
) {
4746 struct rq
*rq
= cpu_rq(cpu
);
4748 struct task_struct
*p
, *n
;
4753 WARN_ON_ONCE(rq
->scx
.flags
& SCX_RQ_BYPASSING
);
4754 rq
->scx
.flags
|= SCX_RQ_BYPASSING
;
4756 WARN_ON_ONCE(!(rq
->scx
.flags
& SCX_RQ_BYPASSING
));
4757 rq
->scx
.flags
&= ~SCX_RQ_BYPASSING
;
4761 * We need to guarantee that no tasks are on the BPF scheduler
4762 * while bypassing. Either we see enabled or the enable path
4763 * sees scx_rq_bypassing() before moving tasks to SCX.
4765 if (!scx_enabled()) {
4766 rq_unlock_irqrestore(rq
, &rf
);
4771 * The use of list_for_each_entry_safe_reverse() is required
4772 * because each task is going to be removed from and added back
4773 * to the runnable_list during iteration. Because they're added
4774 * to the tail of the list, safe reverse iteration can still
4777 list_for_each_entry_safe_reverse(p
, n
, &rq
->scx
.runnable_list
,
4778 scx
.runnable_node
) {
4779 struct sched_enq_and_set_ctx ctx
;
4781 /* cycling deq/enq is enough, see the function comment */
4782 sched_deq_and_put_task(p
, DEQUEUE_SAVE
| DEQUEUE_MOVE
, &ctx
);
4783 sched_enq_and_set_task(&ctx
);
4788 /* resched to restore ticks and idle state */
4792 atomic_dec(&scx_ops_breather_depth
);
4794 raw_spin_unlock_irqrestore(&bypass_lock
, flags
);
4795 scx_clear_softlockup();
4798 static void free_exit_info(struct scx_exit_info
*ei
)
4806 static struct scx_exit_info
*alloc_exit_info(size_t exit_dump_len
)
4808 struct scx_exit_info
*ei
;
4810 ei
= kzalloc(sizeof(*ei
), GFP_KERNEL
);
4814 ei
->bt
= kcalloc(SCX_EXIT_BT_LEN
, sizeof(ei
->bt
[0]), GFP_KERNEL
);
4815 ei
->msg
= kzalloc(SCX_EXIT_MSG_LEN
, GFP_KERNEL
);
4816 ei
->dump
= kzalloc(exit_dump_len
, GFP_KERNEL
);
4818 if (!ei
->bt
|| !ei
->msg
|| !ei
->dump
) {
4826 static const char *scx_exit_reason(enum scx_exit_kind kind
)
4829 case SCX_EXIT_UNREG
:
4830 return "unregistered from user space";
4831 case SCX_EXIT_UNREG_BPF
:
4832 return "unregistered from BPF";
4833 case SCX_EXIT_UNREG_KERN
:
4834 return "unregistered from the main kernel";
4835 case SCX_EXIT_SYSRQ
:
4836 return "disabled by sysrq-S";
4837 case SCX_EXIT_ERROR
:
4838 return "runtime error";
4839 case SCX_EXIT_ERROR_BPF
:
4840 return "scx_bpf_error";
4841 case SCX_EXIT_ERROR_STALL
:
4842 return "runnable task stall";
4848 static void scx_ops_disable_workfn(struct kthread_work
*work
)
4850 struct scx_exit_info
*ei
= scx_exit_info
;
4851 struct scx_task_iter sti
;
4852 struct task_struct
*p
;
4853 struct rhashtable_iter rht_iter
;
4854 struct scx_dispatch_q
*dsq
;
4857 kind
= atomic_read(&scx_exit_kind
);
4860 * NONE indicates that a new scx_ops has been registered since
4861 * disable was scheduled - don't kill the new ops. DONE
4862 * indicates that the ops has already been disabled.
4864 if (kind
== SCX_EXIT_NONE
|| kind
== SCX_EXIT_DONE
)
4866 if (atomic_try_cmpxchg(&scx_exit_kind
, &kind
, SCX_EXIT_DONE
))
4870 ei
->reason
= scx_exit_reason(ei
->kind
);
4872 /* guarantee forward progress by bypassing scx_ops */
4873 scx_ops_bypass(true);
4875 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING
)) {
4876 case SCX_OPS_DISABLING
:
4877 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4879 case SCX_OPS_DISABLED
:
4880 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4881 scx_exit_info
->msg
);
4882 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED
) !=
4890 * Here, every runnable task is guaranteed to make forward progress and
4891 * we can safely use blocking synchronization constructs. Actually
4894 mutex_lock(&scx_ops_enable_mutex
);
4896 static_branch_disable(&__scx_switched_all
);
4897 WRITE_ONCE(scx_switching_all
, false);
4900 * Shut down cgroup support before tasks so that the cgroup attach path
4901 * doesn't race against scx_ops_exit_task().
4905 scx_cgroup_unlock();
4908 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4909 * must be switched out and exited synchronously.
4911 percpu_down_write(&scx_fork_rwsem
);
4913 scx_ops_init_task_enabled
= false;
4915 scx_task_iter_start(&sti
);
4916 while ((p
= scx_task_iter_next_locked(&sti
))) {
4917 const struct sched_class
*old_class
= p
->sched_class
;
4918 const struct sched_class
*new_class
=
4919 __setscheduler_class(p
->policy
, p
->prio
);
4920 struct sched_enq_and_set_ctx ctx
;
4922 if (old_class
!= new_class
&& p
->se
.sched_delayed
)
4923 dequeue_task(task_rq(p
), p
, DEQUEUE_SLEEP
| DEQUEUE_DELAYED
);
4925 sched_deq_and_put_task(p
, DEQUEUE_SAVE
| DEQUEUE_MOVE
, &ctx
);
4927 p
->sched_class
= new_class
;
4928 check_class_changing(task_rq(p
), p
, old_class
);
4930 sched_enq_and_set_task(&ctx
);
4932 check_class_changed(task_rq(p
), p
, old_class
, p
->prio
);
4933 scx_ops_exit_task(p
);
4935 scx_task_iter_stop(&sti
);
4936 percpu_up_write(&scx_fork_rwsem
);
4938 /* no task is on scx, turn off all the switches and flush in-progress calls */
4939 static_branch_disable(&__scx_ops_enabled
);
4940 for (i
= SCX_OPI_BEGIN
; i
< SCX_OPI_END
; i
++)
4941 static_branch_disable(&scx_has_op
[i
]);
4942 static_branch_disable(&scx_ops_enq_last
);
4943 static_branch_disable(&scx_ops_enq_exiting
);
4944 static_branch_disable(&scx_ops_cpu_preempt
);
4945 static_branch_disable(&scx_builtin_idle_enabled
);
4948 if (ei
->kind
>= SCX_EXIT_ERROR
) {
4949 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4950 scx_ops
.name
, ei
->reason
);
4952 if (ei
->msg
[0] != '\0')
4953 pr_err("sched_ext: %s: %s\n", scx_ops
.name
, ei
->msg
);
4954 #ifdef CONFIG_STACKTRACE
4955 stack_trace_print(ei
->bt
, ei
->bt_len
, 2);
4958 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4959 scx_ops
.name
, ei
->reason
);
4963 SCX_CALL_OP(SCX_KF_UNLOCKED
, exit
, ei
);
4965 cancel_delayed_work_sync(&scx_watchdog_work
);
4968 * Delete the kobject from the hierarchy eagerly in addition to just
4969 * dropping a reference. Otherwise, if the object is deleted
4970 * asynchronously, sysfs could observe an object of the same name still
4971 * in the hierarchy when another scheduler is loaded.
4973 kobject_del(scx_root_kobj
);
4974 kobject_put(scx_root_kobj
);
4975 scx_root_kobj
= NULL
;
4977 memset(&scx_ops
, 0, sizeof(scx_ops
));
4979 rhashtable_walk_enter(&dsq_hash
, &rht_iter
);
4981 rhashtable_walk_start(&rht_iter
);
4983 while ((dsq
= rhashtable_walk_next(&rht_iter
)) && !IS_ERR(dsq
))
4984 destroy_dsq(dsq
->id
);
4986 rhashtable_walk_stop(&rht_iter
);
4987 } while (dsq
== ERR_PTR(-EAGAIN
));
4988 rhashtable_walk_exit(&rht_iter
);
4990 free_percpu(scx_dsp_ctx
);
4992 scx_dsp_max_batch
= 0;
4994 free_exit_info(scx_exit_info
);
4995 scx_exit_info
= NULL
;
4997 mutex_unlock(&scx_ops_enable_mutex
);
4999 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED
) !=
5002 scx_ops_bypass(false);
5005 static DEFINE_KTHREAD_WORK(scx_ops_disable_work
, scx_ops_disable_workfn
);
5007 static void schedule_scx_ops_disable_work(void)
5009 struct kthread_worker
*helper
= READ_ONCE(scx_ops_helper
);
5012 * We may be called spuriously before the first bpf_sched_ext_reg(). If
5013 * scx_ops_helper isn't set up yet, there's nothing to do.
5016 kthread_queue_work(helper
, &scx_ops_disable_work
);
5019 static void scx_ops_disable(enum scx_exit_kind kind
)
5021 int none
= SCX_EXIT_NONE
;
5023 if (WARN_ON_ONCE(kind
== SCX_EXIT_NONE
|| kind
== SCX_EXIT_DONE
))
5024 kind
= SCX_EXIT_ERROR
;
5026 atomic_try_cmpxchg(&scx_exit_kind
, &none
, kind
);
5028 schedule_scx_ops_disable_work();
5031 static void dump_newline(struct seq_buf
*s
)
5033 trace_sched_ext_dump("");
5035 /* @s may be zero sized and seq_buf triggers WARN if so */
5037 seq_buf_putc(s
, '\n');
5040 static __printf(2, 3) void dump_line(struct seq_buf
*s
, const char *fmt
, ...)
5044 #ifdef CONFIG_TRACEPOINTS
5045 if (trace_sched_ext_dump_enabled()) {
5046 /* protected by scx_dump_state()::dump_lock */
5047 static char line_buf
[SCX_EXIT_MSG_LEN
];
5049 va_start(args
, fmt
);
5050 vscnprintf(line_buf
, sizeof(line_buf
), fmt
, args
);
5053 trace_sched_ext_dump(line_buf
);
5056 /* @s may be zero sized and seq_buf triggers WARN if so */
5058 va_start(args
, fmt
);
5059 seq_buf_vprintf(s
, fmt
, args
);
5062 seq_buf_putc(s
, '\n');
5066 static void dump_stack_trace(struct seq_buf
*s
, const char *prefix
,
5067 const unsigned long *bt
, unsigned int len
)
5071 for (i
= 0; i
< len
; i
++)
5072 dump_line(s
, "%s%pS", prefix
, (void *)bt
[i
]);
5075 static void ops_dump_init(struct seq_buf
*s
, const char *prefix
)
5077 struct scx_dump_data
*dd
= &scx_dump_data
;
5079 lockdep_assert_irqs_disabled();
5081 dd
->cpu
= smp_processor_id(); /* allow scx_bpf_dump() */
5085 dd
->prefix
= prefix
;
5088 static void ops_dump_flush(void)
5090 struct scx_dump_data
*dd
= &scx_dump_data
;
5091 char *line
= dd
->buf
.line
;
5097 * There's something to flush and this is the first line. Insert a blank
5098 * line to distinguish ops dump.
5101 dump_newline(dd
->s
);
5106 * There may be multiple lines in $line. Scan and emit each line
5113 while (*end
!= '\n' && *end
!= '\0')
5117 * If $line overflowed, it may not have newline at the end.
5118 * Always emit with a newline.
5122 dump_line(dd
->s
, "%s%s", dd
->prefix
, line
);
5126 /* move to the next line */
5136 static void ops_dump_exit(void)
5139 scx_dump_data
.cpu
= -1;
5142 static void scx_dump_task(struct seq_buf
*s
, struct scx_dump_ctx
*dctx
,
5143 struct task_struct
*p
, char marker
)
5145 static unsigned long bt
[SCX_EXIT_BT_LEN
];
5146 char dsq_id_buf
[19] = "(n/a)";
5147 unsigned long ops_state
= atomic_long_read(&p
->scx
.ops_state
);
5148 unsigned int bt_len
= 0;
5151 scnprintf(dsq_id_buf
, sizeof(dsq_id_buf
), "0x%llx",
5152 (unsigned long long)p
->scx
.dsq
->id
);
5155 dump_line(s
, " %c%c %s[%d] %+ldms",
5156 marker
, task_state_to_char(p
), p
->comm
, p
->pid
,
5157 jiffies_delta_msecs(p
->scx
.runnable_at
, dctx
->at_jiffies
));
5158 dump_line(s
, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
5159 scx_get_task_state(p
), p
->scx
.flags
& ~SCX_TASK_STATE_MASK
,
5160 p
->scx
.dsq_flags
, ops_state
& SCX_OPSS_STATE_MASK
,
5161 ops_state
>> SCX_OPSS_QSEQ_SHIFT
);
5162 dump_line(s
, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
5163 p
->scx
.sticky_cpu
, p
->scx
.holding_cpu
, dsq_id_buf
,
5165 dump_line(s
, " cpus=%*pb", cpumask_pr_args(p
->cpus_ptr
));
5167 if (SCX_HAS_OP(dump_task
)) {
5168 ops_dump_init(s
, " ");
5169 SCX_CALL_OP(SCX_KF_REST
, dump_task
, dctx
, p
);
5173 #ifdef CONFIG_STACKTRACE
5174 bt_len
= stack_trace_save_tsk(p
, bt
, SCX_EXIT_BT_LEN
, 1);
5178 dump_stack_trace(s
, " ", bt
, bt_len
);
5182 static void scx_dump_state(struct scx_exit_info
*ei
, size_t dump_len
)
5184 static DEFINE_SPINLOCK(dump_lock
);
5185 static const char trunc_marker
[] = "\n\n~~~~ TRUNCATED ~~~~\n";
5186 struct scx_dump_ctx dctx
= {
5188 .exit_code
= ei
->exit_code
,
5189 .reason
= ei
->reason
,
5190 .at_ns
= ktime_get_ns(),
5191 .at_jiffies
= jiffies
,
5194 unsigned long flags
;
5198 spin_lock_irqsave(&dump_lock
, flags
);
5200 seq_buf_init(&s
, ei
->dump
, dump_len
);
5202 if (ei
->kind
== SCX_EXIT_NONE
) {
5203 dump_line(&s
, "Debug dump triggered by %s", ei
->reason
);
5205 dump_line(&s
, "%s[%d] triggered exit kind %d:",
5206 current
->comm
, current
->pid
, ei
->kind
);
5207 dump_line(&s
, " %s (%s)", ei
->reason
, ei
->msg
);
5209 dump_line(&s
, "Backtrace:");
5210 dump_stack_trace(&s
, " ", ei
->bt
, ei
->bt_len
);
5213 if (SCX_HAS_OP(dump
)) {
5214 ops_dump_init(&s
, "");
5215 SCX_CALL_OP(SCX_KF_UNLOCKED
, dump
, &dctx
);
5220 dump_line(&s
, "CPU states");
5221 dump_line(&s
, "----------");
5223 for_each_possible_cpu(cpu
) {
5224 struct rq
*rq
= cpu_rq(cpu
);
5226 struct task_struct
*p
;
5233 idle
= list_empty(&rq
->scx
.runnable_list
) &&
5234 rq
->curr
->sched_class
== &idle_sched_class
;
5236 if (idle
&& !SCX_HAS_OP(dump_cpu
))
5240 * We don't yet know whether ops.dump_cpu() will produce output
5241 * and we may want to skip the default CPU dump if it doesn't.
5242 * Use a nested seq_buf to generate the standard dump so that we
5243 * can decide whether to commit later.
5245 avail
= seq_buf_get_buf(&s
, &buf
);
5246 seq_buf_init(&ns
, buf
, avail
);
5249 dump_line(&ns
, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
5250 cpu
, rq
->scx
.nr_running
, rq
->scx
.flags
,
5251 rq
->scx
.cpu_released
, rq
->scx
.ops_qseq
,
5253 dump_line(&ns
, " curr=%s[%d] class=%ps",
5254 rq
->curr
->comm
, rq
->curr
->pid
,
5255 rq
->curr
->sched_class
);
5256 if (!cpumask_empty(rq
->scx
.cpus_to_kick
))
5257 dump_line(&ns
, " cpus_to_kick : %*pb",
5258 cpumask_pr_args(rq
->scx
.cpus_to_kick
));
5259 if (!cpumask_empty(rq
->scx
.cpus_to_kick_if_idle
))
5260 dump_line(&ns
, " idle_to_kick : %*pb",
5261 cpumask_pr_args(rq
->scx
.cpus_to_kick_if_idle
));
5262 if (!cpumask_empty(rq
->scx
.cpus_to_preempt
))
5263 dump_line(&ns
, " cpus_to_preempt: %*pb",
5264 cpumask_pr_args(rq
->scx
.cpus_to_preempt
));
5265 if (!cpumask_empty(rq
->scx
.cpus_to_wait
))
5266 dump_line(&ns
, " cpus_to_wait : %*pb",
5267 cpumask_pr_args(rq
->scx
.cpus_to_wait
));
5269 used
= seq_buf_used(&ns
);
5270 if (SCX_HAS_OP(dump_cpu
)) {
5271 ops_dump_init(&ns
, " ");
5272 SCX_CALL_OP(SCX_KF_REST
, dump_cpu
, &dctx
, cpu
, idle
);
5277 * If idle && nothing generated by ops.dump_cpu(), there's
5278 * nothing interesting. Skip.
5280 if (idle
&& used
== seq_buf_used(&ns
))
5284 * $s may already have overflowed when $ns was created. If so,
5285 * calling commit on it will trigger BUG.
5288 seq_buf_commit(&s
, seq_buf_used(&ns
));
5289 if (seq_buf_has_overflowed(&ns
))
5290 seq_buf_set_overflow(&s
);
5293 if (rq
->curr
->sched_class
== &ext_sched_class
)
5294 scx_dump_task(&s
, &dctx
, rq
->curr
, '*');
5296 list_for_each_entry(p
, &rq
->scx
.runnable_list
, scx
.runnable_node
)
5297 scx_dump_task(&s
, &dctx
, p
, ' ');
5302 if (seq_buf_has_overflowed(&s
) && dump_len
>= sizeof(trunc_marker
))
5303 memcpy(ei
->dump
+ dump_len
- sizeof(trunc_marker
),
5304 trunc_marker
, sizeof(trunc_marker
));
5306 spin_unlock_irqrestore(&dump_lock
, flags
);
5309 static void scx_ops_error_irq_workfn(struct irq_work
*irq_work
)
5311 struct scx_exit_info
*ei
= scx_exit_info
;
5313 if (ei
->kind
>= SCX_EXIT_ERROR
)
5314 scx_dump_state(ei
, scx_ops
.exit_dump_len
);
5316 schedule_scx_ops_disable_work();
5319 static DEFINE_IRQ_WORK(scx_ops_error_irq_work
, scx_ops_error_irq_workfn
);
5321 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind
,
5323 const char *fmt
, ...)
5325 struct scx_exit_info
*ei
= scx_exit_info
;
5326 int none
= SCX_EXIT_NONE
;
5329 if (!atomic_try_cmpxchg(&scx_exit_kind
, &none
, kind
))
5332 ei
->exit_code
= exit_code
;
5333 #ifdef CONFIG_STACKTRACE
5334 if (kind
>= SCX_EXIT_ERROR
)
5335 ei
->bt_len
= stack_trace_save(ei
->bt
, SCX_EXIT_BT_LEN
, 1);
5337 va_start(args
, fmt
);
5338 vscnprintf(ei
->msg
, SCX_EXIT_MSG_LEN
, fmt
, args
);
5342 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
5343 * in scx_ops_disable_workfn().
5346 ei
->reason
= scx_exit_reason(ei
->kind
);
5348 irq_work_queue(&scx_ops_error_irq_work
);
5351 static struct kthread_worker
*scx_create_rt_helper(const char *name
)
5353 struct kthread_worker
*helper
;
5355 helper
= kthread_create_worker(0, name
);
5357 sched_set_fifo(helper
->task
);
5361 static void check_hotplug_seq(const struct sched_ext_ops
*ops
)
5363 unsigned long long global_hotplug_seq
;
5366 * If a hotplug event has occurred between when a scheduler was
5367 * initialized, and when we were able to attach, exit and notify user
5370 if (ops
->hotplug_seq
) {
5371 global_hotplug_seq
= atomic_long_read(&scx_hotplug_seq
);
5372 if (ops
->hotplug_seq
!= global_hotplug_seq
) {
5373 scx_ops_exit(SCX_ECODE_ACT_RESTART
| SCX_ECODE_RSN_HOTPLUG
,
5374 "expected hotplug seq %llu did not match actual %llu",
5375 ops
->hotplug_seq
, global_hotplug_seq
);
5380 static int validate_ops(const struct sched_ext_ops
*ops
)
5383 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
5384 * ops.enqueue() callback isn't implemented.
5386 if ((ops
->flags
& SCX_OPS_ENQ_LAST
) && !ops
->enqueue
) {
5387 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
5394 static int scx_ops_enable(struct sched_ext_ops
*ops
, struct bpf_link
*link
)
5396 struct scx_task_iter sti
;
5397 struct task_struct
*p
;
5398 unsigned long timeout
;
5399 int i
, cpu
, node
, ret
;
5401 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN
),
5402 cpu_possible_mask
)) {
5403 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5407 mutex_lock(&scx_ops_enable_mutex
);
5409 if (!scx_ops_helper
) {
5410 WRITE_ONCE(scx_ops_helper
,
5411 scx_create_rt_helper("sched_ext_ops_helper"));
5412 if (!scx_ops_helper
) {
5419 struct scx_dispatch_q
**dsqs
;
5421 dsqs
= kcalloc(nr_node_ids
, sizeof(dsqs
[0]), GFP_KERNEL
);
5427 for_each_node_state(node
, N_POSSIBLE
) {
5428 struct scx_dispatch_q
*dsq
;
5430 dsq
= kzalloc_node(sizeof(*dsq
), GFP_KERNEL
, node
);
5432 for_each_node_state(node
, N_POSSIBLE
)
5439 init_dsq(dsq
, SCX_DSQ_GLOBAL
);
5446 if (scx_ops_enable_state() != SCX_OPS_DISABLED
) {
5451 scx_root_kobj
= kzalloc(sizeof(*scx_root_kobj
), GFP_KERNEL
);
5452 if (!scx_root_kobj
) {
5457 scx_root_kobj
->kset
= scx_kset
;
5458 ret
= kobject_init_and_add(scx_root_kobj
, &scx_ktype
, NULL
, "root");
5462 scx_exit_info
= alloc_exit_info(ops
->exit_dump_len
);
5463 if (!scx_exit_info
) {
5469 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5470 * disable path. Failure triggers full disabling from here on.
5474 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING
) !=
5477 atomic_set(&scx_exit_kind
, SCX_EXIT_NONE
);
5478 scx_warned_zero_slice
= false;
5480 atomic_long_set(&scx_nr_rejected
, 0);
5482 for_each_possible_cpu(cpu
)
5483 cpu_rq(cpu
)->scx
.cpuperf_target
= SCX_CPUPERF_ONE
;
5486 * Keep CPUs stable during enable so that the BPF scheduler can track
5487 * online CPUs by watching ->on/offline_cpu() after ->init().
5492 ret
= SCX_CALL_OP_RET(SCX_KF_UNLOCKED
, init
);
5494 ret
= ops_sanitize_err("init", ret
);
5496 scx_ops_error("ops.init() failed (%d)", ret
);
5501 for (i
= SCX_OPI_CPU_HOTPLUG_BEGIN
; i
< SCX_OPI_CPU_HOTPLUG_END
; i
++)
5502 if (((void (**)(void))ops
)[i
])
5503 static_branch_enable_cpuslocked(&scx_has_op
[i
]);
5505 check_hotplug_seq(ops
);
5507 update_selcpu_topology();
5511 ret
= validate_ops(ops
);
5515 WARN_ON_ONCE(scx_dsp_ctx
);
5516 scx_dsp_max_batch
= ops
->dispatch_max_batch
?: SCX_DSP_DFL_MAX_BATCH
;
5517 scx_dsp_ctx
= __alloc_percpu(struct_size_t(struct scx_dsp_ctx
, buf
,
5519 __alignof__(struct scx_dsp_ctx
));
5525 if (ops
->timeout_ms
)
5526 timeout
= msecs_to_jiffies(ops
->timeout_ms
);
5528 timeout
= SCX_WATCHDOG_MAX_TIMEOUT
;
5530 WRITE_ONCE(scx_watchdog_timeout
, timeout
);
5531 WRITE_ONCE(scx_watchdog_timestamp
, jiffies
);
5532 queue_delayed_work(system_unbound_wq
, &scx_watchdog_work
,
5533 scx_watchdog_timeout
/ 2);
5536 * Once __scx_ops_enabled is set, %current can be switched to SCX
5537 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5538 * userspace scheduling) may not function correctly before all tasks are
5539 * switched. Init in bypass mode to guarantee forward progress.
5541 scx_ops_bypass(true);
5543 for (i
= SCX_OPI_NORMAL_BEGIN
; i
< SCX_OPI_NORMAL_END
; i
++)
5544 if (((void (**)(void))ops
)[i
])
5545 static_branch_enable(&scx_has_op
[i
]);
5547 if (ops
->flags
& SCX_OPS_ENQ_LAST
)
5548 static_branch_enable(&scx_ops_enq_last
);
5550 if (ops
->flags
& SCX_OPS_ENQ_EXITING
)
5551 static_branch_enable(&scx_ops_enq_exiting
);
5552 if (scx_ops
.cpu_acquire
|| scx_ops
.cpu_release
)
5553 static_branch_enable(&scx_ops_cpu_preempt
);
5555 if (!ops
->update_idle
|| (ops
->flags
& SCX_OPS_KEEP_BUILTIN_IDLE
)) {
5557 static_branch_enable(&scx_builtin_idle_enabled
);
5559 static_branch_disable(&scx_builtin_idle_enabled
);
5563 * Lock out forks, cgroup on/offlining and moves before opening the
5564 * floodgate so that they don't wander into the operations prematurely.
5566 percpu_down_write(&scx_fork_rwsem
);
5568 WARN_ON_ONCE(scx_ops_init_task_enabled
);
5569 scx_ops_init_task_enabled
= true;
5572 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5573 * preventing new tasks from being added. No need to exclude tasks
5574 * leaving as sched_ext_free() can handle both prepped and enabled
5575 * tasks. Prep all tasks first and then enable them with preemption
5578 * All cgroups should be initialized before scx_ops_init_task() so that
5579 * the BPF scheduler can reliably track each task's cgroup membership
5580 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5581 * migrations while tasks are being initialized so that
5582 * scx_cgroup_can_attach() never sees uninitialized tasks.
5585 ret
= scx_cgroup_init();
5587 goto err_disable_unlock_all
;
5589 scx_task_iter_start(&sti
);
5590 while ((p
= scx_task_iter_next_locked(&sti
))) {
5592 * @p may already be dead, have lost all its usages counts and
5593 * be waiting for RCU grace period before being freed. @p can't
5594 * be initialized for SCX in such cases and should be ignored.
5596 if (!tryget_task_struct(p
))
5599 scx_task_iter_unlock(&sti
);
5601 ret
= scx_ops_init_task(p
, task_group(p
), false);
5604 scx_task_iter_relock(&sti
);
5605 scx_task_iter_stop(&sti
);
5606 scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5607 ret
, p
->comm
, p
->pid
);
5608 goto err_disable_unlock_all
;
5611 scx_set_task_state(p
, SCX_TASK_READY
);
5614 scx_task_iter_relock(&sti
);
5616 scx_task_iter_stop(&sti
);
5617 scx_cgroup_unlock();
5618 percpu_up_write(&scx_fork_rwsem
);
5621 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5622 * all eligible tasks.
5624 WRITE_ONCE(scx_switching_all
, !(ops
->flags
& SCX_OPS_SWITCH_PARTIAL
));
5625 static_branch_enable(&__scx_ops_enabled
);
5628 * We're fully committed and can't fail. The task READY -> ENABLED
5629 * transitions here are synchronized against sched_ext_free() through
5632 percpu_down_write(&scx_fork_rwsem
);
5633 scx_task_iter_start(&sti
);
5634 while ((p
= scx_task_iter_next_locked(&sti
))) {
5635 const struct sched_class
*old_class
= p
->sched_class
;
5636 const struct sched_class
*new_class
=
5637 __setscheduler_class(p
->policy
, p
->prio
);
5638 struct sched_enq_and_set_ctx ctx
;
5640 if (old_class
!= new_class
&& p
->se
.sched_delayed
)
5641 dequeue_task(task_rq(p
), p
, DEQUEUE_SLEEP
| DEQUEUE_DELAYED
);
5643 sched_deq_and_put_task(p
, DEQUEUE_SAVE
| DEQUEUE_MOVE
, &ctx
);
5645 p
->scx
.slice
= SCX_SLICE_DFL
;
5646 p
->sched_class
= new_class
;
5647 check_class_changing(task_rq(p
), p
, old_class
);
5649 sched_enq_and_set_task(&ctx
);
5651 check_class_changed(task_rq(p
), p
, old_class
, p
->prio
);
5653 scx_task_iter_stop(&sti
);
5654 percpu_up_write(&scx_fork_rwsem
);
5656 scx_ops_bypass(false);
5658 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED
, SCX_OPS_ENABLING
)) {
5659 WARN_ON_ONCE(atomic_read(&scx_exit_kind
) == SCX_EXIT_NONE
);
5663 if (!(ops
->flags
& SCX_OPS_SWITCH_PARTIAL
))
5664 static_branch_enable(&__scx_switched_all
);
5666 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5667 scx_ops
.name
, scx_switched_all() ? "" : " (partial)");
5668 kobject_uevent(scx_root_kobj
, KOBJ_ADD
);
5669 mutex_unlock(&scx_ops_enable_mutex
);
5671 atomic_long_inc(&scx_enable_seq
);
5676 kobject_del(scx_root_kobj
);
5678 kobject_put(scx_root_kobj
);
5679 scx_root_kobj
= NULL
;
5680 if (scx_exit_info
) {
5681 free_exit_info(scx_exit_info
);
5682 scx_exit_info
= NULL
;
5685 mutex_unlock(&scx_ops_enable_mutex
);
5688 err_disable_unlock_all
:
5689 scx_cgroup_unlock();
5690 percpu_up_write(&scx_fork_rwsem
);
5691 scx_ops_bypass(false);
5693 mutex_unlock(&scx_ops_enable_mutex
);
5695 * Returning an error code here would not pass all the error information
5696 * to userspace. Record errno using scx_ops_error() for cases
5697 * scx_ops_error() wasn't already invoked and exit indicating success so
5698 * that the error is notified through ops.exit() with all the details.
5700 * Flush scx_ops_disable_work to ensure that error is reported before
5703 scx_ops_error("scx_ops_enable() failed (%d)", ret
);
5704 kthread_flush_work(&scx_ops_disable_work
);
5709 /********************************************************************************
5710 * bpf_struct_ops plumbing.
5712 #include <linux/bpf_verifier.h>
5713 #include <linux/bpf.h>
5714 #include <linux/btf.h>
5716 static const struct btf_type
*task_struct_type
;
5718 static bool bpf_scx_is_valid_access(int off
, int size
,
5719 enum bpf_access_type type
,
5720 const struct bpf_prog
*prog
,
5721 struct bpf_insn_access_aux
*info
)
5723 if (type
!= BPF_READ
)
5725 if (off
< 0 || off
>= sizeof(__u64
) * MAX_BPF_FUNC_ARGS
)
5727 if (off
% size
!= 0)
5730 return btf_ctx_access(off
, size
, type
, prog
, info
);
5733 static int bpf_scx_btf_struct_access(struct bpf_verifier_log
*log
,
5734 const struct bpf_reg_state
*reg
, int off
,
5737 const struct btf_type
*t
;
5739 t
= btf_type_by_id(reg
->btf
, reg
->btf_id
);
5740 if (t
== task_struct_type
) {
5741 if (off
>= offsetof(struct task_struct
, scx
.slice
) &&
5742 off
+ size
<= offsetofend(struct task_struct
, scx
.slice
))
5743 return SCALAR_VALUE
;
5744 if (off
>= offsetof(struct task_struct
, scx
.dsq_vtime
) &&
5745 off
+ size
<= offsetofend(struct task_struct
, scx
.dsq_vtime
))
5746 return SCALAR_VALUE
;
5747 if (off
>= offsetof(struct task_struct
, scx
.disallow
) &&
5748 off
+ size
<= offsetofend(struct task_struct
, scx
.disallow
))
5749 return SCALAR_VALUE
;
5755 static const struct bpf_func_proto
*
5756 bpf_scx_get_func_proto(enum bpf_func_id func_id
, const struct bpf_prog
*prog
)
5759 case BPF_FUNC_task_storage_get
:
5760 return &bpf_task_storage_get_proto
;
5761 case BPF_FUNC_task_storage_delete
:
5762 return &bpf_task_storage_delete_proto
;
5764 return bpf_base_func_proto(func_id
, prog
);
5768 static const struct bpf_verifier_ops bpf_scx_verifier_ops
= {
5769 .get_func_proto
= bpf_scx_get_func_proto
,
5770 .is_valid_access
= bpf_scx_is_valid_access
,
5771 .btf_struct_access
= bpf_scx_btf_struct_access
,
5774 static int bpf_scx_init_member(const struct btf_type
*t
,
5775 const struct btf_member
*member
,
5776 void *kdata
, const void *udata
)
5778 const struct sched_ext_ops
*uops
= udata
;
5779 struct sched_ext_ops
*ops
= kdata
;
5780 u32 moff
= __btf_member_bit_offset(t
, member
) / 8;
5784 case offsetof(struct sched_ext_ops
, dispatch_max_batch
):
5785 if (*(u32
*)(udata
+ moff
) > INT_MAX
)
5787 ops
->dispatch_max_batch
= *(u32
*)(udata
+ moff
);
5789 case offsetof(struct sched_ext_ops
, flags
):
5790 if (*(u64
*)(udata
+ moff
) & ~SCX_OPS_ALL_FLAGS
)
5792 ops
->flags
= *(u64
*)(udata
+ moff
);
5794 case offsetof(struct sched_ext_ops
, name
):
5795 ret
= bpf_obj_name_cpy(ops
->name
, uops
->name
,
5802 case offsetof(struct sched_ext_ops
, timeout_ms
):
5803 if (msecs_to_jiffies(*(u32
*)(udata
+ moff
)) >
5804 SCX_WATCHDOG_MAX_TIMEOUT
)
5806 ops
->timeout_ms
= *(u32
*)(udata
+ moff
);
5808 case offsetof(struct sched_ext_ops
, exit_dump_len
):
5809 ops
->exit_dump_len
=
5810 *(u32
*)(udata
+ moff
) ?: SCX_EXIT_DUMP_DFL_LEN
;
5812 case offsetof(struct sched_ext_ops
, hotplug_seq
):
5813 ops
->hotplug_seq
= *(u64
*)(udata
+ moff
);
5820 static int bpf_scx_check_member(const struct btf_type
*t
,
5821 const struct btf_member
*member
,
5822 const struct bpf_prog
*prog
)
5824 u32 moff
= __btf_member_bit_offset(t
, member
) / 8;
5827 case offsetof(struct sched_ext_ops
, init_task
):
5828 #ifdef CONFIG_EXT_GROUP_SCHED
5829 case offsetof(struct sched_ext_ops
, cgroup_init
):
5830 case offsetof(struct sched_ext_ops
, cgroup_exit
):
5831 case offsetof(struct sched_ext_ops
, cgroup_prep_move
):
5833 case offsetof(struct sched_ext_ops
, cpu_online
):
5834 case offsetof(struct sched_ext_ops
, cpu_offline
):
5835 case offsetof(struct sched_ext_ops
, init
):
5836 case offsetof(struct sched_ext_ops
, exit
):
5839 if (prog
->sleepable
)
5846 static int bpf_scx_reg(void *kdata
, struct bpf_link
*link
)
5848 return scx_ops_enable(kdata
, link
);
5851 static void bpf_scx_unreg(void *kdata
, struct bpf_link
*link
)
5853 scx_ops_disable(SCX_EXIT_UNREG
);
5854 kthread_flush_work(&scx_ops_disable_work
);
5857 static int bpf_scx_init(struct btf
*btf
)
5859 task_struct_type
= btf_type_by_id(btf
, btf_tracing_ids
[BTF_TRACING_TYPE_TASK
]);
5864 static int bpf_scx_update(void *kdata
, void *old_kdata
, struct bpf_link
*link
)
5867 * sched_ext does not support updating the actively-loaded BPF
5868 * scheduler, as registering a BPF scheduler can always fail if the
5869 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5870 * etc. Similarly, we can always race with unregistration happening
5871 * elsewhere, such as with sysrq.
5876 static int bpf_scx_validate(void *kdata
)
5881 static s32
sched_ext_ops__select_cpu(struct task_struct
*p
, s32 prev_cpu
, u64 wake_flags
) { return -EINVAL
; }
5882 static void sched_ext_ops__enqueue(struct task_struct
*p
, u64 enq_flags
) {}
5883 static void sched_ext_ops__dequeue(struct task_struct
*p
, u64 enq_flags
) {}
5884 static void sched_ext_ops__dispatch(s32 prev_cpu
, struct task_struct
*prev__nullable
) {}
5885 static void sched_ext_ops__tick(struct task_struct
*p
) {}
5886 static void sched_ext_ops__runnable(struct task_struct
*p
, u64 enq_flags
) {}
5887 static void sched_ext_ops__running(struct task_struct
*p
) {}
5888 static void sched_ext_ops__stopping(struct task_struct
*p
, bool runnable
) {}
5889 static void sched_ext_ops__quiescent(struct task_struct
*p
, u64 deq_flags
) {}
5890 static bool sched_ext_ops__yield(struct task_struct
*from
, struct task_struct
*to__nullable
) { return false; }
5891 static bool sched_ext_ops__core_sched_before(struct task_struct
*a
, struct task_struct
*b
) { return false; }
5892 static void sched_ext_ops__set_weight(struct task_struct
*p
, u32 weight
) {}
5893 static void sched_ext_ops__set_cpumask(struct task_struct
*p
, const struct cpumask
*mask
) {}
5894 static void sched_ext_ops__update_idle(s32 cpu
, bool idle
) {}
5895 static void sched_ext_ops__cpu_acquire(s32 cpu
, struct scx_cpu_acquire_args
*args
) {}
5896 static void sched_ext_ops__cpu_release(s32 cpu
, struct scx_cpu_release_args
*args
) {}
5897 static s32
sched_ext_ops__init_task(struct task_struct
*p
, struct scx_init_task_args
*args
) { return -EINVAL
; }
5898 static void sched_ext_ops__exit_task(struct task_struct
*p
, struct scx_exit_task_args
*args
) {}
5899 static void sched_ext_ops__enable(struct task_struct
*p
) {}
5900 static void sched_ext_ops__disable(struct task_struct
*p
) {}
5901 #ifdef CONFIG_EXT_GROUP_SCHED
5902 static s32
sched_ext_ops__cgroup_init(struct cgroup
*cgrp
, struct scx_cgroup_init_args
*args
) { return -EINVAL
; }
5903 static void sched_ext_ops__cgroup_exit(struct cgroup
*cgrp
) {}
5904 static s32
sched_ext_ops__cgroup_prep_move(struct task_struct
*p
, struct cgroup
*from
, struct cgroup
*to
) { return -EINVAL
; }
5905 static void sched_ext_ops__cgroup_move(struct task_struct
*p
, struct cgroup
*from
, struct cgroup
*to
) {}
5906 static void sched_ext_ops__cgroup_cancel_move(struct task_struct
*p
, struct cgroup
*from
, struct cgroup
*to
) {}
5907 static void sched_ext_ops__cgroup_set_weight(struct cgroup
*cgrp
, u32 weight
) {}
5909 static void sched_ext_ops__cpu_online(s32 cpu
) {}
5910 static void sched_ext_ops__cpu_offline(s32 cpu
) {}
5911 static s32
sched_ext_ops__init(void) { return -EINVAL
; }
5912 static void sched_ext_ops__exit(struct scx_exit_info
*info
) {}
5913 static void sched_ext_ops__dump(struct scx_dump_ctx
*ctx
) {}
5914 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx
*ctx
, s32 cpu
, bool idle
) {}
5915 static void sched_ext_ops__dump_task(struct scx_dump_ctx
*ctx
, struct task_struct
*p
) {}
5917 static struct sched_ext_ops __bpf_ops_sched_ext_ops
= {
5918 .select_cpu
= sched_ext_ops__select_cpu
,
5919 .enqueue
= sched_ext_ops__enqueue
,
5920 .dequeue
= sched_ext_ops__dequeue
,
5921 .dispatch
= sched_ext_ops__dispatch
,
5922 .tick
= sched_ext_ops__tick
,
5923 .runnable
= sched_ext_ops__runnable
,
5924 .running
= sched_ext_ops__running
,
5925 .stopping
= sched_ext_ops__stopping
,
5926 .quiescent
= sched_ext_ops__quiescent
,
5927 .yield
= sched_ext_ops__yield
,
5928 .core_sched_before
= sched_ext_ops__core_sched_before
,
5929 .set_weight
= sched_ext_ops__set_weight
,
5930 .set_cpumask
= sched_ext_ops__set_cpumask
,
5931 .update_idle
= sched_ext_ops__update_idle
,
5932 .cpu_acquire
= sched_ext_ops__cpu_acquire
,
5933 .cpu_release
= sched_ext_ops__cpu_release
,
5934 .init_task
= sched_ext_ops__init_task
,
5935 .exit_task
= sched_ext_ops__exit_task
,
5936 .enable
= sched_ext_ops__enable
,
5937 .disable
= sched_ext_ops__disable
,
5938 #ifdef CONFIG_EXT_GROUP_SCHED
5939 .cgroup_init
= sched_ext_ops__cgroup_init
,
5940 .cgroup_exit
= sched_ext_ops__cgroup_exit
,
5941 .cgroup_prep_move
= sched_ext_ops__cgroup_prep_move
,
5942 .cgroup_move
= sched_ext_ops__cgroup_move
,
5943 .cgroup_cancel_move
= sched_ext_ops__cgroup_cancel_move
,
5944 .cgroup_set_weight
= sched_ext_ops__cgroup_set_weight
,
5946 .cpu_online
= sched_ext_ops__cpu_online
,
5947 .cpu_offline
= sched_ext_ops__cpu_offline
,
5948 .init
= sched_ext_ops__init
,
5949 .exit
= sched_ext_ops__exit
,
5950 .dump
= sched_ext_ops__dump
,
5951 .dump_cpu
= sched_ext_ops__dump_cpu
,
5952 .dump_task
= sched_ext_ops__dump_task
,
5955 static struct bpf_struct_ops bpf_sched_ext_ops
= {
5956 .verifier_ops
= &bpf_scx_verifier_ops
,
5958 .unreg
= bpf_scx_unreg
,
5959 .check_member
= bpf_scx_check_member
,
5960 .init_member
= bpf_scx_init_member
,
5961 .init
= bpf_scx_init
,
5962 .update
= bpf_scx_update
,
5963 .validate
= bpf_scx_validate
,
5964 .name
= "sched_ext_ops",
5965 .owner
= THIS_MODULE
,
5966 .cfi_stubs
= &__bpf_ops_sched_ext_ops
5970 /********************************************************************************
5971 * System integration and init.
5974 static void sysrq_handle_sched_ext_reset(u8 key
)
5977 scx_ops_disable(SCX_EXIT_SYSRQ
);
5979 pr_info("sched_ext: BPF scheduler not yet used\n");
5982 static const struct sysrq_key_op sysrq_sched_ext_reset_op
= {
5983 .handler
= sysrq_handle_sched_ext_reset
,
5984 .help_msg
= "reset-sched-ext(S)",
5985 .action_msg
= "Disable sched_ext and revert all tasks to CFS",
5986 .enable_mask
= SYSRQ_ENABLE_RTNICE
,
5989 static void sysrq_handle_sched_ext_dump(u8 key
)
5991 struct scx_exit_info ei
= { .kind
= SCX_EXIT_NONE
, .reason
= "SysRq-D" };
5994 scx_dump_state(&ei
, 0);
5997 static const struct sysrq_key_op sysrq_sched_ext_dump_op
= {
5998 .handler
= sysrq_handle_sched_ext_dump
,
5999 .help_msg
= "dump-sched-ext(D)",
6000 .action_msg
= "Trigger sched_ext debug dump",
6001 .enable_mask
= SYSRQ_ENABLE_RTNICE
,
6004 static bool can_skip_idle_kick(struct rq
*rq
)
6006 lockdep_assert_rq_held(rq
);
6009 * We can skip idle kicking if @rq is going to go through at least one
6010 * full SCX scheduling cycle before going idle. Just checking whether
6011 * curr is not idle is insufficient because we could be racing
6012 * balance_one() trying to pull the next task from a remote rq, which
6013 * may fail, and @rq may become idle afterwards.
6015 * The race window is small and we don't and can't guarantee that @rq is
6016 * only kicked while idle anyway. Skip only when sure.
6018 return !is_idle_task(rq
->curr
) && !(rq
->scx
.flags
& SCX_RQ_IN_BALANCE
);
6021 static bool kick_one_cpu(s32 cpu
, struct rq
*this_rq
, unsigned long *pseqs
)
6023 struct rq
*rq
= cpu_rq(cpu
);
6024 struct scx_rq
*this_scx
= &this_rq
->scx
;
6025 bool should_wait
= false;
6026 unsigned long flags
;
6028 raw_spin_rq_lock_irqsave(rq
, flags
);
6031 * During CPU hotplug, a CPU may depend on kicking itself to make
6032 * forward progress. Allow kicking self regardless of online state.
6034 if (cpu_online(cpu
) || cpu
== cpu_of(this_rq
)) {
6035 if (cpumask_test_cpu(cpu
, this_scx
->cpus_to_preempt
)) {
6036 if (rq
->curr
->sched_class
== &ext_sched_class
)
6037 rq
->curr
->scx
.slice
= 0;
6038 cpumask_clear_cpu(cpu
, this_scx
->cpus_to_preempt
);
6041 if (cpumask_test_cpu(cpu
, this_scx
->cpus_to_wait
)) {
6042 pseqs
[cpu
] = rq
->scx
.pnt_seq
;
6048 cpumask_clear_cpu(cpu
, this_scx
->cpus_to_preempt
);
6049 cpumask_clear_cpu(cpu
, this_scx
->cpus_to_wait
);
6052 raw_spin_rq_unlock_irqrestore(rq
, flags
);
6057 static void kick_one_cpu_if_idle(s32 cpu
, struct rq
*this_rq
)
6059 struct rq
*rq
= cpu_rq(cpu
);
6060 unsigned long flags
;
6062 raw_spin_rq_lock_irqsave(rq
, flags
);
6064 if (!can_skip_idle_kick(rq
) &&
6065 (cpu_online(cpu
) || cpu
== cpu_of(this_rq
)))
6068 raw_spin_rq_unlock_irqrestore(rq
, flags
);
6071 static void kick_cpus_irq_workfn(struct irq_work
*irq_work
)
6073 struct rq
*this_rq
= this_rq();
6074 struct scx_rq
*this_scx
= &this_rq
->scx
;
6075 unsigned long *pseqs
= this_cpu_ptr(scx_kick_cpus_pnt_seqs
);
6076 bool should_wait
= false;
6079 for_each_cpu(cpu
, this_scx
->cpus_to_kick
) {
6080 should_wait
|= kick_one_cpu(cpu
, this_rq
, pseqs
);
6081 cpumask_clear_cpu(cpu
, this_scx
->cpus_to_kick
);
6082 cpumask_clear_cpu(cpu
, this_scx
->cpus_to_kick_if_idle
);
6085 for_each_cpu(cpu
, this_scx
->cpus_to_kick_if_idle
) {
6086 kick_one_cpu_if_idle(cpu
, this_rq
);
6087 cpumask_clear_cpu(cpu
, this_scx
->cpus_to_kick_if_idle
);
6093 for_each_cpu(cpu
, this_scx
->cpus_to_wait
) {
6094 unsigned long *wait_pnt_seq
= &cpu_rq(cpu
)->scx
.pnt_seq
;
6096 if (cpu
!= cpu_of(this_rq
)) {
6098 * Pairs with smp_store_release() issued by this CPU in
6099 * switch_class() on the resched path.
6101 * We busy-wait here to guarantee that no other task can
6102 * be scheduled on our core before the target CPU has
6103 * entered the resched path.
6105 while (smp_load_acquire(wait_pnt_seq
) == pseqs
[cpu
])
6109 cpumask_clear_cpu(cpu
, this_scx
->cpus_to_wait
);
6114 * print_scx_info - print out sched_ext scheduler state
6115 * @log_lvl: the log level to use when printing
6118 * If a sched_ext scheduler is enabled, print the name and state of the
6119 * scheduler. If @p is on sched_ext, print further information about the task.
6121 * This function can be safely called on any task as long as the task_struct
6122 * itself is accessible. While safe, this function isn't synchronized and may
6123 * print out mixups or garbages of limited length.
6125 void print_scx_info(const char *log_lvl
, struct task_struct
*p
)
6127 enum scx_ops_enable_state state
= scx_ops_enable_state();
6128 const char *all
= READ_ONCE(scx_switching_all
) ? "+all" : "";
6129 char runnable_at_buf
[22] = "?";
6130 struct sched_class
*class;
6131 unsigned long runnable_at
;
6133 if (state
== SCX_OPS_DISABLED
)
6137 * Carefully check if the task was running on sched_ext, and then
6138 * carefully copy the time it's been runnable, and its state.
6140 if (copy_from_kernel_nofault(&class, &p
->sched_class
, sizeof(class)) ||
6141 class != &ext_sched_class
) {
6142 printk("%sSched_ext: %s (%s%s)", log_lvl
, scx_ops
.name
,
6143 scx_ops_enable_state_str
[state
], all
);
6147 if (!copy_from_kernel_nofault(&runnable_at
, &p
->scx
.runnable_at
,
6148 sizeof(runnable_at
)))
6149 scnprintf(runnable_at_buf
, sizeof(runnable_at_buf
), "%+ldms",
6150 jiffies_delta_msecs(runnable_at
, jiffies
));
6152 /* print everything onto one line to conserve console space */
6153 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
6154 log_lvl
, scx_ops
.name
, scx_ops_enable_state_str
[state
], all
,
6158 static int scx_pm_handler(struct notifier_block
*nb
, unsigned long event
, void *ptr
)
6161 * SCX schedulers often have userspace components which are sometimes
6162 * involved in critial scheduling paths. PM operations involve freezing
6163 * userspace which can lead to scheduling misbehaviors including stalls.
6164 * Let's bypass while PM operations are in progress.
6167 case PM_HIBERNATION_PREPARE
:
6168 case PM_SUSPEND_PREPARE
:
6169 case PM_RESTORE_PREPARE
:
6170 scx_ops_bypass(true);
6172 case PM_POST_HIBERNATION
:
6173 case PM_POST_SUSPEND
:
6174 case PM_POST_RESTORE
:
6175 scx_ops_bypass(false);
6182 static struct notifier_block scx_pm_notifier
= {
6183 .notifier_call
= scx_pm_handler
,
6186 void __init
init_sched_ext_class(void)
6191 * The following is to prevent the compiler from optimizing out the enum
6192 * definitions so that BPF scheduler implementations can use them
6193 * through the generated vmlinux.h.
6195 WRITE_ONCE(v
, SCX_ENQ_WAKEUP
| SCX_DEQ_SLEEP
| SCX_KICK_PREEMPT
|
6198 BUG_ON(rhashtable_init(&dsq_hash
, &dsq_hash_params
));
6200 BUG_ON(!alloc_cpumask_var(&idle_masks
.cpu
, GFP_KERNEL
));
6201 BUG_ON(!alloc_cpumask_var(&idle_masks
.smt
, GFP_KERNEL
));
6203 scx_kick_cpus_pnt_seqs
=
6204 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs
[0]) * nr_cpu_ids
,
6205 __alignof__(scx_kick_cpus_pnt_seqs
[0]));
6206 BUG_ON(!scx_kick_cpus_pnt_seqs
);
6208 for_each_possible_cpu(cpu
) {
6209 struct rq
*rq
= cpu_rq(cpu
);
6211 init_dsq(&rq
->scx
.local_dsq
, SCX_DSQ_LOCAL
);
6212 INIT_LIST_HEAD(&rq
->scx
.runnable_list
);
6213 INIT_LIST_HEAD(&rq
->scx
.ddsp_deferred_locals
);
6215 BUG_ON(!zalloc_cpumask_var(&rq
->scx
.cpus_to_kick
, GFP_KERNEL
));
6216 BUG_ON(!zalloc_cpumask_var(&rq
->scx
.cpus_to_kick_if_idle
, GFP_KERNEL
));
6217 BUG_ON(!zalloc_cpumask_var(&rq
->scx
.cpus_to_preempt
, GFP_KERNEL
));
6218 BUG_ON(!zalloc_cpumask_var(&rq
->scx
.cpus_to_wait
, GFP_KERNEL
));
6219 init_irq_work(&rq
->scx
.deferred_irq_work
, deferred_irq_workfn
);
6220 init_irq_work(&rq
->scx
.kick_cpus_irq_work
, kick_cpus_irq_workfn
);
6222 if (cpu_online(cpu
))
6223 cpu_rq(cpu
)->scx
.flags
|= SCX_RQ_ONLINE
;
6226 register_sysrq_key('S', &sysrq_sched_ext_reset_op
);
6227 register_sysrq_key('D', &sysrq_sched_ext_dump_op
);
6228 INIT_DELAYED_WORK(&scx_watchdog_work
, scx_watchdog_workfn
);
6232 /********************************************************************************
6233 * Helpers that can be called from the BPF scheduler.
6235 #include <linux/btf_ids.h>
6237 __bpf_kfunc_start_defs();
6240 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
6241 * @p: task_struct to select a CPU for
6242 * @prev_cpu: CPU @p was on previously
6243 * @wake_flags: %SCX_WAKE_* flags
6244 * @is_idle: out parameter indicating whether the returned CPU is idle
6246 * Can only be called from ops.select_cpu() if the built-in CPU selection is
6247 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
6248 * @p, @prev_cpu and @wake_flags match ops.select_cpu().
6250 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
6251 * currently idle and thus a good candidate for direct dispatching.
6253 __bpf_kfunc s32
scx_bpf_select_cpu_dfl(struct task_struct
*p
, s32 prev_cpu
,
6254 u64 wake_flags
, bool *is_idle
)
6256 if (!static_branch_likely(&scx_builtin_idle_enabled
)) {
6257 scx_ops_error("built-in idle tracking is disabled");
6261 if (!scx_kf_allowed(SCX_KF_SELECT_CPU
))
6265 return scx_select_cpu_dfl(p
, prev_cpu
, wake_flags
, is_idle
);
6273 __bpf_kfunc_end_defs();
6275 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu
)
6276 BTF_ID_FLAGS(func
, scx_bpf_select_cpu_dfl
, KF_RCU
)
6277 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu
)
6279 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu
= {
6280 .owner
= THIS_MODULE
,
6281 .set
= &scx_kfunc_ids_select_cpu
,
6284 static bool scx_dsq_insert_preamble(struct task_struct
*p
, u64 enq_flags
)
6286 if (!scx_kf_allowed(SCX_KF_ENQUEUE
| SCX_KF_DISPATCH
))
6289 lockdep_assert_irqs_disabled();
6292 scx_ops_error("called with NULL task");
6296 if (unlikely(enq_flags
& __SCX_ENQ_INTERNAL_MASK
)) {
6297 scx_ops_error("invalid enq_flags 0x%llx", enq_flags
);
6304 static void scx_dsq_insert_commit(struct task_struct
*p
, u64 dsq_id
,
6307 struct scx_dsp_ctx
*dspc
= this_cpu_ptr(scx_dsp_ctx
);
6308 struct task_struct
*ddsp_task
;
6310 ddsp_task
= __this_cpu_read(direct_dispatch_task
);
6312 mark_direct_dispatch(ddsp_task
, p
, dsq_id
, enq_flags
);
6316 if (unlikely(dspc
->cursor
>= scx_dsp_max_batch
)) {
6317 scx_ops_error("dispatch buffer overflow");
6321 dspc
->buf
[dspc
->cursor
++] = (struct scx_dsp_buf_ent
){
6323 .qseq
= atomic_long_read(&p
->scx
.ops_state
) & SCX_OPSS_QSEQ_MASK
,
6325 .enq_flags
= enq_flags
,
6329 __bpf_kfunc_start_defs();
6332 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
6333 * @p: task_struct to insert
6334 * @dsq_id: DSQ to insert into
6335 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6336 * @enq_flags: SCX_ENQ_*
6338 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
6339 * call this function spuriously. Can be called from ops.enqueue(),
6340 * ops.select_cpu(), and ops.dispatch().
6342 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6343 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
6344 * used to target the local DSQ of a CPU other than the enqueueing one. Use
6345 * ops.select_cpu() to be on the target CPU in the first place.
6347 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6348 * will be directly inserted into the corresponding dispatch queue after
6349 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
6350 * inserted into the local DSQ of the CPU returned by ops.select_cpu().
6351 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6354 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6355 * and this function can be called upto ops.dispatch_max_batch times to insert
6356 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6357 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6359 * This function doesn't have any locking restrictions and may be called under
6360 * BPF locks (in the future when BPF introduces more flexible locking).
6362 * @p is allowed to run for @slice. The scheduling path is triggered on slice
6363 * exhaustion. If zero, the current residual slice is maintained. If
6364 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6365 * scx_bpf_kick_cpu() to trigger scheduling.
6367 __bpf_kfunc
void scx_bpf_dsq_insert(struct task_struct
*p
, u64 dsq_id
, u64 slice
,
6370 if (!scx_dsq_insert_preamble(p
, enq_flags
))
6374 p
->scx
.slice
= slice
;
6376 p
->scx
.slice
= p
->scx
.slice
?: 1;
6378 scx_dsq_insert_commit(p
, dsq_id
, enq_flags
);
6381 /* for backward compatibility, will be removed in v6.15 */
6382 __bpf_kfunc
void scx_bpf_dispatch(struct task_struct
*p
, u64 dsq_id
, u64 slice
,
6385 printk_deferred_once(KERN_WARNING
"sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
6386 scx_bpf_dsq_insert(p
, dsq_id
, slice
, enq_flags
);
6390 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
6391 * @p: task_struct to insert
6392 * @dsq_id: DSQ to insert into
6393 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6394 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6395 * @enq_flags: SCX_ENQ_*
6397 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
6398 * Tasks queued into the priority queue are ordered by @vtime. All other aspects
6399 * are identical to scx_bpf_dsq_insert().
6401 * @vtime ordering is according to time_before64() which considers wrapping. A
6402 * numerically larger vtime may indicate an earlier position in the ordering and
6405 * A DSQ can only be used as a FIFO or priority queue at any given time and this
6406 * function must not be called on a DSQ which already has one or more FIFO tasks
6407 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
6408 * SCX_DSQ_GLOBAL) cannot be used as priority queues.
6410 __bpf_kfunc
void scx_bpf_dsq_insert_vtime(struct task_struct
*p
, u64 dsq_id
,
6411 u64 slice
, u64 vtime
, u64 enq_flags
)
6413 if (!scx_dsq_insert_preamble(p
, enq_flags
))
6417 p
->scx
.slice
= slice
;
6419 p
->scx
.slice
= p
->scx
.slice
?: 1;
6421 p
->scx
.dsq_vtime
= vtime
;
6423 scx_dsq_insert_commit(p
, dsq_id
, enq_flags
| SCX_ENQ_DSQ_PRIQ
);
6426 /* for backward compatibility, will be removed in v6.15 */
6427 __bpf_kfunc
void scx_bpf_dispatch_vtime(struct task_struct
*p
, u64 dsq_id
,
6428 u64 slice
, u64 vtime
, u64 enq_flags
)
6430 printk_deferred_once(KERN_WARNING
"sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
6431 scx_bpf_dsq_insert_vtime(p
, dsq_id
, slice
, vtime
, enq_flags
);
6434 __bpf_kfunc_end_defs();
6436 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch
)
6437 BTF_ID_FLAGS(func
, scx_bpf_dsq_insert
, KF_RCU
)
6438 BTF_ID_FLAGS(func
, scx_bpf_dsq_insert_vtime
, KF_RCU
)
6439 BTF_ID_FLAGS(func
, scx_bpf_dispatch
, KF_RCU
)
6440 BTF_ID_FLAGS(func
, scx_bpf_dispatch_vtime
, KF_RCU
)
6441 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch
)
6443 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch
= {
6444 .owner
= THIS_MODULE
,
6445 .set
= &scx_kfunc_ids_enqueue_dispatch
,
6448 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern
*kit
,
6449 struct task_struct
*p
, u64 dsq_id
, u64 enq_flags
)
6451 struct scx_dispatch_q
*src_dsq
= kit
->dsq
, *dst_dsq
;
6452 struct rq
*this_rq
, *src_rq
, *locked_rq
;
6453 bool dispatched
= false;
6455 unsigned long flags
;
6457 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH
))
6461 * Can be called from either ops.dispatch() locking this_rq() or any
6462 * context where no rq lock is held. If latter, lock @p's task_rq which
6463 * we'll likely need anyway.
6465 src_rq
= task_rq(p
);
6467 local_irq_save(flags
);
6468 this_rq
= this_rq();
6469 in_balance
= this_rq
->scx
.flags
& SCX_RQ_IN_BALANCE
;
6472 if (this_rq
!= src_rq
) {
6473 raw_spin_rq_unlock(this_rq
);
6474 raw_spin_rq_lock(src_rq
);
6477 raw_spin_rq_lock(src_rq
);
6481 * If the BPF scheduler keeps calling this function repeatedly, it can
6482 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
6483 * breather if necessary.
6485 scx_ops_breather(src_rq
);
6488 raw_spin_lock(&src_dsq
->lock
);
6491 * Did someone else get to it? @p could have already left $src_dsq, got
6492 * re-enqueud, or be in the process of being consumed by someone else.
6494 if (unlikely(p
->scx
.dsq
!= src_dsq
||
6495 u32_before(kit
->cursor
.priv
, p
->scx
.dsq_seq
) ||
6496 p
->scx
.holding_cpu
>= 0) ||
6497 WARN_ON_ONCE(src_rq
!= task_rq(p
))) {
6498 raw_spin_unlock(&src_dsq
->lock
);
6502 /* @p is still on $src_dsq and stable, determine the destination */
6503 dst_dsq
= find_dsq_for_dispatch(this_rq
, dsq_id
, p
);
6506 * Apply vtime and slice updates before moving so that the new time is
6507 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6508 * this is safe as we're locking it.
6510 if (kit
->cursor
.flags
& __SCX_DSQ_ITER_HAS_VTIME
)
6511 p
->scx
.dsq_vtime
= kit
->vtime
;
6512 if (kit
->cursor
.flags
& __SCX_DSQ_ITER_HAS_SLICE
)
6513 p
->scx
.slice
= kit
->slice
;
6516 locked_rq
= move_task_between_dsqs(p
, enq_flags
, src_dsq
, dst_dsq
);
6520 if (this_rq
!= locked_rq
) {
6521 raw_spin_rq_unlock(locked_rq
);
6522 raw_spin_rq_lock(this_rq
);
6525 raw_spin_rq_unlock_irqrestore(locked_rq
, flags
);
6528 kit
->cursor
.flags
&= ~(__SCX_DSQ_ITER_HAS_SLICE
|
6529 __SCX_DSQ_ITER_HAS_VTIME
);
6533 __bpf_kfunc_start_defs();
6536 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6538 * Can only be called from ops.dispatch().
6540 __bpf_kfunc u32
scx_bpf_dispatch_nr_slots(void)
6542 if (!scx_kf_allowed(SCX_KF_DISPATCH
))
6545 return scx_dsp_max_batch
- __this_cpu_read(scx_dsp_ctx
->cursor
);
6549 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6551 * Cancel the latest dispatch. Can be called multiple times to cancel further
6552 * dispatches. Can only be called from ops.dispatch().
6554 __bpf_kfunc
void scx_bpf_dispatch_cancel(void)
6556 struct scx_dsp_ctx
*dspc
= this_cpu_ptr(scx_dsp_ctx
);
6558 if (!scx_kf_allowed(SCX_KF_DISPATCH
))
6561 if (dspc
->cursor
> 0)
6564 scx_ops_error("dispatch buffer underflow");
6568 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6569 * @dsq_id: DSQ to move task from
6571 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6572 * local DSQ for execution. Can only be called from ops.dispatch().
6574 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6575 * before trying to move from the specified DSQ. It may also grab rq locks and
6576 * thus can't be called under any BPF locks.
6578 * Returns %true if a task has been moved, %false if there isn't any task to
6581 __bpf_kfunc
bool scx_bpf_dsq_move_to_local(u64 dsq_id
)
6583 struct scx_dsp_ctx
*dspc
= this_cpu_ptr(scx_dsp_ctx
);
6584 struct scx_dispatch_q
*dsq
;
6586 if (!scx_kf_allowed(SCX_KF_DISPATCH
))
6589 flush_dispatch_buf(dspc
->rq
);
6591 dsq
= find_user_dsq(dsq_id
);
6592 if (unlikely(!dsq
)) {
6593 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id
);
6597 if (consume_dispatch_q(dspc
->rq
, dsq
)) {
6599 * A successfully consumed task can be dequeued before it starts
6600 * running while the CPU is trying to migrate other dispatched
6601 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6611 /* for backward compatibility, will be removed in v6.15 */
6612 __bpf_kfunc
bool scx_bpf_consume(u64 dsq_id
)
6614 printk_deferred_once(KERN_WARNING
"sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
6615 return scx_bpf_dsq_move_to_local(dsq_id
);
6619 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6620 * @it__iter: DSQ iterator in progress
6621 * @slice: duration the moved task can run for in nsecs
6623 * Override the slice of the next task that will be moved from @it__iter using
6624 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6625 * slice duration is kept.
6627 __bpf_kfunc
void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq
*it__iter
,
6630 struct bpf_iter_scx_dsq_kern
*kit
= (void *)it__iter
;
6633 kit
->cursor
.flags
|= __SCX_DSQ_ITER_HAS_SLICE
;
6636 /* for backward compatibility, will be removed in v6.15 */
6637 __bpf_kfunc
void scx_bpf_dispatch_from_dsq_set_slice(
6638 struct bpf_iter_scx_dsq
*it__iter
, u64 slice
)
6640 printk_deferred_once(KERN_WARNING
"sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()");
6641 scx_bpf_dsq_move_set_slice(it__iter
, slice
);
6645 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6646 * @it__iter: DSQ iterator in progress
6647 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6649 * Override the vtime of the next task that will be moved from @it__iter using
6650 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6651 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6652 * override is ignored and cleared.
6654 __bpf_kfunc
void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq
*it__iter
,
6657 struct bpf_iter_scx_dsq_kern
*kit
= (void *)it__iter
;
6660 kit
->cursor
.flags
|= __SCX_DSQ_ITER_HAS_VTIME
;
6663 /* for backward compatibility, will be removed in v6.15 */
6664 __bpf_kfunc
void scx_bpf_dispatch_from_dsq_set_vtime(
6665 struct bpf_iter_scx_dsq
*it__iter
, u64 vtime
)
6667 printk_deferred_once(KERN_WARNING
"sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()");
6668 scx_bpf_dsq_move_set_vtime(it__iter
, vtime
);
6672 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6673 * @it__iter: DSQ iterator in progress
6674 * @p: task to transfer
6675 * @dsq_id: DSQ to move @p to
6676 * @enq_flags: SCX_ENQ_*
6678 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6679 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6680 * be the destination.
6682 * For the transfer to be successful, @p must still be on the DSQ and have been
6683 * queued before the DSQ iteration started. This function doesn't care whether
6684 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6685 * been queued before the iteration started.
6687 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6689 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6690 * lock (e.g. BPF timers or SYSCALL programs).
6692 * Returns %true if @p has been consumed, %false if @p had already been consumed
6695 __bpf_kfunc
bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq
*it__iter
,
6696 struct task_struct
*p
, u64 dsq_id
,
6699 return scx_dsq_move((struct bpf_iter_scx_dsq_kern
*)it__iter
,
6700 p
, dsq_id
, enq_flags
);
6703 /* for backward compatibility, will be removed in v6.15 */
6704 __bpf_kfunc
bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq
*it__iter
,
6705 struct task_struct
*p
, u64 dsq_id
,
6708 printk_deferred_once(KERN_WARNING
"sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()");
6709 return scx_bpf_dsq_move(it__iter
, p
, dsq_id
, enq_flags
);
6713 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6714 * @it__iter: DSQ iterator in progress
6715 * @p: task to transfer
6716 * @dsq_id: DSQ to move @p to
6717 * @enq_flags: SCX_ENQ_*
6719 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6720 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6721 * user DSQ as only user DSQs support priority queue.
6723 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6724 * and scx_bpf_dsq_move_set_vtime() to update.
6726 * All other aspects are identical to scx_bpf_dsq_move(). See
6727 * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6729 __bpf_kfunc
bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq
*it__iter
,
6730 struct task_struct
*p
, u64 dsq_id
,
6733 return scx_dsq_move((struct bpf_iter_scx_dsq_kern
*)it__iter
,
6734 p
, dsq_id
, enq_flags
| SCX_ENQ_DSQ_PRIQ
);
6737 /* for backward compatibility, will be removed in v6.15 */
6738 __bpf_kfunc
bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq
*it__iter
,
6739 struct task_struct
*p
, u64 dsq_id
,
6742 printk_deferred_once(KERN_WARNING
"sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()");
6743 return scx_bpf_dsq_move_vtime(it__iter
, p
, dsq_id
, enq_flags
);
6746 __bpf_kfunc_end_defs();
6748 BTF_KFUNCS_START(scx_kfunc_ids_dispatch
)
6749 BTF_ID_FLAGS(func
, scx_bpf_dispatch_nr_slots
)
6750 BTF_ID_FLAGS(func
, scx_bpf_dispatch_cancel
)
6751 BTF_ID_FLAGS(func
, scx_bpf_dsq_move_to_local
)
6752 BTF_ID_FLAGS(func
, scx_bpf_consume
)
6753 BTF_ID_FLAGS(func
, scx_bpf_dsq_move_set_slice
)
6754 BTF_ID_FLAGS(func
, scx_bpf_dsq_move_set_vtime
)
6755 BTF_ID_FLAGS(func
, scx_bpf_dsq_move
, KF_RCU
)
6756 BTF_ID_FLAGS(func
, scx_bpf_dsq_move_vtime
, KF_RCU
)
6757 BTF_ID_FLAGS(func
, scx_bpf_dispatch_from_dsq_set_slice
)
6758 BTF_ID_FLAGS(func
, scx_bpf_dispatch_from_dsq_set_vtime
)
6759 BTF_ID_FLAGS(func
, scx_bpf_dispatch_from_dsq
, KF_RCU
)
6760 BTF_ID_FLAGS(func
, scx_bpf_dispatch_vtime_from_dsq
, KF_RCU
)
6761 BTF_KFUNCS_END(scx_kfunc_ids_dispatch
)
6763 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch
= {
6764 .owner
= THIS_MODULE
,
6765 .set
= &scx_kfunc_ids_dispatch
,
6768 __bpf_kfunc_start_defs();
6771 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6773 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6774 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6775 * processed tasks. Can only be called from ops.cpu_release().
6777 __bpf_kfunc u32
scx_bpf_reenqueue_local(void)
6780 u32 nr_enqueued
= 0;
6782 struct task_struct
*p
, *n
;
6784 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE
))
6787 rq
= cpu_rq(smp_processor_id());
6788 lockdep_assert_rq_held(rq
);
6791 * The BPF scheduler may choose to dispatch tasks back to
6792 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6793 * first to avoid processing the same tasks repeatedly.
6795 list_for_each_entry_safe(p
, n
, &rq
->scx
.local_dsq
.list
,
6796 scx
.dsq_list
.node
) {
6798 * If @p is being migrated, @p's current CPU may not agree with
6799 * its allowed CPUs and the migration_cpu_stop is about to
6800 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6802 * While racing sched property changes may also dequeue and
6803 * re-enqueue a migrating task while its current CPU and allowed
6804 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6805 * the current local DSQ for running tasks and thus are not
6806 * visible to the BPF scheduler.
6808 if (p
->migration_pending
)
6811 dispatch_dequeue(rq
, p
);
6812 list_add_tail(&p
->scx
.dsq_list
.node
, &tasks
);
6815 list_for_each_entry_safe(p
, n
, &tasks
, scx
.dsq_list
.node
) {
6816 list_del_init(&p
->scx
.dsq_list
.node
);
6817 do_enqueue_task(rq
, p
, SCX_ENQ_REENQ
, -1);
6824 __bpf_kfunc_end_defs();
6826 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release
)
6827 BTF_ID_FLAGS(func
, scx_bpf_reenqueue_local
)
6828 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release
)
6830 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release
= {
6831 .owner
= THIS_MODULE
,
6832 .set
= &scx_kfunc_ids_cpu_release
,
6835 __bpf_kfunc_start_defs();
6838 * scx_bpf_create_dsq - Create a custom DSQ
6839 * @dsq_id: DSQ to create
6840 * @node: NUMA node to allocate from
6842 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6843 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6845 __bpf_kfunc s32
scx_bpf_create_dsq(u64 dsq_id
, s32 node
)
6847 if (unlikely(node
>= (int)nr_node_ids
||
6848 (node
< 0 && node
!= NUMA_NO_NODE
)))
6850 return PTR_ERR_OR_ZERO(create_dsq(dsq_id
, node
));
6853 __bpf_kfunc_end_defs();
6855 BTF_KFUNCS_START(scx_kfunc_ids_unlocked
)
6856 BTF_ID_FLAGS(func
, scx_bpf_create_dsq
, KF_SLEEPABLE
)
6857 BTF_ID_FLAGS(func
, scx_bpf_dsq_move_set_slice
)
6858 BTF_ID_FLAGS(func
, scx_bpf_dsq_move_set_vtime
)
6859 BTF_ID_FLAGS(func
, scx_bpf_dsq_move
, KF_RCU
)
6860 BTF_ID_FLAGS(func
, scx_bpf_dsq_move_vtime
, KF_RCU
)
6861 BTF_ID_FLAGS(func
, scx_bpf_dispatch_from_dsq_set_slice
)
6862 BTF_ID_FLAGS(func
, scx_bpf_dispatch_from_dsq_set_vtime
)
6863 BTF_ID_FLAGS(func
, scx_bpf_dispatch_from_dsq
, KF_RCU
)
6864 BTF_ID_FLAGS(func
, scx_bpf_dispatch_vtime_from_dsq
, KF_RCU
)
6865 BTF_KFUNCS_END(scx_kfunc_ids_unlocked
)
6867 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked
= {
6868 .owner
= THIS_MODULE
,
6869 .set
= &scx_kfunc_ids_unlocked
,
6872 __bpf_kfunc_start_defs();
6875 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6877 * @flags: %SCX_KICK_* flags
6879 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6880 * trigger rescheduling on a busy CPU. This can be called from any online
6881 * scx_ops operation and the actual kicking is performed asynchronously through
6884 __bpf_kfunc
void scx_bpf_kick_cpu(s32 cpu
, u64 flags
)
6887 unsigned long irq_flags
;
6889 if (!ops_cpu_valid(cpu
, NULL
))
6892 local_irq_save(irq_flags
);
6894 this_rq
= this_rq();
6897 * While bypassing for PM ops, IRQ handling may not be online which can
6898 * lead to irq_work_queue() malfunction such as infinite busy wait for
6899 * IRQ status update. Suppress kicking.
6901 if (scx_rq_bypassing(this_rq
))
6905 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6906 * rq locks. We can probably be smarter and avoid bouncing if called
6907 * from ops which don't hold a rq lock.
6909 if (flags
& SCX_KICK_IDLE
) {
6910 struct rq
*target_rq
= cpu_rq(cpu
);
6912 if (unlikely(flags
& (SCX_KICK_PREEMPT
| SCX_KICK_WAIT
)))
6913 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6915 if (raw_spin_rq_trylock(target_rq
)) {
6916 if (can_skip_idle_kick(target_rq
)) {
6917 raw_spin_rq_unlock(target_rq
);
6920 raw_spin_rq_unlock(target_rq
);
6922 cpumask_set_cpu(cpu
, this_rq
->scx
.cpus_to_kick_if_idle
);
6924 cpumask_set_cpu(cpu
, this_rq
->scx
.cpus_to_kick
);
6926 if (flags
& SCX_KICK_PREEMPT
)
6927 cpumask_set_cpu(cpu
, this_rq
->scx
.cpus_to_preempt
);
6928 if (flags
& SCX_KICK_WAIT
)
6929 cpumask_set_cpu(cpu
, this_rq
->scx
.cpus_to_wait
);
6932 irq_work_queue(&this_rq
->scx
.kick_cpus_irq_work
);
6934 local_irq_restore(irq_flags
);
6938 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6939 * @dsq_id: id of the DSQ
6941 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6942 * -%ENOENT is returned.
6944 __bpf_kfunc s32
scx_bpf_dsq_nr_queued(u64 dsq_id
)
6946 struct scx_dispatch_q
*dsq
;
6951 if (dsq_id
== SCX_DSQ_LOCAL
) {
6952 ret
= READ_ONCE(this_rq()->scx
.local_dsq
.nr
);
6954 } else if ((dsq_id
& SCX_DSQ_LOCAL_ON
) == SCX_DSQ_LOCAL_ON
) {
6955 s32 cpu
= dsq_id
& SCX_DSQ_LOCAL_CPU_MASK
;
6957 if (ops_cpu_valid(cpu
, NULL
)) {
6958 ret
= READ_ONCE(cpu_rq(cpu
)->scx
.local_dsq
.nr
);
6962 dsq
= find_user_dsq(dsq_id
);
6964 ret
= READ_ONCE(dsq
->nr
);
6975 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6976 * @dsq_id: DSQ to destroy
6978 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6979 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6980 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6981 * which doesn't exist. Can be called from any online scx_ops operations.
6983 __bpf_kfunc
void scx_bpf_destroy_dsq(u64 dsq_id
)
6985 destroy_dsq(dsq_id
);
6989 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6990 * @it: iterator to initialize
6991 * @dsq_id: DSQ to iterate
6992 * @flags: %SCX_DSQ_ITER_*
6994 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6995 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6996 * tasks which are already queued when this function is invoked.
6998 __bpf_kfunc
int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq
*it
, u64 dsq_id
,
7001 struct bpf_iter_scx_dsq_kern
*kit
= (void *)it
;
7003 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern
) >
7004 sizeof(struct bpf_iter_scx_dsq
));
7005 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern
) !=
7006 __alignof__(struct bpf_iter_scx_dsq
));
7008 if (flags
& ~__SCX_DSQ_ITER_USER_FLAGS
)
7011 kit
->dsq
= find_user_dsq(dsq_id
);
7015 INIT_LIST_HEAD(&kit
->cursor
.node
);
7016 kit
->cursor
.flags
|= SCX_DSQ_LNODE_ITER_CURSOR
| flags
;
7017 kit
->cursor
.priv
= READ_ONCE(kit
->dsq
->seq
);
7023 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
7024 * @it: iterator to progress
7026 * Return the next task. See bpf_iter_scx_dsq_new().
7028 __bpf_kfunc
struct task_struct
*bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq
*it
)
7030 struct bpf_iter_scx_dsq_kern
*kit
= (void *)it
;
7031 bool rev
= kit
->cursor
.flags
& SCX_DSQ_ITER_REV
;
7032 struct task_struct
*p
;
7033 unsigned long flags
;
7038 raw_spin_lock_irqsave(&kit
->dsq
->lock
, flags
);
7040 if (list_empty(&kit
->cursor
.node
))
7043 p
= container_of(&kit
->cursor
, struct task_struct
, scx
.dsq_list
);
7046 * Only tasks which were queued before the iteration started are
7047 * visible. This bounds BPF iterations and guarantees that vtime never
7048 * jumps in the other direction while iterating.
7051 p
= nldsq_next_task(kit
->dsq
, p
, rev
);
7052 } while (p
&& unlikely(u32_before(kit
->cursor
.priv
, p
->scx
.dsq_seq
)));
7056 list_move_tail(&kit
->cursor
.node
, &p
->scx
.dsq_list
.node
);
7058 list_move(&kit
->cursor
.node
, &p
->scx
.dsq_list
.node
);
7060 list_del_init(&kit
->cursor
.node
);
7063 raw_spin_unlock_irqrestore(&kit
->dsq
->lock
, flags
);
7069 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
7070 * @it: iterator to destroy
7072 * Undo scx_iter_scx_dsq_new().
7074 __bpf_kfunc
void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq
*it
)
7076 struct bpf_iter_scx_dsq_kern
*kit
= (void *)it
;
7081 if (!list_empty(&kit
->cursor
.node
)) {
7082 unsigned long flags
;
7084 raw_spin_lock_irqsave(&kit
->dsq
->lock
, flags
);
7085 list_del_init(&kit
->cursor
.node
);
7086 raw_spin_unlock_irqrestore(&kit
->dsq
->lock
, flags
);
7091 __bpf_kfunc_end_defs();
7093 static s32
__bstr_format(u64
*data_buf
, char *line_buf
, size_t line_size
,
7094 char *fmt
, unsigned long long *data
, u32 data__sz
)
7096 struct bpf_bprintf_data bprintf_data
= { .get_bin_args
= true };
7099 if (data__sz
% 8 || data__sz
> MAX_BPRINTF_VARARGS
* 8 ||
7100 (data__sz
&& !data
)) {
7101 scx_ops_error("invalid data=%p and data__sz=%u",
7102 (void *)data
, data__sz
);
7106 ret
= copy_from_kernel_nofault(data_buf
, data
, data__sz
);
7108 scx_ops_error("failed to read data fields (%d)", ret
);
7112 ret
= bpf_bprintf_prepare(fmt
, UINT_MAX
, data_buf
, data__sz
/ 8,
7115 scx_ops_error("format preparation failed (%d)", ret
);
7119 ret
= bstr_printf(line_buf
, line_size
, fmt
,
7120 bprintf_data
.bin_args
);
7121 bpf_bprintf_cleanup(&bprintf_data
);
7123 scx_ops_error("(\"%s\", %p, %u) failed to format",
7124 fmt
, data
, data__sz
);
7131 static s32
bstr_format(struct scx_bstr_buf
*buf
,
7132 char *fmt
, unsigned long long *data
, u32 data__sz
)
7134 return __bstr_format(buf
->data
, buf
->line
, sizeof(buf
->line
),
7135 fmt
, data
, data__sz
);
7138 __bpf_kfunc_start_defs();
7141 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
7142 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
7143 * @fmt: error message format string
7144 * @data: format string parameters packaged using ___bpf_fill() macro
7145 * @data__sz: @data len, must end in '__sz' for the verifier
7147 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
7150 __bpf_kfunc
void scx_bpf_exit_bstr(s64 exit_code
, char *fmt
,
7151 unsigned long long *data
, u32 data__sz
)
7153 unsigned long flags
;
7155 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock
, flags
);
7156 if (bstr_format(&scx_exit_bstr_buf
, fmt
, data
, data__sz
) >= 0)
7157 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF
, exit_code
, "%s",
7158 scx_exit_bstr_buf
.line
);
7159 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock
, flags
);
7163 * scx_bpf_error_bstr - Indicate fatal error
7164 * @fmt: error message format string
7165 * @data: format string parameters packaged using ___bpf_fill() macro
7166 * @data__sz: @data len, must end in '__sz' for the verifier
7168 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
7171 __bpf_kfunc
void scx_bpf_error_bstr(char *fmt
, unsigned long long *data
,
7174 unsigned long flags
;
7176 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock
, flags
);
7177 if (bstr_format(&scx_exit_bstr_buf
, fmt
, data
, data__sz
) >= 0)
7178 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF
, 0, "%s",
7179 scx_exit_bstr_buf
.line
);
7180 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock
, flags
);
7184 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
7185 * @fmt: format string
7186 * @data: format string parameters packaged using ___bpf_fill() macro
7187 * @data__sz: @data len, must end in '__sz' for the verifier
7189 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
7190 * dump_task() to generate extra debug dump specific to the BPF scheduler.
7192 * The extra dump may be multiple lines. A single line may be split over
7193 * multiple calls. The last line is automatically terminated.
7195 __bpf_kfunc
void scx_bpf_dump_bstr(char *fmt
, unsigned long long *data
,
7198 struct scx_dump_data
*dd
= &scx_dump_data
;
7199 struct scx_bstr_buf
*buf
= &dd
->buf
;
7202 if (raw_smp_processor_id() != dd
->cpu
) {
7203 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
7207 /* append the formatted string to the line buf */
7208 ret
= __bstr_format(buf
->data
, buf
->line
+ dd
->cursor
,
7209 sizeof(buf
->line
) - dd
->cursor
, fmt
, data
, data__sz
);
7211 dump_line(dd
->s
, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
7212 dd
->prefix
, fmt
, data
, data__sz
, ret
);
7217 dd
->cursor
= min_t(s32
, dd
->cursor
, sizeof(buf
->line
));
7223 * If the line buf overflowed or ends in a newline, flush it into the
7224 * dump. This is to allow the caller to generate a single line over
7225 * multiple calls. As ops_dump_flush() can also handle multiple lines in
7226 * the line buf, the only case which can lead to an unexpected
7227 * truncation is when the caller keeps generating newlines in the middle
7228 * instead of the end consecutively. Don't do that.
7230 if (dd
->cursor
>= sizeof(buf
->line
) || buf
->line
[dd
->cursor
- 1] == '\n')
7235 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
7236 * @cpu: CPU of interest
7238 * Return the maximum relative capacity of @cpu in relation to the most
7239 * performant CPU in the system. The return value is in the range [1,
7240 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
7242 __bpf_kfunc u32
scx_bpf_cpuperf_cap(s32 cpu
)
7244 if (ops_cpu_valid(cpu
, NULL
))
7245 return arch_scale_cpu_capacity(cpu
);
7247 return SCX_CPUPERF_ONE
;
7251 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
7252 * @cpu: CPU of interest
7254 * Return the current relative performance of @cpu in relation to its maximum.
7255 * The return value is in the range [1, %SCX_CPUPERF_ONE].
7257 * The current performance level of a CPU in relation to the maximum performance
7258 * available in the system can be calculated as follows:
7260 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
7262 * The result is in the range [1, %SCX_CPUPERF_ONE].
7264 __bpf_kfunc u32
scx_bpf_cpuperf_cur(s32 cpu
)
7266 if (ops_cpu_valid(cpu
, NULL
))
7267 return arch_scale_freq_capacity(cpu
);
7269 return SCX_CPUPERF_ONE
;
7273 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
7274 * @cpu: CPU of interest
7275 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
7276 * @flags: %SCX_CPUPERF_* flags
7278 * Set the target performance level of @cpu to @perf. @perf is in linear
7279 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
7280 * schedutil cpufreq governor chooses the target frequency.
7282 * The actual performance level chosen, CPU grouping, and the overhead and
7283 * latency of the operations are dependent on the hardware and cpufreq driver in
7284 * use. Consult hardware and cpufreq documentation for more information. The
7285 * current performance level can be monitored using scx_bpf_cpuperf_cur().
7287 __bpf_kfunc
void scx_bpf_cpuperf_set(s32 cpu
, u32 perf
)
7289 if (unlikely(perf
> SCX_CPUPERF_ONE
)) {
7290 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf
, cpu
);
7294 if (ops_cpu_valid(cpu
, NULL
)) {
7295 struct rq
*rq
= cpu_rq(cpu
);
7297 rq
->scx
.cpuperf_target
= perf
;
7299 rcu_read_lock_sched_notrace();
7300 cpufreq_update_util(cpu_rq(cpu
), 0);
7301 rcu_read_unlock_sched_notrace();
7306 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7308 * All valid CPU IDs in the system are smaller than the returned value.
7310 __bpf_kfunc u32
scx_bpf_nr_cpu_ids(void)
7316 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7318 __bpf_kfunc
const struct cpumask
*scx_bpf_get_possible_cpumask(void)
7320 return cpu_possible_mask
;
7324 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7326 __bpf_kfunc
const struct cpumask
*scx_bpf_get_online_cpumask(void)
7328 return cpu_online_mask
;
7332 * scx_bpf_put_cpumask - Release a possible/online cpumask
7333 * @cpumask: cpumask to release
7335 __bpf_kfunc
void scx_bpf_put_cpumask(const struct cpumask
*cpumask
)
7338 * Empty function body because we aren't actually acquiring or releasing
7339 * a reference to a global cpumask, which is read-only in the caller and
7340 * is never released. The acquire / release semantics here are just used
7341 * to make the cpumask is a trusted pointer in the caller.
7346 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
7349 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7351 __bpf_kfunc
const struct cpumask
*scx_bpf_get_idle_cpumask(void)
7353 if (!static_branch_likely(&scx_builtin_idle_enabled
)) {
7354 scx_ops_error("built-in idle tracking is disabled");
7355 return cpu_none_mask
;
7359 return idle_masks
.cpu
;
7361 return cpu_none_mask
;
7366 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
7367 * per-physical-core cpumask. Can be used to determine if an entire physical
7370 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7372 __bpf_kfunc
const struct cpumask
*scx_bpf_get_idle_smtmask(void)
7374 if (!static_branch_likely(&scx_builtin_idle_enabled
)) {
7375 scx_ops_error("built-in idle tracking is disabled");
7376 return cpu_none_mask
;
7380 if (sched_smt_active())
7381 return idle_masks
.smt
;
7383 return idle_masks
.cpu
;
7385 return cpu_none_mask
;
7390 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7391 * either the percpu, or SMT idle-tracking cpumask.
7393 __bpf_kfunc
void scx_bpf_put_idle_cpumask(const struct cpumask
*idle_mask
)
7396 * Empty function body because we aren't actually acquiring or releasing
7397 * a reference to a global idle cpumask, which is read-only in the
7398 * caller and is never released. The acquire / release semantics here
7399 * are just used to make the cpumask a trusted pointer in the caller.
7404 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7405 * @cpu: cpu to test and clear idle for
7407 * Returns %true if @cpu was idle and its idle state was successfully cleared.
7410 * Unavailable if ops.update_idle() is implemented and
7411 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7413 __bpf_kfunc
bool scx_bpf_test_and_clear_cpu_idle(s32 cpu
)
7415 if (!static_branch_likely(&scx_builtin_idle_enabled
)) {
7416 scx_ops_error("built-in idle tracking is disabled");
7420 if (ops_cpu_valid(cpu
, NULL
))
7421 return test_and_clear_cpu_idle(cpu
);
7427 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7428 * @cpus_allowed: Allowed cpumask
7429 * @flags: %SCX_PICK_IDLE_CPU_* flags
7431 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7432 * number on success. -%EBUSY if no matching cpu was found.
7434 * Idle CPU tracking may race against CPU scheduling state transitions. For
7435 * example, this function may return -%EBUSY as CPUs are transitioning into the
7436 * idle state. If the caller then assumes that there will be dispatch events on
7437 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7438 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7439 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7440 * event in the near future.
7442 * Unavailable if ops.update_idle() is implemented and
7443 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7445 __bpf_kfunc s32
scx_bpf_pick_idle_cpu(const struct cpumask
*cpus_allowed
,
7448 if (!static_branch_likely(&scx_builtin_idle_enabled
)) {
7449 scx_ops_error("built-in idle tracking is disabled");
7453 return scx_pick_idle_cpu(cpus_allowed
, flags
);
7457 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7458 * @cpus_allowed: Allowed cpumask
7459 * @flags: %SCX_PICK_IDLE_CPU_* flags
7461 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7462 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7463 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7466 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7467 * set, this function can't tell which CPUs are idle and will always pick any
7470 __bpf_kfunc s32
scx_bpf_pick_any_cpu(const struct cpumask
*cpus_allowed
,
7475 if (static_branch_likely(&scx_builtin_idle_enabled
)) {
7476 cpu
= scx_pick_idle_cpu(cpus_allowed
, flags
);
7481 cpu
= cpumask_any_distribute(cpus_allowed
);
7482 if (cpu
< nr_cpu_ids
)
7489 * scx_bpf_task_running - Is task currently running?
7490 * @p: task of interest
7492 __bpf_kfunc
bool scx_bpf_task_running(const struct task_struct
*p
)
7494 return task_rq(p
)->curr
== p
;
7498 * scx_bpf_task_cpu - CPU a task is currently associated with
7499 * @p: task of interest
7501 __bpf_kfunc s32
scx_bpf_task_cpu(const struct task_struct
*p
)
7507 * scx_bpf_cpu_rq - Fetch the rq of a CPU
7508 * @cpu: CPU of the rq
7510 __bpf_kfunc
struct rq
*scx_bpf_cpu_rq(s32 cpu
)
7512 if (!ops_cpu_valid(cpu
, NULL
))
7519 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7520 * @p: task of interest
7522 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7523 * from the scheduler's POV. SCX operations should use this function to
7524 * determine @p's current cgroup as, unlike following @p->cgroups,
7525 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7526 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7527 * operations. The restriction guarantees that @p's rq is locked by the caller.
7529 #ifdef CONFIG_CGROUP_SCHED
7530 __bpf_kfunc
struct cgroup
*scx_bpf_task_cgroup(struct task_struct
*p
)
7532 struct task_group
*tg
= p
->sched_task_group
;
7533 struct cgroup
*cgrp
= &cgrp_dfl_root
.cgrp
;
7535 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED
, p
))
7546 __bpf_kfunc_end_defs();
7548 BTF_KFUNCS_START(scx_kfunc_ids_any
)
7549 BTF_ID_FLAGS(func
, scx_bpf_kick_cpu
)
7550 BTF_ID_FLAGS(func
, scx_bpf_dsq_nr_queued
)
7551 BTF_ID_FLAGS(func
, scx_bpf_destroy_dsq
)
7552 BTF_ID_FLAGS(func
, bpf_iter_scx_dsq_new
, KF_ITER_NEW
| KF_RCU_PROTECTED
)
7553 BTF_ID_FLAGS(func
, bpf_iter_scx_dsq_next
, KF_ITER_NEXT
| KF_RET_NULL
)
7554 BTF_ID_FLAGS(func
, bpf_iter_scx_dsq_destroy
, KF_ITER_DESTROY
)
7555 BTF_ID_FLAGS(func
, scx_bpf_exit_bstr
, KF_TRUSTED_ARGS
)
7556 BTF_ID_FLAGS(func
, scx_bpf_error_bstr
, KF_TRUSTED_ARGS
)
7557 BTF_ID_FLAGS(func
, scx_bpf_dump_bstr
, KF_TRUSTED_ARGS
)
7558 BTF_ID_FLAGS(func
, scx_bpf_cpuperf_cap
)
7559 BTF_ID_FLAGS(func
, scx_bpf_cpuperf_cur
)
7560 BTF_ID_FLAGS(func
, scx_bpf_cpuperf_set
)
7561 BTF_ID_FLAGS(func
, scx_bpf_nr_cpu_ids
)
7562 BTF_ID_FLAGS(func
, scx_bpf_get_possible_cpumask
, KF_ACQUIRE
)
7563 BTF_ID_FLAGS(func
, scx_bpf_get_online_cpumask
, KF_ACQUIRE
)
7564 BTF_ID_FLAGS(func
, scx_bpf_put_cpumask
, KF_RELEASE
)
7565 BTF_ID_FLAGS(func
, scx_bpf_get_idle_cpumask
, KF_ACQUIRE
)
7566 BTF_ID_FLAGS(func
, scx_bpf_get_idle_smtmask
, KF_ACQUIRE
)
7567 BTF_ID_FLAGS(func
, scx_bpf_put_idle_cpumask
, KF_RELEASE
)
7568 BTF_ID_FLAGS(func
, scx_bpf_test_and_clear_cpu_idle
)
7569 BTF_ID_FLAGS(func
, scx_bpf_pick_idle_cpu
, KF_RCU
)
7570 BTF_ID_FLAGS(func
, scx_bpf_pick_any_cpu
, KF_RCU
)
7571 BTF_ID_FLAGS(func
, scx_bpf_task_running
, KF_RCU
)
7572 BTF_ID_FLAGS(func
, scx_bpf_task_cpu
, KF_RCU
)
7573 BTF_ID_FLAGS(func
, scx_bpf_cpu_rq
)
7574 #ifdef CONFIG_CGROUP_SCHED
7575 BTF_ID_FLAGS(func
, scx_bpf_task_cgroup
, KF_RCU
| KF_ACQUIRE
)
7577 BTF_KFUNCS_END(scx_kfunc_ids_any
)
7579 static const struct btf_kfunc_id_set scx_kfunc_set_any
= {
7580 .owner
= THIS_MODULE
,
7581 .set
= &scx_kfunc_ids_any
,
7584 static int __init
scx_init(void)
7589 * kfunc registration can't be done from init_sched_ext_class() as
7590 * register_btf_kfunc_id_set() needs most of the system to be up.
7592 * Some kfuncs are context-sensitive and can only be called from
7593 * specific SCX ops. They are grouped into BTF sets accordingly.
7594 * Unfortunately, BPF currently doesn't have a way of enforcing such
7595 * restrictions. Eventually, the verifier should be able to enforce
7596 * them. For now, register them the same and make each kfunc explicitly
7597 * check using scx_kf_allowed().
7599 if ((ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS
,
7600 &scx_kfunc_set_select_cpu
)) ||
7601 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS
,
7602 &scx_kfunc_set_enqueue_dispatch
)) ||
7603 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS
,
7604 &scx_kfunc_set_dispatch
)) ||
7605 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS
,
7606 &scx_kfunc_set_cpu_release
)) ||
7607 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS
,
7608 &scx_kfunc_set_unlocked
)) ||
7609 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL
,
7610 &scx_kfunc_set_unlocked
)) ||
7611 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS
,
7612 &scx_kfunc_set_any
)) ||
7613 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING
,
7614 &scx_kfunc_set_any
)) ||
7615 (ret
= register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL
,
7616 &scx_kfunc_set_any
))) {
7617 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret
);
7621 ret
= register_bpf_struct_ops(&bpf_sched_ext_ops
, sched_ext_ops
);
7623 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret
);
7627 ret
= register_pm_notifier(&scx_pm_notifier
);
7629 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret
);
7633 scx_kset
= kset_create_and_add("sched_ext", &scx_uevent_ops
, kernel_kobj
);
7635 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7639 ret
= sysfs_create_group(&scx_kset
->kobj
, &scx_global_attr_group
);
7641 pr_err("sched_ext: Failed to add global attributes\n");
7647 __initcall(scx_init
);